waterstablehost

stablehost  时间:2021-01-03  阅读:()
SHORTCOMMUNICATIONSThreonineinCollagenTriple-helicalStructureNatthaJIRAVANICHANUN,1;2KazunoriMIZUNO,3HansPeterBA¨CHINGER,3andKenjiOKUYAMA1;y1DepartmentofMacromolecularScience,GraduateSchoolofScience,OsakaUniversity,Toyonaka560-0043,Japan2DepartmentofBiotechnologyandLifeScience,GraduateSchoolofEngineering,TokyoUniversityofAgricultureandTechnology,Koganei184-8588,Japan3DepartmentofBiochemistryandMolecularBiology,OregonHealth&ScienceUniversity,andShrinersHospitalforChildren,ResearchDepartment,Portland,Oregon97239,USA(ReceivedOctober4,2005;AcceptedDecember5,2005;PublishedApril15,2006)KEYWORDSThreonine/Collagen/Triple-helicalStructure/Host-guestPeptide/Side-chainConformation/HydrationPattern/[DOI10.
1295/polymj.
38.
400]Collagenisthemostabundantproteinsfoundintheextracellularmatrixofmulticellularanimals,andhasauniquetriple-helicalstructure,whichiscomposedofthethreepolypeptides.
Thethreechainsformaright-handedsupercoiledtriple-helix.
Eachpolypep-tidechainrequiresGlyateverythirdresidue,whichgenerates-Xaa-Yaa-Gly-repeatingsequence.
Theglycineresiduesineverythirdpositionarepackedinthecenterofthetriple-helix.
TheresiduesintheXaaandtheYaapositionsareexposedtothemolecu-larsurface.
HighcontentsofiminoacidsintheXaaandtheYaapositionsarerequiredtothestabilityofthestructure.
Collagenfamilyincludesmorethanthirtyproteinsinvertebrates.
1,2Similarcollagensandmuchmorediversecollagenproteinsarealsopresent-edthroughoutinvertebratesincludingafewgiantmoleculesfoundinthecuticlesofseveralwormspe-cies.
3,4Forexample,theRiftiapachyptilacuticlecol-lagenhasalowHypcontentbuttheThrcontentismuchhigherthanthosefoundinothercollagens.
5Themechanismofthestabilityofthecollagenhelixisstillunknown.
TheThrofthecollagenishighlygly-cosylated.
4Severalmodelpeptidesweresynthesizedtoanalyzeitsthermalstabilityandproperty.
5–9TheO-galactosylationofThrincreasesthethermalstability(thehelix-coiltransitiontemperature)ofAc-(Gly-Pro/4(R)Hyp-Thr)10-NH2peptides.
6TheCDexperimentsofAc-(Gly-4(R)Hyp-Yaa)10-NH2peptideswithvari-ousaminoacidsintheYaaposition(Thr,Ser,Val,Ala,andalloThr)suggestedthatthemethylgroup,hydroxylgroupandstereocongurationofThrareim-portantforthestability.
9ThemethylgroupofThrwashypothesizedtoshieldtheinter-chainhydrogenbondbetweentheamideofGlyandcarbonylofXaaresi-duesfromwatermoleculesbyenergy-minimizationmethod.
9Althoughseveralstudieshavechallengedtorationalizetheexperimentaldata,themechanismofthestabilityincuticlecollagenisstillambiguous.
InordertounderstandthestabilizationmechanismofThrintheYaaposition,weattemptedtocrystallizethepeptidesAc-(Gly-4(R)Hyp-Thr)10-NH2andH-(Gly-4(R)Hyp-Thr)10-OH.
Despitetheirabilitytoformatriple-helicalstructure,6wecouldnotsucceedintheformationofthesinglecrystalsofthesepeptidesyet.
Thehost-guestpeptidesystemisanalternativewaytogetsinglecrystalsofthepeptidewithinterest-ingsequence.
Therefore,4(R)Hyp-Thr-Glytripeptideunitwasinsertedintothestablehostpeptide(Pro-Pro-Gly)9.
10Thehost-guestpeptideH-(Pro-Pro-Gly)4-(4(R)Hyp-Thr-Gly)-(Pro-Pro-Gly)4-OH(OTG)con-tains4(R)Hyp-Thr-GlytripeptideunitthatisabundantintheRiftiapachyptilacuticlecollagen.
ThesinglecrystalanalysisoftheOTGpeptideprovidedtherstinsightintotheunique4(R)Hyp-Thr-Glytripeptideunitconformation.
Here,theThrconformationandtheobservedhydrationpatternsaroundThrresidueintriple-helicalstructurewererevealed.
EXPERIMENTALCrystallizationwasperformedbyhanging-dropdif-fusionmethodat4C.
Samplesolutionwaspreparedatconcentrated10mgmL1.
Reservoirsolutioncon-tained0.
1MHepesbuerpH7.
5and23%(w/v)PEG1000.
Dropmixturemadeupofsamplesolution2mlandreservoirsolution2ml.
Rod-likecrystalsap-pearedinabout3weeks.
Asinglecrystalwasmeas-uredat100KonthebeamlineBL6AatthePhotonFactoryinTsukuba.
IntensitydatawasprocessedbyCrystalClear.
11CrystalbelongstomonoclinicspaceyTowhomcorrespondenceshouldbeaddressed(Tel:+81-66-850-5455,Fax:+81-66-850-5455,E-mail:okuyamak@chem.
sci.
osaka-u.
ac.
jp).
400PolymerJournal,Vol.
38,No.
4,pp.
400–403(2006)groupP21withunitcellparametersa26:0,b26:5,c80:2A,90:4.
ThestructureofOTGwasdeterminedbymolecularreplacementmethodusing(Pro-Pro-Gly)9peptide(PDBcode1ITT)12asasearchmodel.
PositionalrenementwasperformedbyX-PLOR13andstructurerenementwascarriedoutbySHELX-L.
14RESULTSANDDISCUSSIONThrresiduesareatthecentraltripeptideunitofthemolecule.
Todescribeside-chainconformationofThr,1dihedralangleisdenedbyN-C-C-O1orN-C-C-C2.
Thedierentconformationsoftheside-chainasafunctionof1valuesof60,180,and60arereferredtogauche,trans,andgauche,respectively.
Thus,Thrside-chaininOTGstructure,theO1takesgaucheconformation,whereastheC2takestransconformationtoamidegroup(Figure1).
BoththeO1andtheC2aredirectedtowardadja-centchains.
ThiskindofThrside-chainconformationisthesameastwooutofthreeThrinT3-785pep-tide.
15Theaveragemain-chaindihedralangles(=)ofThrinthisstudyare61and145,whicharecon-sistentwiththosevaluesintheYaapositionofcolla-gen-likepeptides.
10,16InT3-785structure,15water-mediatedhydrogenbondwasreportedbetweentheThrOHgroupandtheGlycarbonylinthesamechainviaonewatermolecule.
ForThr,notonlytheabovewater-mediatedpattern,butalsodiversewater-medi-atedpatternsareobservedintheOTGstructureinFigure2a.
Intherstcase,twowatermoleculesmakehydrogenbondswiththeOHgroupofThr114andthegauche+NOγ1transCγ2Figure1.
gauche/transconformationofThrintheOTGstructure.
Gly1AOGly2BOGly112OThr314O1γHyp3AOThr114NHyp4BOδδδThr114O1Hyp5COHyp4BOThr114OThr214O1γγHyp5COPro317OHyp6AO(a)(b)Figure2.
(a)CentralregionoftheOTGmoleculeshowsthreecasesofwater-mediatedhydrogenbondsatOHgroupofThr.
Case1:Thr114O1connectsthroughtwowatermoleculestoGly112Ointhesamechain.
Case2:Thr114O1connectsthroughtwowatermole-culestoThr114Nwithinthesameresidue.
Case3:Thr314O1connectsthroughtwowatermoleculestoThr114OofadjacentchainandThr214O1connectsthroughtwowatermoleculestoPro317Oofadjacentchain.
Intheresiduename,therstdigitcorrespondstoachainnumberandthenexttwodigitscorrespondtoaresiduenumber.
(b)HydrationpatternsinvolvingOHgroupof4(R)Hypandcarbonylgroupsin(Pro-4(R)Hyp-Gly)11structure.
16Threechainsinamoleculeareshownbydierentshedding;light-,middle-anddark-gray.
Spheresarewatermolecules.
Intra-chainandinter-chainwater-mediatednetworksareshowninbrokenandsolidlines,respectively.
ThreonineinCollagenTriple-helicalStructurePolym.
J.
,Vol.
38,No.
4,2006401carbonylgroupofGly112inthesamechain(brokenlines).
Inthesecondcase,twowatermoleculesinter-actbetweentheOHandtheamidegroupswithinthesameThr114residue(brokenlines).
Andthethirdcaseoccursattwopositions;oneistwowatermole-culesarelinkedbetweentheOHgroupofThr314andthecarbonylgroupofThr114ofneighboringchainandanotheristhesimilarpatternbetweentheOHgroupofThr214andthecarbonylgroupofPro317(solidlines).
Theaveragehydrogenbonddis-tanceinthesethreewater-mediatedpatternsis2.
95A.
Thehydrationpatterninthesecondcasecouldnotbefoundat4(R)Hypduetothelackofhydrogenattheamidegroup.
However,hydrationpatternsintherstandthethirdcases,whichareinter-andintra-chainhydrogenbondnetworks,aregenerallyobservedat4(R)HypintheYaapositioninthepeptidesincludingPro-4(R)Hyp-Glytripeptideunit.
16,17Theseinter-andintra-chainhydrationnetworksoccurrepeatedlyalongthetriple-helicalmolecule,forexample,in(Pro-4(R)Hyp-Gly)11structure16asshowninFigure2b.
Theyarethedominantfeatureintherepetitivepat-ternsof4(R)HypinpeptideshavingPro-4(R)Hyp-Glyrepeatingsequence.
16,17Thus,thisresultindicatesthattheOHgroupofThrintheYaapositionpartici-patesinwater-mediatedinter-andintra-chainhydro-genbondsinthesimilarwaytotheOHgroupof4(R)Hyp.
Moreover,thepositionoftheOHgroupofThrislocatedclosetothatof4(R)HypwhenThrintheOTGstructureissuperimposedoverthe4(R)Hypinthe(Pro-4(R)Hyp-Gly)11structure(Figure3).
Thedistancebetweenbothhydroxyloxygenatomsisabout1A.
ThecloselocationoftheOHgroupsofThrto4(R)Hypcouldcontributetothesimilarforma-tionofwater-mediatedhydrogenbonds.
Therefore,theOTGstructuredemonstratesthatThrcouldactlike4(R)HypatOHgroupside-chaintomakesimilarwater-mediatednetworks.
ThethermalstabilityofAc-(Gly-4(R)Hyp-Yaa)10-NH2peptidescontainingtheThrishigherthanthosecontainingtheSer,alloThr,AlaandVal,9whichsuggeststheimportanceoftheside-chainconformationinthetriple-helicalstructure.
SofaronlytheT3-78515peptidehasareportedstructureofThrinatriple-helicalstructure.
TheX-raydeterminationoftheOTGpeptideprovidesinsightintodetailedstructureoffrequentlyobservedresiduesinRiftiapachytilacuticlecollagen.
Althoughthestabi-lizationmechanismoftheOTGpeptideisnotclearlyunderstood,thenestructureoftheOTGpeptidepro-videsvaluableinformationofThrconformationin-cludingdiversityofwater-mediatedhydrogenbondsaroundThrinthetriple-helicalstructure.
Interestingly,theobservedhydrationpatternsofThraresimilartothoseof4(R)Hypandmoreover,OHgroupside-chaincharacteristicofThrand4(R)Hypissimilaraswell.
REFERENCES1.
J.
MyllyharjuandK.
I.
Kivirikko,TrendsGenet.
,20,33(2004).
2.
C.
M.
KieltyandM.
E.
Grant,'Connectivetissueanditsheritabledisorders.
MolecularGeneticsinMedicalAs-pects,'2nded.
,WileyLiss,NewYork,2002,pp159–221.
3.
R.
Har-ElandM.
L.
Tanzer,FASEBJ.
,7,1115(1993).
4.
F.
Gaill,K.
Mann,H.
Wiedemann,J.
Engel,andR.
Timpl,J.
Mol.
Biol.
,246,284(1995).
5.
K.
Mann,D.
E.
Mechling,H.
P.
Ba¨chinger,C.
Eckerskorn,F.
Gaill,andR.
Timpl,J.
Mol.
Biol.
,261,255(1996).
6.
J.
G.
BannandH.
P.
Ba¨chinger,J.
Biol.
Chem.
,275,24466(2000).
7.
J.
G.
Bann,D.
H.
Peyton,andH.
P.
Ba¨chinger,FEBSLett.
,473,237(2000).
8.
J.
G.
Bann,H.
P.
Ba¨chinger,andD.
H.
Peyton,Biochemis-try,42,4042(2003).
9.
K.
Mizuno,T.
Hayashi,andH.
P.
Ba¨chinger,J.
Biol.
Chem.
,278,32373(2003).
10.
C.
Hongo,K.
Noguchi,K.
Okuyama,Y.
Tanaka,andN.
Nishino,J.
Biochem.
,138,135(2005).
11.
CrystalClear(Rigaku)MolecularStructureCorporation,TheWoodlands,Texas,USA,1999.
12.
C.
Hongo,V.
Nagarajan,K.
Noguchi,S.
Kamitori,K.
Okuyama,Y.
Tanaka,andN.
Nishino,Polym.
J.
,33,812(2001).
13.
A.
T.
Brunger,'X-PLORVersion3.
1SystemforX-rayCrystallographyandNMR,'YaleUniversityPress,NewHaven:CT,1992.
1Figure3.
SuperimpositionofThrintheOTGpeptide(dark-gray)onthe(Pro-4(R)Hyp-Gly)11triple-helix(light-gray).
16ThedistancebetweenOHgroupsofThrand4(R)HypintheYpositionoftwopeptidesisabout1Aandbothpeptidesshowthesimilarhydrationpattern.
Gly-4(R)Hyp-ThrintheOTGandGly-Pro-4(R)Hypinthe(Pro-4(R)Hyp-Gly)11areshowninballandstickdiagram.
N.
JIRAVANICHANUNetal.
402Polym.
J.
,Vol.
38,No.
4,200614.
G.
M.
SheldricandT.
R.
Schneidern,MethodsEnzymol.
,277,319(1997).
15.
R.
Z.
Kramer,J.
Bella,P.
Mayville,B.
Brodsky,andH.
M.
Berman,Nat.
Struct.
Biol.
,6,454(1999).
16.
K.
Okuyama,C.
Hongo,R.
Fukushima,G.
Wu,H.
Narita,K.
Noguchi,Y.
Tanaka,andN.
Nishino,Biopolymers,76,367(2004).
17.
J.
Bella,B.
Brodsky,andH.
M.
Berman,Structure,3,893(1995).
4(R)Hyp:4(R)-hydroxyprolineO:4(R)-hydroxyprolineGal:galactoseT3-785peptide:(Pro-Hyp-Gly)3-Ile-Thr-Gly-Ala-Arg-Gly-Leu-Ala-Gly-Pro-Hyp-Gly-(Pro-Hyp-Gly)3ThreonineinCollagenTriple-helicalStructurePolym.
J.
,Vol.
38,No.
4,2006403

7月RAKsmart独立服务器和站群服务器多款促销 G口不限量更低

如果我们熟悉RAKsmart商家促销活动的应该是清楚的,每个月的活动看似基本上一致。但是有一些新品或者每个月还是有一些各自的特点的。比如七月份爆款I3-2120仅30美金、V4新品上市,活动期间5折、洛杉矶+硅谷+香港+日本站群恢复销售、G口不限流量服务器比六月份折扣力度更低。RAKsmart 商家这个月依旧还是以独立服务器和站群服务器为主。当然也包括有部分的低至1.99美元的VPS主机。第一、I...

CloudCone(1.99美元),可以额外选择Voxility高防IP

CloudCone 商家也是比较有特点的,和我们熟悉的DO、Vultr、Linode商家均是可以随时删除机器开通的小时计费模式。这个对于有需要短租服务器的来说是比较有性价比的。但是,他们还有一个缺点就是机房比较少,不同于上面几个小时计费服务商可以有多机房可选,如果有这个多机房方案的话,应该更有特点。这次我们可以看到CloudCone闪购活动提供洛杉矶三个促销方案,低至月付1.99美元。商家也可以随...

搬瓦工VPS:高端线路,助力企业运营,10Gbps美国 cn2 gia,1Gbps香港cn2 gia,10Gbps日本软银

搬瓦工vps(bandwagonhost)现在面向中国大陆有3条顶级线路:美国 cn2 gia,香港 cn2 gia,日本软银(softbank)。详细带宽是:美国cn2 gia、日本软银,都是2.5Gbps~10Gbps带宽,香港 cn2 gia为1Gbps带宽,搬瓦工是目前为止,全球所有提供这三种带宽的VPS(云服务器)商家里面带宽最大的,成本最高的,没有第二家了! 官方网站:https...

stablehost为你推荐
海外主机租用请问如何租一个国外的服务器?大概需要多少钱?美国vps服务器美国VPS和美国服务器速度快吗国外域名注册国外注册域名种类这么多,我们要怎么选择?虚拟主机推荐便宜的虚拟主机,推荐几个vps试用求个免费现成的vps(可永久可试用)代理主机什么叫做代理服务器?有什么用途?查询ip怎么查询IP地址个人虚拟主机个人建网站用哪一种虚拟主机???重庆虚拟空间现在重庆那家主机空间最好?手机网站空间QQ空间技巧的手机网站啊?
免费域名空间申请 vps推荐 域名备案网站 smartvps omnis gateone 免费全能空间 骨干网络 cpanel空间 idc资讯 lol台服官网 中国电信宽带测速网 网页提速 www789 贵阳电信测速 php服务器 挂马检测工具 byebyelove 大硬盘分区 电脑主机噪音大 更多