homogeneitytokyohotn0717

tokyohotn0717  时间:2021-03-19  阅读:()
ContentslistsavailableatScienceDirectJournalofEnvironmentalManagementjournalhomepage:www.
elsevier.
com/locate/jenvmanResearcharticleVegetationrestorationdrivesthedynamicsanddistributionofnitrogenandphosphorouspoolsinatemperatedesertsoil-plantsystemYanghaotian,Wangzengru,Lixiaojun,GaoyanhongShapotouDesertResearchandExperimentStation,NorthwestInstituteofEco-environmentandResources,ChineseAcademyofSciences,Lanzhou730000,ChinaARTICLEINFOKeywords:NitrogenpoolPhosphorouspoolDistributionpatternsVegetationrestorationRestorationseriesABSTRACTTherolevegetationrestorationandsuccessionplayinregulatingNitrogen(N)andPhosphorous(P)poolsre-mainsunexploredandpoorlyunderstood.
Toexaminetheeectsofvegetationrestorationandsuccessionfromashiftingsanddunetorestoredvegetationatdierentages(23,33,50,and58years)onthedynamicsanddistributionofNandPpoolsinasoil-plantsystem,acomprehensiveeldinvestigationwasconductedandN(P)concentrationsanddensitiesofsoil,shrubs(includingleaves,newbranches,agingbranches,androots),andgrass(includingaboveground,roots,andlitter)ateachsitewereanalyzedandquantied.
WefoundthattotalN(TN)andtotalP(TP)densityfortheplant-soilsystem,inliveshrubbiomassaswellassoilTN(STN)densityinsubsoil(10–100cm),decreasedbetween23and50years,andthenincreasedfrom50to58years.
STNandsoilTP(STP)densitiesintopsoil(0–10cm),andNandPdensitiesofherbageanddeadshrubs,continuedtoincreasewithrestoration.
NandPwereprimarilystoredinsoilsandaccountedfor89.
83%–92.
06%and99.
33%–99.
48%oftheTNandTPpools,respectively.
Intherst23years,liveshrubsmadeupthesecondlargestNandPpools,however,herbagemadeupthesecondlargestNandPpoolsafter23years.
TheratiosofNandPinherbagetoTNandTPdensityincreasedfrom3.
71%to6.
31%,and0.
33%–0.
43%,graduallyapproachingthenativesite(6.
39%and0.
46%).
TheratiosofNandPinliveshrubstoTNandTPdensityinthesoil-plantsystemdecreasedfrom4.
55%to1.
08%andfrom0.
33%to0.
13%.
OurresultsindicatedthattherestoredecosystemwasaN(P)sourcefrom0to50(0–23)years,andaN(P)sinkfrom50to58(23–58)years,withstrongpotentialforaccumulatingmoreN(147.
18gm2)andP(102.
67gm2)toreachthenaturalsitelevels.
TheseresultssuggestthatvegetationrestorationandsuccessionmayprofoundlyalterNandPgeochemicalcyclesthroughN(P)re-distributioninatemperatedesertplant-soilsystem.
ProperNandPadditionattheinitialstageofvegetationrestorationmaypromotetherecoveryofdesertiedland.
1.
IntroductionNitrogen(N)andphosphorus(P)aretwoofthemostimportantnutrientsforalllivingorganisms.
Theyarekeycomponentsofaminoandnucleicacidsandcannotbereplacedinmostbiologicalfunctions(MarschnerandRengel,2007).
Thealterationofthesetwoelementshasthepotentialtoprofoundlyaectecosystemstructure,function,andkeyecologicalprocesses,suchasplantgrowth,communitystructure,speciesdiversity,netprimaryproductivity,andglobalcarboncycles(VitousekandHowarth,1991;GruberandGalloway,2008;XiaandWan,2008;Yuetal.
,2010;Vitouseketal.
,2010).
NandParelimitingnutrientsinmanyterrestrialecosystems,especiallydeserts(CrawfordandGosz,1982;SchlesingerandRaikes,1996;Elseretal.
,2007;LebauerandTreseder,2008).
Hence,theirdynamicsareconsideredtobeimportantfactorsintheassessmentofthebiologicalandbiogeochemicalstatesofterrestrialecosystems.
Nutrientsarealwayscyclingamongvariouspoolsinanecosystem.
Desertecosystemscoverapproximately20%oftheearth'slandsurface(Whitford,2002),andthemostimportantnutrientpoolsincludesoil,liveshrubs,deadshrubs,livegrass,andlitter.
Identifyingandquanti-fyingthedynamicsofallpoolsinasoil-plantsystemcanprovidein-sightsintogeochemicalandbiologicalprocessesandplayanimportantroleindesertecosystemmanagement(Delgado-Baquerizoetal.
,2013).
Consideringthehighspatialheterogeneityofnutrientsinaridregionsandalackoflong-termexperimentalconditionswithoutexternalin-terference,theremaybegreateruncertaintyabouttheestimationofNandPindrylandecosystems(Hartleyetal.
,2007).
TherehavebeenextensivestudiesonNandPcontent,pools,inputs,mineralization,andsoilloss(Fengetal.
,2016),butfewonthedynamicsofNandPpoolsinsoil-plantsystems.
Toreducethisuncertainty,amoreaccuratehttps://doi.
org/10.
1016/j.
jenvman.
2019.
04.
108Received25October2018;Receivedinrevisedform14April2019;Accepted25April2019Correspondingauthor.
DonggangWestRoad320,Lanzhou730000,Gansu,China.
E-mailaddresses:yanghaotian6516@163.
com(Y.
haotian),surgeriver@gmail.
com(W.
zengru).
JournalofEnvironmentalManagement245(2019)200–2090301-4797/2019PublishedbyElsevierLtd.
TevaluationofindividualpoolsandNandPdynamicsinsoil-plantsys-temsunderdierentclimateconditionsisneeded.
NutrientpoolsinplantorgansplaycriticalrolesinNandPtransportandproteinsynthesis(Nordinetal.
,2001).
ThedynamicsofNandPpoolsaredirectlyrelatedtotheamountofplantbiomassandtheche-micalcompositionofplanttissue(Vitouseketal.
,1987).
ThesupplyofNandPisprimarilybasedontheamountandturnoverratesofplantbiomass,whichareverylowindesertareasduetolowprecipitationandhightemperatures(Noy-Meir,1985).
Desertplantshaveevolvedtohavemanynutrientconservationstrategies,suchaslowgrowthrates,increasedphysiologicaluptakecapacity,nutrientrecyclingandstorage,andalonggreentissuelifespan(Jacksonetal.
,1990;DrenovskyandRichards,2006).
ThedierentplantcomponentsmaybeessentialtoNandPcyclingduetotheirdramaticallydierentsurvivaltimesanddecompositionrates(Strojanetal.
,1979;YangandPost,2011).
Therefore,perennialdesertplantswithvariousorgansmayplayanimportantroleinregulatingNandPstorageandcyclingindeserts(CrossandSchlesinger,1999).
Theabilityofanecosystemtoaccumulatenutrientsisdependentonmanagement.
Humanactivitiesareimportantfactorsthatdirectlyorindirectlyalterthemovementanddistributionofnutrientswithinoramongpools,modifyingcommunitycompositionandecosystemfunc-tion(Schnabeletal.
,2000;Lüetal.
,2013).
Previousstudieshavein-dicatedthatgrasslanddegradationoftenresultsinthelossofsoilnu-trients(Hughesetal.
,2002).
Inaddition,vegetationsuccessionisanimportantfactorfornutrientpoolsanddynamics(WalkerandSyers,1976;Fisketal.
,2002;YangandPost,2011).
However,knowledgeisstilllimitedabouttheeectsofvegetationandsoilsuccessiononNandPdistributionanddynamicsinrestoreddesertecosystems.
ToprovideinsightsintoNandPcyclingindesertecosystems,itisthereforene-cessarytoimproveourunderstandingofNandPpoolsandhowtheyareaectedbylandmanagementpracticesandsuccession.
AnextensivevegetationrestorationprojectwasimplementedbytheChinesegovernmenttoprotectsoils,mitigatedesertication,preventandcombatsandstormsandsandduneburial,andimproveecosystemresilienceindesertlands(Lietal.
,2006).
XerophyticshrubssuchasArtemisiaordosicaKrasch,CaraganakorshinskiiKom.
,andHedysarumscopariumFischwerefoundtobethemostsuitablespeciestostabilizeshiftingsanddunesaftertheestablishmentofstrawbarriersalongtransportationroutes,pipelinecorridors,andpowertransmissionlinesinplaceswithlimitedprecipitation(2mm(Batjes,1996).
NandPdensitiesoftheabovegroundbiomassforeachshrubspeciesweredeterminedaccordingtoEq.
(2):∑=MSANDn(SAPDn)(kgm)N(P)i2iki(2)wherenrepresentstheshrubspecies,SANDn(SAPDn)isN(P)densityoftheabovegroundbiomassfordierentshrubspecies,krepresentsthedierentfractionsofabovegroundshrubbiomass,N(P)iistheTN(P)content(%)offractioni,andMiisthebiomass(kgm2)offractioni.
Consequently,thetotaldensityforabovegroundNandP(SANDandSAPD)forallshrubspeciescombinedwascalculatedusingEq.
(3):∑=SAPDnSAND(SAPD)(kgm)SANDn()nm2(3)wheremrepresentsthenumberofshrubspecies.
NandPdensities(SRNDandSRPD)fortheshrubrootswerecal-culatedusingEq.
(4):∑=MSRND(SRPD)(kgm)N(P)n2nmn(4)wheremrepresentsthenumberofshrubspecies,N(P)nistheN(P)content(%)ofarootfromspeciesnandMnistherootbiomass(kgm2)ofspeciesn.
GAND(GAPD)representstheN(P)densityofabovegroundherbage:Y.
haotian,etal.
JournalofEnvironmentalManagement245(2019)200–209202=*GAND(GAPD)(kgm)N(P)M2(5)whereN(P)representstheN(P)content(%)ofherbageandMistheabovegroundbiomass(kgm2)ofherbageineach1m*1mplot.
NandPdensities(GRNDandGRPD)oftheherbagerootswerecalculatedbyEq.
(6):∑=NPMGRND(GRPD)(kgm)()nii2i(6)wherenisthenumberoflayers,N(P)iistheN(P)content(%)oftheherbagerootsinlayeri,andMiistherootbiomass(kgm2)oflayeri.
AllindividualcomponentsweresummedtoobtainTNandPden-sities(TNandTP)foreachsite.
2.
8.
StatisticalanalysesThedatafromeachsiteweretestedforhomogeneityofvariance(usingLevene'stest)andthenormaldistribution.
Analysisofvariance(ANOVA)wasusedtoquantifydierencesinSTN(STP)atdierentsoildepths,STN(STP)density,NandPdensitiesamongshrubcomponents,andNandPdensitiesinherbageacrossthesixsites.
Tukey'stestwasappliedposthoctodistinguishbetweenthemeansatdierentsites.
Thesignicancelevelwassetto0.
05foralltests.
AlldatawereanalyzedusingSPSSsoftwareversion15.
0(SPSS,Chicago,IL,USA).
3.
Results3.
1.
SoiltotalnitrogenandphosphorusconcentrationsSandrepresentstheshiftingdunesite;58-year,50-year,33-year,and23-yearlabelsrepresentsand-bindingvegetationsitesthatwereestablishedin1956,1964,1981,and1991,respectively.
Nativere-presentsthenativedesertsteppesitewithnativevegetation.
Valuesareexpressedasmean±SE.
STNconcentrationsvariedlittleatdierentdepthsinthesandsite(P>0.
05).
STNvaluesatrestoredvegetationsites(23-,33-,50-and58-year)graduallydeclinedfromthesurfacetothedeepestlayer.
The0–5cmand5–10cmsoillayerscontainedsignicantlyhigherSTNconcentrationsthanotherdeepersoillayers(P0.
05).
Onlythe10–30cmsoillayercontainedsignicantlyhigherSTNconcentrationsthanotherdeeperlayersatthe33-yearsite(P0.
05)(Fig.
2A).
TherewasasignicantincreaseinSTPconcentrationsfromthesurfacetothelowerlayersofthesandsite(P0.
05)at23-year,50-yearand58-yearsites,orbetweensoillayerslessthan30cm(P>0.
05)at33-yearsite.
Therewerenosig-nicantdierencesbetweenthelayersatthenativesite(P>0.
05)(Fig.
2B).
3.
2.
STNandSTPdensityFortopsoilwithrestoredvegetationsuccession,STNandSTPden-sitiesincreasedsignicantlycomparedtonativevegetationafter33years.
Comparedwiththesandsite,STNandSTPdensitiesatthe58-yearsiteincreasedby2.
137and1.
083times,respectively.
Thereweresignicantdierencesbetweendierentrestoredsites.
Inaddition,STNandSTPdensitiesatthe58-yearsiteweresignicantlygreaterthanthenativesite(Fig.
3).
Forsubsoil,STNdensityrstdecreasedsignicantly(P0.
05),buttheyweresignicantlyhigherthanthe23-yearand33-yearsites(P0.
05)(Fig.
4CandD,E,F).
NandPdensitiesattherestoredsitesweresignicantlylowerthanthatatthenativesite(P<0.
05).
3.
4.
NandPdensitiesinshrubbiomassNandPdensitiesofallliveshrubcomponentsreachedmaximumvalues23yearsaftertherestoredvegetationwasestablished(Figs.
5and6).
Therewerealsosharpdecreasesbetween23and50years,reachingaminimum,butNandPdensityvaluesincreasedagainfrom50to58years.
Atthatpoint,NandPdensitieswereindistinguishablefromthenativevegetationsite(Figs.
5and6).
Dierencesbetweenthe23-and50-yearsitesweresignicantbuttherewerenosignicantdierencesbetweentheothersites.
3.
5.
NandPdensitiesofdeadshrubbiomassNdensityofabovegroundandrootbiomassofdeadshrubsin-creasedwithvegetationsuccessionandreachedamaximumatthe58-yearsite.
Thiswassignicantlyhigherthantheotherrestoredsites(P<0.
05).
Pdensityofdeadshrubbiomassincreasedsignicantlyafterrestoredvegetationestablishment,reachingamaximumatthe58-yearsite.
Thiswassignicantlyhigherthan23and33-yearsitesandthenativesite.
Pdensityofrootbiomassincreasedgraduallywiththeve-getationsuccessionandthedierencebetweenrestoredsiteswasnotsignicant,buttheseweresignicantlylowerthanthenativesite(Fig.
7).
3.
6.
TNandTPdensitiesTNdensityoftheplant-soilsystemrstdecreasedsignicantly(P<0.
05)andreacheditslowestvalueafter50years,beforesignicantlyincreasingagain(P<0.
05).
TPdensitysignicantlydecreasedandreachedthelowestvaluesatthe23-yearsite(P<0.
05).
However,TPdensityincreasedsignicantlywiththesuccessionofrestoredvegeta-tionfromthe23–58-yearsites(P<0.
05).
Ingeneral,TNandTPden-sitiesofrestoredsitesweresignicantlylessthanthoseofthenativesite(P<0.
05)(Fig.
8AandB).
TheaverageannualratesofchangeinTNandTPdensityweredierentacrossthefoursuccessionalstages(Fig.
8CandD).
3.
7.
NandPdensitydistributioncharacteristicsTheestablishmentofrestoredvegetationsignicantlyalteredtheNandPdensitydistributionscomparedwiththeshiftingsanddunesite.
Withvegetationsuccession,theNandPdensitydistributionsbecamesimilartothenativesite.
BothNandPweremainlystoredinthesoil.
STNdensityaccountedforabout90%ofTNdensity(Appendix,TableS1)andSTPdensityaccountedfor99.
40%ofTPdensity(Appendix,TableS2).
Forherbage,theNandPdensityratiosinrestoredvegetationY.
haotian,etal.
JournalofEnvironmentalManagement245(2019)200–209203graduallyincreasedandreachedmaximumvaluesof7.
16%and0.
42%atthe50-yearsite.
Afterthat,thePratiodidnotchangebuttheNratiodecreasedto6.
14%,whichwassimilartothenativesite.
Forliveshrubs,theNandPdensityratioswererelativelyhighatthe23-yearsite,reaching4.
55%and0.
32%.
Withvegetationsuccession,theratiograduallydecreasedandreachedminimumvaluesof1.
07%and0.
06%atthe50-yearsite,andthenincreasedto1.
97%and0.
13%toexceedthevaluesatthenativesite.
Fordeadshrubs,theNandPdensityratiosgraduallyincreasedwiththesuccessionofrestoredvegetation.
TheNdensityratioduringearlysuccession(23-yearsite)wassimilartothenativesite,whileratioslaterintosuccessionwasgreaterthanthenativesite.
Forlitter,theNandPdensityratiosgraduallyincreasedwiththesuccessionofrestoredvegetation(Appendix,TablesS1andS2).
4.
Discussion4.
1.
SoiltotalNandPOurresultsshowedsignicantchangesinthespatialandtemporaldistributionsofNandPconcentrationsinthesoilprole.
TheseNandPdynamicscouldbeexplainedbythefollowingreasons.
Fortopsoil,theNandPinputsmayhavebeengreaterthanthelosses.
First,thecov-erageandproductivityofshrubsandherbageincreasedsignicantlyaftertheestablishmentofrestoredvegetation(Lietal.
,2004;Yangetal.
,2014),becauselitterfromshrubs,herbage,anddeadshrubsisanimportantnutrientsourcefortopsoil.
Second,biologicalsoilcrusts(BSCs)colonizedandbecamewelldevelopedoncethemobilesandduneswerestabilized(Lietal.
,2003).
NumerousN2-xingcyano-bacteriaspecieslivingwithinBSCs,includingNostoc,Scytonema,andSchizothrix,increasedthenitrogenxationcapacityoftopsoil(Li,2012).
Third,wetordrydepositionwasanothermajornutrientinputsource(MarschnerandRengel,2007)andthecolonizationofBSCsal-teredthetexture,roughness,andporosityofthesoilsurfacetoenhanceitsabilitytocaptureatmosphericdust(Warren,2001).
Fourth,mostherbagenerootswereinthe0–10cmsoillayer;therefore,rootturnover,rootexudation,andne-rootmortalityalsoincreasedsoilnutrients(Kalbitzetal.
,2003).
Fifth,rootsandBSCssignicantlyin-creasedsoilmicrobialbiomass,communitydiversity,andactivityinthe0–20cmsoillayer,whichmediatedthedecompositionoforganicmatter.
Atthesametimethesemicrobialattributesdecreasedsig-nicantlywithsoildepthandincreasedwithcrustage(Liuetal.
,2013,2017).
Inaddition,protectingrestoredvegetationfromgrazingandotherhumanactivitieswasanimportantfactorpromotingtopsoil(0–10cm)restoration.
Basedontheabovefactors,topsoilwaswellrestoredwiththesuccessionofvegetation.
Moreleguminousshrubswerefoundintherestoredvegetationthatfurtherenhancedbiologicalxation,sotheSTNandSTPvaluesoftopsoilexceededthoseinthenativevegetationsite.
ThechangeinSTNandSTPinsubsoilwasop-positetothatoftopsoil.
ThiswasmainlybecauseNandPindeepsoillayerswereabsorbedandutilizedbyalargenumberofdeeprootedshrubsduringtheearlystages.
SomenutrientsweretransferredtoandFig.
2.
TheverticaldistributionsofSTNandSTPwithsoildepth.
Fig.
3.
STNandSTPdensityoftopsoilandsubsoilatdierentstudysites.
Valuesaremean±SE.
Lettersindicatesignicantdierencesbetweensites(P<0.
05).
Y.
haotian,etal.
JournalofEnvironmentalManagement245(2019)200–209204storedindierentcomponentsofshrubbiomass(mainlynewbranches,agingbranches,shrubroots,anddeadshrubs),andothersweretrans-ferredtothetopsoilthroughlitter.
Nutrientswerepresentinlowquantitiesinsandysoilsandthemainsourceofphosphorouswastheweatheringofprimaryminerals(LajthaandSchlesinger,1988;Newman,1995).
Inaddition,nutrientsstoredindeepsoilwerenoteectivelysupplementedinotherways.
Ingeneral,woodyplantspeciesdeterminethequalityandquantityoforganicmatterinputsandmicrobialcommunities(Landietal.
,2006).
Withthesuccessionofvegetation,shrubcoverage,composition,andsoilmoisturedecreasedsignicantlytostablelevels(Lietal.
,2004;Yangetal.
,2014),sothatbythelatestageofsuccessiontherewaslittlevariabilityinsubsoilSTNandSTP.
MoststudiesonNandPhavebeenlimitedtotopsoil,basedontheFig.
4.
NandPdensitiesof(A,B)roots,(C,D)livingbiomass,and(E,F)litterbiomassforherbageatrestoredsitesandthenativevegetationsite.
Valuesareexpressedasmean±SE.
Lettersindicatesignicantdierencesbetweensites(P<0.
05).
Fig.
5.
Ndensityof(A)liveshrubleaves,(B)newbranches,(C)agingbranches,and(D)shrubrootbiomassatthesand-bindingvegetationsitesandthenativevegetationsite.
Valuesareexpressedasmean±SE.
Lettersindicatesignicantdierencesbetweensites(P<0.
05).
Y.
haotian,etal.
JournalofEnvironmentalManagement245(2019)200–209205assumptionthatland-usechangeonlyaectsthislayer(Zhangetal.
,2006).
Asaresult,verylittleisknownaboutthedistributionofNandPcontentandpoolsthroughoutthesoilproleof0–100cm(Burtonetal.
,2007).
Inthepresentstudy,ourresultsindicatedthattheconversionofshiftingsanddunestorestoredvegetationgenerallyalteredSTNandSTPdensities,notonlyinthetopsoil,butalsointhedeepersoilprole(10–100cm).
TheresultsshowedthatSTNandSTPdensitiesintopsoilrangedfrom16.
13gm2(atthesandsite)to50.
61gm2(atthe58-yearsite)andfrom20.
87gm2to43.
47gm2acrossfourstagesofsuccessionwithdierentaverageannualsequestrationrates.
Thiswasconsistentwithotherstudiesthatfoundthatland-usechangesignicantlyalteredNandPpoolsintopsoil(Burtonetal.
,2007).
However,thereweresignicantdeclinesinSTNandSTPdensitiesinthesubsoilduringtheearlystagesofsuccession,butnutrientsweresequesteredduringthelatestageswithvaryingannualaveragelossesorsequestrationrates.
Consideringthattheprocessesofsoilformationorrestorationareveryslow(Lietal.
,2007),STNandSTPdensitiesinthesubsoilofrestoredvegetationsiteswerefarlowerthanthenativesite.
ThismeansthatthesubsoilinrestoredvegetationhadalargerpotentialforNandPstorage.
Inconclusion,ourresearchshowedthatsubsoil,inadditiontotopsoil,hadimportantimpactsonSTNandSTPpoolsandinterannualvaria-bility.
4.
2.
NandPdensitiesinplantbiomassNandParetwobiologicallyessentialelementsthatconstrainplantgrowthandarethemostabundantelementsfoundinplantdrybiomass(Elseretal.
,2007).
OurndingsdemonstratedthatNandPdensitiesinplantbiomasswerehighlyresponsivetothechangefromshiftingsanddunestorestoredvegetation.
Intherst23years,thecover,pro-ductivity,andbiomassofliveshrubsattherestoredsitesreachedmaximumvegetationcarryingcapacityandshrubdeathoccurredatalowerrate(Lietal.
,2004;Yangetal.
,2014).
Asaresult,NandPdensitiesinliveshrubsreachedamaximumandwerelowerindeadshrubbiomass.
Twenty-threeto50yearsafterestablishment,themoisturecontentofthedeepersoillayerscontinuedtodecrease,causingvegetationcoverandproductivitytodecrease.
Themortalityofliveshrubswithdeeprootsystemsincreasedduetotherestrictedwaterconditions(Lietal.
,2004).
Duringthisstage,NandPdecreasedtoaminimuminliveshrubbiomassandincreasedindeadshrubbiomass.
Fiftyto58yearsafterestablishment,thevegetationcover,productivity,andmortalityofliveshrubsallstabilizedduetotherelativelystablesoilmoistureinthedeepsoillayer(Lietal.
,2004).
ThiscausedNandPdensitiesinbothliveanddeadshrubstoincrease,butvaluesremainedlowerthanthoseatthenativesite.
Oneimportantreasonwasthefactthatvegetationstructurewasdierentatthe58-yearrestoredsite(wherethemainshrubspecieswereA.
ordosica,C.
korshinskii,andH.
scoparium)andthenativesite(dominatedbyA.
ordosica,C.
korshinskii,andC.
lateens).
Fig.
6.
Pdensityof(A)shrubleaves,(B)newbranches,(C)agingbranches,and(D)shrubrootbiomassofliveshrubsinthesand-bindingvegetationsitesandthenativevegetationsite.
Valuesareexpressedasmean±SE.
Lettersindicatesignicantdierencesbetweensites(P<0.
05).
Fig.
7.
Ndensityofabovegroundandroots(A)andPdensityofaboveground,androotbiomass(B)ofdeadshrubs.
Valuesareexpressedasmean±SE.
Lettersindicatesignicantdierencesbetweensites(P<0.
05).
Y.
haotian,etal.
JournalofEnvironmentalManagement245(2019)200–209206Withrestoredvegetationsuccession,moreherbagespeciesinvadedandtherichnessandcoverageofherbaceousspeciesincreased,untilshrub-dominatedvegetationtransitionedtobecomedominatedbyherbs.
Asaresult,NandPdensitiesforherbagelivingbiomass,litter,androotsweresignicantlyhigherattherestoredsitesthanatthesandsite.
Becauseherbagecoveragewashighlycorrelatedwithannualprecipitation(Li,2005),theseplantscompletetheirlifecyclesbeforesummerusingthesoilmoisturefromearlyspringrainfallandwintersnowfall.
Inaddition,someannualgrassesbegintogrowafterrainfallbutdieduringdrought.
Therefore,NandPdensitiesfromrootbiomassatthestudysiteswerefarhigherthanintheabovegroundbiomass.
However,NandPdensitiesforherbagebiomassattherestoredsitesweremuchlowerthanatthenativevegetationsite.
Thiswasprimarilybecausethereweremoreperennialherbagespeciesatthenativesitethanattherestoredsites,suchasStipaglareosaP.
SmirnandArtemisiafrigidaWilld.
Thisresultedinmoreherbagerichness,coverage,andbiomassatthenativesite.
4.
3.
NandPdensitydistributionsindierentcomponentsThereisconstantnutrientcyclingbetweenseveralmajorpools(soil,plantbiomass,andlitter)inthebiosphere.
ThestorageofNandPinanecosystemismediatedbytheinteractionsbetweensoil,plants,andmicrobialprocesses(Fisketal.
,2002).
Hence,quantifyingthesizeanddistributioncharacteristicsofnutrientpoolsforvariouscomponentsisofgreatsignicancetothegeochemicalnutrientcycle.
Ourresultsshowedthattheestablishmentofsand-bidingvegetationsignicantlyaltereddistributionpatternsofNandPpoolsintheplant-litter-soilcontinuumindesertecosystems.
Meanwhile,therelativecontributionsofdierentcomponentstoTNandPdensitieschangedwithvegetationsuccession.
Finally,thedistributionofNandPpoolsatthe58-yearsitewassimilartothenativesite.
Themainreasonforthismaybethatthecompositionanddiversityofherbage,shrub,BSCsandsoilmicro-organisms,shrubbiomass,soiltexture,andsoilmoistureallchangedsignicantlyafterthevegetationestablishedandcontinuedtobeal-teredbyvegetationsuccession(Li,2005).
Becausethechemicalcompositionsofplanttissues,suchaslignin,ber,cellulose,hemi-cellulose,protein,andphenols,aredierentacrossspeciesororgans(Liuetal.
,2016),theymaystronglyinuencethequalityofnutrientinputsandoutputs(Vitouseketal.
,1987).
OurresultsshowedthatNandPinecosystemswereprimarilystoredinsoilsfromnativeandrestoredsites.
STNandSTPdensitiesaccountedfor89.
83%–92.
06%and99.
33%–99.
48%oftheTNandTPdensities,respectively.
Theseresultswerefarhigherthanthosefoundinforestecosystems(ShugaleiandVedrova,2004).
AlthoughSTNandSTPdensitiesvariedwidelyatdierentsites,theirrelativecontributionstoTNandTPdensitiesvariedlittle.
OurresultsindicatedthatherbagebiomassbecameanimportantcomponentofTNandTPaftertheestablishmentofrestoredvegetation,especiallyNandPdensities,whichaccumulatedprimarilyinrootbiomass.
Overtime,NandPdensitiesinherbaceousbiomassincreasedrespectivelyfrom3.
71%to6.
31%,and0.
33%–0.
43%andgraduallyapproachedthevaluesatthenativesite(6.
39%and0.
46%).
Mostgrasseswereannualorbiennial,whichlosetheirabovegroundbiomassandbecomeimportantnutrientinputsafterthegrowingseason.
Inaddition,rootsystemturnoverisanimportantpartofnutrientcycling.
Hence,ourresultsdemonstratedthatherbaceousplantsplayedanin-creasinglyimportantroleintheNandPgeochemicalcyclewiththesuccessionofrestoredvegetation.
OurresultsshowedthatshrubswereanotherimportantNandPpool,inresponsetoappropriatemanagementstrategies.
Meanwhile,thesuccessionofrestoredvegetationsignicantlyaectedtherelativecontributionsofliveanddeadshrubstoTNandTPdensity.
Unlikeherbaceousplants,NandPdensitiesforliveshrubsdecreasedrespec-tivelyfrom4.
55%to1.
07%andfrom0.
33%to0.
13%.
TheNandPdensitiesindeadshrubshadtheoppositetrend.
Ratiosduringthelaterstagesofsuccessionforrestoredvegetationbecamegraduallysimilartothenativesite.
TheresultsimpliedthatshrubsplayedamoreimportantroleintheNandPgeochemicalcycleduringtheearlystagesofrestoredvegetation,whichgraduallydecreasedwithsuccessionuntilitwassi-milartothatofnativevegetation.
Thelignicationofwoodyplantsismuchhigherthanherbaceousplants,andlignininwoodyplantshasFig.
8.
TNandTPdensities,aswellastheaverageannualratesofchangeacrossfoursuccessionalstages.
Valuesareexpressedasmean±SE.
Lettersindicatesignicantdierencesbetweensites(P<0.
05).
Y.
haotian,etal.
JournalofEnvironmentalManagement245(2019)200–209207greaterlongevitythanherbaceousplants(Amthor,2003;Liuetal.
,2016).
Itshouldbenotedthatinthisstudy,NandPdensityinabovegroundbiomasswasmainlystoredinthemechanicalsupportsystems,suchasagingbranches.
Thosecomponentswithhigherligninandbercanbeconservedforalongtimeanddonotdecomposeeasily,especiallyunderdryclimateconditions.
TheseresultsindicatedthatrelativecontributionofshrubstoTNandTPdensitiesatdierentstagesmayprofoundlyaltertheNandPgeochemicalcycleoftheecosystem.
4.
4.
ManagementimplicationsManagementpracticesexertanenormousinuenceonnutrientstatusandperformance,thesizeofvariousnutrientpoolsanduxesbetweenthesepools,andthedistributionofnutrientsinvariouspoolsinmanyterrestrialecosystems(Jcbjretal.
,2006;Liuetal.
,2011).
Ourresultsshowedthatnutrientstatus,pools,andrelativeamountsofTNandTPinsoil,greenherbage,herbageroots,liveshrubs,shrubroots,litter,anddeadshrubsweresignicantlyalteredafterestablishingnewvegetationinashiftingsanddune.
Duetotheconversionoftheshiftingsanddunetorestoredvegetation,therewasasignicantimpactonabioticandbioticfactors,suchassoiltexture,soilwaterdistribution,soiltemperature,microbialcommunities,plantspecies,soilrespiration,andthequantityandqualityoforganicmatterinputsandoutputs(Li,2005;Liuetal.
,2013;Zhangetal.
,2015).
Somestudieshavepredictedthatsuccessionalstatuswithdierentpatternsofbiomassaccumulationandallocationcanregulatethelossandinputoflimitingnutrientsinforestecosystem(Fisketal.
,2002).
OurexperimentsdemonstratedthatallNandPpoolsinrestoredvegetationwerealteredwithsuccessionalstatus.
TheratesofNandPlossoraccumulationvariedbasedontheageoftherestoredecosystem.
Co-limitationofNandPsuggeststhatNandPsimultaneouslylimitproductivityandgrowthinterrestrialandaquaticecosystems(Harpoleetal.
,2011).
Atthesametime,carbon,nitrogen,andphosphoruscyclesareintertwined.
Forthesereasons,NandParetwokeyfactorsrelatedtothegreenhouseeectandglobalclimatechange,soNandPcyclingindierentpoolshascometotheforefrontofecologicalresearch.
Forexample,anincreaseinNinputscanresultinanincreaseincarbondioxide(CO2)uptakeinsometerrestrialecosystems(Thomasetal.
,2010).
Inthisstudy,althoughsoilNandPstoragedecreasedsig-nicantlyintheearlystages(0–50years),soilNandPpoolsincreasedatthelaterstagesforrestoredvegetationandgraduallyapproachedthevaluesfornativevegetation.
WeconcludethatanincreaseinNandPpoolsatthelatestage(50-year)ofsuccessionmayincreasecarbondi-oxideuptakeandstorageinecosystems,whichhasbeenshownbyYangetal.
(2014).
Afterrestoredvegetationwasestablishedfor50years,althoughNandPpoolsintopsoilexceededthatofnativevegetation,thesubsoilhadgreatpotentialforNandPuptakeandstoragecom-paredwiththenativevegetation.
Thereareenormousareasofrestoredvegetationinaridandsemi-aridregions,andnumerousmanagementinterventionshavebeenimplementedbythegovernmentandotherentitiesinrecentyears.
Theestablishmentofrestoredvegetationthroughtheintroductionofxerophyticshrubspeciesinawind-sanddamagedareamayplayavitalroleintheregulationofNandPcyclesandmitigateglobalclimatechange.
5.
ConclusionThedynamicsanddistributionspatternsofNandPpoolsinsoil-plantsystemsweresignicantlyalteredbyvegetationrestorationandsuccession.
NandPwereprimarilystoredinsoils,followedbyherbage,liveshrubs,anddeadshrubs.
TherestoredecosystemwasaNsourceintheearlystageofsuccessionfrom0to50yearsandaNsinkinthelatersuccessionstagefrom50to58years,withstrongpotentialforNandPxation.
VegetationrestorationandsuccessionindesertsmayplayavitalroleintheregulationofNandPcycles.
AcknowledgementsThisresearchwassupportedbytheNationalNaturalScienceFoundationofChinaofChina(GrantNo.
41621001,41530746,41501110,41671111),theStrategicPriorityResearchProgramofChineseAcademyofSciences(GrantNo.
XDA2003010301),andtheWestLightProgramforTalentCultivationofChineseAcademyofSciences.
AppendixA.
SupplementarydataSupplementarydatatothisarticlecanbefoundonlineathttps://doi.
org/10.
1016/j.
jenvman.
2019.
04.
108.
ReferencesAmthor,J.
S.
,2003.
Eciencyofligninbiosynthesis:aquantitativeanalysis.
Ann.
Bot.
91(6),673–695.
https://doi.
org/10.
1093/aob/mcg073.
Burton,J.
,Chen,C.
,Xu,Z.
,Ghadiri,H.
,2007.
SolubleorganicnitrogenpoolsinadjacentnativeandplantationforestsofsubtropicalAustralia.
SoilBiol.
Biochem.
39(11),2723–2734.
https://doi.
org/10.
1016/j.
soilbio.
2007.
05.
021.
Crawford,C.
S.
,Gosz,J.
R.
,1982.
Desertecosystems:theirresourcesinspaceandtime.
Environ.
Conserv.
9(3),181–195.
https://doi.
org/10.
1017/S0376892900020397.
Cross,A.
F.
,Schlesinger,W.
H.
,1999.
Plantregulationofsoilnutrientdistributioninthenorthernchihuahuandesert.
PlantEcol.
145(1),11–25.
https://doi.
org/10.
1023/A:1009865020145.
Delgado-Baquerizo,M.
,Maestre,F.
T.
,Gallardo,A.
,Bowker,M.
A.
,Wallenstein,M.
D.
,Quero,J.
L.
,etal.
,2013.
Decouplingofsoilnutrientcyclesasafunctionofaridityinglobaldrylands.
Nature502(7473),672.
https://doi.
org/10.
1038/nature12670.
Drenovsky,R.
E.
,Richards,J.
H.
,2006.
Lowleafnandpresorptioncontributestonutrientlimitationintwodesertshrubs.
PlantEcol.
183(2),305–314.
https://doi.
org/10.
1007/s11258-005-9041-z.
Elser,J.
J.
,Bracken,M.
E.
,Cleland,E.
E.
,Gruner,D.
S.
,Harpole,W.
S.
,Hillebrand,H.
,etal.
,2007.
Globalanalysisofnitrogenandphosphoruslimitationofprimaryproducersinfreshwater,marineandterrestrialecosystems.
Ecol.
Lett.
10(12),1135–1142.
https://doi.
org/10.
1111/j.
1461-0248.
2007.
01113.
x.
Feng,J.
,Turner,B.
L.
,Lü,X.
,Chen,Z.
,Wei,K.
,Tian,J.
,etal.
,2016.
Phosphorustrans-formationsalongalarge‐scaleclimosequenceinaridandsemiaridgrasslandsofnorthernChina.
Glob.
Biogeochem.
Cycles30.
https://doi.
org/10.
1002/2015GB005331.
Fisk,M.
C.
,Zak,D.
R.
,Crow,T.
R.
,2002.
Nitrogenstorageandcyclinginold-andsecond-growthnorthernhardwoodforests.
Ecology83(1),73–87.
https://doi.
org/10.
1890/0012-9658(2002)083[0073:NSACIO]2.
0.
CO;2.
Gruber,N.
,Galloway,J.
N.
,2008.
Anearth-systemperspectiveoftheglobalnitrogencycle.
Nature451(7176),293–296.
https://doi.
org/10.
1038/nature06592.
Harpole,W.
S.
,Ngai,J.
T.
,Cleland,E.
E.
,Seabloom,E.
W.
,Borer,E.
T.
,Bracken,M.
E.
,etal.
,2011.
Nutrientco-limitationofprimaryproducercommunities.
Ecol.
Lett.
14(9),852–862.
https://doi.
org/10.
1111/j.
1461-0248.
2011.
01651.
x.
Hartley,A.
,Barger,N.
,Belnap,J.
,Okin,G.
S.
,2007.
DrylandEcosystems.
NutrientCyclinginTerrestrialEcosystems.
SpringerBerlinHeidelberg.
Hughes,R.
F.
,Kauman,J.
B.
,Cummings,D.
L.
,2002.
Dynamicsofabovegroundandsoilcarbonandnitrogenstocksandcyclingofavailablenitrogenalongaland-usegra-dientinrondnia,Brazil.
Ecosystems5(3),244–259.
https://doi.
org/10.
1007/s10021-001-0069-1.
Jackson,R.
B.
,Manwaring,J.
H.
,Caldwell,M.
M.
,1990.
Rapidphysiologicaladjustmentofrootstolocalizedsoilenrichment.
Nature344(6261),58–60.
https://doi.
org/10.
1038/344058a0.
Jcbjr,D.
,Sollenberger,L.
E.
,Comerford,N.
B.
,Scholberg,J.
M.
,Ruggieri,A.
C.
,Jmb,V.
,etal.
,2006.
Managementintensityaectsdensityfractionsofsoilorganicmatterfromgrazedbahiagrassswards.
SoilBiol.
Biochem.
38(9),2705–2711.
https://doi.
org/10.
1016/j.
soilbio.
2006.
04.
021.
Johnson,E.
A.
,Miyanishi,K.
,2010.
Testingtheassumptionsofchronosequencesinsuc-cession.
Ecol.
Lett.
11(5),419–431.
https://doi.
org/10.
1111/j.
1461-0248.
2008.
01173.
x.
Kalbitz,K.
,Schwesig,D.
,Schmerwitz,J.
,Kaiser,K.
,Haumaier,L.
,Glaser,B.
,etal.
,2003.
Changesinpropertiesofsoil-deriveddissolvedorganicmatterinducedbybiode-gradation.
SoilBiol.
Biochem.
35(8),1129–1142.
https://doi.
org/10.
1016/S0038-0717(03)00165-2.
Lajtha,K.
,Schlesinger,W.
H.
,1988.
Thebiogeochemistryofphosphoruscyclingandphosphorusavailabilityalongadesertsoilchronosequence.
Ecology69(1),24–39.
https://doi.
org/10.
2307/1943157.
Landi,L.
,Valori,F.
,Ascher,J.
,Renella,G.
,Falchini,L.
,Nannipieri,P.
,2006.
Rootexu-dateeectsonthebacterialcommunities,CO2,evolution,nitrogentransformationsandATPcontentofrhizosphereandbulksoils.
SoilBiol.
Biochem.
38(3),509–516.
https://doi.
org/10.
1016/j.
soilbio.
2005.
05.
021.
Lebauer,D.
S.
,Treseder,K.
K.
,2008.
Nitrogenlimitationofnetprimaryproductivityinterrestrialecosystemsisgloballydistributed.
Ecology89(2),371–379.
https://doi.
org/10.
1890/06-2057.
1.
Li,X.
R.
,2005.
Inuenceofvariationofsoilspatialheterogeneityonvegetationrestora-tion.
ScienceinChina48(11),2020–2031.
https://doi.
org/10.
1360/04yd0139.
Li,X.
R.
,2012.
Eco-HydrologyofBiologicalSoilCrustsinDesertRegionsofChina.
HigherY.
haotian,etal.
JournalofEnvironmentalManagement245(2019)200–209208EducationPress,Beijing.
Li,X.
R.
,Zhou,H.
Y.
,Wang,X.
P.
,Zhu,Y.
,O'Conner,P.
J.
,2003.
Theeectsofsandsta-bilizationandrevegetationoncryptogamspeciesdiversityandsoilfertilityintheTenggerdesert,northernChina.
PlantSoil251(2),237–245.
https://doi.
org/10.
1023/A:1023023702248.
Li,X.
R.
,Xiao,H.
L.
,Zhang,J.
G.
,Wang,X.
P.
,2004.
Long‐termecosystemeectsofsand‐bindingvegetationinthetenggerdesert,northernChina.
Restor.
Ecol.
12(3),376–390.
https://doi.
org/10.
1111/j.
1061-2971.
2004.
00313.
x.
Li,X.
R.
,Xiao,H.
L.
,He,M.
Z.
,Zhang,J.
G.
,2006.
Sandbarriersofstrawcheckerboardsforhabitatrestorationinextremelyariddesertregions.
Ecol.
Eng.
28(2),149–157.
https://doi.
org/10.
1016/j.
ecoleng.
2006.
05.
020.
Li,X.
R.
,He,M.
Z.
,Duan,Z.
H.
,Xiao,H.
L.
,Jia,X.
H.
,2007.
Recoveryoftopsoilphysico-chemicalpropertiesinrevegetatedsitesinthesand-burialecosystemsofthetenggerdesert,northernChina.
Geomorphology88(3),254–265.
https://doi.
org/10.
1016/j.
geomorph.
2006.
11.
009.
Liu,K.
,Sollenberger,L.
E.
,Silveira,M.
L.
,Vendramini,J.
M.
B.
,Newman,Y.
C.
,2011.
Distributionofnutrientsamongsoil-plantpoolsin'tifton85'bermudagrasspasturesgrazedatdierentintensities.
CropSci.
51(4),1800–1807.
https://doi.
org/10.
2135/cropsci2010.
04.
0209.
Liu,Y.
,Li,X.
,Xing,Z.
,Zhao,X.
,Pan,Y.
,2013.
ResponsesofsoilmicrobialbiomassandcommunitycompositiontobiologicalsoilcrustsintherevegetatedareasoftheTenggerdesert.
Appl.
SoilEcol.
65(2),52–59.
https://doi.
org/10.
1016/j.
apsoil.
2013.
01.
005.
Liu,J.
,Wu,N.
,Wang,H.
,Sun,J.
,Peng,B.
,Jiang,P.
,etal.
,2016.
Nitrogenadditionaectschemicalcompositionsofplanttissues,litterandsoilorganicmatter.
Ecology97(7),1796–1806.
https://doi.
org/10.
1890/15-1683.
1.
Liu,L.
,Liu,Y.
,Hui,R.
,Xie,M.
,2017.
Recoveryofmicrobialcommunitystructureofbiologicalsoilcrustsinsuccessionalstagesofshapotoudesertrevegetation,north-westChina.
SoilBiol.
Biochem.
107,125–128.
https://doi.
org/10.
1016/j:soilbio.
2016.
12.
030.
Lü,X.
T.
,Reed,S.
,Yu,Q.
,He,N.
P.
,Wang,Z.
W.
,Han,X.
G.
,2013.
Convergentresponsesofnitrogenandphosphorusresorptiontonitrogeninputsinasemiaridgrassland.
Glob.
Chang.
Biol.
19(9),2775–2784.
https://doi.
org/10.
1111/gcb.
12235.
Marschner,P.
,Rengel,Z.
,2007.
NutrientCyclinginTerrestrialEcosystems.
SpringerBerlinHeidelberg.
Newman,E.
I.
,1995.
Phosphorusinputstoterrestrialecosystems.
J.
Ecol.
83(4),713–726.
https://doi.
org/10.
2307/2261638.
Nordin,A.
,Uggla,C.
,N¤Sholm,T.
,2001.
Nitrogenformsinbark,woodandfoliageofnitrogen-fertilizedpinussylvestris.
TreePhysiol.
21(1),59–64.
https://doi.
org/10.
1093/treephys/21.
1.
59.
Noy-Meir,I.
,1985.
Desertecosystemstructureandfunction.
In:In:Evenari,M.
,Noy-Meir,I.
,Goodall,D.
W.
(Eds.
),HotDesertandAridShrubLands.
EcosystemsoftheWorld12A.
Elsevier,Amsterdam,Oxford,NewYork,Tokyo,pp.
93–103.
Schlesinger,W.
H.
,Raikes,J.
A.
,1996.
Onthespatialpatternofsoilnutrientsindesertecosystems.
Ecology77(2),364–374.
https://doi.
org/10.
2307/2265595.
Schnabel,R.
R.
,Franzluebbers,A.
J.
,Stout,W.
L.
,Sanderson,M.
A.
,Stuedeman,J.
A.
,2000.
Theeectsofpasturemanagementpractices.
In:ThePotentialofU.
S.
GrazinglandstoSequesterCarbonandMitigatetheGreenhouseEect,pp.
291–322.
https://doi.
org/10.
1201/9781420032468.
ch12.
Shugalei,L.
S.
,Vedrova,E.
F.
,2004.
Nitrogenpoolinnorthern-taigalarchforestsofcentralSiberia.
BiologyBulletinoftheRussianAcademyofSciences31(2),247–256.
https://doi.
org/10.
1023/B:BIBU.
0000022477.
99224.
fb.
Strojan,C.
L.
,Turner,F.
B.
,Castetter,R.
,1979.
Litterfallfromshrubsinthenorthernmojavedesert.
Ecology60(5),891–900.
https://doi.
org/10.
2307/1936857.
Thomas,R.
Q.
,Canham,C.
D.
,Weathers,K.
C.
,Goodale,C.
L.
,2010.
IncreasedtreecarbonstorageinresponsetonitrogendepositionintheUS.
Nat.
Geosci.
3,13–17.
https://doi.
org/10.
1038/ngeo721.
Vitousek,P.
M.
,Howarth,R.
W.
,1991.
Nitrogenlimitationonlandandinthesea:howcanitoccurBiogeochemistry13(2),87–115.
https://doi.
org/10.
1007/BF00002772.
Vitousek,P.
M.
,Walker,L.
R.
,Whiteaker,L.
D.
,Muellerdombois,D.
,Matson,P.
A.
,1987.
BiologicalinvasionbyMyricafayaaltersecosystemdevelopmentinHawaii.
Science238,802–804.
https://doi.
org/10.
1126/science.
238.
4828.
802.
Vitousek,P.
M.
,Porder,S.
,Houlton,B.
Z.
,Chadwick,O.
A.
,2010.
Terrestrialphosphoruslimitation:mechanisms,implications,andnitrogen–phosphorusinteractions.
Ecol.
Appl.
20(1),5–15.
https://doi.
org/10.
1890/08-0127.
1.
Walker,T.
W.
,Syers,J.
K.
,1976.
Thefateofphosphorusduringpedogenesis.
Geoderma15(1),1–19.
https://doi.
org/10.
1016/0016-7061(76)90066-5.
Warren,S.
D.
,2001.
Synopsis:inuenceofbiologicalsoilcrustsonaridlandhydrologyandsoilstability.
In:BiologicalSoilCrusts:Structure,Function,andManagement.
SpringerBerlinHeidelberg.
Whitford,W.
,2002.
EcologyofDesertSystems.
AcademicPress,NewYork0-12-747261-4https://doi.
org/10.
1016/B978-0-12-747261-4.
X5000-7.
Xia,J.
Y.
,Wan,S.
Q.
,2008.
Globalresponsepatternsofterrestrialplantspeciestonitrogenaddition.
NewPhytol.
179(2),428–439.
https://doi.
org/10.
1111/j.
1469-8137.
2008.
02488.
x.
Yang,X.
,Post,W.
M.
,2011.
Phosphorustransformationsasafunctionofpedogenesis:asynthesisofsoilphosphorusdatausinghedleyfractionationmethod.
Biogeosciences8(8),2907–2916.
https://doi.
org/10.
5194/bg-8-2907-2011.
Yang,H.
,Li,X.
,Wang,Z.
,Jia,R.
,Liu,L.
,Chen,Y.
,etal.
,2014.
CarbonsequestrationcapacityofshiftingsandduneafterestablishingnewvegetationintheTenggerde-sert,northernChina.
Sci.
TotalEnviron.
478(1–11),1–11.
https://doi.
org/10.
1016/j.
scitotenv.
2014.
01.
063.
Yang,H.
,Wang,Z.
,Tan,H.
,Gao,Y.
,2017.
Allometricmodelsforestimatingshrubbio-massindesertgrasslandinnorthernChina.
AridLandRes.
Manag.
31(3),1–18.
https://doi.
org/10.
1080/15324982.
2017.
1301595.
Yu,Q.
,Chen,Q.
,Elser,J.
J.
,He,N.
,Wu,H.
,Zhang,G.
,etal.
,2010.
Linkingstoichiometrichomoeostasiswithecosystemstructure,functioningandstability.
Ecol.
Lett.
13(11),1390–1399.
https://doi.
org/10.
1111/j.
1461-0248.
2010.
01532.
x.
Zhang,J.
,Song,C.
,Yang,W.
,2006.
Landuseeectsonthedistributionoflabileorganiccarbonfractionsthroughsoilproles.
SoilSci.
Soc.
Am.
J.
70(2),660–667.
https://doi.
org/10.
2136/sssaj2005.
0007.
Zhang,Z.
,Dong,X.
,Xu,B.
,Chen,Y.
,Zhao,Y.
,Gao,Y.
,etal.
,2015.
Soilrespirationsensitivitiestowaterandtemperatureinarevegetateddesert.
JournalofGeophysicalResearchBiogeosciences120(4),773–787.
https://doi.
org/10.
1002/2014JG002805.
Y.
haotian,etal.
JournalofEnvironmentalManagement245(2019)200–209209

Virtono:圣何塞VPS七五折月付2.2欧元起,免费双倍内存

Virtono是一家成立于2014年的国外VPS主机商,提供VPS和服务器租用等产品,商家支持PayPal、信用卡、支付宝等国内外付款方式,可选数据中心共7个:罗马尼亚2个,美国3个(圣何塞、达拉斯、迈阿密),英国和德国各1个。目前,商家针对美国圣何塞机房VPS提供75折优惠码,同时,下单后在LET回复订单号还能获得双倍内存的升级。下面以圣何塞为例,分享几款VPS主机配置信息。Cloud VPSC...

哪里购买香港云服务器便宜?易探云2核2G低至18元/月起;BGP线路年付低至6.8折

哪里购买香港云服务器便宜?众所周知,国内购买云服务器大多数用户会选择阿里云或腾讯云,但是阿里云香港云服务器不仅平时没有优惠,就连双十一、618、开年采购节这些活动也很少给出优惠。那么,腾讯云虽然海外云有优惠活动,但仅限新用户,购买过腾讯云服务器的用户就不会有优惠了。那么,我们如果想买香港云服务器,怎么样购买香港云服务器便宜和优惠呢?下面,云服务器网(yuntue.com)小编就介绍一下!我们都知道...

Boomer.host:$4.95/年-512MB/5GB/500GB/德克萨斯州(休斯顿)

部落曾经在去年分享过一次Boomer.host的信息,商家自述始于2018年,提供基于OpenVZ架构的VPS主机,配置不高价格较低。最近,主机商又在LET发了几款特价年付主机促销,最低每年仅4.95美元起,有独立IPv4+IPv6,开设在德克萨斯州休斯顿机房。下面列出几款VPS主机配置信息。CPU:1core内存:512MB硬盘:5G SSD流量:500GB/500Mbps架构:KVMIP/面板...

tokyohotn0717为你推荐
johncusack谁知道《失控的陪审团》的电影内容是什么?约翰·库萨克在里面演的是什么角色?商标注册流程及费用商标注册流程及费用?月神谭求古典武侠类的变身小说~!haole018.comhttp://www.haoledy.com/view/32092.html 轩辕剑天之痕11、12集在线观看haole16.com玛丽外宿中16全集在线观看 玛丽外宿中16qvod快播高清下载partnersonlinecashfiesta 该怎么使用啊~~菊爆盘请问网上百度贴吧里有些下载地址,他们就直接说菊爆盘,然后后面有字母和数字,比如dk几几几的,bk乐乐《哭泣的Bk》是Bk乐乐唱的吗?彪言彪语( )言( )语的词语铂金血痕身上血痕怎么回事
广州主机租用 国外vps主机 sharktech duniu locvps pccw softbank官网 免费cdn加速 服务器日志分析 xen eq2 主机合租 三拼域名 七夕快乐英文 91vps 福建铁通 免费cdn 香港新世界中心 七夕快乐英语 环聊 更多