JournalofChromatographicScience,Vol.
27,July1989FundamentalsandApplicationsofSupercriticalFluidExtractioninChromatographicScienceJerryW.
KingNorthernRegionalResearchCenter,AgriculturalResearchService,UnitedStatesDepartmentofAgriculture,1815NorthUniversityStreet,Peoria,Illinois61604[Abstract/Theuniquepropertiesofsupercriticalfluidshavepromptedtheiruseforavarietyofapplicationsinthefieldofanalyticaichemistry.
Perhapsthemostwidelyciteduseofthesecompressedfluidshasbeeninthefieldofchromatography,eitherasmobilephaseeluentsorasextractionsolvents.
Thisstudyexaminesthevariousmodesinwhichsupercriticalfluidextraction(SFE)canbeemployedbythechromatographer.
Extraction,solubilization,andfractionationconditionsarepredictedbytheapplicationofwell-knownsolutionthermodynamicprinciples.
Experimentalresultsarereportedfortheremovaloflipidphasesfromnaturalproductsandthecoextractionofpe,sticidemoieties.
Finally,amethodofpredictingtherequiredmobilephasepressuresforsolubilizingandfractionatingoligomericmixturesinsupercriticalfluidchromatographyiscomparedwithliteraturedata.
IntroductionSupercriticalfluids(SF)arefindingwideacceptanceinanumberofanalyticaldisciplinesasuniquesolvationmedia.
Byfarthelargestnumberofapplicationsoccurinthefieldofchromatography,wherethesedensegasesareemployedasex-tractionsolventsandinteractivemobilephases.
Historically,supercriticalfluidchromatography(SFC)hasitsoriginsinthemid-l960s(l-3),whileitsextractionanaloguehasonlyrecentlyseenapplicationinthefieldofanalyticalchemistry.
Intruth,supercriticalfluidextraction(SFE)playsamechanisticroleinSFC,whereitcontributestotheseparationofthesolutesthatareinjectedintothechromatographicsystem.
Themajorityofreportedanalyticalchromatographicapplica-tionsofSFEtodatehavebeenconcernedwiththecouplingofSFE,usingverysmallextractioncells,withcapillary(4,5)andpackedcolumn(6,7)SFCinstrumentstoeffectsequentialSFE-SFCseparationschemes,Examplesoftheseapplicationsarereportedbyothercontributorstothisvolumeandwillnotbediscussedhere.
Thepurposeofthispaperistoprovideamoregeneralguidelinefortheapplicationofsupercriticalfluidstoavarietyofproblemsfacingthechromatographer.
Thesewillincludesamplepreparationpriortochromatography,theselec-tionofphysicalconditionsforextraction,andthespecificationofchromatographicconditionsneededforfractionatingoligomericmixtures.
ThereareanumberofmodesbywhichSFEcantieappliedtothepreparationofsamplesforchromatography.
ThesemethodsareillustratedinFigures1and2,whereananalyteiscontainedinamatrixofinterferingcomponents.
PerhapsthesimplestformofSFEisshowninFigurela,wherebytheanalyteofinterestisseparatedfromtheinterferingmatrixcomponents.
Suchanextractioncaseisrelativelyrareforreasonsthatwillbeexplainedlater.
Infact,SFEisbasicallynotaveryselectiveextractionmethod,exceptincaseswhereselectivesolubilizationofcomponentscanbeeffectedoveraverynarrowpressurerangeorwherethesolutestobeseparateddiffersignificantlyintheirrespectivephysicalproperties(molecularweight,polarity).
Figure1bisperhapsmoregenerallyencounteredinapplyingSFEtosamplematrices.
Heretheanalyteofinterestiscoex-tractedwithanumberofinterferingcomponents.
Initially,thismethodmaynotseemtobeanattractivechoice;however,theuseofanontoxiccompressedgasasanextractionsolventoffersmanyadvantagesoverconventionalliquidorganicsolventsintermsofdisposalandexposureoflaboratorypersonneltotheextractingmedium.
Anexampleofthisapproachinpesticideresidueanalysiswillbecitedlater.
AnextensionofFigurelbisshowninFigurelc.
Heretheanalyteofinterestandtheinterferingcomponentsareextractedbyasupercriticalfluidandtheanalyteissubsequentlyanalyzedbyanappropriateinstrumentaltechnique.
Theanalysismaybeoff-lineoron-line,dependingonthechosenanalyticalmethod.
Severalexamplesofon-lineSFEcoupledwithSFC(8-lo),gaschromatography(11,12),orhigh-performanceliquidchromatog-raphy(13)havebeenreported.
MoreelaboratemethodsareshowninFigure2,whereSFEiscoupledwithsorbenttechnology.
Figure2aproposesSFEextrac-tionofbothanalyteandinterferingcomponentsfollowedbyfractionationoftheanalytefrominterferingsolutes.
Applicationofsorbentcolumnsfortheseseparationsmaybebytraditionalmethodsafterthehighpressureextractionsteporbyswitchingthesupercritical-fluid-derivedextracton-linetoasorbentcol-umnheldatanelevatedpressure.
Retentioncharacteristicsofcompoundsonselectedsorbentsinthepresenceofsupercriticalcarbondioxidehavebeenreportedbytheauthor(14)andmayserveasabasisforchoosingconditionstoisolatespecificanalytes.
Reproduction(photocopying)otedilorialcontentofthispurnalLSprohibitedwithoutpublisher'spermission.
355AnalternativetoFigure2aisillustratedinFigure2b,wherebytheinterferingcoextractedcomponentsfromtheSFEsteparepermanentlyisolatedonthesorbentcartridge.
Suchaschemecanbeeffectedwithasupercriticalfluidmediumthroughoutboththeextractionandisolationsteps.
Theanalytecanthenbedirectlyintroducedintothechoseninstrumentaltechnique.
Suchamethodhasbeenrecentlyreportedforfractionatingcar-bamatepesticidesfromcoextractedlipidcomponents(15).
Finally,itshouldberecognizedthatsupercritical-fluid-basedanalyticaltechniques,suchaschromatography,offertheanalystexcitingpossibilitiesforeliminatingsampleworkuptechniquescompletely.
Theauthorhasreportedseveralexamplesofdirectinjectionofcomplexmatricesintoasupercriticalfluidchro-matograph,therebyeffectingtheseparationoftheanalytefromtheinterferingcomponentswithoutresortingtoanyformalex-tractionstepbeforeanalysis(16).
Suchamethod,Figure2c,makesuseofSFEasaninsitustepduringtheSFCprocess.
AnexampleofFigure2cwillbeprovidedlater.
TheoryManytheoreticalapproachesforpredictingthesolubilityandphaseequilibriaofsolutesinsupercriticalfluidsolventshavebeenreported(17-21).
Thesetheoriesrequireanarrayofphysi-cochemicaldataandconsiderabletimetoyieldinformationthatispertinenttooptimizingextractionconditions.
Suchmethodsareoflimitedvaluetothechromatographerfacedwithday-to-dayanalyticaldecisionsanddonotlendthemselvestopredict-ingtheextractionparametersrequiredforSFEorSFCofstruc-turallycomplexsolutes.
Wehavefoundthataknowledgeoffourbasicparametersofsupercriticalfluidextractionareextremelyhelpfulinunderstandingsolutebehaviorincompressedgasmedia.
Thefirstoftheseparametersisthemiscibilitypressure,whichisthepressureatwhichthesolutestartstodissolveinthesupercriticalfluid.
Thisparameterwastermedthe"thresholdpressure"byGiddings(22)andcorrespondstothecriticallociofmixingbe-tweenthedissolvedsoluteandthesolventgas.
Asnotedbytheauthor(23),themiscibilitypressureistechnique-dependentandAnalytetMatrixComponentsExtractionExtractionExtractionAnalyte(4AnalyteInter&eweAnalytefnterflrence(b)InstrumentalAnalysis63Figure1.
GeneralizedSFmethodsforextractionandanalysis.
JournalofChromatographicScience,Vol.
27,July,989willvaryslightly,dependingonthesensitivityoftheanalyticalmethodthatischosentomonitorthesoluteconcentrationinthesupercriticalfluidphase.
Nonetheless,anapproximateknowledgeofthispressure(orcorrespondingdensity)isveryuseful,foritpermitstheanalysttochooseastartingpressureforsupercritical-fluid-basedfractionationprocesses.
Anotherusefulparameterforspecifyingsupercriticalfluidextractionconditionsisthepressureatwhichthesoluteattainsitsmaximumsolubilityinthecompressedfluid.
ThisconditioncanbeapproximatedbyGiddings'equationwhichrelatesthesolubilityparameterofthegastoitscriticalandreducedstateproperties(3).
Whenthesolubilityparameteroftheextractingfluid(gas)isequivalenttothatofthesolute,maximumsoiubilityshouldbeattained.
Solubilitymaximaforsupercriticalfluid-solutesystemshavebeenrecordedbyanumberofinvestigators(24-27)andcorrelatedbythebasictenetsoftheregularsolutiontheorybyKing(28,29).
Thethirdparameter,thepressureregionbetweenthemisci-bilityandsolubilitymaximumpressures,isthefractionationpressurerangeinwhichasolute'ssolubilitywillrangebetweenzeroanditsmaximumvalueinthesupercriticalgas.
Inthisin-terval,itbecomespossibletoregulatethesolubilityofonesoluterelativetoanotherinthesupercriticalfluid.
Enrichmentofonecomponentoveranotherispossiblebyemployingthevariableofpressure,butitisextremelyrareinSFEexperimentstoisolateonecomponentfromtheotherwithoutresortingtoanauxiliarytechnique(thermalgradients,chromatography,etc.
).
Afrac-tionationbetweensolutesismaximizedinthispressureregionbydifferencesinthephysicalpropertiesofthedissolvedsolutesandbykeepingtheirconcentrationslowinthecompressedfluid.
Finally,aknowledgeofthesolute'sphysicalpropertiesiscriticaltooptimizinganSFE.
ThemeltingpointofthesoluteisaparticularlygermaneparameterinSFE,becausemostsolutesaredissolvedtoagreaterextentinthesupercriticalfluidmediumwhenintheirliquidstate.
IncreasingtheextractiontemperaturemayalsocauseenhancedsolutesolubilityintheSFbecauseofadecreaseinthesolute'scohesiveenergydensity,P,andthereforeitssolubilityparameter,6.
Hence,increasingtheex-Analyte+MatrixComponents/11ExtractionExtractionExtraction111AnalyteAnalyteAnalyteInterflrenceInterfirencelnterfirence1i(4SorbentSorbenti---JiAnalyteInterferenceAnalyte(4iInstrumentalAnalysis(b)Figure2.
GeneralizedSFmethodsforextractionandanalysisinvolvingseparationofinterferingcomponents.
JournalofChromatographicScience,Vol.
27,July1989tractiontemperaturewillnotnecessarilyresultinalowersolutesolubilityinthecriticalfluid.
TheuseofthesolubilityparametertheorycoupledwiththeFlory-Hugginsinteractionparameterconceptexplainsmanyofthephenomenaencounteredinsupercriticalfluidextraction(30-32).
Thisapproachwasfirstutilizedinpolymerchemistrytopredictphasemiscibilityrelationshipsbetweenpolymersdissolvedindensegases,suchasethylene(33,34).
Thedatare-quiredbytheabovetheoriesconsistsofcriticalpropertydataandsoluteorsolventsolubilityparameters.
Suchdataisusuallyavailableorcanbeestimatedfromcorrespondingstatestheory,groupcontributionmethods,ornomographs.
Withtheseparametersinhand,onecanusethefollowingequationtopredictthepressureatwhichmaximumsolutesolubilitywillbeattainedinthesupercriticalfluid:2=x,,+xs=v,(c%-6J2/RT+xsEq.
Iwherexisthetotalinteractionparameter;x,,andxsaretheenthalpicandentropicinteractionparameters,respectively;6,isthesolubilityparameterofthegasasf'(T,P);&isthesolubilityparameterofthesoluteasJ(7',P);7,isthemolarvolumeofthegasasf(T,P)=M,/Q,;M,isthemolecularweightofthegas;andQ,isthedensityofthegas.
Assumingxshasacon-stantvaluedefinedbythelatticecoordinationnumber,themax-imuminsolubilityshouldbeachievedwhen6,equals6,.
Plotsof2versuspressurearehyperbolic,theminimumoccuringatavalueequaltoxs.
Solubilityparametersforthecompressedgasarecalculatedby6,=1.
25PC'JUfY198927.
J.
P.
CalameandFt.
Steiner.
CO2extractionintheflavorandper-44.
AC.
Eldridge,J.
PFriedrich,K.
Warner,andW.
F.
Kwolek.
PrePara-fumeryindustries.
Chem.
/no.
No.
12:399-402(1982).
tionandevaluationofsupercriticalcarbondioxidedefattedsoy-28.
J.
W.
King.
Applicationsofthesolubilityparameterconcepttobeanflakes.
J.
food.
Sci.
51:584-87(1986j.
criticalfluidextraction.
Presentedatthe16thGreatLakesRegional45.
ChemistryLaboratoryGuidebook.
FoodSafety&InspectionSer-ACSMeeting,Normal,Illinois,June9,1982.
vice.
USDA,Washington,DC,1986,pp.
5.
1-5.
11.
29.
J.
W.
King.
Supercriticalfluidextractionofpolymersandsolvents:46.
J.
W.
King.
GeneralizedextractionconditionsforthecriticalfluidUtilizationofthesolubilityparameterconcept.
Polym.
Materialsprocessingofoilsandoleophiliccompounds.
J.
Am.
OilChem.
SC;.
Preprints51:707-12(1984).
SOC.
80:711(1983).
30.
J.
W.
KingandJ.
PFriedrich.
PredictionofthethresholdpressureinsupercriticalfluidextractionutilizingtheFlory-Hugginsinterac-tionparameter.
Presentedatthe20thAnnualGreatLakesRegionalACSMeeting,Milwaukee,Wisconsin,June2,1986.
31.
D.
C.
Bonner.
Solubilityofsupercriticalgasesinpolymers-Areview.
/%/ym.
Eng.
Sci17:65-72(1977).
32.
D.
H.
ZigerandC.
A.
Eckert.
Correlationandpredictionofsolidsupercriticalfluidphaseequilibria.
/no.
Eng.
ProcessDes.
Dev.
22:582-88(1983).
47.
E.
Stahl,E.
Schutz,andH.
K.
Mangold.
Extractionofseedoilswithliquidandsupercriticalcarbondioxide.
J.
Agric.
FoodChem.
28:1153-57(1980).
33.
E.
M.
CerniaandC.
Mancini.
Athermodynamicapproachtophaseequilibria.
Investigationofthepolyethylene-ethylenesystemathighpressures.
KobunshiKagaku22:797-803(1965).
34.
D.
P.
MaloneyandJ.
M.
Prausnitz.
Solubilityofethyleneinliquid,low-densitypolyethyleneatindustrial-separationpressures.
fnd.
Eng.
Chem.
ProcessDes.
Dev.
15:216-20(1976).
35.
A.
F.
M.
Barton.
CRCHandbookofSokubilityParametersandOtherCohesionalParameters.
CRCPress,BocaRaton,Florida,1983.
48.
E.
Stahl,W.
Schilz,E.
Shutz,andE.
Willing.
Aquackmethodforthemicroanalyticalevaluationofthedissolvingpowerofsuper-criticalgases.
Angew.
cbem.
/ntEd.
Engl.
17:731-38(1978).
49.
J.
H.
HildebrandandR.
L.
Scott.
TheSo/ubi/ityofNonelectrolytes,3rded.
DoverPublications,Inc.
,NewYork,1964,pp.
361-67.
50.
V.
J.
Krukonis,PhasexCorporation,personalcommunication,1988.
51.
K.
S.
Nam,S.
Kapila,G.
Pieczonka,T.
E.
Clevenger,A.
F.
Yanders,D.
S.
Viswanath,B.
Maliu.
ProceedingsofthelntemationalSym-posiumonSupercriticalFluids-Volume2.
InstituteNationalPolytechniquedeLorraine,France,1988,pp.
743-50.
52.
S.
KennedyandR.
J.
Wall.
Electron-capturedetectionofagro-chemicalsbysupercriticalfluidchromatography.
LC-GC6:930-31(1988).
36.
RFFedors.
Amethodforestimatingboththesolubilityparametersandmolarvolumesofliquids.
Polym.
Eng.
Sci.
14:147-54(1974).
37.
H.
AhmandandM.
Yaseen.
Estimationofthesolubilityparametersoflowmolecularweightcompoundsbyachemicalgroupcon-tributiontechnique.
J.
OilCo/ourChem.
Assoc.
60:99-103(1977).
53.
M.
R.
Andersen,N.
L.
Porter,E.
R.
Campbell,andB.
E.
Richter.
Theanalysisofenvironmentalresiduesusingsupercriticalfluidex-tractionasaninjectionmethodinsupercriticalfluidchroma-tography.
Presentedatthe30thRockyMountainConference,Denver,Colorado,August2,1988.
54.
E.
KlesperandW.
Hartmann.
Parametersinsupercriticalfluidchromatographyofstyreneoligomers.
J.
Polym.
Sci.
,folym.
Left.
Ed.
15:707-12(1977).
38.
A.
JayasnandM.
Yaseen.
Nomogramsforsolubilityparameter.
J.
CoatingsTechnol.
52:41-45(1980).
39.
G.
DiPaola-BaranyiandJ.
Guillet.
Estimationofpolymersolubilityparametersbygaschromatography.
Macromolecules11:228-35(1978).
40.
J.
W.
King,G.
R.
List,andJ.
PFriedrich.
Characterizationofsolute-solventinteractionsinsoybeanoilbyinversegaschromatography.
J.
Am.
OilChem.
Sot.
65:500(1988).
41.
P.
J.
Flory.
PrinciplesofPolymerChemistry,CornellUniversityPress,Ithaca,NewYork,1953,p.
544.
42.
JPFriedrich,G.
R.
List,andA.
J.
Heakin.
Petroleum-freeextractionofoilfromsoybeanswithsupercriticalCO*.
J.
Am.
OilChem.
Sot.
59:288-92(1982).
55.
W.
PJackson,B.
E.
Richter,J.
C.
Fjeldsted,R.
C.
Kong,andM.
L.
Lee.
Highresolutionsupercnticalfluidchromatography.
ACSSymp.
Sel:250:121-33(1984).
56.
J.
C.
FjeldstedandM.
L.
Lee.
Capillarysupercriticalfluidchro-matography.
Anal.
Chem.
619A-628A(1984).
57.
Siloxanes.
SuprexCorporationApplicationNote.
SuprexCorp.
,Pittsburgh,Pennsylvania.
58.
Surfacfants.
SuprexCorporationApplicationNote.
SuprexCorp.
,Pittsburgh,Pennsylvania.
59.
T.
L.
Chester.
Capillarysupercritical-fluidchromatographywithflameionizationdetection:Reductionofdetectionartifactsandextensionofdetectablemolecularweightrange.
J.
Chromatogr.
299:424-31(1984).
43.
J.
P.
FriedrichandE.
H.
Pryde.
SupercriticalCOextractionoflipid-bearingmaterialsandcharacterizationoftheproducts.
J.
Am.
OilCbem.
Sot.
61:223-28(1984).
ManuscriptreceivedMarch31,1989;revisionreceivedApril27,1989.
4364
阿里云国际版注册认证教程-免绑卡-免实名买服务器安全、便宜、可靠、良心,支持人民币充值,提供代理折扣简介SunthyCloud成立于2015年,是阿里云国际版正规战略级渠道商,也是阿里云国际版最大的分销商,专业为全球企业客户提供阿里云国际版开户注册、认证、充值等服务,通过SunthyCloud开通阿里云国际版只需要一个邮箱,不需要PayPal信用卡就可以帮你开通、充值、新购、续费阿里云国际版,服务...
HostYun 商家以前是玩具主机商,这两年好像发展还挺迅速的,有点在要做点事情的味道。在前面也有多次介绍到HostYun商家新增的多款机房方案,价格相对还是比较便宜的。到目前为止,我们可以看到商家提供的VPS主机包括KVM和XEN架构,数据中心可选日本、韩国、香港和美国的多个地区机房,电信双程CN2 GIA线路,香港和日本机房,均为国内直连线路。近期,HostYun上线低价版美国CN2 GIA ...
百星数据(baixidc),2012年开始运作至今,主要提供境外自营云服务器和独立服务器出租业务,根据网络线路的不同划分为:美国cera 9929、美国cn2 gia、香港cn2 gia、韩国cn2 gia、日本cn2 gia等云服务器及物理服务器业务。目前,百星数据 推出的日本、韩国、香港cn2 gia云服务器,2核2G/40G/5M带宽低至60元/月,600元/年。百星数据优惠码:优惠码:30...
jufy为你推荐
暴风影音怎么截图如何在暴风影音中截图?pw美团网电话是什么pw中小企业信息化信息化为中小企业发展带来了哪些机遇神雕侠侣礼包大全神雕侠侣手游版四重大礼包怎么得到啊?迅雷云点播账号求一个迅雷云点播vip的账号,只是看的,绝不动任何手脚。xp系统停止服务XP系统停止服务后怎么办?创维云电视功能创维电视怎么用,我买了个创维云电视,现在不知道怎么用手机往电视上传照片,谁能解答以下,2012年正月十五2012年正月十五 几月几号linux虚拟机怎么样在Linux下安装虚拟机二层交换机什么是二层交换机
备案域名购买 如何注册网站域名 希网动态域名 ipage themeforest 国内永久免费云服务器 老左博客 42u机柜尺寸 光棍节日志 绍兴高防 美国十次啦服务器 宏讯 xshell5注册码 alexa世界排名 美国十大啦 so域名 此网页包含的内容将不使用安全的https 阿里云宕机故障 超低价 卡巴斯基免费下载 更多