peaksdirectspace

directspace  时间:2021-01-03  阅读:()
PartIConcepts2PartIConceptsInthisrstpartofthebook,thebasicconceptsandtoolsarepresentedforthedescriptionofquasicrystalsandtheirstructurallycloselyrelatedperiodicapproximants.
Wewillusebothd-dimensional(dD)andn-dimensional(nD)approaches,wheredisthedimensionofthephysicalspaceandnthatofthehigher-dimensionalembeddingspace(n>d).
IndDphysicalspace,quasiperiodicstructurescanbedescribedbasedontilingsorcoverings.
Bytilingwemeanagaplesspackingofnon-overlappingcopiesofanitenumberofunittiles.
Inanalogytoacrystallographiclattice,suchatilingmaybeseenasaquasilatticewithmorethanoneunitcellofgen-eralshape.
Inacovering,oneormoretypesofpartiallyoverlappingcoveringclustersfullycoveratilingorquasiperiodicpattern.
InthenDdescription,dDquasiperiodicstructuresresultfromirrationalphysical-spacecutsofap-propriateperiodicnDhypercrystalstructures.
Rationalapproximantscanbeobtainedinthesamewayaftershearinghypercrystalstructuresintothere-spectiverationalcutorientations.
InthenDapproach,otherwisehiddenstructuralcorrelationsarerevealed.
Forinstance,theformationofdiractionpatternswithBraggreectionsand5-foldsymmetry,causingsomuchcontroversyinthersttimeafterthediscov-eryofquasicrystals,1canbeeasilyexplainedinthisway.
ThenDapproachalsoclearlyidentiesaparticularkindofcorrelatedatomicjumps(phasonips)asoriginatingfromphasonmodes,whichareexcitationsalreadyknownfromthestudyofincommensuratelymodulatedstructures.
DespitethepowerandeleganceofthenDapproach,onehastokeepinmind,however,thatrealquasicrystalsare3Dobjectsandthattheirphysicalinteractionstakeplaceinthreedimensions,indeed.
WhatisaCrystalBeforewedenethetermquasicrystalweshouldclarifywhatwemeanbycrystalandnD(hyper)crystal,ingeneral.
IntheInternationalTablesforCrys-tallography,VolA,chapter8.
1Basicconcepts,2onewillndthefollowing:Crystalsareniterealobjectsinphysicalspacewhichmaybeidealizedbyinnitethree-dimensionalperiodiccrystalstructuresinpointspace.
Three-dimensionalperiodicitymeansthattherearetranslationsamongthesymmetryoperationsoftheobjectwiththetranslationvectorsspanningathree-dimensionalspace.
Extendingthisconceptofcrystalstructuretomoregeneralperiodicobjectsandton-dimensionalspace,oneobtainsthefollowingdenition:1see,e.
g.
,W.
Steurer,S.
Deloudi(2008):FascinatingQuasicrystals.
ActaCrystal-logr.
A64,1–11,andreferencestherein.
2H.
Wondratschek:BasicConcepts.
In:InternationalTablesforCrystallography,vol.
A,KluwerAcademicPublisher,Dordrecht/Boston/London,pp.
720–740(2002)PartIConcepts3Denition:Anobjectinn-dimensionalpointspaceEniscalledann-dimensionalcrystallographicpatternor,forshort,crystalpatternifamongitssymmetryoperations(i)therearentranslations,thetranslationvectorst1,tnofwhicharelinearlyindependent,(ii)alltranslationvectors,exceptthezerovectoro,havealengthofatleastd>0.
Condition(i)guaranteesthen-dimensionalperiodicityandthusexcludessubperiodicsymmetrieslikelayergroups,rodgroupsandfriezegroups.
Condition(ii)takesintoaccountthenitesizeofatomsinactualcrystals.
Acrucialpropertyofideal,fullyorderedcrystalsofanydimensionisthattheypossesspurepointFourierspectra.
ThismeansthattheirdiractionpatternsshowBraggreections(Diracδ-peaks)only,andnostructuraldiusescattering.
Arealcrystalcanbedescribedbycomparingitwiththemodelofanidealcrystalandbyclassifyingthedeviationsfromit.
Inthefollowing,sometermsarelistedwhichareusedforthedescriptionofrealcrystalsortheiridealizedmodels:IdealcrystalThecounterparttoarealcrystal.
Innitemathematicalobjectwithanidealizedcrystalstructure;anidealcrystalcanbeorderedordisordered(disorderedidealcrystal);ifitisdisordered,itisnotperiodicanymore,however,ithasaperiodicaveragestructure.
RealcrystalThecounterparttoanidealcrystal.
Reallyexistingcrystalwhichcanbeperfectorimperfect.
PerfectcrystalCrystalinthermodynamicequilibrium,whichcanbeor-deredordisordered;theonlydefectspossiblearepointdefectssuchasthermalvacancies,impurities.
ImperfectcrystalCrystalcontainingadditionallydefectsthatarenotinthermodynamicequilibriumsuchasdislocations.
NanocrystalRealcrystalwithdimensionsonthescaleofnanometers;duetothelargesurfacearea,itsstructuremayfundamentallydierfromthatoflargercrystalswiththesamecompositionandthermalhistory.
MetacrystalCrystalconsistingofbuildingunitsotherthanatoms(ions,molecules),suchasphotonicorphononiccrystals.
WhatisaQuasicrystalOneofthetermsmissingintheabovelistisaperiodiccrystalwhichisusedashypernymforincommensuratelymodulatedstructures(IMS),compositecrys-tals(CS),andquasicrystalsQC.
AlthoughtheirstructureslackdDtransla-tionalperiodicity,theirFourierspectrashowBraggpeaksonly.
ThispropertyhasbeenusedbytheIUCrAd-interimCommissiononAperiodicCrystalstoidentifyaperiodiccrystalsbytheiressentiallydiscretediractiondiagram.
33AdinterimCommissiononAperiodicCrystals.
ActaCrystallogr.
A48,928(1992)4PartIConceptsConsequently,dDtranslationalperiodicityisnomoreseenasanecessaryconditionforcrystallinity.
Thereciprocalspacedenitionofacrystalbyitsspectralpropertiescanbemuchsimplerthantheonebasedondirectspace.
Additionally,ithastheadvantageofbeingdirectlyaccessibleexperimentallybydiractionmethods.
Howeverpragmaticthisdenitionmaybe,itisalsofuzzy.
Thetermdirac-tiondiagramreferstoanexperimentallyobtainedimage,butdoesnottakeintoaccountthattheshapesofreectionsdependonthekindofradiationused,theresolutionanddynamicrangeofthedetectoraswellasthequalityandsizeofthecrystalstudied.
Astronglyabsorbing,large,andirregularlyshapedcrystalofpoorquality,forinstance,wouldnotatallgiveanessentiallydiscretediractiondiagramevenforsimpleperiodicstructures.
Consequently,theconceptofanaperiodiccrystalhastorefertoanidealaperiodiccrystalofinnitesizeandtoitsFourierspectrumratherthantoitsdiractionimage.
Adenitionofthedierenttypesofaperiodiccrystalsingeneralandofquasicrystalsinparticularwillbegiveninchapter3.
HowdoweusethetermquasicrystalinthisbookBythetermquasicrystalwedenoterealcrystalswithdiractionpatternsshowingnon-crystallographicsymmetry.
Thisexperiment-relatedreciprocalspacedenitionofquasicrystalsmakessymmetryanalysissimpleandallowstheapplicationoftoolsthatarewellestablishedinstandardcrystalstructureanalysis.
Weclearlywanttodistinguishbetweenquasicrystals(QC)inthismeaningandtheotherkindsofaperiodiccrystalswithcrystallographicsymmetrysuchasincommensuratelymodulatedstructures(IMS)andcompositestructures(CS).
Inthemathematicalmeaningofthetermquasiperiodicity,allthreeofthemarequasiperiodicstructures,whichhavesomesimilaritiesintheirhigher-dimensionaldescription.
ThemaindierencebetweenaQCandanIMSisthatanIMScanbedescribedasmodulationofaperiodiccrystalstructure.
Ifthemodulationamplitudeapproacheszero,theperiodicbasicstructureoftheIMSisobtained.
ACS,ontheotherhand,canbedescribedas,sometimesmutuallymodulated,intergrowthofperiodicstructures.
Suchadirectone-to-onerelationshiptoperiodicstructuresisnotpossibleinthecaseofQCwithnon-crystallographicsymmetry.
Furthermore,forbothIMSandCS,theorientational(rotationalpoint)symmetrydoesnotplaceanyconstraintontheirrationallengthscalesin-volved.
ThisisdierentforQC,where,forinstance,thenumberτ=2cosπ/5isrelatedto5-foldrotationalsymmetry.
Finally,wedonotusethetermsquasicrystalandquasiperiodicstruc-turesynonymously.
QCmayhavestrictlyquasiperiodicstructureswithnon-crystallographicsymmetryinanidealizeddescription.
However,theirstructuremayalsobequasiperiodiconaverageonly;or,evenonlysomehowrelatedtoquasiperiodicity.
Strictlyquasiperiodicstructuresmustobeytheclosenesscon-ditioninthenDdescription,thismaynotbethecaseforthestructureofrealQC,whichthenwouldcorrespondtoakindoflock-instate.
PartIConcepts5StructuralComplexityUnaryphasesA:If,duetoonlyisotropicinteractions,eachatomisequallydenselysurroundedbytheotheratomsintherstcoordinationshell,densespherepackingsaretheconsequence.
Atomicenvironmenttypes(AET)caneitherbecuboctahedra,suchasinfcccF4-Al,ordisheptahedra,suchasinhcphP2-Mg,withthecoordinationnumberCN=12inbothcases.
Incaseofanisotropicinteractions(directionalbonding,magneticinteractions,dispro-portionationunderpressure,etc.
),morecomplexstructurescanformsuchascI58-MnoroC84-Cs-III.
4Anisotropicinteractions,however,canalsoleadtothegeometricallysimplestpossiblestructure,thatofcP1-Po.
5BinaryphasesA–B:InabinaryintermetalliccompoundAxBy,eachatomhastobesurroundedbyatleastsomeatomsoftheotherspeciesinordertomaximizethenumberofattractiveinteractions,otherwisethepureelementphaseswouldseparate.
Stoichiometry,atomicsizeratios,direction-alityofatomicinteractions,andtheelectronicbandstructuredeterminetherespectiveAET.
Thesemaycompriseseveralcoordinationshellsandareusu-allycalledclusters.
ThesizeoftheunitcellofanintermetalliccompoundisdeterminedbythemostecientpackingofitsconstitutingAET(clusters),whichisthatwiththelowestfreeenergy,ofcourse.
Consequently,themostecientpackingcanbequitedierentforhigh-andlow-temperaturephasesduetotheentropicalcontributionsofthermalvibrationsandchemicaldisorder.
ThecomplexityofbinaryintermetalliccompoundsrangesbetweencP2-NiAlandmC7,448-Yb2Cu9.
6TernaryphasesA-B-C:Ontheonehand,threedierentconstituentsgivemoreexibilityinoptimizinginteractions.
Ontheotherhand,particularlyinthecaseofrepulsiveinteractionsbetweentwoofthethreeatomtypes,itcangetmuchmorediculttorealizethemostecientpacking.
MoredierentAETorclustersmaybeneededtocreatetheoptimumenvironmentsofA,B,andC.
ThecomplexityofternaryintermetalliccompoundsrangesbetweenhP3-BaPtSb7andcF23,158-Al55.
4Cu5.
4Ta39.
1.
84McMahon,M.
I.
,Nelmes,R.
J.
,Rekhi,S.
:ComplexCrystalStructureofCesium-III.
Phys.
Rev.
Lett.
87,art.
no.
255502(2001)5Legut,D.
,Friak,M.
,ˇSob,M.
:WhyispoloniumsimplecubicandsohighlyanisotropicPhys.
Rev.
Lett.
99,art.
no.
016402(2007)6ˇCerny,R.
,Francois,M.
,Yvon,K.
,Jaccard,D.
,Walker,E.
,Petˇrˇcek,V.
,Csaˇrova,I.
,Nissen,H.
-U.
,Wessicken,R.
:Asingle-crystalx-rayandHRTEMstudyoftheheavy-fermioncompoundYbCu4.
5.
J.
Condens.
Matter8,4485–4493(1996)7Villars,P.
,Calvert,L.
D.
:PearsonsHandbookofCrystallographicDataforIn-termetallicPhases(ASM,USA),Vols.
1–4(1991)8Weber,T.
,Dshemuchadse,J.
,Kobas,M.
,Conrad,M.
,Harbrecht,B.
,Steurer,W.
:Large,larger,largest-afamilyofcluster-basedtantalum-copper-aluminideswithgiantunitcells.
PartA:Structuresolutionandrenement.
ActaCrystallogr.
B65,308–317(2009)6PartIConceptsIncaseofquasicrystals,thenumberofdierentclustersinaparticularcompoundissmall,usuallyonlyoneortwo.
Quasiperiodiclong-rangeor-dermainlyoriginatesfromtheirnon-crystallographicsymmetrytogetherwiththeirabilitytooverlapinawell-denedwaywitheachother.
Thequestionis,howcomplexarequasicrystalscomparedtoperiodicin-termetallicsAretheymorecomplexthanthemostcomplexperiodiccom-pounds,suchascF23,158-Al55.
4Cu5.
4Ta39.
1,builtfrommuchmoredierentunitclustersthananyQCStructuralcomplexityisdiculttodene.
Itiscertainlynotsucienttojustcountthenumberofatomsperunitcell,whatwouldbeimpossibleforaquasicrystalanyway.
Forinstance,the192atomslocatedonthegeneralWyckopositioninacubicunitcellwithspacegroupsymmetryFm3m,canbedescribedjustbythecoordinatesofasingleatom,i.
e.
3parameters.
ForthesamenumberofatomsinatriclinicunitcellandspacegroupP1,576parameterswouldbeneeded.
Ontheotherhand,itisalsonotjustthenumberoffreeparameters.
AcubicstructurewithspacegroupsymmetryFm3mand4atomsperunitcellneedsthreeparameters,aswell,butitseemstobemuchsimpler.
Particularly,becauseitisjustthecubicclosestpacking.
OnepossibilityforindicatingthedegreeofcomplexitycouldbethenumberofdierentAETortheR-atlas.
TheR-atlasofastructureconsistsofalldierentatomiccongurationswithinacircleofradiusR.
Thismayworkforcomparing(quasi)periodicstructureswith(quasi)periodicones,butnotforcomparingperiodicwithquasiperiodicstructures.
Inthelattercase,onecouldcompare,forinstance,theR-atlasesuptoamaximumR,whichisgivenbythedimensionsoftheunitcell.
Anotherpossibilitywouldbetocomparetheinformationneededtofullydescribetheoneandtheotherstructureortogrowitinthecomputer.
Complexityisreectedinbroaddistributionfunctions(histogramms)ofatomicdistances,largenumberofdierentAETsforeachkindofatom,largenumberofindependentparametersforthedescriptionofastructure,lowsymmetry.
Complexityresultsfromunfavorablesizeratiosofatomshinderinggeometricallyoptimuminterac-tions,preferenceofcoordinations(AET,clusters)hinderingoptimumpackings(e.
g.
5-foldsymmetry),parametersthatareclosetooptimumbutnotoptimal(pseudosymmetry).

PacificRack - 洛杉矶QN机房 低至年$7.2 同有站群多IP地址VPS主机

需要提前声明的是有网友反馈到,PacificRack 商家是不支持DD安装Windows系统的,他有安装后导致服务器被封的问题。确实有一些服务商是不允许的,我们尽可能的在服务商选择可以直接安装Windows系统套餐,毕竟DD安装的Win系统在使用上实际上也不够体验好。在前面有提到夏季促销的"PacificRack夏季促销PR-M系列和多IP站群VPS主机 年付低至19美元"有提到年付12美元的洛杉...

UCloud 618活动:香港云服务器月付13元起;最高可购3年,AMD/Intel系列

ucloud6.18推出全球大促活动,针对新老用户(个人/企业)提供云服务器促销产品,其中最低配快杰云服务器月付5元起,中国香港快杰型云服务器月付13元起,最高可购3年,有AMD/Intel系列。当然这都是针对新用户的优惠。注意,UCloud全球有31个数据中心,29条专线,覆盖五大洲,基本上你想要的都能找到。注意:以上ucloud 618优惠都是新用户专享,老用户就随便看看!点击进入:uclou...

npidc:9元/月,cn2线路(不限流量)云服务器,金盾+天机+傲盾防御CC攻击,美国/香港/韩国

npidc全称No Problem Network Co.,Limited(冇問題(香港)科技有限公司,今年4月注册的)正在搞云服务器和独立服务器促销,数据中心有香港、美国、韩国,走CN2+BGP线路无视高峰堵塞,而且不限制流量,支持自定义内存、CPU、硬盘、带宽等,采用金盾+天机+傲盾防御系统拦截CC攻击,非常适合建站等用途。活动链接:https://www.npidc.com/act.html...

directspace为你推荐
美国vps服务器美国Vps 哪里的稳定,服务好,不是代购,主要是我新手,不太懂域名注册公司一般公司注册的都是什么域名?查询ip怎样查别人的ip地址?免费网站空间申请哪里有免费申请空间的(网页制作)北京网站空间自己弄一个简单的网站,大概需要办理什么,大概需要多少钱?网站空间免备案哪有不用备案的网站空间?什么是虚拟主机虚拟主机是什么?山东虚拟主机山东东营制作网站的公司在哪里?asp虚拟主机ASP源码上传到虚拟主机什么地方jsp虚拟主机java虚拟主机空间怎么选择,国内jsp虚拟主机比较稳定,现在java项目做好后需要推荐一下吧
域名备案网站 独享100m 抢票工具 193邮箱 admit的用法 泉州移动 美国网站服务器 免费phpmysql空间 石家庄服务器托管 中国域名 tracker服务器 贵州电信 亿库 最新优惠 什么是dns windowsserverr2 weblogic部署 服务器操作系统 qq部落18-3 电脑主机响 更多