PartIConcepts2PartIConceptsInthisrstpartofthebook,thebasicconceptsandtoolsarepresentedforthedescriptionofquasicrystalsandtheirstructurallycloselyrelatedperiodicapproximants.
Wewillusebothd-dimensional(dD)andn-dimensional(nD)approaches,wheredisthedimensionofthephysicalspaceandnthatofthehigher-dimensionalembeddingspace(n>d).
IndDphysicalspace,quasiperiodicstructurescanbedescribedbasedontilingsorcoverings.
Bytilingwemeanagaplesspackingofnon-overlappingcopiesofanitenumberofunittiles.
Inanalogytoacrystallographiclattice,suchatilingmaybeseenasaquasilatticewithmorethanoneunitcellofgen-eralshape.
Inacovering,oneormoretypesofpartiallyoverlappingcoveringclustersfullycoveratilingorquasiperiodicpattern.
InthenDdescription,dDquasiperiodicstructuresresultfromirrationalphysical-spacecutsofap-propriateperiodicnDhypercrystalstructures.
Rationalapproximantscanbeobtainedinthesamewayaftershearinghypercrystalstructuresintothere-spectiverationalcutorientations.
InthenDapproach,otherwisehiddenstructuralcorrelationsarerevealed.
Forinstance,theformationofdiractionpatternswithBraggreectionsand5-foldsymmetry,causingsomuchcontroversyinthersttimeafterthediscov-eryofquasicrystals,1canbeeasilyexplainedinthisway.
ThenDapproachalsoclearlyidentiesaparticularkindofcorrelatedatomicjumps(phasonips)asoriginatingfromphasonmodes,whichareexcitationsalreadyknownfromthestudyofincommensuratelymodulatedstructures.
DespitethepowerandeleganceofthenDapproach,onehastokeepinmind,however,thatrealquasicrystalsare3Dobjectsandthattheirphysicalinteractionstakeplaceinthreedimensions,indeed.
WhatisaCrystalBeforewedenethetermquasicrystalweshouldclarifywhatwemeanbycrystalandnD(hyper)crystal,ingeneral.
IntheInternationalTablesforCrys-tallography,VolA,chapter8.
1Basicconcepts,2onewillndthefollowing:Crystalsareniterealobjectsinphysicalspacewhichmaybeidealizedbyinnitethree-dimensionalperiodiccrystalstructuresinpointspace.
Three-dimensionalperiodicitymeansthattherearetranslationsamongthesymmetryoperationsoftheobjectwiththetranslationvectorsspanningathree-dimensionalspace.
Extendingthisconceptofcrystalstructuretomoregeneralperiodicobjectsandton-dimensionalspace,oneobtainsthefollowingdenition:1see,e.
g.
,W.
Steurer,S.
Deloudi(2008):FascinatingQuasicrystals.
ActaCrystal-logr.
A64,1–11,andreferencestherein.
2H.
Wondratschek:BasicConcepts.
In:InternationalTablesforCrystallography,vol.
A,KluwerAcademicPublisher,Dordrecht/Boston/London,pp.
720–740(2002)PartIConcepts3Denition:Anobjectinn-dimensionalpointspaceEniscalledann-dimensionalcrystallographicpatternor,forshort,crystalpatternifamongitssymmetryoperations(i)therearentranslations,thetranslationvectorst1,tnofwhicharelinearlyindependent,(ii)alltranslationvectors,exceptthezerovectoro,havealengthofatleastd>0.
Condition(i)guaranteesthen-dimensionalperiodicityandthusexcludessubperiodicsymmetrieslikelayergroups,rodgroupsandfriezegroups.
Condition(ii)takesintoaccountthenitesizeofatomsinactualcrystals.
Acrucialpropertyofideal,fullyorderedcrystalsofanydimensionisthattheypossesspurepointFourierspectra.
ThismeansthattheirdiractionpatternsshowBraggreections(Diracδ-peaks)only,andnostructuraldiusescattering.
Arealcrystalcanbedescribedbycomparingitwiththemodelofanidealcrystalandbyclassifyingthedeviationsfromit.
Inthefollowing,sometermsarelistedwhichareusedforthedescriptionofrealcrystalsortheiridealizedmodels:IdealcrystalThecounterparttoarealcrystal.
Innitemathematicalobjectwithanidealizedcrystalstructure;anidealcrystalcanbeorderedordisordered(disorderedidealcrystal);ifitisdisordered,itisnotperiodicanymore,however,ithasaperiodicaveragestructure.
RealcrystalThecounterparttoanidealcrystal.
Reallyexistingcrystalwhichcanbeperfectorimperfect.
PerfectcrystalCrystalinthermodynamicequilibrium,whichcanbeor-deredordisordered;theonlydefectspossiblearepointdefectssuchasthermalvacancies,impurities.
ImperfectcrystalCrystalcontainingadditionallydefectsthatarenotinthermodynamicequilibriumsuchasdislocations.
NanocrystalRealcrystalwithdimensionsonthescaleofnanometers;duetothelargesurfacearea,itsstructuremayfundamentallydierfromthatoflargercrystalswiththesamecompositionandthermalhistory.
MetacrystalCrystalconsistingofbuildingunitsotherthanatoms(ions,molecules),suchasphotonicorphononiccrystals.
WhatisaQuasicrystalOneofthetermsmissingintheabovelistisaperiodiccrystalwhichisusedashypernymforincommensuratelymodulatedstructures(IMS),compositecrys-tals(CS),andquasicrystalsQC.
AlthoughtheirstructureslackdDtransla-tionalperiodicity,theirFourierspectrashowBraggpeaksonly.
ThispropertyhasbeenusedbytheIUCrAd-interimCommissiononAperiodicCrystalstoidentifyaperiodiccrystalsbytheiressentiallydiscretediractiondiagram.
33AdinterimCommissiononAperiodicCrystals.
ActaCrystallogr.
A48,928(1992)4PartIConceptsConsequently,dDtranslationalperiodicityisnomoreseenasanecessaryconditionforcrystallinity.
Thereciprocalspacedenitionofacrystalbyitsspectralpropertiescanbemuchsimplerthantheonebasedondirectspace.
Additionally,ithastheadvantageofbeingdirectlyaccessibleexperimentallybydiractionmethods.
Howeverpragmaticthisdenitionmaybe,itisalsofuzzy.
Thetermdirac-tiondiagramreferstoanexperimentallyobtainedimage,butdoesnottakeintoaccountthattheshapesofreectionsdependonthekindofradiationused,theresolutionanddynamicrangeofthedetectoraswellasthequalityandsizeofthecrystalstudied.
Astronglyabsorbing,large,andirregularlyshapedcrystalofpoorquality,forinstance,wouldnotatallgiveanessentiallydiscretediractiondiagramevenforsimpleperiodicstructures.
Consequently,theconceptofanaperiodiccrystalhastorefertoanidealaperiodiccrystalofinnitesizeandtoitsFourierspectrumratherthantoitsdiractionimage.
Adenitionofthedierenttypesofaperiodiccrystalsingeneralandofquasicrystalsinparticularwillbegiveninchapter3.
HowdoweusethetermquasicrystalinthisbookBythetermquasicrystalwedenoterealcrystalswithdiractionpatternsshowingnon-crystallographicsymmetry.
Thisexperiment-relatedreciprocalspacedenitionofquasicrystalsmakessymmetryanalysissimpleandallowstheapplicationoftoolsthatarewellestablishedinstandardcrystalstructureanalysis.
Weclearlywanttodistinguishbetweenquasicrystals(QC)inthismeaningandtheotherkindsofaperiodiccrystalswithcrystallographicsymmetrysuchasincommensuratelymodulatedstructures(IMS)andcompositestructures(CS).
Inthemathematicalmeaningofthetermquasiperiodicity,allthreeofthemarequasiperiodicstructures,whichhavesomesimilaritiesintheirhigher-dimensionaldescription.
ThemaindierencebetweenaQCandanIMSisthatanIMScanbedescribedasmodulationofaperiodiccrystalstructure.
Ifthemodulationamplitudeapproacheszero,theperiodicbasicstructureoftheIMSisobtained.
ACS,ontheotherhand,canbedescribedas,sometimesmutuallymodulated,intergrowthofperiodicstructures.
Suchadirectone-to-onerelationshiptoperiodicstructuresisnotpossibleinthecaseofQCwithnon-crystallographicsymmetry.
Furthermore,forbothIMSandCS,theorientational(rotationalpoint)symmetrydoesnotplaceanyconstraintontheirrationallengthscalesin-volved.
ThisisdierentforQC,where,forinstance,thenumberτ=2cosπ/5isrelatedto5-foldrotationalsymmetry.
Finally,wedonotusethetermsquasicrystalandquasiperiodicstruc-turesynonymously.
QCmayhavestrictlyquasiperiodicstructureswithnon-crystallographicsymmetryinanidealizeddescription.
However,theirstructuremayalsobequasiperiodiconaverageonly;or,evenonlysomehowrelatedtoquasiperiodicity.
Strictlyquasiperiodicstructuresmustobeytheclosenesscon-ditioninthenDdescription,thismaynotbethecaseforthestructureofrealQC,whichthenwouldcorrespondtoakindoflock-instate.
PartIConcepts5StructuralComplexityUnaryphasesA:If,duetoonlyisotropicinteractions,eachatomisequallydenselysurroundedbytheotheratomsintherstcoordinationshell,densespherepackingsaretheconsequence.
Atomicenvironmenttypes(AET)caneitherbecuboctahedra,suchasinfcccF4-Al,ordisheptahedra,suchasinhcphP2-Mg,withthecoordinationnumberCN=12inbothcases.
Incaseofanisotropicinteractions(directionalbonding,magneticinteractions,dispro-portionationunderpressure,etc.
),morecomplexstructurescanformsuchascI58-MnoroC84-Cs-III.
4Anisotropicinteractions,however,canalsoleadtothegeometricallysimplestpossiblestructure,thatofcP1-Po.
5BinaryphasesA–B:InabinaryintermetalliccompoundAxBy,eachatomhastobesurroundedbyatleastsomeatomsoftheotherspeciesinordertomaximizethenumberofattractiveinteractions,otherwisethepureelementphaseswouldseparate.
Stoichiometry,atomicsizeratios,direction-alityofatomicinteractions,andtheelectronicbandstructuredeterminetherespectiveAET.
Thesemaycompriseseveralcoordinationshellsandareusu-allycalledclusters.
ThesizeoftheunitcellofanintermetalliccompoundisdeterminedbythemostecientpackingofitsconstitutingAET(clusters),whichisthatwiththelowestfreeenergy,ofcourse.
Consequently,themostecientpackingcanbequitedierentforhigh-andlow-temperaturephasesduetotheentropicalcontributionsofthermalvibrationsandchemicaldisorder.
ThecomplexityofbinaryintermetalliccompoundsrangesbetweencP2-NiAlandmC7,448-Yb2Cu9.
6TernaryphasesA-B-C:Ontheonehand,threedierentconstituentsgivemoreexibilityinoptimizinginteractions.
Ontheotherhand,particularlyinthecaseofrepulsiveinteractionsbetweentwoofthethreeatomtypes,itcangetmuchmorediculttorealizethemostecientpacking.
MoredierentAETorclustersmaybeneededtocreatetheoptimumenvironmentsofA,B,andC.
ThecomplexityofternaryintermetalliccompoundsrangesbetweenhP3-BaPtSb7andcF23,158-Al55.
4Cu5.
4Ta39.
1.
84McMahon,M.
I.
,Nelmes,R.
J.
,Rekhi,S.
:ComplexCrystalStructureofCesium-III.
Phys.
Rev.
Lett.
87,art.
no.
255502(2001)5Legut,D.
,Friak,M.
,ˇSob,M.
:WhyispoloniumsimplecubicandsohighlyanisotropicPhys.
Rev.
Lett.
99,art.
no.
016402(2007)6ˇCerny,R.
,Francois,M.
,Yvon,K.
,Jaccard,D.
,Walker,E.
,Petˇrˇcek,V.
,Csaˇrova,I.
,Nissen,H.
-U.
,Wessicken,R.
:Asingle-crystalx-rayandHRTEMstudyoftheheavy-fermioncompoundYbCu4.
5.
J.
Condens.
Matter8,4485–4493(1996)7Villars,P.
,Calvert,L.
D.
:PearsonsHandbookofCrystallographicDataforIn-termetallicPhases(ASM,USA),Vols.
1–4(1991)8Weber,T.
,Dshemuchadse,J.
,Kobas,M.
,Conrad,M.
,Harbrecht,B.
,Steurer,W.
:Large,larger,largest-afamilyofcluster-basedtantalum-copper-aluminideswithgiantunitcells.
PartA:Structuresolutionandrenement.
ActaCrystallogr.
B65,308–317(2009)6PartIConceptsIncaseofquasicrystals,thenumberofdierentclustersinaparticularcompoundissmall,usuallyonlyoneortwo.
Quasiperiodiclong-rangeor-dermainlyoriginatesfromtheirnon-crystallographicsymmetrytogetherwiththeirabilitytooverlapinawell-denedwaywitheachother.
Thequestionis,howcomplexarequasicrystalscomparedtoperiodicin-termetallicsAretheymorecomplexthanthemostcomplexperiodiccom-pounds,suchascF23,158-Al55.
4Cu5.
4Ta39.
1,builtfrommuchmoredierentunitclustersthananyQCStructuralcomplexityisdiculttodene.
Itiscertainlynotsucienttojustcountthenumberofatomsperunitcell,whatwouldbeimpossibleforaquasicrystalanyway.
Forinstance,the192atomslocatedonthegeneralWyckopositioninacubicunitcellwithspacegroupsymmetryFm3m,canbedescribedjustbythecoordinatesofasingleatom,i.
e.
3parameters.
ForthesamenumberofatomsinatriclinicunitcellandspacegroupP1,576parameterswouldbeneeded.
Ontheotherhand,itisalsonotjustthenumberoffreeparameters.
AcubicstructurewithspacegroupsymmetryFm3mand4atomsperunitcellneedsthreeparameters,aswell,butitseemstobemuchsimpler.
Particularly,becauseitisjustthecubicclosestpacking.
OnepossibilityforindicatingthedegreeofcomplexitycouldbethenumberofdierentAETortheR-atlas.
TheR-atlasofastructureconsistsofalldierentatomiccongurationswithinacircleofradiusR.
Thismayworkforcomparing(quasi)periodicstructureswith(quasi)periodicones,butnotforcomparingperiodicwithquasiperiodicstructures.
Inthelattercase,onecouldcompare,forinstance,theR-atlasesuptoamaximumR,whichisgivenbythedimensionsoftheunitcell.
Anotherpossibilitywouldbetocomparetheinformationneededtofullydescribetheoneandtheotherstructureortogrowitinthecomputer.
Complexityisreectedinbroaddistributionfunctions(histogramms)ofatomicdistances,largenumberofdierentAETsforeachkindofatom,largenumberofindependentparametersforthedescriptionofastructure,lowsymmetry.
Complexityresultsfromunfavorablesizeratiosofatomshinderinggeometricallyoptimuminterac-tions,preferenceofcoordinations(AET,clusters)hinderingoptimumpackings(e.
g.
5-foldsymmetry),parametersthatareclosetooptimumbutnotoptimal(pseudosymmetry).
RFCHOST,这个服务商我们可能有一些朋友知道的。不要看官网是英文就以为是老外服务商,实际上这个服务商公司在上海。我们实际上看到的很多商家,有的是繁体,有的是英文,实际上很多都是我们国人朋友做的,有的甚至还做好几个品牌域名,实际上都是一个公司。对于RFCHOST商家还是第一次分享他们家的信息,公司成立大约2015年左右。目前RFCHOST洛杉矶机房VPS正进行优惠促销,采用CN2优化线路,电信双...
蓝竹云怎么样 蓝竹云好不好蓝竹云是新商家这次给我们带来的 挂机宝25元/年 美国西雅图云服务器 下面是套餐和评测,废话不说直接开干~~蓝竹云官网链接点击打开官网江西上饶挂机宝宿主机配置 2*E5 2696V2 384G 8*1500G SAS RAID10阵列支持Windows sever 2008,Windows sever 2012,Centos 7.6,Debian 10.3,Ubuntu1...
在前面的文章中就有介绍到半月湾Half Moon Bay Cloud服务商有提供洛杉矶DC5数据中心云服务器,这个堪比我们可能熟悉的某服务商,如果我们有用过的话会发现这个服务商的价格比较贵,而且一直缺货。这里,于是半月湾服务商看到机会来了,于是有新增同机房的CN2 GIA优化线路。在之前的文章中介绍到Half Moon Bay Cloud DC5机房且进行过测评。这次的变化是从原来基础的年付49....
directspace为你推荐
国外空间租用好用的国外空间中文域名注册查询哪里有可以查询中文域名是否被注册的地方?域名服务什么叫主域名服务器?网站服务器租用个人网站服务器租用一年多少钱国内ip代理找一个好用的国内电信IP代理?域名购买域名购买的流程是什么?台湾主机台湾版本的主机好不好?成都虚拟空间成都市规划信息技术中心如何?虚拟主机控制面板虚拟主机管理面板与网站后台有什么区别?北京虚拟主机北京的虚拟主机提供商哪个经济实惠?
vps动态ip 20g硬盘 河南服务器 什么是刀片服务器 七夕快乐英文 ntfs格式分区 免费高速空间 美国网站服务器 中国电信测速器 lamp兄弟连 阵亡将士纪念日 asp空间 网站防护 酷锐 phpinfo 美国vpn代理 godaddy中文 apache启动失败 xendesktop 好看的空间头像 更多