peaksdirectspace

directspace  时间:2021-01-03  阅读:()
PartIConcepts2PartIConceptsInthisrstpartofthebook,thebasicconceptsandtoolsarepresentedforthedescriptionofquasicrystalsandtheirstructurallycloselyrelatedperiodicapproximants.
Wewillusebothd-dimensional(dD)andn-dimensional(nD)approaches,wheredisthedimensionofthephysicalspaceandnthatofthehigher-dimensionalembeddingspace(n>d).
IndDphysicalspace,quasiperiodicstructurescanbedescribedbasedontilingsorcoverings.
Bytilingwemeanagaplesspackingofnon-overlappingcopiesofanitenumberofunittiles.
Inanalogytoacrystallographiclattice,suchatilingmaybeseenasaquasilatticewithmorethanoneunitcellofgen-eralshape.
Inacovering,oneormoretypesofpartiallyoverlappingcoveringclustersfullycoveratilingorquasiperiodicpattern.
InthenDdescription,dDquasiperiodicstructuresresultfromirrationalphysical-spacecutsofap-propriateperiodicnDhypercrystalstructures.
Rationalapproximantscanbeobtainedinthesamewayaftershearinghypercrystalstructuresintothere-spectiverationalcutorientations.
InthenDapproach,otherwisehiddenstructuralcorrelationsarerevealed.
Forinstance,theformationofdiractionpatternswithBraggreectionsand5-foldsymmetry,causingsomuchcontroversyinthersttimeafterthediscov-eryofquasicrystals,1canbeeasilyexplainedinthisway.
ThenDapproachalsoclearlyidentiesaparticularkindofcorrelatedatomicjumps(phasonips)asoriginatingfromphasonmodes,whichareexcitationsalreadyknownfromthestudyofincommensuratelymodulatedstructures.
DespitethepowerandeleganceofthenDapproach,onehastokeepinmind,however,thatrealquasicrystalsare3Dobjectsandthattheirphysicalinteractionstakeplaceinthreedimensions,indeed.
WhatisaCrystalBeforewedenethetermquasicrystalweshouldclarifywhatwemeanbycrystalandnD(hyper)crystal,ingeneral.
IntheInternationalTablesforCrys-tallography,VolA,chapter8.
1Basicconcepts,2onewillndthefollowing:Crystalsareniterealobjectsinphysicalspacewhichmaybeidealizedbyinnitethree-dimensionalperiodiccrystalstructuresinpointspace.
Three-dimensionalperiodicitymeansthattherearetranslationsamongthesymmetryoperationsoftheobjectwiththetranslationvectorsspanningathree-dimensionalspace.
Extendingthisconceptofcrystalstructuretomoregeneralperiodicobjectsandton-dimensionalspace,oneobtainsthefollowingdenition:1see,e.
g.
,W.
Steurer,S.
Deloudi(2008):FascinatingQuasicrystals.
ActaCrystal-logr.
A64,1–11,andreferencestherein.
2H.
Wondratschek:BasicConcepts.
In:InternationalTablesforCrystallography,vol.
A,KluwerAcademicPublisher,Dordrecht/Boston/London,pp.
720–740(2002)PartIConcepts3Denition:Anobjectinn-dimensionalpointspaceEniscalledann-dimensionalcrystallographicpatternor,forshort,crystalpatternifamongitssymmetryoperations(i)therearentranslations,thetranslationvectorst1,tnofwhicharelinearlyindependent,(ii)alltranslationvectors,exceptthezerovectoro,havealengthofatleastd>0.
Condition(i)guaranteesthen-dimensionalperiodicityandthusexcludessubperiodicsymmetrieslikelayergroups,rodgroupsandfriezegroups.
Condition(ii)takesintoaccountthenitesizeofatomsinactualcrystals.
Acrucialpropertyofideal,fullyorderedcrystalsofanydimensionisthattheypossesspurepointFourierspectra.
ThismeansthattheirdiractionpatternsshowBraggreections(Diracδ-peaks)only,andnostructuraldiusescattering.
Arealcrystalcanbedescribedbycomparingitwiththemodelofanidealcrystalandbyclassifyingthedeviationsfromit.
Inthefollowing,sometermsarelistedwhichareusedforthedescriptionofrealcrystalsortheiridealizedmodels:IdealcrystalThecounterparttoarealcrystal.
Innitemathematicalobjectwithanidealizedcrystalstructure;anidealcrystalcanbeorderedordisordered(disorderedidealcrystal);ifitisdisordered,itisnotperiodicanymore,however,ithasaperiodicaveragestructure.
RealcrystalThecounterparttoanidealcrystal.
Reallyexistingcrystalwhichcanbeperfectorimperfect.
PerfectcrystalCrystalinthermodynamicequilibrium,whichcanbeor-deredordisordered;theonlydefectspossiblearepointdefectssuchasthermalvacancies,impurities.
ImperfectcrystalCrystalcontainingadditionallydefectsthatarenotinthermodynamicequilibriumsuchasdislocations.
NanocrystalRealcrystalwithdimensionsonthescaleofnanometers;duetothelargesurfacearea,itsstructuremayfundamentallydierfromthatoflargercrystalswiththesamecompositionandthermalhistory.
MetacrystalCrystalconsistingofbuildingunitsotherthanatoms(ions,molecules),suchasphotonicorphononiccrystals.
WhatisaQuasicrystalOneofthetermsmissingintheabovelistisaperiodiccrystalwhichisusedashypernymforincommensuratelymodulatedstructures(IMS),compositecrys-tals(CS),andquasicrystalsQC.
AlthoughtheirstructureslackdDtransla-tionalperiodicity,theirFourierspectrashowBraggpeaksonly.
ThispropertyhasbeenusedbytheIUCrAd-interimCommissiononAperiodicCrystalstoidentifyaperiodiccrystalsbytheiressentiallydiscretediractiondiagram.
33AdinterimCommissiononAperiodicCrystals.
ActaCrystallogr.
A48,928(1992)4PartIConceptsConsequently,dDtranslationalperiodicityisnomoreseenasanecessaryconditionforcrystallinity.
Thereciprocalspacedenitionofacrystalbyitsspectralpropertiescanbemuchsimplerthantheonebasedondirectspace.
Additionally,ithastheadvantageofbeingdirectlyaccessibleexperimentallybydiractionmethods.
Howeverpragmaticthisdenitionmaybe,itisalsofuzzy.
Thetermdirac-tiondiagramreferstoanexperimentallyobtainedimage,butdoesnottakeintoaccountthattheshapesofreectionsdependonthekindofradiationused,theresolutionanddynamicrangeofthedetectoraswellasthequalityandsizeofthecrystalstudied.
Astronglyabsorbing,large,andirregularlyshapedcrystalofpoorquality,forinstance,wouldnotatallgiveanessentiallydiscretediractiondiagramevenforsimpleperiodicstructures.
Consequently,theconceptofanaperiodiccrystalhastorefertoanidealaperiodiccrystalofinnitesizeandtoitsFourierspectrumratherthantoitsdiractionimage.
Adenitionofthedierenttypesofaperiodiccrystalsingeneralandofquasicrystalsinparticularwillbegiveninchapter3.
HowdoweusethetermquasicrystalinthisbookBythetermquasicrystalwedenoterealcrystalswithdiractionpatternsshowingnon-crystallographicsymmetry.
Thisexperiment-relatedreciprocalspacedenitionofquasicrystalsmakessymmetryanalysissimpleandallowstheapplicationoftoolsthatarewellestablishedinstandardcrystalstructureanalysis.
Weclearlywanttodistinguishbetweenquasicrystals(QC)inthismeaningandtheotherkindsofaperiodiccrystalswithcrystallographicsymmetrysuchasincommensuratelymodulatedstructures(IMS)andcompositestructures(CS).
Inthemathematicalmeaningofthetermquasiperiodicity,allthreeofthemarequasiperiodicstructures,whichhavesomesimilaritiesintheirhigher-dimensionaldescription.
ThemaindierencebetweenaQCandanIMSisthatanIMScanbedescribedasmodulationofaperiodiccrystalstructure.
Ifthemodulationamplitudeapproacheszero,theperiodicbasicstructureoftheIMSisobtained.
ACS,ontheotherhand,canbedescribedas,sometimesmutuallymodulated,intergrowthofperiodicstructures.
Suchadirectone-to-onerelationshiptoperiodicstructuresisnotpossibleinthecaseofQCwithnon-crystallographicsymmetry.
Furthermore,forbothIMSandCS,theorientational(rotationalpoint)symmetrydoesnotplaceanyconstraintontheirrationallengthscalesin-volved.
ThisisdierentforQC,where,forinstance,thenumberτ=2cosπ/5isrelatedto5-foldrotationalsymmetry.
Finally,wedonotusethetermsquasicrystalandquasiperiodicstruc-turesynonymously.
QCmayhavestrictlyquasiperiodicstructureswithnon-crystallographicsymmetryinanidealizeddescription.
However,theirstructuremayalsobequasiperiodiconaverageonly;or,evenonlysomehowrelatedtoquasiperiodicity.
Strictlyquasiperiodicstructuresmustobeytheclosenesscon-ditioninthenDdescription,thismaynotbethecaseforthestructureofrealQC,whichthenwouldcorrespondtoakindoflock-instate.
PartIConcepts5StructuralComplexityUnaryphasesA:If,duetoonlyisotropicinteractions,eachatomisequallydenselysurroundedbytheotheratomsintherstcoordinationshell,densespherepackingsaretheconsequence.
Atomicenvironmenttypes(AET)caneitherbecuboctahedra,suchasinfcccF4-Al,ordisheptahedra,suchasinhcphP2-Mg,withthecoordinationnumberCN=12inbothcases.
Incaseofanisotropicinteractions(directionalbonding,magneticinteractions,dispro-portionationunderpressure,etc.
),morecomplexstructurescanformsuchascI58-MnoroC84-Cs-III.
4Anisotropicinteractions,however,canalsoleadtothegeometricallysimplestpossiblestructure,thatofcP1-Po.
5BinaryphasesA–B:InabinaryintermetalliccompoundAxBy,eachatomhastobesurroundedbyatleastsomeatomsoftheotherspeciesinordertomaximizethenumberofattractiveinteractions,otherwisethepureelementphaseswouldseparate.
Stoichiometry,atomicsizeratios,direction-alityofatomicinteractions,andtheelectronicbandstructuredeterminetherespectiveAET.
Thesemaycompriseseveralcoordinationshellsandareusu-allycalledclusters.
ThesizeoftheunitcellofanintermetalliccompoundisdeterminedbythemostecientpackingofitsconstitutingAET(clusters),whichisthatwiththelowestfreeenergy,ofcourse.
Consequently,themostecientpackingcanbequitedierentforhigh-andlow-temperaturephasesduetotheentropicalcontributionsofthermalvibrationsandchemicaldisorder.
ThecomplexityofbinaryintermetalliccompoundsrangesbetweencP2-NiAlandmC7,448-Yb2Cu9.
6TernaryphasesA-B-C:Ontheonehand,threedierentconstituentsgivemoreexibilityinoptimizinginteractions.
Ontheotherhand,particularlyinthecaseofrepulsiveinteractionsbetweentwoofthethreeatomtypes,itcangetmuchmorediculttorealizethemostecientpacking.
MoredierentAETorclustersmaybeneededtocreatetheoptimumenvironmentsofA,B,andC.
ThecomplexityofternaryintermetalliccompoundsrangesbetweenhP3-BaPtSb7andcF23,158-Al55.
4Cu5.
4Ta39.
1.
84McMahon,M.
I.
,Nelmes,R.
J.
,Rekhi,S.
:ComplexCrystalStructureofCesium-III.
Phys.
Rev.
Lett.
87,art.
no.
255502(2001)5Legut,D.
,Friak,M.
,ˇSob,M.
:WhyispoloniumsimplecubicandsohighlyanisotropicPhys.
Rev.
Lett.
99,art.
no.
016402(2007)6ˇCerny,R.
,Francois,M.
,Yvon,K.
,Jaccard,D.
,Walker,E.
,Petˇrˇcek,V.
,Csaˇrova,I.
,Nissen,H.
-U.
,Wessicken,R.
:Asingle-crystalx-rayandHRTEMstudyoftheheavy-fermioncompoundYbCu4.
5.
J.
Condens.
Matter8,4485–4493(1996)7Villars,P.
,Calvert,L.
D.
:PearsonsHandbookofCrystallographicDataforIn-termetallicPhases(ASM,USA),Vols.
1–4(1991)8Weber,T.
,Dshemuchadse,J.
,Kobas,M.
,Conrad,M.
,Harbrecht,B.
,Steurer,W.
:Large,larger,largest-afamilyofcluster-basedtantalum-copper-aluminideswithgiantunitcells.
PartA:Structuresolutionandrenement.
ActaCrystallogr.
B65,308–317(2009)6PartIConceptsIncaseofquasicrystals,thenumberofdierentclustersinaparticularcompoundissmall,usuallyonlyoneortwo.
Quasiperiodiclong-rangeor-dermainlyoriginatesfromtheirnon-crystallographicsymmetrytogetherwiththeirabilitytooverlapinawell-denedwaywitheachother.
Thequestionis,howcomplexarequasicrystalscomparedtoperiodicin-termetallicsAretheymorecomplexthanthemostcomplexperiodiccom-pounds,suchascF23,158-Al55.
4Cu5.
4Ta39.
1,builtfrommuchmoredierentunitclustersthananyQCStructuralcomplexityisdiculttodene.
Itiscertainlynotsucienttojustcountthenumberofatomsperunitcell,whatwouldbeimpossibleforaquasicrystalanyway.
Forinstance,the192atomslocatedonthegeneralWyckopositioninacubicunitcellwithspacegroupsymmetryFm3m,canbedescribedjustbythecoordinatesofasingleatom,i.
e.
3parameters.
ForthesamenumberofatomsinatriclinicunitcellandspacegroupP1,576parameterswouldbeneeded.
Ontheotherhand,itisalsonotjustthenumberoffreeparameters.
AcubicstructurewithspacegroupsymmetryFm3mand4atomsperunitcellneedsthreeparameters,aswell,butitseemstobemuchsimpler.
Particularly,becauseitisjustthecubicclosestpacking.
OnepossibilityforindicatingthedegreeofcomplexitycouldbethenumberofdierentAETortheR-atlas.
TheR-atlasofastructureconsistsofalldierentatomiccongurationswithinacircleofradiusR.
Thismayworkforcomparing(quasi)periodicstructureswith(quasi)periodicones,butnotforcomparingperiodicwithquasiperiodicstructures.
Inthelattercase,onecouldcompare,forinstance,theR-atlasesuptoamaximumR,whichisgivenbythedimensionsoftheunitcell.
Anotherpossibilitywouldbetocomparetheinformationneededtofullydescribetheoneandtheotherstructureortogrowitinthecomputer.
Complexityisreectedinbroaddistributionfunctions(histogramms)ofatomicdistances,largenumberofdierentAETsforeachkindofatom,largenumberofindependentparametersforthedescriptionofastructure,lowsymmetry.
Complexityresultsfromunfavorablesizeratiosofatomshinderinggeometricallyoptimuminterac-tions,preferenceofcoordinations(AET,clusters)hinderingoptimumpackings(e.
g.
5-foldsymmetry),parametersthatareclosetooptimumbutnotoptimal(pseudosymmetry).

VPSMS:53元/月KVM-512MB/15G SSD/1TB/洛杉矶CN2 GIA

VPSMS最近在做两周年活动,加上双十一也不久了,商家针对美国洛杉矶CN2 GIA线路VPS主机提供月付6.8折,季付6.2折优惠码,同时活动期间充值800元送150元。这是一家由港人和国人合资开办的VPS主机商,提供基于KVM架构的VPS主机,美国洛杉矶安畅的机器,线路方面电信联通CN2 GIA,移动直连,国内访问速度不错。下面分享几款VPS主机配置信息。CPU:1core内存:512MB硬盘:...

数脉科技:阿里云香港CN2线路服务器;E3-1230v2/16G/240G SSD/10Mbps/3IP,月付374元

数脉科技怎么样?昨天看到数脉科技发布了7月优惠,如果你想购买香港服务器,可以看看他家的产品,性价比还是非常高的。数脉科技对香港自营机房的香港服务器进行超低价促销,可选择10M、30M的优质bgp网络。目前商家有优质BGP、CN2、阿里云线路,国内用户用来做站非常不错,目前E3/16GB阿里云CN2线路的套餐有一个立减400元的优惠,有需要的朋友可以看看。点击进入:数脉科技商家官方网站香港特价阿里云...

企鹅小屋:垃圾服务商有跑路风险,站长注意转移备份数据!

企鹅小屋:垃圾服务商有跑路风险!企鹅不允许你二次工单的,二次提交工单直接关服务器,再严重就封号,意思是你提交工单要小心,别因为提交工单被干了账号!前段时间,就有站长说企鹅小屋要跑路了,站长不太相信,本站平台已经为企鹅小屋推荐了几千元的业绩,CPS返利达182.67CNY。然后,站长通过企鹅小屋后台申请提现,提现申请至今已经有20几天,企鹅小屋也没有转账。然后,搞笑的一幕出现了:平台账号登录不上提示...

directspace为你推荐
美国免费主机谁告诉我哪有免费的虚拟主机?租服务器租个一般的服务器大概多少钱啊?便宜的虚拟主机低价虚拟主机那种类型的好呢?虚拟空间哪个好虚拟空间哪个好asp虚拟空间ASP空间是什么意思?apache虚拟主机为何apache要配置虚拟主机虚拟主机mysql虚拟主机支持mysql数据库,还需要额外购买mysql吗?论坛虚拟主机我要做个论坛,是用虚拟主机呢?还是用空间?除论坛外还有好及个单页,还带数据库。jsp虚拟主机虚拟主机不能支持JSP的吗青岛虚拟主机虚拟主机在什么地方买好?又便宜?
香港服务器租用 中国万网域名 国内免备案主机 westhost 谷歌香港 双12活动 美国php主机 中国电信测速112 帽子云排名 免费网络 xuni 阿里dns 美国主机侦探 web是什么意思 发证机构 美国西雅图独立 回程 stealthy 西安电信测速网 主机配置 更多