peaksdirectspace

directspace  时间:2021-01-03  阅读:()
PartIConcepts2PartIConceptsInthisrstpartofthebook,thebasicconceptsandtoolsarepresentedforthedescriptionofquasicrystalsandtheirstructurallycloselyrelatedperiodicapproximants.
Wewillusebothd-dimensional(dD)andn-dimensional(nD)approaches,wheredisthedimensionofthephysicalspaceandnthatofthehigher-dimensionalembeddingspace(n>d).
IndDphysicalspace,quasiperiodicstructurescanbedescribedbasedontilingsorcoverings.
Bytilingwemeanagaplesspackingofnon-overlappingcopiesofanitenumberofunittiles.
Inanalogytoacrystallographiclattice,suchatilingmaybeseenasaquasilatticewithmorethanoneunitcellofgen-eralshape.
Inacovering,oneormoretypesofpartiallyoverlappingcoveringclustersfullycoveratilingorquasiperiodicpattern.
InthenDdescription,dDquasiperiodicstructuresresultfromirrationalphysical-spacecutsofap-propriateperiodicnDhypercrystalstructures.
Rationalapproximantscanbeobtainedinthesamewayaftershearinghypercrystalstructuresintothere-spectiverationalcutorientations.
InthenDapproach,otherwisehiddenstructuralcorrelationsarerevealed.
Forinstance,theformationofdiractionpatternswithBraggreectionsand5-foldsymmetry,causingsomuchcontroversyinthersttimeafterthediscov-eryofquasicrystals,1canbeeasilyexplainedinthisway.
ThenDapproachalsoclearlyidentiesaparticularkindofcorrelatedatomicjumps(phasonips)asoriginatingfromphasonmodes,whichareexcitationsalreadyknownfromthestudyofincommensuratelymodulatedstructures.
DespitethepowerandeleganceofthenDapproach,onehastokeepinmind,however,thatrealquasicrystalsare3Dobjectsandthattheirphysicalinteractionstakeplaceinthreedimensions,indeed.
WhatisaCrystalBeforewedenethetermquasicrystalweshouldclarifywhatwemeanbycrystalandnD(hyper)crystal,ingeneral.
IntheInternationalTablesforCrys-tallography,VolA,chapter8.
1Basicconcepts,2onewillndthefollowing:Crystalsareniterealobjectsinphysicalspacewhichmaybeidealizedbyinnitethree-dimensionalperiodiccrystalstructuresinpointspace.
Three-dimensionalperiodicitymeansthattherearetranslationsamongthesymmetryoperationsoftheobjectwiththetranslationvectorsspanningathree-dimensionalspace.
Extendingthisconceptofcrystalstructuretomoregeneralperiodicobjectsandton-dimensionalspace,oneobtainsthefollowingdenition:1see,e.
g.
,W.
Steurer,S.
Deloudi(2008):FascinatingQuasicrystals.
ActaCrystal-logr.
A64,1–11,andreferencestherein.
2H.
Wondratschek:BasicConcepts.
In:InternationalTablesforCrystallography,vol.
A,KluwerAcademicPublisher,Dordrecht/Boston/London,pp.
720–740(2002)PartIConcepts3Denition:Anobjectinn-dimensionalpointspaceEniscalledann-dimensionalcrystallographicpatternor,forshort,crystalpatternifamongitssymmetryoperations(i)therearentranslations,thetranslationvectorst1,tnofwhicharelinearlyindependent,(ii)alltranslationvectors,exceptthezerovectoro,havealengthofatleastd>0.
Condition(i)guaranteesthen-dimensionalperiodicityandthusexcludessubperiodicsymmetrieslikelayergroups,rodgroupsandfriezegroups.
Condition(ii)takesintoaccountthenitesizeofatomsinactualcrystals.
Acrucialpropertyofideal,fullyorderedcrystalsofanydimensionisthattheypossesspurepointFourierspectra.
ThismeansthattheirdiractionpatternsshowBraggreections(Diracδ-peaks)only,andnostructuraldiusescattering.
Arealcrystalcanbedescribedbycomparingitwiththemodelofanidealcrystalandbyclassifyingthedeviationsfromit.
Inthefollowing,sometermsarelistedwhichareusedforthedescriptionofrealcrystalsortheiridealizedmodels:IdealcrystalThecounterparttoarealcrystal.
Innitemathematicalobjectwithanidealizedcrystalstructure;anidealcrystalcanbeorderedordisordered(disorderedidealcrystal);ifitisdisordered,itisnotperiodicanymore,however,ithasaperiodicaveragestructure.
RealcrystalThecounterparttoanidealcrystal.
Reallyexistingcrystalwhichcanbeperfectorimperfect.
PerfectcrystalCrystalinthermodynamicequilibrium,whichcanbeor-deredordisordered;theonlydefectspossiblearepointdefectssuchasthermalvacancies,impurities.
ImperfectcrystalCrystalcontainingadditionallydefectsthatarenotinthermodynamicequilibriumsuchasdislocations.
NanocrystalRealcrystalwithdimensionsonthescaleofnanometers;duetothelargesurfacearea,itsstructuremayfundamentallydierfromthatoflargercrystalswiththesamecompositionandthermalhistory.
MetacrystalCrystalconsistingofbuildingunitsotherthanatoms(ions,molecules),suchasphotonicorphononiccrystals.
WhatisaQuasicrystalOneofthetermsmissingintheabovelistisaperiodiccrystalwhichisusedashypernymforincommensuratelymodulatedstructures(IMS),compositecrys-tals(CS),andquasicrystalsQC.
AlthoughtheirstructureslackdDtransla-tionalperiodicity,theirFourierspectrashowBraggpeaksonly.
ThispropertyhasbeenusedbytheIUCrAd-interimCommissiononAperiodicCrystalstoidentifyaperiodiccrystalsbytheiressentiallydiscretediractiondiagram.
33AdinterimCommissiononAperiodicCrystals.
ActaCrystallogr.
A48,928(1992)4PartIConceptsConsequently,dDtranslationalperiodicityisnomoreseenasanecessaryconditionforcrystallinity.
Thereciprocalspacedenitionofacrystalbyitsspectralpropertiescanbemuchsimplerthantheonebasedondirectspace.
Additionally,ithastheadvantageofbeingdirectlyaccessibleexperimentallybydiractionmethods.
Howeverpragmaticthisdenitionmaybe,itisalsofuzzy.
Thetermdirac-tiondiagramreferstoanexperimentallyobtainedimage,butdoesnottakeintoaccountthattheshapesofreectionsdependonthekindofradiationused,theresolutionanddynamicrangeofthedetectoraswellasthequalityandsizeofthecrystalstudied.
Astronglyabsorbing,large,andirregularlyshapedcrystalofpoorquality,forinstance,wouldnotatallgiveanessentiallydiscretediractiondiagramevenforsimpleperiodicstructures.
Consequently,theconceptofanaperiodiccrystalhastorefertoanidealaperiodiccrystalofinnitesizeandtoitsFourierspectrumratherthantoitsdiractionimage.
Adenitionofthedierenttypesofaperiodiccrystalsingeneralandofquasicrystalsinparticularwillbegiveninchapter3.
HowdoweusethetermquasicrystalinthisbookBythetermquasicrystalwedenoterealcrystalswithdiractionpatternsshowingnon-crystallographicsymmetry.
Thisexperiment-relatedreciprocalspacedenitionofquasicrystalsmakessymmetryanalysissimpleandallowstheapplicationoftoolsthatarewellestablishedinstandardcrystalstructureanalysis.
Weclearlywanttodistinguishbetweenquasicrystals(QC)inthismeaningandtheotherkindsofaperiodiccrystalswithcrystallographicsymmetrysuchasincommensuratelymodulatedstructures(IMS)andcompositestructures(CS).
Inthemathematicalmeaningofthetermquasiperiodicity,allthreeofthemarequasiperiodicstructures,whichhavesomesimilaritiesintheirhigher-dimensionaldescription.
ThemaindierencebetweenaQCandanIMSisthatanIMScanbedescribedasmodulationofaperiodiccrystalstructure.
Ifthemodulationamplitudeapproacheszero,theperiodicbasicstructureoftheIMSisobtained.
ACS,ontheotherhand,canbedescribedas,sometimesmutuallymodulated,intergrowthofperiodicstructures.
Suchadirectone-to-onerelationshiptoperiodicstructuresisnotpossibleinthecaseofQCwithnon-crystallographicsymmetry.
Furthermore,forbothIMSandCS,theorientational(rotationalpoint)symmetrydoesnotplaceanyconstraintontheirrationallengthscalesin-volved.
ThisisdierentforQC,where,forinstance,thenumberτ=2cosπ/5isrelatedto5-foldrotationalsymmetry.
Finally,wedonotusethetermsquasicrystalandquasiperiodicstruc-turesynonymously.
QCmayhavestrictlyquasiperiodicstructureswithnon-crystallographicsymmetryinanidealizeddescription.
However,theirstructuremayalsobequasiperiodiconaverageonly;or,evenonlysomehowrelatedtoquasiperiodicity.
Strictlyquasiperiodicstructuresmustobeytheclosenesscon-ditioninthenDdescription,thismaynotbethecaseforthestructureofrealQC,whichthenwouldcorrespondtoakindoflock-instate.
PartIConcepts5StructuralComplexityUnaryphasesA:If,duetoonlyisotropicinteractions,eachatomisequallydenselysurroundedbytheotheratomsintherstcoordinationshell,densespherepackingsaretheconsequence.
Atomicenvironmenttypes(AET)caneitherbecuboctahedra,suchasinfcccF4-Al,ordisheptahedra,suchasinhcphP2-Mg,withthecoordinationnumberCN=12inbothcases.
Incaseofanisotropicinteractions(directionalbonding,magneticinteractions,dispro-portionationunderpressure,etc.
),morecomplexstructurescanformsuchascI58-MnoroC84-Cs-III.
4Anisotropicinteractions,however,canalsoleadtothegeometricallysimplestpossiblestructure,thatofcP1-Po.
5BinaryphasesA–B:InabinaryintermetalliccompoundAxBy,eachatomhastobesurroundedbyatleastsomeatomsoftheotherspeciesinordertomaximizethenumberofattractiveinteractions,otherwisethepureelementphaseswouldseparate.
Stoichiometry,atomicsizeratios,direction-alityofatomicinteractions,andtheelectronicbandstructuredeterminetherespectiveAET.
Thesemaycompriseseveralcoordinationshellsandareusu-allycalledclusters.
ThesizeoftheunitcellofanintermetalliccompoundisdeterminedbythemostecientpackingofitsconstitutingAET(clusters),whichisthatwiththelowestfreeenergy,ofcourse.
Consequently,themostecientpackingcanbequitedierentforhigh-andlow-temperaturephasesduetotheentropicalcontributionsofthermalvibrationsandchemicaldisorder.
ThecomplexityofbinaryintermetalliccompoundsrangesbetweencP2-NiAlandmC7,448-Yb2Cu9.
6TernaryphasesA-B-C:Ontheonehand,threedierentconstituentsgivemoreexibilityinoptimizinginteractions.
Ontheotherhand,particularlyinthecaseofrepulsiveinteractionsbetweentwoofthethreeatomtypes,itcangetmuchmorediculttorealizethemostecientpacking.
MoredierentAETorclustersmaybeneededtocreatetheoptimumenvironmentsofA,B,andC.
ThecomplexityofternaryintermetalliccompoundsrangesbetweenhP3-BaPtSb7andcF23,158-Al55.
4Cu5.
4Ta39.
1.
84McMahon,M.
I.
,Nelmes,R.
J.
,Rekhi,S.
:ComplexCrystalStructureofCesium-III.
Phys.
Rev.
Lett.
87,art.
no.
255502(2001)5Legut,D.
,Friak,M.
,ˇSob,M.
:WhyispoloniumsimplecubicandsohighlyanisotropicPhys.
Rev.
Lett.
99,art.
no.
016402(2007)6ˇCerny,R.
,Francois,M.
,Yvon,K.
,Jaccard,D.
,Walker,E.
,Petˇrˇcek,V.
,Csaˇrova,I.
,Nissen,H.
-U.
,Wessicken,R.
:Asingle-crystalx-rayandHRTEMstudyoftheheavy-fermioncompoundYbCu4.
5.
J.
Condens.
Matter8,4485–4493(1996)7Villars,P.
,Calvert,L.
D.
:PearsonsHandbookofCrystallographicDataforIn-termetallicPhases(ASM,USA),Vols.
1–4(1991)8Weber,T.
,Dshemuchadse,J.
,Kobas,M.
,Conrad,M.
,Harbrecht,B.
,Steurer,W.
:Large,larger,largest-afamilyofcluster-basedtantalum-copper-aluminideswithgiantunitcells.
PartA:Structuresolutionandrenement.
ActaCrystallogr.
B65,308–317(2009)6PartIConceptsIncaseofquasicrystals,thenumberofdierentclustersinaparticularcompoundissmall,usuallyonlyoneortwo.
Quasiperiodiclong-rangeor-dermainlyoriginatesfromtheirnon-crystallographicsymmetrytogetherwiththeirabilitytooverlapinawell-denedwaywitheachother.
Thequestionis,howcomplexarequasicrystalscomparedtoperiodicin-termetallicsAretheymorecomplexthanthemostcomplexperiodiccom-pounds,suchascF23,158-Al55.
4Cu5.
4Ta39.
1,builtfrommuchmoredierentunitclustersthananyQCStructuralcomplexityisdiculttodene.
Itiscertainlynotsucienttojustcountthenumberofatomsperunitcell,whatwouldbeimpossibleforaquasicrystalanyway.
Forinstance,the192atomslocatedonthegeneralWyckopositioninacubicunitcellwithspacegroupsymmetryFm3m,canbedescribedjustbythecoordinatesofasingleatom,i.
e.
3parameters.
ForthesamenumberofatomsinatriclinicunitcellandspacegroupP1,576parameterswouldbeneeded.
Ontheotherhand,itisalsonotjustthenumberoffreeparameters.
AcubicstructurewithspacegroupsymmetryFm3mand4atomsperunitcellneedsthreeparameters,aswell,butitseemstobemuchsimpler.
Particularly,becauseitisjustthecubicclosestpacking.
OnepossibilityforindicatingthedegreeofcomplexitycouldbethenumberofdierentAETortheR-atlas.
TheR-atlasofastructureconsistsofalldierentatomiccongurationswithinacircleofradiusR.
Thismayworkforcomparing(quasi)periodicstructureswith(quasi)periodicones,butnotforcomparingperiodicwithquasiperiodicstructures.
Inthelattercase,onecouldcompare,forinstance,theR-atlasesuptoamaximumR,whichisgivenbythedimensionsoftheunitcell.
Anotherpossibilitywouldbetocomparetheinformationneededtofullydescribetheoneandtheotherstructureortogrowitinthecomputer.
Complexityisreectedinbroaddistributionfunctions(histogramms)ofatomicdistances,largenumberofdierentAETsforeachkindofatom,largenumberofindependentparametersforthedescriptionofastructure,lowsymmetry.
Complexityresultsfromunfavorablesizeratiosofatomshinderinggeometricallyoptimuminterac-tions,preferenceofcoordinations(AET,clusters)hinderingoptimumpackings(e.
g.
5-foldsymmetry),parametersthatareclosetooptimumbutnotoptimal(pseudosymmetry).

QQ防红跳转短网址生成网站源码(91she完整源码)

使用此源码可以生成QQ自动跳转到浏览器的短链接,无视QQ报毒,任意网址均可生成。新版特色:全新界面,网站背景图采用Bing随机壁纸支持生成多种短链接兼容电脑和手机页面生成网址记录功能,域名黑名单功能网站后台可管理数据安装说明:由于此版本增加了记录和黑名单功能,所以用到了数据库。安装方法为修改config.php里面的数据库信息,导入install.sql到数据库。...

DiyVM(50元起)老牌商家,香港沙田CN2直连vps/不限流量/五折终身优惠

diyvm怎么样?diyvm是一家国内成立时间比较久的主机商家了,大约在6年前站长曾经用过他家的美国机房的套餐,非常稳定,适合做站,目前商家正在针对香港沙田机房的VPS进行促销,给的是五折优惠,续费同价,香港沙田机房走的是CN2直连的线路,到大陆地区的速度非常好,DiyVM商家采用小带宽不限流量的形式,带宽2Mbps起步,做站完全够用,有需要的朋友可以入手。diyvm优惠码:五折优惠码:OFF50...

GigsGigsCloud(年付26美元)国际线路美国VPS主机

已经有一段时间没有听到Gigsgigscloud服务商的信息,这不今天看到商家有新增一款国际版线路的美国VPS主机,年付也是比较便宜的只需要26美元。线路上是接入Cogentco、NTT、AN2YIX以及其他亚洲Peering。这款方案的VPS主机默认的配置是1Gbps带宽,比较神奇的需要等待手工人工开通激活,不是立即开通的。我们看看这款服务器在哪里选择看到套餐。内存CPUSSD流量价格购买地址1...

directspace为你推荐
com域名空间域名和空间是什么意思ip代理地址ip代理有什么用?虚拟主机控制面板如何利用虚拟主机控制面板对网站进行管理1g虚拟主机打算买个1G的虚拟主机,用来做什么好?西安虚拟主机如何评价虚拟主机的优劣安徽虚拟主机安徽众仁联合科技有限公司是做什么的啊??动态域名解析怎么做动态域名解析啊,希望高手指点域名反查whois反查怎么查,有什么接口吗?通过邮箱查有多少域名???com域名cc域名和cn或者com域名有区别吗?cc域名cc域名是什么意思
www二级域名 韩国服务器租用 debian7 镇江联通宽带 最好的空间 创梦 工作站服务器 爱奇艺vip免费试用7天 drupal安装 贵阳电信 腾讯云平台 linux服务器系统 asp简介 iptables 文件传输 海尔t68驱动 监控主机 kosspp 大容量存储控制器 丹弗润滑油 更多