poratedasgardia官网

Asgardia官网  时间:2021-03-03  阅读:()
JournalofRadioanalyticalandNuclearChemistry(2018)318:1713–1725https://doi.
org/10.
1007/s10967-018-6316-0NitridefuelforGenIVnuclearpowersystemsChristianEkberg1·DiogoRibeiroCosta2,3·MarcusHedberg1·MikaelJolkkonen2Received:20October2018/Publishedonline:10November2018TheAuthor(s)2018AbstractNuclearenergyhasbeenapartoftheenergymixinmanycountriesfordecades.
Todayinprincipleallpowerproducingreactorsusethesametechniqe.
EitherPWRorBWRfuelledwithoxidefuels.
Thischoiceoffuelisnotselfevidentandtodaytherearesuggestionstochangetofuelswhichmaybesaferandmoreeconomicalandalsousedine.
g.
GenIVnuclearpowersystems.
Onesuchfueltypeisthenitrides.
Thenitrideshaveabetterthermalconductivitythantheoxidesandasimilarmeltingpointandarethushavelargersafetymarginstomeltingduringoperation.
Inadditiontheyarebetween30and40%moredensewithrespecttofissilematerial.
Drawbacksincludeinstabilitywithrespecttowaterandasometimescomplicatedfabricationroute.
TheformerisnotreallyanissuewithGenIVsystemsbutforuseinthepresentfleet.
Inthispaperwediscussbothproductionandrecyclingpotentialofnitridefuels.
KeywordsNuclearfuel·Nitridenuclearfuels·GenIV·Productionofnitrides·Nuclearfuelrecycling·DissolutionofnitridesIntroductionNuclearpoweristodayadisputedtechniquealthoughitisinprincipleCO2freeandhighlyenergetic.
However,thecur-rentnuclearsystemsareratherinefficient,onlyabout1%oftheinherentenergyisused,andthewasteneedtobestoredforabout100,000yearsbeforeitsradiotoxicityissimilartotheoriginallymineduranium.
InsomecountriessuchasFrancethereisareprocessingsystemusedwheretheplu-toniumisusedintherefabricatingofmixedoxidefuelthatisoncemoreusedinapowerproducingreactor.
Thisis,however,onlydoneonceincreasingtheenergyutilisationtoabout1.
2%butsavingabout17%offreshlyminedura-nium[1]Inthelast2decadesacompletecircularuseofthefuelmaterial,thesocalledGenIVnuclearpowersystemshaveemergedasapotentialsolutiontotheaforementionedissues.
ThefollowinggoalsforGenIVweredefinedprevi-ouslyintheGenerationIVInternationalForum(GIF)[2,3]:sustainability,safetyandreliability,economiccompetitive-ness,andproliferationresistanceandphysicalprotection.
Suchasystemcomprisefastreactors,separationfacilitiesforrecoveryofthestillusefulactinidesandafuelfabricationplanttocompletetherecycling.
Naturally,severalquestionsarisewhendiscussinganewpowerproductionsystemssuchaswhichcombinationofcoolant,claddingandfueltouseinthereactoraswellasaselectionofseparationsystemandfueltypeandfabricationroute.
Overtheyearstherehasbeendifferentinvestigationstofindtheoptimalnuclearfuel.
Initially,inthe1940s,uraniummetalwaschosenasapotentialcandidatemainlybecauseitshighthermalconductivityandfissiledensity.
However,itslowmeltingpoint,associatedwithitsphasetransforma-tionduringheating,chemicalinstability,andhighfissiongasswelling,becameadrawbacktoitsindustrialapplication.
Toworkaroundtheseproblems,themostpromisingalter-nativewastheceramicoxidefuel,specificallytheuraniumdioxide(UO2),whichhashighmeltingpoint,goodchemi-calstabilityandcompatibilitywiththefissionproducts,andreasonablethermalstabilityduringburn-up.
Themaindownside,otherwise,wasitsverylowthermalconductivity.
Paralleltouraniumdioxidedevelopment,manyresearchprojectshavebeencarriedoutinordertoconsiderotherfueloptions,suchasnitrides,carbidesandsilicides[4].
Among*ChristianEkbergche@chalmers.
se1NuclearChemistry/IndustrialMaterialsRecycling,Chalmers,Gteborg,Sweden2DivisionofNuclearEngineering,KungligaTekniskaHgskolan,Stockholm,Sweden3WestinghouseElectricSwedenAB,Vsters,Sweden1714JournalofRadioanalyticalandNuclearChemistry(2018)318:1713–1725them,nitrideshasshownmanysuperiorqualitiesoverthestandardoxidefuelsuchas:Higherfissiledensity(40%moreuraniuminUNthaninUO2)[4]:leadingtohigherconversionratios,andpoten-tiallyhigherburn-ups.
Higherthermalconductivityreductionofthefuelcentre-linetemperature,decreaseintheenergystoredperunitmasswhileincreasingthemarginforfuelmelting[5,6],anddelaythemigrationoffissionproductsandactinides,whichpositivelyaffectsthefuelswelling[7].
Reprocessinggooddissolutioninnitricacid(HNO3),makingthisfuelcompatiblewiththePUREXprocess,whichusesHNO3fordissolutionofspentfuel[8].
Stabilitygoodchemicalcompatibilitywithmostpotentialcladdingmaterials,aswellasirradiationstability[4].
LongerfuelcycletimeowingtoneutronicbehaviourofUNinthecore[9],thefuelcyclecouldincreasefromthecommonlyapplied18months(standardUO2)toabout25months,basedonaburnupof50GWd/tU.
Thisincreaseleadstofewershutdownsforreloading,thusbeinganeconomicalbenefitfornitridefuelimplementa-tion[4].
Ontheotherhand,therearesomedrawbacksregardingthenitridefuels:Theproductionofminoractinide(orevenplutonium)containingnitridefuelisnotstraightforwardandrequiresomedifficultproductionsteps.
Oxidationresistance:thenitridepelletsreadilyoxi-dizesinsuperheatedsteam,withcompletedegradationobtainedwithin1hin0.
50barsteamat500°CforUN[10].
Theas-manufacturednitridepowderispyrophoric,whichmeansthatitreactsimmediatelywithoxygenfromair,forinstance.
Thus,theatmosphereduringhandlingtheUNpowdermustbeoxygen-free,whichrequiresadditionalimplementationforindustrialscaleproduc-tion[11].
Fuelcost:mainlyduetothefactthatthenitrogencom-ponenthastobehighlyenrichedin15Ntoincreasetheneutroneconomyandavoidthe(n,p)formationof14Cfrom14N[12].
Thisreactionalsoenhancestheamountofradioactivematerialinthespentfuel,whichisunde-sirable.
However,theadditionalcostsrelatedtonitro-genenrichmentareoffsetbyloweruraniumenrichmentrequirements,aswellasthereducednumberoffuelassembliesineachfuelreload,resultinginanestimatedUS$5millionperyearsavings[4].
Sincetheearlieststudies,backinthe1900s,manymethodsofobtainingthenitrideshavebeendeveloped,suchas:directnitriding,hydriding–dehydriding–nitriding,carbothermicnitriding,oxidativeammonolysis,andothers[13,14].
Anoverviewofuraniumnitridepaperspublishedthroughtheyears,from1948to2018isshowninFig.
1[15].
Therearetworegionsinwhichthenumberofpapersincreasedconsiderably.
Thefirst,between1964and1970,mightberelatedtothemostcomprehensiveuraniumnitridecharacterizationaswellasthenewpreparationroutesfromuraniumtetrachlorideandtetrafluoride,partofthe(herementioned)"goldenage"regardinguraniumnitrideresearchanddevelopment[16–18].
Thesecond,mostclearlydefinedafter2011,isresponsibleforaround42%ofthepublishedpapers,asseenabove.
Thiscorrespondstosomethingabout9papersperyear,againstapproximately1paperperyearfrom1946to2010.
ThatbehaviourismainlyimpactedbytheresponsefromthescientificcommunityaftertheFuku-shimaDaiichiaccidenton11March2011,causedbytheearthquakeandthefollowingtsunami.
Thisscenarioexceedstheseverityofthedesignbasisaccidents(DBA)[19].
After-wards,theinternationalgoalwaschangedfromjustimprov-ingtheexistingUO2-zirconiumfuelsystem,toathoughtfulandrigorousattempttoreplacethecurrentsystemsoastomakeitmuchmorerobustandsafetyunderDBA.
Asoftoday,nitridefuelshasbeensuccessfullytestedinthesodiumcooledBR-10reactorinRussia[20]aswellasintheFFTFandEBR-IItestreactors[1].
ThustherearegoodgroundsforconsideringnitridesasastrongcandidateforGenIVreactorsduetotheirmanyadvantagespreviouslydescribedanditsresultsunderoperation.
Inthispaperwewilldiscussdifferentproductionroutesaswellasfuelrecy-clingoptionsfornitridefuels.
ProductionTherearemanydifferentmethodsofproducingnitrideswithdifferentprosandconsaswillbeoutlinedbelow.
Itis,how-ever,clearthattheuseofdifferentfissilenitrideswillaffecttheproductionrouteconsiderably.
Ifminoractinidesaretobeincludedtheirhighspecificradioactivitywillmoreorlessrequireadirectcouplingtotheseparationsolutiontoavoidunnecessaryhandlingoffine,radioactivepowder.
However,ifnitridesaretobebasedonmainlyuraniumandplutoniumthechallengeswithrespecttomanufacturearesimilarasfornormalmixedoxidefuelashasbeenshowninRussiawhereindustrialnitridefuelmanufacturingisongoing[21].
ProductionofnitridesfrommetalThemainadvantageofusingmetallicuraniumasstartingmaterialisthatneitheroxygennorcarbonneedtobeintro-ducedatanystageoftheprocess,hencevirtuallyeliminat-ingtheissuesoftheseelementsappearingasimpuritiesintheproduct,asisfrequentlythecasewiththecarbothermic1715JournalofRadioanalyticalandNuclearChemistry(2018)318:1713–1725nitridingmethod.
Thedifferentvariantsofthemetalroutearealsocarriedoutatlowertemperatures,whichreducesvolatilisationinthemanufactureofminoractinide-con-tainingfuels.
Additionally,andunlikeinthecarbothermicnitridingmethodwherenitrogenisusedinadoublecapac-ityasreactantandascarriergastoremoveformedcarbonmonoxide,quantitativeincorporationof15Ncanbeachieved,whichwasfirstdemonstratedwithnaturalN2[22]andlaterrepeatedwithactual15N2[23].
Nitrideproductionfrommetalhasbeendemonstratedtobefeasibleinlargescale[24,25].
Themaindrawbackisthathigh-purityuraniummetalisrequiredasfeedstock.
Metallicfuelshavebecomeuncommoninmostcontexts,thereisalmostnocivilianpro-ductionofenrichedmetallicuranium,andnewindustrialinfrastructurewouldberequiredforlarge-scalenitridefuelproductionbythisroute.
Itshouldalsobenotedthatallthepowdersinvolved,includingthenitrideitself,aremoreorlesspyrophoricandcannotbehandledintheopen.
Denselysinterednitridepellets,ontheotherhand,arestableinairorwateratambienttemperatures.
Whilethereareafewtechnicallydifferentapproaches,theyaretypicallybasedonthesequentialorcombinedreactionofuraniummetalwithhydrogenandnitrogen.
Theimmediateproductis,inthecaseofuranium,amoreorlesshyperstoichiometricsesquinitridewhichnecessitatesaconcludingstoichiometryadjustmentstepconsistingofdenitridinginvacuumorunderinertgasat1100–1300°C.
Denitridingisnotneededinthecaseofplutonium,whichdoesnotformastablesesquinitride,butgivesplutoniummononitridePuNastheimmediateproductfromnitriding.
Inprinciple,ifnotinpractice,thereactioncouldbecar-riedoutjustbyexposingbulkuraniummetaltonitrogengasaccordingtothereactions:Inactualproduction,severalmethodsareemployedtoincreasethereactionrateandyield,asoutlinedbelow.
NitridingofmetalwithnitrogengasSoliduraniummetalreactssluggishlyandoftenincom-pletelywithelementalnitrogen.
Evenifthemetalsurfaceisthoroughlycleanedfromoxidelayersbeforethesynthesis,initialsurfacenitridingofthemetalproducesabarrierwhichinterfereswithcontinuedreaction[26].
Onewayofaddress-ingthisproblemistoreducethemetaltoaveryfineUH3powderbyreactionwithhydrogengas[27]at200–250°C,andthenreducingitbacktometalatatemperatureexceeding(1)2U+3+x2N2→U2N3+x(2)U2N3+x→2UN+1+x2N2Fig.
1Numberofuraniumnitridepaperspublishedthoughtheyears.
ThesearchwasdoneusingScopuswebsite,with"uraniumnitride"aspartofthepapertitle;othersnitrides-typewerenotcounted[15]1716JournalofRadioanalyticalandNuclearChemistry(2018)318:1713–1725thedissociationtemperatureofthehydridebutnotcausingmeltingorsinteringofthemetalpowder[28].
Sincethedissociationtemperatureisafunctionoftheambientpartialpressureofhydrogen,vacuumorflowingargonisemployedtokeepthispressurelow.
Theobtainedmetalpowder,havingaverylargespecificsurface,willreadilycombinewithN2.
Thereactionsequencethusbecomesfollowedbyreactions(1)and(2).
Onedrawback,apartfromtheintroductionoftwoaddi-tionalsteps,isthattheuraniumpowderisinanexception-allyreactivestate,willbeveryeasilyoxidisedandhasatendencytoself-ignitioninair.
Hencethenitridingstepshouldbeperformedinimmediatesequenceandwithoutanytransferofthepowder.
Itisalsonoted[28]thattheheatreleasedintheexothermicnitridingreactioncancausecak-ingormeltingofthemetalpowder.
Afluidised-bedsetupissuitableinthisaswellasinseveralofthefollowingvariantsofsynthesis,asitbothpromotesfastanduniformreactionduetoenhancedgas–solidinteractionandreducestheriskforcaking.
Analternativemethodistomelturaniummetalundernitrogenatmosphere,optionallyatapressureofseveralatmospheres.
Whilesmallamountsofuraniumnitridehavebeenproducedbyarcmelting[29],thatmethodisnotlikelytobeconvenientlyappliedinindustrialscale.
Inthecaseofconventionalmelting,suchasinacrucible,surfacenitridingstillstronglyinterfereswiththereactionbetweentheliquiduraniumandnitrogengas[30].
NitridingofhydridewithnitrogengasInsteadofreducinguraniumhydridetoformareactivemetalpowder,thehydridecanbereacteddirectlywithN2.
Inaddi-tiontoeliminatingoneprocessstep,theendothermiccharac-terofthehydridedecompositionreducestheoverallreactionenthalpyandhencetheriskforemergenceofliquiduranium.
Inthismethod,hydridingisperformedasaboveandtheformedhydrideisthennitridedwithN2at300–500°C[31].
Theprocesswillthenstartwithreaction(3),followedbyanddenitridingaccordingto(2).
Afterthestoichiometryadjustmentstep,theobtainedpowderisdirectlysuitableforpressingandsintering.
ThecharacteristicUNpowdermorphology,producedbyhydriding–nitridingroutewithaverageparticlessizeabout5m,isshowedinFig.
2[32].
(3)2U+3H2→2UH3(4)2UH3→2U+3H2(5)2UH3+3+x2N2→U2N3+x+3H2Theas-synthesisedUNpowder,whensinteringbysparkplasmasintering(SPS)at1650°Cand3min,formsaveryhighdensity(~99.
8%TD)fuelwithverylowporosity,aspresentedinFig.
3[31].
NitridingofmetalwithammoniaAnattractivefeatureofammoniaasnitridingagentisthatthereactioncanbecarriedoutinasinglestep(exceptforthefinalstoichiometryadjustment).
Thereactiontemperature,200–300°C,isevenlowerthanforthenitridingofhydride,whichwouldfurtherloweranyevaporationintheproduc-tionofminoractinide-richfuelsfortransmutationpurposes.
Fig.
2UNpowdermorphologyimageobtainedbyscanningelectronmicroscopy[32]Fig.
3ScanningelectronmicrographyofUNpelletsinteredbySPSat1650°Cand3min[31]1717JournalofRadioanalyticalandNuclearChemistry(2018)318:1713–1725Thenitridingwithammoniainvolvestwoalternativepaths[33].
ThenitrogeninammoniahashigherchemicalpotentialthanthatinN2,andhencedirectnitridingofmetalproceedsmorereadilyandatlowertemperature[34].
Inaparallelreaction,uraniummetalishydrided,whichmaycon-tributetospallingandhenceexposureoffreshmetalsur-face,unlikeinnitridingofmetalwithN2.
Intheserespects,themethodcanbeseenasacombinationofreactions(1),(3)and(5)inparallel.
However,theenhancedpotentialfordirectnitridingofmetalisrelatedtothetendencyofammo-niatopartiallydecomposeintoN2andH2atthereactiontemperature,andwhilethisreactionwillintheabsenceofcatalysingsurfacesberatherslow,nitridingworksbestiffreshammoniaiscontinuouslysupplied[33],andtheN2formedbyNH3decompositionwillnotbeefficientlyincor-poratedinthenitrideatthelowtemperatureused.
Hence,ifisotopicallyenriched15Nisused,theunconsumedfractionofNH3andN2willeitherrepresentacostlylossorhavetoberecycled.
TosummarisethedifferenturaniumnitrideroutesfromUmetal,thefollowingpicturewasmadetoillustratealltheabovementionedprocessestogether(Fig.
4).
ProductionofnitridesfromfluoridesEventhoughsynthesisbynitridingofuraniummetalisinseveralwaysbothattractiveandconvenient,theround-aboutpathoverthemetallicformisanundesirablecomplicationfromthepointofindustrialproduction.
Anobviousoptionwouldbetouseuraniumhexafluoride,UF6,oruraniumtetrafluoride,UF4,whichareindustry-standardintermedi-ariesintheisotopicenrichmentprocessandintheproduc-tionofuraniumdioxide,therebycuttingoutanypreliminaryconversionstepswhichnotonlyincreasecostandcomplex-ity,butalsotendtointroduceimpurities.
Intheammonoly-sisofuraniumfluorides[35,36],justasinthesynthesisfrommetal,nocarbonoroxygencompoundsfeatureinthereaction,whichallowsaveryhighdegreeofpurityoftheproduct.
WhetherthestartingmaterialbeUF6orUF4isnotcriticalfortheprocess,sincethefirststepofreactionofammoniawithUF6isreductionoftheuraniumtotetravalentshape,forminganadductofUF4andammoniumhydrogenfluorideNH4F[37]:Thereactionisspontaneousat100–200°C,andtheprod-uctcanifsodesiredbedecomposedtopureUF4andNH4Fbyfurtherheatingto500°C[37],althoughthisisunneces-saryforthecontinuednitridesynthesis.
Fromthatpointon,thereactionsofUF6orUF4areessen-tiallyidentical.
Hencethechoicebetweenthefluorideswillmostlydependonpracticaldecisionsconcerningthepro-cessandequipment.
Theexclusiveuseofgaseousreactants(UF6andNH3)toformasolidproductcanbeanattractivefeaturewhendevelopingacontinuousindustrialprocess;ontheotherhand,UF4hastheadvantageofbeingmoreeasilyhandled.
Also,sincepartofany15NH3usedwillformNH4F,andthisamountissmallerwithalessfluorinatedrawmate-rial,theuseofUF4reducestheneedofammoniarecycling.
Theintermediatespeciesformedinthenitridingreactiondependonthetemperatureandthecompositionofthegasphase,andinvolvetetravalentammoniumuraniumfluoridecomplexesofthetype(NH4)x4UFxnNH3,whichformulacanberewrittenas(UF4)(NH4F)xnNH3.
Onesuggestedreactionformula[35]correspondstowhereassociatedammoniamoleculesareomittedfromthenotation,andtheproduct"UN2"ismorecorrectlyanitro-gen-richformofuraniumsesquinitride,whichneedstobeconvertedtomononitrideinafinaldenitridingstepaccord-ingto(2).
ProductionofnitridesfromsolutionInsteadofworkingwithfinepowdersduringfuelproductionorsimplyconnecttheproductiondirectlytotheseparation/(6)3UF6+8NH3→3NH4UF5+3NH4F+N2(7)NH44UF8+6NH3→UN2+8NH4F+H2Fig.
4OverviewofUNproduc-tionfromUmetal:thesolidline(red)representsthedirectnitridingroute;thedashedline(green)characterisesthehydrid-ing-nitridingroute;andthedottedline(blue)illustratesthehydriding-dehydriding-nitridingroute.
(Colorfigureonline)1718JournalofRadioanalyticalandNuclearChemistry(2018)318:1713–1725recyclingprocessitispossibletosubstitutethepowderswithsmallactinidecontainingkernelscommonlyreferredtoasmicrospheres.
Theterm"micro"shouldhoweverbeinterpretedfairlyfreelysinceitispracticallypossibletoproducespheresofvarioussizesandfinalspherediameterstypicallyrangesfromaround50muptoabout1000m[38].
Forafullypowderfreeproductionroute,freeflowingmicrospherescanbepoureddirectlyintocladdingtubes.
Thisconceptisoftenreferredtoassphere-pacfuel[39].
Alternativelytheproducedspherescanbecompactedandsinteredintotraditionalfuelpellets.
Thisapproachmayatfirstglancelooklikeafullypowderfreeprocessaswellbutanyfinalphysicalhomogenizationofthesinteredpelletsbygrindingandpolishingwillintroduceastepwherealimitedfractionofpowderisgenerated.
Thereareseveraldifferentgelationtechniquesavailablefortheproductionofmicrospheres.
Commonforalltech-niquesisthatthestartingmaterialisanaqueousmetalsolu-tionthatissomehowdispersedasdropletsandsolidifiedintokernels.
Thesolidificationprocesscangenerallybedividedintotwosub-types.
Inthefirsttypeaprecipitationisinducedinthedropletsbyextractionofwaterand/oracidfromthedropletsintothedispersionmedia.
ThesecondtypeisbasedongelationbypHincreaseinthedropletscausingthemetalionstogel/precipitate.
Theresultspresentedherearebasedonthesecondtypeofgelationusingamethodcalledtheinternalgelationprocess.
TheinternalgelationprocessTheinternalgelationprocesswasoriginallynotdevelopedfortheproductionofnitridebasedmaterialsbutratherfortheproductionofuraniumoxidefuelkernels[40,41].
Throughcontinuesresearchanddevelopmentovertheyearstheprocesshasbeenadaptedtoproductionofoxides,nitridesandcarbidesandworkhasbeenperformedonbothsinglemetalcontainingmicrospheresaswellasmetalmixes.
MicrospherescontainingamongothersU,Zr,PuandmixedU–Pu,Zr–CeandZr–Puhavebeenproducedbyvariousinternalgelationprocesses[42–47].
TheinternalgelationprocessisbasedontemperatureinducedpHincreasecausingthemetalionsinthesoltogel/precipitate.
Generallythemethodstartswithametalnitratesolution.
Thesolutionisgenerallycooleddowntoinbetween0and4°C[38].
UreaandHexamethylenetetramine(HMTA)areaddedtothesol,eitherassolidstodissolveorasamixedsolution.
TheHMTAistheprincipalgelationagentinthesolwhileureaisaddedasacomplexationagentinordertopreventprematuregelationofthesol.
Iftheaimistoproducecarbideornitrideacarboncontainingsource,commonlyafinecarbonpowder,isalsodispersedinthesol.
Thesolisintroducedassmalldropletsintoanimmiscibleheatcarriercommonlyheatedtoinbetween50and100°C[42,48].
WhenthedropletsareheatedintheimmiscibleheatcarriertheHMTAdegrades,thiscausesanincreaseinpHinthedropletswhichresultsingelation/precipitationofthemetalionsinthedroplet.
Moreworkhasbeencarriedoutonproductionofuraniumbasedmicrospheresusingtheinternalgelationprocessascomparedtogelationoftrans-uraniumactinidesorgelationofinertmatrixmaterialssuchasZr.
Theprincipalreactionstepsofthegelationprocessarethereforepresentedusinggelationofuraniumasthemodelsystem.
Theprincipalstepspftheinternalgelationofuraniumbasedsolshavebeendeterminedto[49].
Decomplexationofurea:Hydrolysisoftheuranylions:ProtonationofHMTA:HMTAdecomposition:Thecontinuoushydrolysisoftheuranylionsthatleadtotheformationofasolidmaterialisthereforedrivenfor-wardbyremovalofH+fromthesystembyreactionwiththeHMTA.
Aftergelationofthesphereshasbeencompletedtheyarewashedinordertoremovesiliconeoilandexcessgela-tionchemicals.
Firstthesiliconeoiliswashedofusingforexamplepetroleumetherorcarbontetrachloride.
Afterthesiliconeoilhasbeenwashedofthespheresaregenerallywashed/agedinaqueousammonia.
Thereasonforwashing/ageinginaqueousammoniasolutionistwofold.
Theageingpartispurposedtosupplyanabundanceofhydroxylionsforthemicrospherestomakesurethatalltheuranylionshavebeenproperlygelled/precipitated.
Thewashingofthemicrospheresinaqueoussolutionisperformedinordertoremoveions,suchasNH4+andNO3forexample,aswellasresidualgelationchemicalsfromtheformedmicrospheres.
ResidualgelationchemicalsandNH4NO3inthedrysphereswillincreasethedegreeofmechanicaldamageinthespheresduringheattreatments,suchasthecarbothermicreduction,whentheresidualchemicalsaredecomposedtogasesandleavesthemicrospheres.
Themicrospheresproducedbytheinternalgelationtechniquearegenerallysmoothandoffairlygoodspherical(8)UO2CONH222+22CONH22+UO2+2(9)UO2+2+2H2OUO2(OH)2+2H+(10)CH26N4+H+CH26N4H+(11)CH26N4H++3H++4NO3+6H2O4NH+4+4NO3+6CH2O1719JournalofRadioanalyticalandNuclearChemistry(2018)318:1713–1725shape.
ExamplesofwashedanddriedmicrospherespriortoanyheattreatmentarepresentedinFig.
5[50].
Choosingasuitablecarbonsourceisdetrimentaltothesuccessinmakingthefinalnitridematerial.
Sincethecon-versionofmetaloxidemicrospherestometalnitrideinvolvesthesolidstatereactionbetweencarbonandmetaloxide,andnomillingofthemicrospherescanbeperformedifthegoalistohavealowdustprocess,itisimportantthatthecarboniswelldispersedinthemicrospheresalreadyatthegela-tionstagetoprovidebeneficialconditionsforthenitrideformation.
Theeffectofgelationperformedusingacarbonsourcewithlowdispersionandshortsettlingtimeduringthegela-tionprocessisshowedinFig.
6[50].
FromFigs.
5and6thecomparisonbecomesskewedsinceFig.
5istakenatmuchlowermagnificationbutalsowhencomparingtolargermagnificationimages(Fig.
7)itcanbeseenthatthemicrospheresproducedinthebatchrepresentedinFig.
5hasmuchmorehomogeneouscarbondistribution[50].
BothmicrospheresinFigs.
5and6havebeenpreparedusinggraphitepowderascarbonsourcebutthemaindiffer-enceisthattheparticlesizeofthecarbonusedinFig.
5isabitbelow0.
5mwhilethecarbonparticlesinFig.
6havealargesizefractionranginguptoabout10–20msize.
InadditiontothedifferenceincarbondistributionwithinthemicrospheresitisalsoobservableinFigs.
5and6thatthemicrospheresintheimagesareofverydifferentsize.
Whenproducingmaterialsusingtheinternalgela-tionprocessitispossibletocontrolthesizeofthemicro-spheresbycontrollingthegelationparametersusedduringproduction.
Thesizeofthedropletsthatareintroducedintotheheatcarryingsiliconeoilcanbecontrolledbythesizeofthenozzlethatthesolisdrippedthroughandbyphysicallybreakingupthesolintosmalldropletsatthenozzletipbyapplicationofoscillationofthenozzle.
Itisalsopossibletoaffectthesizeofthedriedmicrospheresbychangingthemetalconcentrationinthesol.
Asthemetalconcentrationinthesoldecreasesthemicrospherewillshrinkmoreduringdryingandthefinalsizeofthedriedmicrosphereswilldecrease.
Fig.
5SEMimageshowinganexampleofacarboncontainingura-niummicrosphereafterwashinganddrying.
Themicrosphereintheimagecontainacarbontometalmolarrationof2.
15[50]Fig.
6SEMimageillustratingawashedanddriedzirconiumbasedmicrosphereusingacoursegraphitepowderascarbonsource.
Themolarcarbontometalratiointhemicrosphereis2.
3[50]Fig.
7LargermagnificationimageofthesurfaceofthemicrosphereinFig.
5.
Ascanbeseenalsoatlargemagnificationthereisnoclearaggregationofcarbonparticlesobservableonthesurfaceofthemicrosphere[50]1720JournalofRadioanalyticalandNuclearChemistry(2018)318:1713–1725CarbothermicreductionCarbothermicreductionisanitrideproductiontechniquethatutilizesmetaloxidesasstartingmaterial.
Thenamederivesfromthatcarbonismixedintothemetaloxidematerialasareductionagentinordertofacilitatetheremovalofoxy-genfromthesystemduringthereaction.
Ifthedioxideofthemetaltobenitridedisusedasinputmaterialinthesynthesis,suchasUO2orPuO2forexample,aminimumcarbontometalmolarratioof2isrequiredtotheoreticallyeliminatealloxygenfromthesampleandproduceanitridematerialwithoutoxy-genimpurities.
However,inrealitythereactionsystemsexpe-rienceslimitationsduetotheinabilitytoproduceinfinitelyfinemixturesofcarbonandmetaloxide.
Inordertoproducenitridematerialslowinoxygenimpuritiesusingreasonablereactiontimes,carboniscommonlyaddedinexcesstothereactionsystemcomparedtothestoichiometricrequirements.
Thismeansthatinpractice,carbontometalratiosexceed-ingthetheoreticalmolarratio2areusedinordertosuppressresidualoxygenimpuritiesinthefinalnitridematerials.
Car-bothermicreductioncanbeutilizedfornitrideproductionfromalloftheactinideoxides,rangingfromuraniumtocurium,whicharetheelementsusuallyofinterestwhendiscussingproduction,implementationandrecyclingofnuclearfuelsinaGenerationIVfuelcycle.
Itishowevernotthecasethatasin-glespecificsetofreactionparametersistheperfectoptimumregardlessofwhichoneoftheactinideoxidesonewishestosynthesize.
Onthecontrary,thereactionconditionsandopti-malcarbontometalratioforcarbothermicreductionvariesdependingonifitisU,Np,Pu,AmorCmoxidethatisbeingconvertedintonitride[51–54].
Productionofactinidenitridesbycarbothermicreductionhasbeenperformedonalloftheabovementionedelements,eitherinpureformorinactinidemixes,acrosstheworld.
Themajorityofsynthesisexperiencehoweverderivefromproduc-tionofuraniumnitride,whichiswhyuraniumwillbeusedasmodelelementwhendescribingthedifferentreactionsinvolvedinthesynthesis.
Whenproducinguraniumnitridethefirststepistoremoveexcessoxygenpresentintheuraniumoxideeitherasuraniumtrioxide,UO3,orashyperstoichiometricuraniumdioxide,UO2+x.
Thiscanbeachievedbyreductionusinghydrogenininertcarriergasasreducingagent[55]Ifcarbonisalreadypresentinthesystem,asinthecaseofwhengelationderivedmicrospheresarebeingnitrideforexample,somecarboninthesystemcanbelostascarbonmonoxideduetooxidationbysteam[56]Analternativetousinghydrogenistousecarbonasreductionagent[47,57](12)UO2+x+xH2UO2.
0+xH2O(13)C+H2O(g)CO+H2Notethatreactions(12)and(13)aremodelreactionsillustratingonecasewhenH2isusedasreducingagentandonecasewhencarbonisusedasreducingagent.
Onecouldequallywellhavebalancedreaction(12)withUO3ontheleftreactionsideandreaction(14)withUO2+xontheleftreactionside.
Whentheactinideoxidehasbeenbroughttothedesiredoxidationstatethecarbothermicreductionreactioncanbecarriedout.
Thenitrogenrequiredforthenitrideformationduringthecarbothermicreductionreactionissuppliedviathereactionatmosphere.
DifferentreactionatmospheressuchaspureN2,mixedN2+H2orNH3canbeused[57–60].
WhenthecarbothermicreductionisperformedinN2asreactionatmosphereandthetemperatureiskeptbelow1723Kithasbeenreportedtoproceedby[57]:Above1723Kacarbonitrideisreportedtoforminsteadaccordingto[57]:Theconformationofcarbideinthesystemduringcarbo-thermicreductioncantheoreticallyberemovedbyprolongedheattreatmentbyEliminationofcarbidefromthenitridematerialisthusdependingontheabilitytoremoveelementalcarbonfromthereactionmixture.
Aslongasthereisafreecarbonphasetoequilibrateagainstinthesystemthefinalnitridematerialwillcontaincarbideimpurities.
IthasbeenestimatedthataslongasanequilibratingcarbonphaseexistsinthesystemtheUNmaterialproducedwillcontainabout15mol%car-bide[61].
OnepossibleremovalmechanismisthereactionbetweenexcesscarbonandunreactedUO2accordingtoreac-tion(15).
However,sincecarbontometalratioshigherthanthetheoretical2needstobeappliedinordertoefficientlyproducenitrideswithlowoxygenimpuritylevelstherewillobviouslynotbeenoughUO2presentinthesystemtoremoveallelementalcarbonasCO.
Thereforesomeaddi-tionalmechanismforcarbonremovalneedstobepresentinordertodrivereaction(17)forward.
OnepossibilitytoremovecarbonisbyadditionofH2tothereactionatmosphere.
ByintroducingH2intotheN2atmospheretheelementalcarboncanbeconvertedintohydrogencyanideaccordingtothereaction[62]:Limitationsduetochemicalequilibriuminreaction(18)canbeovercomebyusingflowingreactiongas,thuspurgingthesystemofformedHCNandallowingcarbontobeelim-inatedfromthesolidsample.
Thermodynamicmodelling(14)UO3+0.
5CUO2+0.
5CO2(15)UO2+2C+0.
5N2UN+2CO(16)UO2+(2+x)C+(1x)∕2N2UN1xCx+2CO(17)UN1xCx+(x∕2)N2UN+xC(18)H2+N2+2C2HCN1721JournalofRadioanalyticalandNuclearChemistry(2018)318:1713–1725madeonnon-uraniumcontainingnitridefuelhasalsoidenti-fiedHCNasthelikelyreactionproductduringdecarburiza-tionofthenitridematerialduringsynthesis[63].
Anadvantageofusingthecarbothermicreductionpro-cesscomparedtootherprocessesfornitrideproductionisthatithasbeenidentifiedasaprocessthatmaybemorewellsuitedforscalinguptolargescaleproductioncomparedtoothernitrideproductionprocesses[64].
Theresultingmicrospheres,aftercarbothermicreductionhasbeenperformed,canpossessawiderangeofmicrostruc-tures.
Dependingonhowmuchoftheresidualchemicalsthatwaswashedoutofthemicrospherespostgelationandwhatheatingrampsandreactiontemperaturesthatarebeingusedduringthecarbothermicreductionthefinalstructureofthemicrospherescanbestronglyaffected.
ExamplesofpossiblenitridemicrospherestructuresarepresentedinFigs.
8and9[50].
Ineverymicrospherebatchproducedtherewillofcoursebeinternalvariancewithsomemicrospheresshowinghigherorlowerdegreeofphysicaldamagebutonaveragethestruc-tureofthefinalmicrospherescanbecontrolledbycontrol-lingtheheattreatmentofthematerials.
Themaindiffer-encebetweenFigs.
8and9,apartfromthedifferentmetalinthemicrospheres,istheheatingrate.
TheZrNmicrosphereexampleinFig.
8washeatedat20°C/minuptoamaximumtemperatureof1700°C.
TheUNmicrosphereinFig.
9washeatedatarateof3°C/minto350°Cfollowedby10°C/minto800°Ctoremoveresidualchemicalsandmoisturebeforebeingcooleddown.
Theoxide+carbonspheresformedwassubsequentlyheated15°C/mintoamaximumtemperatureof1650°Cduringthecarbothermicreductionitself.
Thisisanillustrationofhowthemicrospheremicrostructurecanbecontrolledinordertopotentiallyproducematerialswithtailoredsuitabilityforuseeitherpelletpressingordirectlyassphere-pacfuel.
Reachinghighnitridepurityusingthecarbothermicreductionprocessisnotstraightforwardandisdependentonmetaloxidetobenitrided,theheattreatmentappliedduringcarbothermicreduction,onthecarbontometalratiousedandonthedegreeofhomogenousmixingofthecarbonwiththemetaloxide.
Measurementofimpuritiescanbeper-formedeitherbydirectmeasurementoftheoxygen,carbonandnitrogenlevelsinthefinalnitridebutalsobyindirectmeasurementssuchasX-raydiffraction(XRD).
X-raydif-fractionofthematerialscan,apartfromdetectingundesiredphasesinthematerialsuchasresidualoxides,alsoestimatesolidsolutionimpuritiesbycomparingthelatticeparameteroftheproducednitridetoreferenceliteraturedata.
Shiftsinlatticeparametercanbeusedtoestimateforexamplecarbideimpuritiesinnitridebymakinganinterpolationbetweenthelatticeparametersofmetalnitrideandcarbideaccord-ingtoVegardslaw.
ExamplesofnitridepuritiesthatcanbeachievedusingcarbothermicreductionarepresentedinTable1.
ThedatainTable1isaselectedcompilationofdatafrom[45],PuN-data,[65],twofirstZrN-datapointsand[66],mixedZrN-PuNdataandtheremainderbeinghith-ertounpublisheddata.
ThetablepresentspuritiesmeasuredeitherbydirectmeasurementofN,O,andCcontentandCcontentestimatedbyVegardslawfromXRDdata.
NoneofthehighactivitysamplesinTable1wasmeas-uredfordirectdeterminationofN,OorCcontent,therea-sonbeingradiationsafetybasedatthefacilitywheretheworkwasperformed.
HoweverinallthesamplesinTable1Fig.
8SEMimageofaZrNmicrosphereaftercarbothermicreduc-tion.
Thespherehasfracturedseverelyduringtheheattreatmentstepfollowedbypartialsinteringduringthelatestagesofthecarbother-micreduction.
ThisresultsinadamagedfinalmicrospherecontainingzonesofpartlysinteredZrN[50]Fig.
9ExampleofaSEMimageofaUNmicrosphereaftercarboth-ermicreduction.
Thesphereiscoveredinsmallporesbutessentiallythespherehassurvivedtheheattreatmentstepswithoutsufferinganyphysicaldamage[50]1722JournalofRadioanalyticalandNuclearChemistry(2018)318:1713–1725whereC-contentisestimatedonlyfromXRDdatanoresid-ualoxidephasecouldbedetectedandtheimpurityestimateisthereforemadeonsolidsolutioncarbonitridematerials.
Theimpuritiespresentedinthosematerialsarethuscarbonimpuritiesinotherwisefairlypurenitridematerials.
PelletfabricationfromnitridemicrospheresNitridesusedfornuclearfuelapplicationsaregenerallydiffi-cultmaterialstosintercomparedtowhenmakingoxidefuel.
Duetohighmeltingtemperaturesnitridefuelsneedtobesinteredathightemperatures[67].
Thetendencyofthefuelnitrides,suchasUNorPuNforexample,todissociateintometalannitrogenathightemperaturesandlowN2partialpressuresaddstothechallengeofsuccessfullysinterthesematerials[68].
Pressingpelletsfromnitridemicrospheresaddsanadditionalchallengetothetask.
Sincethenitridesarehardmaterialsmechanicalcompactionofthemicro-spheresintogoodqualitygreenpelletsbecomesincreasinglyharderastheporosityofthemicrospheresdecreases.
Thelevelofresidualporosityanddegreeoffracturinginthemicrospheresisinturndependentonthethermaltreatmentappliedwhenconvertingthegelledspheresintonitrides.
Inordertoproduceamicrospherebasedmaterialsuitableformechanicalcompactionitisthusimportanttofactorinthefinalmechanicalpropertiesofthesphereswhendesigningtheheattreatmentstepsandnotonlythedesigncriteriawithrespecttofinalnitridepurity.
AnexampleofthebehavioroffinalZrNpelletsinwhichoneofthepelletswasmadefrommicrospheresthatwerelargelydisintegratedduringcompactioncomparedtowhenthemicrospheresretainedtheirindividualshapeareshowninFig.
10.
Bothpelletsarepressedusingthesamecompac-tionpressureandsinteredat2000°CinflowingN2gas[50].
Analternativetoconventionalpressurelesssinteringofthenitridemicrosphereswouldbetoapplysomeversionoffieldassistedsinteringinstead.
Onepotentialtechniquecouldbesparkplasmasintering(SPS).
SPShasbeensuccessfullyTable1ExamplesofnitridepuritiesreachablebythecarbothermicreductiontechniquewhenproducingmetalnitridesofZr,UandPuThe(–)notationinthetableindicatesnotmeasuredDesiredmaterialNitrogencontent(wt%)Oxygencontent(wt%)Carboncontent(wt%)Carboncontent(wt%)accordingtoXRDUN5.
430.
290.
0110.
08UN5.
310.
100.
0050.
13UN5.
260.
080.
2120.
36UN4.
030.
242.
271.
84PuN–––0.
17PuN–––0.
14PuN–––0.
31PuN–––0.
06(Zr0.
6Pu0.
4)N–––0.
95ZrN––6.
115.
53ZrN––2.
062.
98ZrN10.
500.
362.
962.
12Fig.
10ComparisonbetweentwoZrNpelletssinteredat2000°C.
Thereisadistinctdifferenceobservablebyocularinspectionbetweenthepelletsbasedonifthemicrospherespressedweredestroyedorretainedtheirindividualshapeduringcompaction[50]1723JournalofRadioanalyticalandNuclearChemistry(2018)318:1713–1725appliedtosinterUNpowderstopelletsreachingdensitiesclosetothetheoreticaldensities[69].
ApplicationofSPStosinternitridemicrosphereshasbeenperformedtosinterZrN[68].
DensitiesoffinalZrNpelletscouldbeincreasedusingSPScomparedtopressurelesssintering.
InthatstudyZrNpelletamaximumdensityofabout87%oftheoreticaldensitywasachievedwhensinteringZrNmicrospheresat1700°Cfor30mininargonusingapressureof99MPadur-ingsintering.
NostudyofsinteringofUNmicrospheresbySPStechniqueexisttothisdatetotheauthors'knowledge.
DissolutionandseparationInordertoclosethenuclearfuelloopitisvitalthatafterusetheusedfuelcanbedissolvedandthentheusefulcompo-nentscanbeseparatedoutforre-manufacture.
Inthecaseofnitridefuelsthemainchallengeisthedissolutionstep.
Uraniumnitridecaninitselfbedissolvedinnitricacid(HNO3)muchinthesamewayasconventionalUO2fuels[70].
Thishasbeenfurtherdemonstratedwithpureaswellaswithcarbon-andoxygen-richUNpellets[71].
Hencerepro-cessingbythePUREXmethodappearstobefeasible.
Thepracticalexperiencewithirradiatednitridefuelsishoweverratherlimited.
Alargequantityofspent(~80GWd/ton)(U,Pu)Nfuelwassuccessfullyreprocessedbyasomewhatmodifiedaciddissolutionandliquidextractionprocess,inwhichdissolutionwasassistedbyasmalladditionoffluo-ride[72].
Inparticular,actinidenitridepelletswithalargeadmixtureofzirconiumnitridehavebeenshowntobeexcep-tionallydifficulttodissolvewithoutadditionoffluorideionsorhydrofluoricacidHF(whichtoobecomeequivalentinthenitricacidenvironment)[71].
ConsideringthatZrisoneofthemostabundantfissionproducts,itcannotbeexcludedthatitcaninterferewiththenitricaciddissolutionofhigh-burnup,pureUNfuelsunlessHFisaddedtothesolution.
Ifthefuelisenrichedin15N,thenitrogenmustforeco-nomicalreasonsberecycled.
DissolutioninHNO3producesnitrogen-containinggasesbyseveralreactions,withpartofthisnitrogencomingfromtheacidandhencebeingofnaturalisotopiccomposition[73].
Assomeofthesegase-ousspecieswillformfromboththenitrideandtheacid,theresultisanisotopicdilutionwhichwouldnecessitatecostlyre-enrichmentof15N.
Itwillthereforebenecessarytorecoverthe15Nbeforethedissolutioninnitricacid,mostlikelybyaprecedingstepofvoloxidation.
Thiscouldbedonebycombustionofthefuelinoxygen,formingNO2,tobefurtherconvertedtoasuitablereagentforre-use,oroxidisingitinsuperheatedsteam[74],formingNH3whichisdirectlysuitableformanufactureofnewfuel.
Ithashoweverbeennotedthatasignificantfractionofnitrogenremainsintheoxidicproductevenafterratherextensiveoxidation[11],andcompleteoxidationtoUO3,whichcannotbeachievedwithsteam,islikelyneededtoliberateallthe15N.
Ifontheotherhandnaturalnitrogen(>99%14N)isusedinthefuelmanufacture,theadditionalissue(besidestheneutroneconomypenalty)of14Cproductionmustbedealtwith.
Thefeasibilityof14Ccapturehasbeendemonstrated[72],and14Cisalreadyseparatedandstoredinindustrial-scalereprocessing[75].
Yetthisresultsinanadditionallong-livedwastefractionthatcanbeavoidedif15Nisused.
Oncethenitridefuelhaseitherbeendirectlydis-solved(ignoringthe15Nissue)orfollowinganoxidativedissolutiontheresultingsolutionscanbeuseddirectlyinoneofthenewlydevelopedGroupedActinideExtractionSystems(GANEX)[76–78].
Theseprocessesweredevel-opedtohavenopurestreamofe.
g.
plutoniumsoallacti-nidesareextractedtogether(excepturanium)thusmakingtheprocessesconsiderablymoreproliferationsafeandatthesametimepotentiallyopeningthepossibilitytoadirectconnectiontothefuelfabricationlineusingawetprocess.
Electrometallurgicaldissolutionandrefining(oftencalledpyroprocessing)isanoftensuggestedalternativetoaqueousreprocessingmethods,andhastheadvantagethatthe15Ncomponentcanberecoveredinundilutedform.
Suchmeth-odsofelectrolyticaldissolutionintoamoltensaltmediumappeartobeparticularlysuitablefornitridesbecauseoftheirappreciableelectricconductivity.
Thisapproachhasbeenshowntoworkforunirradiated(U,Pu)Nfuel[79].
Anover-viewofdifferenttechnicalsolutionscanbefoundin[80]ConclusionsThedevelopmentofnitridefuelshasbeengoingonandoffinthelast5decades.
Fromthebeginningtheywerepromis-ingasnuclearfuelsduetotheirhighfissiledensityandther-malconductivity.
However,unfavourablereactionswithhotwateraswellasamorecomplicatedproductionmadethemobsoletecomparedoxidesinthe60ies.
Todaythenitridesgotanewspring.
Bothforuseasaccidenttolerantfuelsaswellasfuelinfast,metalcooledreactorsforGenIVsys-tems.
Researchisongoingonhowtoeasetheproductionandtoovercometheinteractionswithwater.
Industrialscaleproductionhasbegunine.
g.
Russia.
OpenAccessThisarticleisdistributedunderthetermsoftheCrea-tiveCommonsAttribution4.
0InternationalLicense(http://creativecommons.
org/licenses/by/4.
0/),whichpermitsunrestricteduse,distribu-tion,andreproductioninanymedium,providedyougiveappropriatecredittotheoriginalauthor(s)andthesource,providealinktotheCreativeCommonslicense,andindicateifchangesweremade.
1724JournalofRadioanalyticalandNuclearChemistry(2018)318:1713–1725References1.
PoinssotC,BourgS,OuvrierN,CombernouxN,RostaingC,Vargas-GonzalezM,BrunoJ(2016)Assessmentoftheenviron-mentalfootprintofnuclearenergysystemsComparisonbetweenclosedandopenfuelcycles.
Energy69:199–2112.
Thefullreport(2002)AtechnologyroadmapforgenerationIVnuclearenergysystems,GIF-002-00.
http://www.
gen-4.
org.
Accessed10Sept20183.
OECD/NEA(2014)GENIVInternationalForum.
TechnologyroadmapupdateforgenerationIVnuclearenergysystems4.
YouingouGJ,SenRS(2014)Impactofaccident-tolerantfuelsandcladdingsontheoverallfuelcycle:apreliminarysystemsanalysis.
NuclTechnol188(2):123–1385.
RossSB,El-GenkMS(1988)Thermalconductivitycorrelationforuraniumnitridefuelbetween10and1923K.
JNuclMater151:318–3266.
SzpunarB,SzpunarJA(2014)Thermalconductivityofuraniumnitrideandcarbide.
IntJNuclEnergy2014:1–77.
AraiY,MaedaA,ShiozawaK,OhmichiT(1994)Chemicalformsofsolidfissionproductsintheirradiateduranium–plutoniummixednitridefuel.
JNuclMater210:161–1668.
TreybalRE(1963)Liquidextraction,2ndedn.
McGraw-HillBookCompany,INC,NewYork9.
ZakovaJ,WalleniusJ(2012)FuelresidencetimeinBWRswithnitridefuels.
AnnNuclEnergy47:182–19110.
JolkkonenM,MalkkiP,JohnsonK,WalleniusJ(2017)Uraniumnitridefuelsinsuperheatedsteam.
JNuclSciTechnol.
https://doi.
org/10.
1080/00223131.
2017.
129137211.
RaoGAR,MukerjeeSK,VaidyaVN,VenugopalV,SoodDD(1991)OxidationandhydrolysiskineticstudiesonUN.
JNuclMater185:231–241.
https://doi.
org/10.
1016/0022-3115(91)90340-d12.
WalleniusJ,PillonS(2002)N-15requirementfor2ndstratumADSnitridefuels.
In:Proceedingsofthe2001ANStopicalmeet-ing(AccApp/ADTTA'01);2001Nov11–15;Reno(NV):ANS13.
KatzJJ,RabonowitchE(1951)ThechemistryofuraniumpartI:theelement,itsbinaryandrelatedcompounds.
McGraw-HillBookCompany,INC,NewYork14.
TenneryVJ,GodfreyTG,PotterRA(1970)Synthesis,characteri-zation,andfabricationofUN.
ORNLTechnicalReport460615.
Resultsfor"uranium+nitride"intitlesearch,excludingothersnitrides-type.
http://www.
scopus.
com.
Accessed9Oct21816.
GuhaJP(1967)Formationandstabilityrelationshipsofuraniumnitrides.
TransIndianCeramSoc26(1):86–9217.
MitamuraT,KannoM,MukaiboT(1968)Preparationofura-niumnitridesfromuraniumtetrachloride.
JNuclSciTechnol5(2):60–6418.
YoshiharaK,KannoM,MukaiboT(1968)Preparationofura-niumnitridesfromuraniumtetrafluoride.
JNuclSciTechnol5(12):643–64719.
BenchmarkStudyoftheAccidentattheFukushimaDaiichiNuclearPowerPlant(BSAFProject)(2016)TechnicalReportOECD/NEA20.
SaraevOM,ZrodnikovAV,PoplavskyVM,AshurkoYM,Osh-kanovNN,BakanovMV,VasilyevBA,KamaninYL,ErshovVN,SvyatkinMN,KorolkovAS,KrasheninnikovYM,DenisovVV(2009)ExperiencegainedinRussiaonsodiumcooledfastreac-torsandprospectsoftheirfurtherdevelopment.
Kyoto,Japan,December7–1121.
NuclearEngineeringInternational.
FuelplantforRussia'sBreak-throughprojecttobebuiltin2018.
http://www.
neimagazine.
com/news/newsfuel-plant-for-russias-breakthrough-project-to-be-built-in-2018-6015987.
Accessed16Oct201822.
SaarinenS(2012)Isotopicallyenrichednitridesfornuclearpower,MasterThesis,RoyalInstituteofTechnology(KTH).
http://kth.
diva-portal.
org/smash/get/diva2:551031/FULLTEXT01.
pdf.
23.
LopesDA,JohnsonKUnpublishedwork24.
ReshetnikovFG,Kotel'nikovRB,RogozkinBD,BashlykovSN,SamokhvalovIA,TitovGV,ShishkovMG,BelevantsevVS,FedorovYE,SimonovVP(1974)Methodsofpreparingcoresfromuraniummonocarbide,mononitride,andcarbonitrideforthefuelelementsoffastreactors.
SovAtEnergy35:1070–107825.
GrachevAF,ZabudkoLM,ZvirEA,ZozulyaDV,IvanovYA,KryukovFN,MochalovYS,SkupovMV(2017)DevelopmentofinnovativefastreactornitridefuelinRussianFederation:state-of-art(IAEA-CN245-062)26.
MallettMW,GerdsAF(1955)Reactionofnitrogenwithuranium.
JElectrochemSoc102:292–296.
https://doi.
org/10.
1149/1.
243005027.
BurkeJE,SmithCS(1947)Theformationofuraniumhydride.
JAmChemSoc69:2500–250228.
DeCrescenteMA,FreedMS,CaplowSD(1965)Uraniumnitridefueldevelopment,SNAP-50,PrattandWhitneyAircraft,Middle-town,Conn.
(USA).
ConnecticutAdvancedNuclearEngineeringLab.
https://doi.
org/10.
2172/432403729.
BuglJ,BauerAA(1964)Phaserelationsinthesystemura-nium—nitrogen.
JAmCeramSoc47:425–429.
https://doi.
org/10.
1111/j.
1151-2916.
1964.
tb14429.
x30.
BenzR,HutchinsonWB(1970)U+N2reactionlayergrowths.
JNuclMater36:135–146.
https://doi.
org/10.
1016/0022-3115(70)90137-631.
MalkkiP,JolkkonenM,HollmerT,WalleniusJ(2014)Manufac-tureoffullydenseuraniumnitridepelletsusinghydridederivedpowderswithsparkplasmasintering.
JNuclMater452:548–551.
https://doi.
org/10.
1016/j.
jnucmat.
2014.
06.
01232.
JohnsonKD,LopesDA(2018)Graingrowthinuraniumnitridepreparedbysparkplasmasintering.
JNuclMater503:15–8033.
SerizawaH,FukudaK,KatsuraM(1995)Studyoftheformationofα-U2N3+xusingunstableammonia—reactionsequenceandcontrolofnitrogenactivity.
JAlloysCompd223:39–44.
https://doi.
org/10.
1016/0925-8388(94)01442-634.
KatsuraM,SerizawaH(1993)Reactionofuraniumwithammo-nia.
JAlloysCompd196:191–197.
https://doi.
org/10.
1016/0925-8388(93)90595-e35.
YeamansCB,SilvaGWC,CereficeGS,CzerwinskiKR,Hart-mannT,BurrellAK,SattelbergerAP(2008)Oxidativeammon-olysisofuranium(IV)fluoridestouranium(VI)nitride.
JNuclMater374:75–78.
https://doi.
org/10.
1016/j.
jnucmat.
2007.
06.
02236.
SilvaGWC,YeamansCB,MaL,CereficeGS,CzerwinskiKR,SattelbergerAP(2008)Microscopiccharacterizationofuraniumnitridessynthesizedbyoxidativeammonolysisofuraniumtetra-fluoride.
ChemMater20:3076–3084.
https://doi.
org/10.
1021/cm703364637.
GalkinNP,SudarikovBN,ZaitsevVA(1961)Methodsofreduc-inguraniumhexafluoride.
SovJAtEnergy10:143–149.
https://doi.
org/10.
1007/bf0148022038.
VaidyaVN,MukerjeeSK,JoshiJK,KamatRV,SoodDD(1987)Astudyofchemicalparametersoftheinternalgelationbasedsol–gelprocessforuraniumdioxide.
JNuclMater148:324–33139.
BartG,BottaFB,HothCW,LedergerberG,MasonRE,StrattonRW(2008)AC-3-irradiationtestofsphere-pacandpellet(U,Pu)CfuelintheUSFastFluxTestFacility.
JNuclMater376:47–5940.
vanderBrugghenFW,NoothoutAJ,HermansMEA,KanijJBW,VotocekO(1970)AU(VI)-processformicrosphereproduction.
In:Symposiumonsol–gelprocessesandreactorfuelcycles.
Gatlin-burg,Tennesee,CONF700502,253–26341.
KanijJBW,NoothoutAJ,VotocekO(1974)TheKEMAU(VI)-processfortheproductionofUO2microspheres.
In:Sol–gelpro-cessforfuelfabrication,IAEA-161,185–1951725JournalofRadioanalyticalandNuclearChemistry(2018)318:1713–172542.
PouchonMA,IngoldF(2009)InternalgelationatPSI:thepastandthefutureProceedingsofICAPP09,paper949443.
PouchonMA,IngoldF,KopajticZ,TomitaY,KonoS(2003)FabricationandcharacterizationofMOXmicrospheresfortheFUJIprojectproceedingGLOBAL200344.
BenayG,HubertF,ModoloG(2008)Preparationofyttria-sta-bilizedzirconia–ceriakernelsasfuelprecursorsusinginternalgelation.
RadiochimActa96:285–29145.
HedbergM,EkbergC(2016)AcomparativestudyofnitridepurityandAmfabricationlossesinPuNmaterialsbythepowderandinternalgelationproductionroutes.
JNuclMater482:156–16246.
StreitM(2004)Fabricationandcharacterisationof(Pu,Zr)Nfuels.
DoctoralThesis,ETHZürich,Zürich47.
MukerjeeSK,DehadrayaJV,VaidyaVN,SoodDD(1990)Kineticstudyofthecarbothermicsynthesisofuraniummonocarbidemicrospheres.
JNuclMater172:37–4648.
VaidyaVN(2008)Statusofsol–gelprocessfornuclearfuel.
JSol-GelSciTechnol46(3):369–38149.
CollinsJL,LloydMH,FellowsRL(1987)Thebasicchemistryinvolvedintheinternal-gelationmethodofprecipitatinguraniumasdeterminedbypHmeasurements.
RadiochimActa42:121–13450.
HedbergM,EkbergCUnpublishedwork51.
TakanoM,ItohA,AkaboriM,OgawaT,NumataM,OkamotoH(2001)Carbothermicsynthesisof(Cm,Pu)N.
JNuclMater294:24–2752.
TakanoM,AkaboriM,AraiY,MinatoK(2008)LatticethermalexpansionofNpN,PuNandAmN.
JNuclMater376:114–11853.
OgawaT,OhmichiT,MaedaA,AraiY,SuzukiY(1995)Vapori-zationbehaviourof(Pu,Am)N.
JAlloysCompd224:55–5954.
NakajimaK,AraiY,SuzukiY(1998)Vaporizationbehaviorof(Np,Pu)N.
JAlloysCompd271-273:666–66955.
LedergerberG,KopajticZ,IngoldF,StrattonRW(1992)Prepara-tionofuraniumnitrideintheformofmicrospheres.
JNuclMater188:28–3556.
MukerjeeSK,RamaRaoGA,DehadrayaJV,VaidyaVN,VenugopalV,SoodDD(1993)Carbothermicreductionof(UO3+C)microspheresto(UO2+C)microspheres.
JNuclMater199:247–25757.
MukerjeeSK,DehadrayaJV,VaidyaVN,SoodDD(1991)Kinet-icsofthecarbothermicsynthesisofuraniummononitridemicro-spheres.
JNuclMater185:39–4958.
GangulyC,HegdePV,SenguptaAK(1991)Preparationandchar-acterisationandout-of-pilepropertyevaluationof(U,Pu)Nfuelpellets.
JNuclMater178:234–24159.
AllbuttM,DellRM(1967)Chemicalaspectsofnitride,phosphideandsulphidefuels.
JNuclMater24:1–2060.
MuromuraT,TagawaH(1977)Formationofuraniummononi-tridebythereactionofuraniumdioxidewithcarboninammoniaandamixtureofhydrogenandnitrogen:IsynthesisofhighpurityUN.
JNuclMater71:65–7261.
AraiY,MinatoK(2005)Fabricationandelectrochemicalbehaviorofnitridefuelforfutureapplications.
JNuclMater344:180–18562.
BardelleP,WarinD(1992)Mechanismandkineticsoftheura-nium–plutoniummononitridesynthesis.
JNuclMater188:36–4263.
JolkkonenM,StreitM,WalleniusJ(2004)Thermo-chemicalmodellingofuranium-freenitridefuels.
JNuclSciTechnol41:457–46564.
BernardH(1989)Advancedfuelfabrication.
JNuclMater166:105–11165.
HedbergM,ColognaM,CambrianiA,SomersJ,EkbergC(2016)Zirconiumcarbonitridepelletsbyinternalsolgelandsparkplasmasinteringasinertmatrixfuelmaterial.
JNuclMater479:137–14466.
HedbergM,EkbergC(2016)Studiesonplutonium–zirconiumco-precipitationandcarbothermalreductionintheinternalgelationprocessfornitridefuelpreparation.
JNuclMater479:608–61567.
MetrokaRR(1970)Fabricationofuraniummononitridecom-pacts.
TechnicalreportNASA68.
BurkesDE,FieldingRS,PorterDL,MeyerMK,MakenasBJ(2009)AUSperspectiveonfastreactorfuelfabricationtechnol-ogyandexperience.
PartII:ceramicfuels.
JNuclMater393:1–1169.
JohnsonKD,WalleniusJ,JolkkonenM,ClaisseA(2016)Sparkplasmasinteringandporositystudiesofuraniumnitride.
JNuclMater473:13–1770.
FerrisLM(1968)Reactionsofuraniummononitride,thoriummonocarbideanduraniummonocarbidewithnitricacidandotheraqueousreagents.
JInorgNuclChem30:2661–2669.
https://doi.
org/10.
1016/0022-1902(68)80393-871.
FinalReportSummary-ASGARD(AdvancedfuelsforGen-erationIVreactors:reprocessinganddissolution)(2016).
https://cordis.
europa.
eu/result/rcn/191937_en.
html.
Accessed8Oct201872.
ShadrinAY,DvoeglazovKN,IvanovVB,VolkVI,SkupovMV,GlushenkovAE,TroyanovVM,ZherebtsovAA(2015)Fuelfabri-cationandreprocessingfornuclearfuelcyclewithinherentsafetydemands.
RadiochimActa103:163–173.
https://doi.
org/10.
1515/ract-2015-238573.
Hadibi-OlschewskiN,GlatzJ-P,BokelundH,LeroyMJF(1992)fateofnitrogenuponreprocessingofnitridefuels.
JNuclMater188:244–248.
https://doi.
org/10.
1016/0022-3115(92)90479-574.
JolkkonenM,MalkkiP,JohnsonK,WalleniusJ(2017)Uraniumnitridefuelsinsuperheatedsteam.
JNuclSciTechnol54:513–519.
https://doi.
org/10.
1080/00223131.
2017.
129137275.
WakemMJ,BrownridgeM(2018)EnhancementsintheTHORPreprocessingplant,2000.
http://inis.
iaea.
org/Search/search.
aspxorig_q=RN:32033963.
Accessed8Oct201876.
AdnetJ,MiguirditchianM,HillC,HeresX,LecomteM,MassonM,BrossardP,BaronP(2005)Developmentofnewhydromet-allurgicalprocessesforactiniderecovery:GANEXconcept.
In:ProceedingsofGLOBAL77.
CarrottM,BellK,BrownJ,GeistA,GregsonC,HèresX,MaherC,MalmbeckR,MasonC,ModoloG(2014)Developmentofanewflowsheetforco-separatingthetransuranicactinides:the"EURO-GANEX"process.
SolventExtrIonExch32(5):447–46778.
AneheimE,EkbergC,FermvikA,ForemanMRSJ,ReteganT,SkarnemarkG(2010)ATBP/BTBP-basedGANEXseparationprocess.
Part1:feasibility.
SolventExtrIonExch28(4):437–45879.
RogozkinBD,StepennovaNV,FedorovYE,DubrovinON,ShishkovMG,AlekseevOA,LoushnikovaTD,BalakirevaSI,ShentiakovVV(2003)MononitrideU–Pumixedfuelanditselec-trochemicalreprocessinginmoltensalts.
http://inis.
iaea.
org/Search/search.
aspxorig_q=RN:34075847.
Accessed8Oct201880.
Pyrochemicalseparationsinnuclearapplications,NuclearEnergyAgencyoftheOECD(NEA)(2004).
http://inis.
iaea.
org/Search/search.
aspxorig_q=RN:35076807.
Accessed8Oct2018

cloudcone:特价便宜VPS补货通知贴,SAS或SSD低价有磁盘阵列,SAS或SSD raid10 硬盘

cloudcone经常性有特价促销VPS放出来,每次的数量都是相当有限的,为了方便、及时帮助大家,主机测评这里就做这个cloudcone特价VPS补货专题吧,以后每次放货我会在这里更新一下日期,方便大家秒杀!官方网站:https://cloudcone.com/预交费模式,需要充值之后方可使用,系统自动扣费!信用卡、PayPal、支付宝,均可付款购买!为什么说cloudcone值得买?cloudc...

CloudCone($82/月)15-100M不限流量,洛杉矶CN2 GIA线路服务器

之前分享过很多次CloudCone的信息,主要是VPS主机,其实商家也提供独立服务器租用,同样在洛杉矶MC机房,分为两种线路:普通优化线路及CN2 GIA,今天来分享下商家的CN2 GIA线路独立服务器产品,提供15-100Mbps带宽,不限制流量,可购买额外的DDoS高防IP,最低每月82美元起,支持使用PayPal或者支付宝等付款方式。下面分享几款洛杉矶CN2 GIA线路独立服务器配置信息。配...

raksmart:年中大促,美国物理机$30/月甩卖;爆款VPS仅月付$1.99;洛杉矶/日本/中国香港多IP站群$177/月

RAKsmart怎么样?RAKsmart发布了2021年中促销,促销时间,7月1日~7月31日!,具体促销优惠整理如下:1)美国西海岸的圣何塞、洛杉矶独立物理服务器低至$30/月(续费不涨价)!2)中国香港大带宽物理机,新品热卖!!!,$269.23 美元/月,3)站群服务器、香港站群、日本站群、美国站群,低至177美元/月,4)美国圣何塞,洛杉矶10G口服务器,不限流量,惊爆价:$999.00,...

Asgardia官网为你推荐
天府热线为什么四川天府热线区经常进去不到啊??flash导航条如何用Flash制作简单的导航栏怎么点亮qq空间图标QQ空间图标怎么点亮?商标注册查询官网怎么查商标是否注册成功机械键盘轴机械键盘蓝轴有什么作用小米手柄小米手柄怎么用?微信电话本怎么用微信电话本在哪里 微信电话本怎么打开去鼠标加速度CS去鼠标加速度和鼠标灵敏度的区别?中国杀毒软件排行榜谁知道世界杀毒软件排名?263企业邮箱设置263企业邮箱如何修改密码
传奇服务器租用 美国vps krypt 香港ufo GGC 堪萨斯服务器 美元争夺战 免费全能空间 cpanel空间 vip购优汇 cn3 稳定免费空间 电信主机 免费asp空间申请 免费个人主页 免费蓝钻 免费获得q币 512内存 湖南铁通 forwarder 更多