physiologically7777dd

7777dd  时间:2021-03-03  阅读:()
PolymerChemistryPAPERCitethis:Polym.
Chem.
,2015,6,5705Received3rdFebruary2015,Accepted6thApril2015DOI:10.
1039/c5py00160awww.
rsc.
org/polymersThesynthesisandaqueoussolutionpropertiesofsulfobutylbetaine(co)polymers:comparisonofsyntheticroutesandtuneableuppercriticalsolutiontemperaturesYichengZhu,Janina-MiriamNoy,AndrewB.
LoweandPeterJ.
Roth*Polysulfobutylbetaine(SBB)(co)polymers,zwitterionicspeciesbearingammoniumandsulfonategroupsseparatedbyabutylspacerineveryrepeatunit,werepreparedthroughthreedierentsyntheticroutesandtheiraqueoussolutionbehaviourwasstudied.
Postpolymerizationquaternizationofpoly[2-(dimethyl-amino)ethylmethacrylate]with1,4-butanesultoneresultedinincompletemodicationduetothelowreactivityofthisalkylatingagent.
RAFTradicalpolymerizationofSBB-functional(meth)acrylatemonomersandtheircopolymerizationwithasulfopropylbetaine(SPB)methacrylateyieldedwell-dened(co)poly-merswithlowdispersities1.
13≤M≤1.
23atmonomerconversionsof75–92%.
ForaseriesofSBBmethacrylatehomopolymerswithincreasingdegreesofpolymerizationfrom66–186measureduppercriticalsolutiontemperature(UCST)cloudpointsincreasedfrom27–77°C.
CloudpointsofstatisticalSPB-SBBcopolymerswithsimilardegreesofpolymerization,butvaryingmolarcompositions,increasedlinearlywithSBBcontentoeringasimplemeansofUCSTtuning.
Additionally,novelSBBacrylamidehomo-andcopolymerswerepreparedbypostpolymerizationmodicationofpoly(pentauorophenylacrylate)withanSBB-functionalamineandinmixtureswithbenzylamineasahydrophobicmodier.
Inallcases,theSBB(co)polymershadsignicantlyhigherUCSTsthantheirmorecommonSPBcounterparts,greatlyextendingthetemperaturerangeoftuneableUCSTtransitionsandmakingtheinvestigatedSBB(co)polymersadvantageousforexploitingtheir'smart'behaviour.
Inthisrespect,combiningSBBfunction-alitywithhydrophobicbenzylacrylamidecomonomersispresentedasasimplemeansofincreasingthemaximumsaltconcentrationatwhichUCSTbehaviour(whichshowsanantipolyelectrolyteeect)canbeobserved,enablingUCSTtransitionsinaqueoussolutionscontainingaphysiologicalconcentration(9gL1)ofNaCl.
IntroductionThermoresponsivepolymershavebeenthefocusofresearchformanydecadesandarangeofapplicationsincludingdrugdelivery,separation,diagnostics,andtissueengineeringarebasedonpolymersexhibitingaqueousinversetemperaturesolubility(lowercriticalsolutiontemperature(LCST)behav-iour,i.
e.
phaseseparationaboveacriticaltemperature).
1Theircounterparts,polymerswithanaqueousuppercriticalsolutiontemperature(UCST)whichphaseseparatebelowacriticaltemperature,havesimilarpotentialinsuchapplications,butonlyafew(co)polymersareknowntoexhibitthistypeof"smart"behaviour.
2Sulfobetainepolymers,3–6whichcarrypermanently(pHindependent)chargedammoniumandsulfonategroupsineveryrepeatunit,arepromisingcandidatesforaqueousUCSTbehaviourbecausetheirzwitterionicsidegroupscancausestronginter-andintrapolymerattractionsthroughelectrostaticinterlockingatlowtemperaturesresult-ingininsolubility.
Polysulfobetaineshaveadditionallyattractedattentionbecauseoftheirsuperiorhaemocompatibilityandantibiofoulingproperties,7,8whichhavebeenexploitedforsurfacemodificationofultrafiltrationmembranes9andblood-contactingdevices10,11andwounddressingappli-cations.
12Sincefirstdescribedinthe1950s,13awiderangeofpolysulfobetaineswithvariousbackbonetypes,sidegroupgeo-metries,ammoniumalkylsubstituents,andspacerlengthsElectronicsupplementaryinformation(ESI)available:Heatingandcoolingcurvesshowingreproducibilityandhysteresis,19FNMRmeasurementsindicat-ingfullconversionofPFPprecursors.
SeeDOI:10.
1039/c5py00160aPresentaddress:NanochemistryResearchInstitute(NRI),DepartmentofChemistry,CurtinUniversity,Bentley,PerthWA6102,Australia.
CentreforAdvancedMacromolecularDesign(CAMD),SchoolofChemicalEngineering,UniversityofNewSouthWales,Kensington,Sydney,NSW2052,Australia.
E-mail:Peter.
Roth@curtin.
edu.
auThisjournalisTheRoyalSocietyofChemistry2015Polym.
Chem.
,2015,6,5705–5718|5705hasbeenprepared.
3,4,6,14–18Notably,asignificantfocusofpre-viousresearcheortswasonfullywatersoluble(co)polymerswithmiscibilitygapsoftenbeingconsideredanuisanceratherthananopportunity.
Consequently,aqueousUCSTbehaviourhasonlybeenreportedforasmallsubsetofzwitterionic(co)polymers.
3,19–25Whiletheinfluenceofspacerlengths,includingthelengthoftheionbridgebetweenthechargedsites,onhydrophilicityhasbeeninvestigatedforsmallmole-cule(sulfo)betaines,15,26–29detailedstudiesofaqueoussolu-tionbehaviourofsulfobetainepolymershaveinvariablydealtwithsulfopropylbetaine(SPB)polymers,i.
e.
structureswiththreemethylenegroupsbetweenthechargedgroups.
19–21,23,24,30–32ThemajorityofrecentstudiesonpolysulfobetaineUCSTbehaviouris,infact,largelybasedonthetwocommerciallyavailablemonomers3-((2-(methacryloyloxy)-ethyl)dimethylammonio)propane-1-sulfonate(MA2-3)21,30,33–35and3-((3-methacrylamidopropyl)dimethylammonio)propane-1-sulfonate(MAm3-3).
21,31,36,37Zwitterionicmonomersaretypicallypolymerizedinaqueoussolution,3,16,38whichposeslimitationsfortheincor-porationofhydrophobicsegmentsincludingco-monomers.
39Also,characterizationofzwitterionicpolymers,especiallybysizeexclusionchromatography(SEC),suersfromthelimitedsolubilityofsuchpolymersinorganicsolvents.
32Forthesereasons,quaternizationofaminogroupsorinstallationofzwitterionicsegmentsthroughpostpolymerizationmodifi-cationof(easiertocharacterize)precursorscanbepreferen-tial.
6Commonly,tertiaryaminefunctionalpolymers,suchashomo-16,40orcopolymers41,42of2-(dimethylamino)ethylmethacrylate(DMAEMA)arereactedwithsultones,cyclicsulfo-nicesters,inorganicsolventsproducing,inthecaseofpDMAEMAand1,3-propanesultone,poly[3-((2-(methacryloyl-oxy)ethyl)dimethylammonio)propane-1-sulfonate],p(MA2-3).
Forreactioninmostorganicsolvents,suchasTHF,theresult-ingpartiallybetainized(co)polymersprecipitatewithreactioncontinuing,considerablyslower,16underheterogeneouscon-ditions.
Werecentlyreported43thepostmodificationoftheactivatedesterprecursorpoly(pentafluorophenylacrylate),pPFPA,44withazwitterionicfunctionalprimaryamine,3-((3-aminopropyl)dimethylammonio)propane-1-sulfonate,amine3-3,asanovelandversatilesyntheticroutetowardzwitterionichomo-andhydrophobicallymodifiedcopolymers.
Notably,alsointhisstudyonlypropyl-spacedderivativeswereinvestigated.
Thoughpromising,applicationsoftheUCSTbehaviourofpolysulfobetainesarelimitedcomparedtothoseofLCST-typepolymerssuchaspoly(N-isopropylacrylamide)ornon-linearpoly(ethyleneglycol)sfortworeasons.
Firstly,UCSTtransitionsgenerallyshowastrongpositivedependenceonmolecularweight.
AsthecommonlystudiedMA2-3andMAm3-3basedpolysulfopropylspeciescanexhibitgoodsolubilityinpurewater,relativelyhighmolecularweightsofseveralhundredkgmol1arenecessarytoachievecloudpointsashighas30–40°C.
21,35Polymerswithlowermolecularweightshavelowercriticaltemperaturesormaybefullysoluble,notexhibit-ingthedesired"smart"behaviouratall.
Secondly,zwitterionicpolymersshowanantipolyelectrolyteeect:addedsaltsscreentheinter-andintraionicinteractions,reducingelectrostaticinterlockingeciencywhichresultsinadecreaseofUCSTcloudpointsand,ultimately,atsucientlyhighsaltconcen-trations,intemperatureindependentaqueoussolubility.
4Con-sequently,itisofconsiderableinteresttodevelop(co)polymerswithsignificantlyhigherUCSTtransitionsthanthoseofcom-parableMA2-3andMAm3-3basedpolysulfopropylbetaines—possiblytoanextentthatpolymersareinsolubleinpurewaterovertheentiretemperaturerangeupto100°Cat1atm.
"Smart"behaviourinapracticaltemperaturerangewouldthenbeobservablefor(moreconvenientlyavailable)lowermolecularweightsamples,and,importantly,inaqueoussaltsolutions,mostideallyextendingtoaphysiologicallyrelevantionconcentration(e.
g.
154mMNaCl).
OurpreviouslyreportedpostpolymerizationpreparationofhydrophobicallymodifiedsulfopropylbetainecopolymersrepresentsafirststudyaimedatincreasingUCSTtransitionsthroughtuningofcopolymercompositionwhichenabledsharptransitionsofacopolymerwithMn=27kgmol1inaqueoussolutionscon-tainingupto76mMNaCl.
43Herein,wepresentadetailedstudyintotheUCSTbehav-iourofsulfobutylbetaine(SBB)(co)polymersandshowthatincreasingtheionbridgebyjustonemethyleneunitre-presentsasimplemeansofsignificantlyincreasingcriticalsolutiontemperaturesofhomopolymers.
SBB(co)polymersandseveralSPBreferencesampleswerepreparedthroughdirect(co)polymerizationofcommercialandpreparedzwit-terionicmonomers,throughpostmodificationofpDMAEMAwithsultones,andthroughpostmodificationofanactivatedesterprecursorusinganovelzwitterionicamineallowingustocomparethesemethodswithregardstotheireciencyinproducingtheSBBspeciesandprovidingaccesstoalibraryof(novel)zwitterionicacrylate,methacrylateand(hydropho-bicallymodified)acrylamide(co)polymerswithtuneableUCSTtransitionsspanninganimpressivetemperaturerangeandextendinguptophysiologicallyrelevantNaClconcentrations.
ExperimentalsectionMaterialsAllreagents,includingmethacryloxyethyldimethylammoniopropanesulfonate(MA2-3)and2-cyano-2-propyldithiobenzoate(CPDB)werepurchasedfromSigma-Aldrichandwereusedasreceivedunlessstatedotherwise.
Propylenecarbonate(99.
7%,anhydrous)wasstoredinaglovebox.
Azobis(isobutyronitrile)(AIBN)wasrecrystallizedfrommethanolandstoredat24°C.
Thesynthesesofthechaintransferagent(CTA)benzylpropyltrithiocarbonate(BPTC),45theCTApentafluorophenyl4-cyano-4-((phenylcarbonothioyl)thio)valerate,46theactivatedesterinitiatorbis(pentafluorophenyl)4,4′-(diazene-1,2-diyl)bis-(4-cyanopentanoate),46andtheamine-functionaldye4-nitro-7-piperazin-1-yl-2,1,3-benzoxadiazole(NBDamine)47aredescribedelsewhere.
PaperPolymerChemistry5706|Polym.
Chem.
,2015,6,5705–5718ThisjournalisTheRoyalSocietyofChemistry2015MethodsNMRspectroscopicmeasurementsinD2OwereperformedonaBrukerAvance300MHzinstrumentin5mmNMRtubes.
MeasurementsofpolymersweredoneonD2Osolutionscon-tainingupto0.
5MNaCl.
Theinternalsolventsignalδ(D2O)=4.
79ppmwasusedasreference.
Sizeexclusionchromatography(SEC)inN,N-dimethyl-acetamide(DMAc)wasperformedonaShimadzusystemwithfour300*7.
8mm2linearphenogelcolumns(105,104,103,and500)operatingataflowrateof1mLmin1.
Thesystemwascalibratedwithaseriesoflowdispersitypolystyrene(PS)standardswithmolarmassesrangingfrom0.
58–1820kgmol1.
AqueousSECwasperformedonaShimadzusystemwithtwoAgilentAquagelcolumnswith0.
2MNaClsolutioncontaining0.
02mass%sodiumazideaseluentataflowrateof1mLmin1.
Thissystemwascalibratedwithaseriesofnarrowmolarmassdistributionpoly(ethyleneglycol)(PEG)standards.
ChromatogramswereanalysedbyCirrusSECsoftwareversion3.
0.
Fouriertransforminfraredspectroscopy(FT-IR)wasper-formedonaBrukerIFS66/Sinstrumentunderattenuatedtotalreflectance,anddatawasanalysedwithOPUSsoftwareversion4.
0.
TurbiditymeasurementswereperformedonaVarianCary300ScanspectrophotometerequippedwithaCarytemperaturecontrollerandaPeltierheatingelementinquartzcuvettesof10mmpathlengthatawavelengthof520nmwithheating/coolingratesof1°Cmin1.
Unlessotherwisenoted,polymerconcentrationswere10gL1.
Forclearsolutionsthebaselinewascorrectedtozeroabsorbance,A.
Transmittance,t=10A,wasplottedagainsttemperature,andcloudpoints,CP,weredeterminedattheonsetoftransmittancedecrease.
Electrosprayionization(ESI)massspectrometrywasper-formedonaScientificLTQOrbitrapXLmassspectrometeroperatinginpositiveionmodewithasprayvoltageof1.
2kV,acapillaryvoltageof45V,acapillarytemperatureof200°C,andatubelensvoltageof120V.
Poly[2-(dimethylamino)ethylmethacrylate],pDMAEMA,waspreparedaspreviouslydescribed.
48Mtheor.
n=31.
8kgmol1,DPtheor.
=201,MSECn=22.
3kgmol1(DMAc,PSstandard),M=MSECw/MSECn=1.
14.
1HNMR(D2O,300MHz),δ/ppm=4.
11(–OCH2CH2–),2.
67(–OCH2CH2–),2.
27,2.
04(backbone–CH2–),1.
08,0.
90(backbone–CH3).
PostpolymerizationofpDMAEMAwithsultones.
Poly[3-((2-(methacryloyloxy)ethyl)dimethylammonio)propane-1-sulfonate],p(MA2-3):pDMAEMA(100mg,0.
636mmolofrepeatunits,1eq.
)wasdissolvedin2,2,2-trifluoroethanol(2mL).
Inasepa-ratevial,1,3-propanesultone(155.
4mg,1.
272mmol,2eq.
)wasdissolvedinTFE(1mL)andthenaddedintothepolymersolu-tion.
Themixturewasstirredat40°Cfor3days.
Brinewasaddedtothereactionmixtureandtheaqueousphasewaswashedseveraltimeswithdiethylether,subjectedtodialysisutilizingregeneratedcellulosemembraneswitha3500gmol1molecularweightcut-oinultrapurewaterfor3daysfollowedbyfreezedrying,yielding163mg(92%)ofawhitesolid.
1HNMR(D2O,500mMNaCl,300MHz),δ/ppm=4.
54(–OCH2CH2–),3.
86(–OCH2CH2–),3.
65(–N+(CH3)2CH2CH2–),3.
28(–N+(CH3)2–),3.
03(–CH2SO3),2.
34(–N+(CH3)2CH2CH2–),2.
06(backbone–CH2–),1.
20,1.
06(backbone–CH3).
Poly[4-((2-(methacryloyloxy)ethyl)dimethylammonio)butane-1-sulfonate],p(MA2-4),waspreparedinananalogouspro-cedureusing1,4-butanesultone(173.
2mg,1.
272mmol,2eq.
)withheatingtoreflux(oilbathat103°C)for4days.
Workupasdetailedaboveyielded125mg(67%)ofawhitesolid.
1HNMR(D2O,500mMNaCl,300MHz),δ/ppm=4.
57(–OCH2CH2–),3.
86(–OCH2CH2–),3.
56(–N+(CH3)2CH2CH2CH2–),3.
28(–N+(CH3)2–),3.
03(–CH2SO3),2.
08(–N+(CH3)2CH2-CH2CH2–andbackbone–CH2–),1.
90(–N+(CH3)2CH2CH2CH2–),1.
20,1.
06(backbone–CH3).
Monomer4-((2-(methacryloyloxy)ethyl)dimethylammonio)-butane-1-sulfonate(MA2-4).
492-(Dimethylamino)ethylmeth-acrylate(DMAEMA,4.
43mL,26.
3mmol),1,4-butanesultone(2.
44mL,23.
9mmol),inhibitor3,5-di-tert-butyl-4-hydroxy-toluene(BHT,50mg),andacetonitrile(50mL)werecombinedandrefluxedfor48h.
Theconsumptionof1,4-butanesultonewasmonitoredbythin-layerchromatography(TLC)usingn-hexane–ethylacetate50:50asthemobilephase.
Thecrudematerialwhichprecipitatedthroughoutthecourseofthereac-tionwasfiltered,washedwithacetonitrile(150mL),anddriedinvacuoatroomtemperature.
5.
32g(76%)ofawhitesolidwereobtained.
1HNMR(D2O,300MHz),δ/ppm=6.
18(m,1H,CHHvC(CH3)–,cis),5.
80(m,1H,CHHvC(CH3)–,trans),4.
65(m,2H,–OCH2CH2–),3.
80(m,2H,–OCH2CH2–),3.
48(m,2H,–N+(CH3)2CH2CH2CH2–),3.
20(s,6H,–N+(CH3)2–),2.
99(t,2H,–CH2SO3),2.
00(m,5H,–N+(CH3)2CH2CH2CH2–and–CH2C(CH3)–),1.
82(m,2H,–N+(CH3)2CH2CH2CH2–).
Monomer4-((2-(acryloyloxy)ethyl)dimethylammonio)butane-1-sulfonate(A2-4).
2-(Dimethylamino)ethylacrylate(DMAEA,4.
19mL,27.
6mmol),1,4-butanesultone(2.
56mL,25.
1mmol),BHT(50mg),andacetonitrile(50mL)werecombinedandrefluxedfor48h.
Theconsumptionof1,4-butanesultonewasmonitoredbyTLCwithn-hexane–ethylacetate50:50asthemobilephase.
Thecrudematerialwhichprecipitatedthrough-outthecourseofthereactionwasfiltered,washedwithaceto-nitrile(150mL)anddriedinvacuoatroomtemperature.
6.
20g(89%)ofawhitesolidwereobtained.
1HNMR(D2O,300MHz),δ/ppm=6.
49(dd,1H,trans,2Jgem=1.
2Hz,3Jcis=17.
4Hz,CHHvCH–),6.
25(dd,1H,gem,3Jtrans=17.
1Hz,3Jcis=17.
1Hz,CHHvCH–),6.
06(dd,1H,cis,2Jgem=0.
9Hz,3Jtrans=10.
5Hz,CHHvCH–),4.
66(m,2H,–OCH2CH2–),3.
79(m,2H,–OCH2CH2–),3.
48(m,2H,–N+(CH3)2CH2CH2CH2–),3.
20(s,6H,–N+(CH3)2–),2.
99(t,2H,–CH2SO3),2.
00(m,2H,–N+(CH3)2CH2CH2CH2–),1.
82(m,2H,–N+(CH3)2CH2CH2CH2–).
Monomer4-((3-methacrylamidopropyl)dimethylammonio)-butane-1-sulfonate(MAm3-4).
3-(Dimethylamino)propylmethacrylamide(DMAPMAm,3.
05g,17.
9mmol),1,4-butane-sultone(1.
67mL,16.
3mmol),BHT(50mg),andacetonitrile(50mL)werecombinedandheatedto45°Cfor3days.
Thecrudematerialwhichprecipitatedthroughoutthecourseofthereactionwasfiltered,washedwithacetonitrile(150mL)PolymerChemistryPaperThisjournalisTheRoyalSocietyofChemistry2015Polym.
Chem.
,2015,6,5705–5718|5707anddriedinvacuoatroomtemperature.
2.
63g(53%)ofawhitesolidwereobtained.
1HNMR(D2O,300MHz),δ/ppm=5.
73(m,1H,CHHvCCvO),81.
21(–C(CH3)3),63.
35,61.
67(–CH2N+(CH3)2CH2–),50.
74(–N+(CH3)2–),49.
95(O3SCH2–),36.
82(–CH2CH2NHBOC),27.
63(–C(CH3)3),22.
68(–N+(CH3)2CH2CH2–),21.
06(O3SCH2CH2CH2–),20.
82(O3SCH2CH2–).
Aftertreatmentwithaq.
HClandanionexchangebeads,0.
99g(74%)freebaseamine3-4wasobtained.
1HNMR(300MHz,D2O),δ/ppm=3.
39–3.
32(m,4H,–CH2N+(CH3)2CH2–),3.
09(s,6H,–N+(CH3)2–),2.
99(t,2H,O3SCH2–),2.
72(t,2H,–CH2NH2),2.
01–1.
77(m,6H,–CH2CH2CH2N+(CH3)2CH2CH2CH2NH2).
13CNMR(300MHz,D2O),δ/ppm=63.
47,62.
20(–CH2N+(CH3)2CH2–),50.
63(–N+(CH3)2–),49.
93(O3SCH2–),37.
61(–CH2CH2NH2),24.
96–CH2CH2NH2),21.
07(O3SCH2CH2CH2–),20.
80(O3SCH2CH2–).
GeneralprocedureforpostpolymerizationmodificationofpPFPAwithzwitterionicamines.
pPFPA(44.
7mg,0.
188mmolofrepeatunits,1equiv.
)wasdissolvedinanhydrouspropylenecarbonate(1.
5mL)at60°Candhydroxyethylacrylate(5L)wasaddedtoscavengethiolsreleasedfromtheRAFTendgroupsthroughaminolysis.
50Inparallel,3-((3-aminopropyl)di-methylammonio)propane-1-sulfonate,(amine3-3,63.
2mg,0.
282mmol,1.
5equiv.
)or4-((3-aminopropyl)dimethyl-ammonio)butane-1-sulfonate,(amine3-4,67.
1mg,0.
282mmol,1.
5equiv.
)wasdissolvedinpropylenecarbonate(1.
5mL)withheating.
Afterdissolving,theaminesolutionwasquicklyaddedintothepolymersolutionandthemixturestirredat40°Covernight.
Asample(100μL)waswithdrawn,dilutedwithDMSO(550μL)andanalysedby19FNMRspectroscopyindicatingcompleteconversionofPFPestersshowingonlysignalsoffreepentafluorophenolatδ/ppm=167.
4(2F,ortho),170.
2(2F,meta),181.
7(1F,para).
Thesolutionwastransferredintoadialysisbag(molecularweightcut-o3500gmol1)anddialyzedagainstultrapurewaterfor3daysatRT(p(Am3-3))or60°C(p(Am3-4)),followedbyfreeze-drying.
Poly[3-((3-acrylamidopropyl)dimethylammonio)propane-1-sulfonate],p(Am3-3):1HNMR(D2O,500mMNaCl,300MHz)δ/ppm=3.
55(bs,–N+(CH3)2CH2CH2–),3.
43(bs,–NHCH2CH2CH2–),3.
28(bs,–NHCH2CH2CH2–),3.
18(bs,–N+(CH3)2–),3.
03(bt,–CH2SO3),2.
26(bs,–N+(CH3)2CH2CH2–),2.
11,2.
07(backbone–CH80mM.
Here,aseriesofSBBcopolymerswithmolarBzAmcontentsof50%,62%,and69%,asdeterminedby1HNMRspectroscopyin500mMNaClinD2O,wasprepared.
Notably,samplep[(Am3-4)0.
31-co-BzAm0.
69]withthehighestBzAmcontentdidnotformaclearsolutioninthissolvent(norathigherNaClcon-centrations)—thedeterminedcompositionmaythusbelessaccurate—indicatinganupperlimitofobservablezwitterionicbehaviourforhydrophobicmodification.
Theremainingtwosamples,however,whilebeinginsolubleinpure(hot)water,didexhibitsharp,reversibleUCSTtransitionsbetweenclearsolutionsandcloudymixturesinaqueousNaClsolution.
Asexpected,thephasebehaviourofthesesamplesextendedtohigherNaClconcentrationsthanfortheSPBcopolymer,withUCSTtransitionsmeasuredonsolutionscontainingupto128mM(7.
5gL1)NaClforp[(Am3-4)0.
50-co-BzAm0.
50]and154mM(9.
0gL1,concentrationofisotonicsaline)NaClforp[(Am3-4)0.
38-co-BzAm0.
62],seeFig.
8.
Theseresultsdemon-Fig.
7FT-IRspectraofthepPFPAprecursor(top),ap(Am3-4)homo-polymerpreparedthereof(middle),andaRAFT-madep(MA2-4)homo-polymerforcomparison(bottom).
ThecharacteristicbandsoftheactivatedesterCvOstretching(1780cm1,grey),theesterCvOstretching(1720cm1,pink),andtheamideCvOstretching(1650cm1,yellow)aremarked.
Fig.
8InuenceofNaClconcentrationonthephaseseparationtemperatureofp(Am3-4)-benzylacrylamidecopolymers;(A)plotofUCSTcloudpointversusNaClconcentrationforp[(Am3-3)0.
47-co-BzAm0.
53](valuestakenfromourpreviousstudy)43(greentriangles),andtheSBBspeciespre-paredherep[(Am3-4)0.
50-co-BzAm0.
50](blacksquares)andp[(Am3-4)0.
38-co-BzAm0.
62](redcircles);(B)exemplaryturbiditycurvesforp[(Am3-4)0.
50-co-BzAm0.
50]atdierentNaClconcentrations.
PaperPolymerChemistry5716|Polym.
Chem.
,2015,6,5705–5718ThisjournalisTheRoyalSocietyofChemistry2015stratethatthecombinationofSBBsidechainswithhydrophobicmodificationfurtherincreasesthetemperature/saltrangeinwhichsharpUCSTtransitionscanbeachieved.
Specifically,UCSTtransitionsofzwitterioniccopolymersataphysiologicalNaClconcentrationarepromisingfortheexploitationofsuchsmartmaterialsinbiomedicalapplications.
However,thecomplexcompositionofbiologicalfluidsandthestrongdepen-denceoftheUCSTphasebehaviouronthetypeofions20,21,23,31or,likely,othersolutesneedstobeconsidered.
Inthepresentcase,forexample,p[(Am3-4)0.
38-co-BzAm0.
62]wasfoundtoremainsolubleinphosphatebueredsaline(137mMNaCl,2.
7mMKCl,10mMNa2HPO4,1.
8mMKH2PO4)andHEPESbuer(150mMNaCl,10mM4-(2-hydroxyethyl)-1-piperazine-ethanesulfonicacid)whencooledto0°C.
Conversely,thisstrongdependenceofthephasebehaviouronpotentiallyminutechangesoftheenvironmentmaybeexploitedforthedevelop-mentofmaterialsthatrespondselectivelytospecificbiologicalmicroenvironmentswith(slightly)dierentionconcentrations.
ConclusionAdetailedcomparativestudyoftheaqueoussolutionbehav-iourofsulfobutylbetaine(SBB)(co)polymerswaspresented.
Inallcases,samplesshowedsignificantlyhigherUCSTtran-sitions,i.
e.
theywerelesssolubleinwater,thantheirrespect-ivesulfopropylbetaine(SPB)counterparts.
WhereastheUCSTtransitionsofthecommonSPBhomopolymersp(MA2-3)andp(MAm3-3)arelimitedtorelativelyhighmolecularweightsamplesand/ortosolutionsinultrapurewater,thecorres-pondingSBB-functionalhomopolymersinvestigatedhereoeramuchlargertemperatureandsaltconcentrationrangeforobservingsharp,reproducibleUCSTtransitions.
ScopeandlimitationsofthreedierentsynthetictechniquestowardSBBhomo-andcopolymerswerecompared.
ThequaternizationofpDMAEMAwith1,4-butanesultonein2,2,2-trifluoroethanol(TFE)sueredfromlowreactivityofthisalkylatingagentresultinginincompletemodificationmakingthisprocedurelessattractiveforthesynthesisofpristineSBBspecies.
RAFTradicalpolymerizationofSBB-functional(meth)acrylatemono-mersandtheircopolymerizationwithSPBmonomersinTFEproceededsmoothlywithhighconversions,lowmeasureddis-persitiesM,andfacilitatedaccesstoaseriesof(co)polymerswithcloudpointsfrom13.
2–76.
5°C.
LowcompatibilityofSBB-functionalmonomerswithnon-proticsolventsincludingpro-pylenecarbonate(PC),however,limitstheincorporationofnon-polaroralcohol/water-sensitivecomponentsinthismethod.
Post-modificationofpoly(pentafluorophenylacrylate)withaSBB-functionalamineinPCprovidedzwitterionicpoly-acrylamidesandallowedfortheintroductionofhydrophobiccomonomerunits,butrequiredthemulti-stepsynthesisoftheaminereagent.
ASBB-functionalcopolymercontaining62mol%ofbenzylacrylamidecomonomerunitsshowedUCSTbehaviouruptoaphysiologicalconcentrationof9gL1NaClmakingsuchmaterialspromisingforexploitingtheirsmartbehaviourinthebiomedicalarena.
FundingsourcesP.
J.
R.
acknowledgesfundingfromtheUniversityofNewSouthWales(UNSW)andtheAustralianResearchCouncil(ARC)throughaDiscoveryEarlyCareerResearcherAward(DE120101547).
References1M.
A.
C.
Stuart,W.
T.
S.
Huck,J.
Genzer,M.
Muller,C.
Ober,M.
Stamm,G.
B.
Sukhorukov,I.
Szleifer,V.
V.
Tsukruk,M.
Urban,F.
Winnik,S.
Zauscher,I.
LuzinovandS.
Minko,Nat.
Mater.
,2010,9,101–113.
2J.
SeuringandS.
Agarwal,Macromol.
RapidCommun.
,2012,33,1898–1920.
3S.
Kudaibergenov,W.
JaegerandA.
Laschewsky,inSupra-molecularPolymersPolymericBetainsOligomers,Springer,Berlin/Heidelberg,2006,vol.
201,pp.
157–224.
4A.
B.
LoweandC.
L.
McCormick,Chem.
Rev.
,2002,102,4177–4190.
5F.
XuanandJ.
Liu,Polym.
Int.
,2009,58,1350–1361.
6A.
Laschewsky,Polymers,2014,6,1544–1601.
7G.
GunkelandW.
T.
S.
Huck,J.
Am.
Chem.
Soc.
,2013,135,7047–7052.
8J.
Wu,W.
Lin,Z.
Wang,S.
ChenandY.
Chang,Langmuir,2012,28,7436–7441.
9Q.
Sun,Y.
Su,X.
Ma,Y.
WangandZ.
Jiang,J.
Membr.
Sci.
,2006,285,299–305.
10Y.
Chang,Y.
-J.
Shih,C.
-J.
Lai,H.
-H.
KungandS.
Jiang,Adv.
Funct.
Mater.
,2013,23,1100–1110.
11J.
Yuan,X.
Huang,P.
Li,L.
LiandJ.
Shen,Polym.
Chem.
,2013,4,5074–5085.
12R.
LalaniandL.
Liu,Biomacromolecules,2012,13,1853–1863.
13R.
HartandD.
Timmerman,J.
Polym.
Sci.
,1958,28,638–640.
14P.
Kberle,A.
LaschewskyandD.
vandenBoogaard,Polymer,1992,33,4029–4039.
15P.
KoeberleandA.
Laschewsky,Macromolecules,1994,27,2165–2173.
16V.
M.
MonroySotoandJ.
C.
Galin,Polymer,1984,25,121–128.
17J.
C.
Salamone,W.
Volksen,S.
C.
Israel,A.
P.
OlsonandD.
C.
Raia,Polymer,1977,18,1058–1062.
18D.
Kratzer,L.
Barner,C.
Friedmann,S.
BrseandJ.
Lahann,Eur.
J.
Org.
Chem.
,2014,8064–8071.
19M.
B.
HuglinandM.
A.
Radwan,Polym.
Int.
,1991,26,97–104.
20P.
Kberle,A.
LaschewskyandT.
D.
Lomax,DieMakromole-kulareChemie,RapidCommun.
,1991,12,427–433.
21P.
Mary,D.
D.
Bendejacq,M.
-P.
LabeauandP.
Dupuis,J.
Phys.
Chem.
B,2007,111,7767–7777.
22J.
Ning,G.
LiandK.
Haraguchi,Macromolecules,2013,46,5317–5328.
23D.
N.
Schulz,D.
G.
Peier,P.
K.
Agarwal,J.
Larabee,J.
J.
Kaladas,L.
Soni,B.
HandwerkerandR.
T.
Garner,Polymer,1986,27,1734–1742.
PolymerChemistryPaperThisjournalisTheRoyalSocietyofChemistry2015Polym.
Chem.
,2015,6,5705–5718|571724V.
A.
Vasantha,S.
Jana,A.
ParthibanandJ.
G.
Vancso,Chem.
Commun.
,2014,50,46–48.
25A.
Bieglé,A.
MathisandJ.
-C.
Galin,Macromol.
Chem.
Phys.
,2000,201,113–125.
26R.
G.
Laughlin,Langmuir,1991,7,842–847.
27J.
L.
Bredas,R.
R.
ChanceandR.
Silbey,Macromolecules,1988,21,1633–1639.
28Y.
ChevalierandP.
LePerchec,J.
Phys.
Chem.
,1990,94,1768–1774.
29M.
Galin,A.
ChapotonandJ.
-C.
Galin,J.
Chem.
Soc.
,PerkinTrans.
2,1993,545–553.
30L.
Chen,Y.
Honma,T.
Mizutani,D.
J.
Liaw,J.
P.
GongandY.
Osada,Polymer,2000,41,141–147.
31V.
Hildebrand,A.
LaschewskyandD.
Zehm,J.
Biomater.
Sci.
,Polym.
Ed.
,2014,25,1602–1618.
32V.
M.
MonroySotoandJ.
C.
Galin,Polymer,1984,25,254–262.
33Y.
-J.
Shih,Y.
Chang,A.
DerataniandD.
Quemener,Bio-macromolecules,2012,13,2849–2858.
34M.
Tian,J.
Wang,E.
Zhang,J.
Li,C.
DuanandF.
Yao,Lang-muir,2013,29,8076–8085.
35H.
Willcock,A.
Lu,C.
F.
Hansell,E.
Chapman,I.
R.
CollinsandR.
K.
O'Reilly,Polym.
Chem.
,2014,5,1023–1030.
36M.
Arotcarena,B.
Heise,S.
IshayaandA.
Laschewsky,J.
Am.
Chem.
Soc.
,2002,124,3787–3793.
37Y.
Pei,J.
Travas-SejdicandD.
E.
Williams,Langmuir,2012,28,8072–8083.
38M.
S.
Donovan,B.
S.
Sumerlin,A.
B.
LoweandC.
L.
McCormick,Macromolecules,2002,35,8663–8666.
39V.
Strehmel,H.
Wetzel,A.
Laschewsky,E.
MoldenhauerandT.
Klein,Polym.
Adv.
Technol.
,2008,19,1383–1390.
40A.
B.
Lowe,N.
C.
BillinghamandS.
P.
Armes,Chem.
Commun.
,1996,1555–1556.
41A.
B.
Lowe,N.
C.
BillinghamandS.
P.
Armes,Macromole-cules,1999,32,2141–2148.
42J.
V.
M.
Weaver,S.
P.
ArmesandV.
Butun,Chem.
Commun.
,2002,2122–2123.
43P.
A.
Woodfield,Y.
C.
Zhu,Y.
W.
PeiandP.
J.
Roth,Macro-molecules,2014,47,750–762.
44R.
KakuchiandP.
Theato,inFunctionalPolymersbyPost-PolymerizationModification,Wiley-VCHVerlagGmbH&Co.
KGaA,2012,pp.
45–64.
45J.
Y.
Quek,P.
J.
Roth,R.
A.
Evans,T.
P.
DavisandA.
B.
Lowe,J.
Polym.
Sci.
,PartA:Polym.
Chem.
,2013,51,394–404.
46P.
J.
Roth,K.
T.
Wiss,R.
ZentelandP.
Theato,Macromole-cules,2008,41,8513–8519.
47R.
Nudelman,O.
Ardon,Y.
Hadar,Y.
Chen,J.
LibmanandA.
Shanzer,J.
Med.
Chem.
,1998,41,1671–1678.
48P.
J.
Roth,J.
Y.
Quek,Y.
Zhu,B.
M.
BlundenandA.
B.
Lowe,Chem.
Commun.
,2014,50,9561–9564.
49M.
Gauthier,T.
CarrozzellaandA.
Penlidis,J.
Polym.
Sci.
,PartA:Polym.
Chem.
,2002,40,511–523.
50P.
J.
Roth,C.
Boyer,A.
B.
LoweandT.
P.
Davis,Macromol.
RapidCommun.
,2011,32,1123–1143.
51P.
vandeWetering,N.
J.
Zuidam,M.
J.
vanSteenbergen,O.
A.
G.
J.
vanderHouwen,W.
J.
M.
UnderbergandW.
E.
Hennink,Macromolecules,1998,31,8063–8068.
52H.
-Y.
Tian,J.
-J.
Yan,D.
Wang,C.
Gu,Y.
-Z.
YouandX.
-S.
Chen,Macromol.
RapidCommun.
,2011,32,660–664.
53P.
G.
Faulkner,A.
J.
I.
WardandD.
W.
Osborne,Langmuir,1989,5,924–926.
54J.
G.
Weers,J.
F.
Rathman,F.
U.
Axe,C.
A.
Crichlow,L.
D.
Foland,D.
R.
Scheuing,R.
J.
WiersemaandA.
G.
Zielske,Langmuir,1991,7,854–867.
55W.
Ding,C.
Lv,Y.
Sun,X.
Liu,T.
Yu,G.
QuandH.
Luan,J.
Polym.
Sci.
,PartA:Polym.
Chem.
,2011,49,432–440.
56G.
Moad,E.
RizzardoandS.
H.
Thang,Aust.
J.
Chem.
,2012,65,985–1076.
57K.
Skrabania,A.
Miasnikova,A.
M.
Bivigou-Koumba,D.
ZehmandA.
Laschewsky,Polym.
Chem.
,2011,2,2074–2083.
58P.
J.
Roth,F.
D.
Jochum,F.
R.
Forst,R.
ZentelandP.
Theato,Macromolecules,2010,43,4638–4645.
59G.
B.
H.
Chua,P.
J.
Roth,H.
T.
T.
Duong,T.
P.
DavisandA.
B.
Lowe,Macromolecules,2012,45,1362–1374.
60M.
I.
Gibson,E.
FrohlichandH.
-A.
Klok,J.
Polym.
Sci.
,PartA:Polym.
Chem.
,2009,47,4332–4345.
PaperPolymerChemistry5718|Polym.
Chem.
,2015,6,5705–5718ThisjournalisTheRoyalSocietyofChemistry2015

安徽BGP云服务器 1核 1G 5M 29元/月 香港云服务器 1核 1G 19元首月 麻花云

麻花云怎么样?麻花云公司成立于2007年,当前主打产品为安徽移动BGP线路,数据中心连入移动骨干网。提供5M,10M大带宽云主机,香港云服务器产品,数据中心为香港将军澳机房,香港宽频机房 cn2-GIA优质线路、采用HYPER-V,KVM虚拟技术架构一、麻花云官网点击直达麻花云官方网站合肥网联网络科技有限公司优惠码: 专属优惠码:F1B07B 享受85折优惠。最新活动 :双11 云上嗨购 香港云主...

IntoVPS:按小时计费KVM月费5美元起($0.0075/小时),6个机房可选

IntoVPS是成立于2004年的Hosterion SRL旗下于2009年推出的无管理型VPS主机品牌,商家提供基于OpenStack构建的VPS产品,支持小时计费是他的一大特色,VPS可选数据中心包括美国弗里蒙特、达拉斯、英国伦敦、荷兰和罗马尼亚等6个地区机房。商家VPS主机基于KVM架构,最低每小时0.0075美元起($5/月)。下面列出几款VPS主机配置信息。CPU:1core内存:2GB...

RackNerd 2022春节促销提供三款年付套餐 低至年付10.88美元

RackNerd 商家我们应该是比较熟悉的商家,速度一般,但是人家便宜且可选机房也是比较多的,较多集中在美国机房。包括前面的新年元旦促销的时候有提供年付10美元左右的方案,实际上RackNerd商家的营销策略也是如此,每逢节日都有活动,配置简单变化,价格基本差不多,所以我们网友看到没有必要囤货,有需要就选择。RackNerd 商家这次2022农历新年也是有几款年付套餐。低至RackNerd VPS...

7777dd为你推荐
ov单片机汇编语言中 CY AC OV 分别是什么意思?主页改不了怎么改不了主页iphone5解锁iphone5密码忘了怎么解锁spgnuxps = getCon().prepareStatement(sql);啥意思,求注释,要是不嫌麻烦帮我把下面的也给注释了万网核心代理在万网代理商购买万网产品,谁知道价格?知道的说下?显卡温度多少正常显卡温度多少正常镜像文件是什么什么是文件镜像?什么是镜像文件?淘宝店推广给淘宝店铺推广有什么好处?中小企业信息化信息化为中小企业发展带来了哪些机遇qq空间装扮qq空间的装扮空间在哪?
中文域名注册 lnmp 主机评测 火车票抢票攻略 tk域名 e蜗牛 七夕快乐英文 世界测速 爱奇艺vip免费试用7天 创建邮箱 独享主机 美国凤凰城 双线空间 徐州电信 阿里云邮箱申请 大化网 移动王卡 新网dns easypanel bwg 更多