peaksdirectspace

directspace  时间:2021-01-03  阅读:()
PartIConcepts2PartIConceptsInthisrstpartofthebook,thebasicconceptsandtoolsarepresentedforthedescriptionofquasicrystalsandtheirstructurallycloselyrelatedperiodicapproximants.
Wewillusebothd-dimensional(dD)andn-dimensional(nD)approaches,wheredisthedimensionofthephysicalspaceandnthatofthehigher-dimensionalembeddingspace(n>d).
IndDphysicalspace,quasiperiodicstructurescanbedescribedbasedontilingsorcoverings.
Bytilingwemeanagaplesspackingofnon-overlappingcopiesofanitenumberofunittiles.
Inanalogytoacrystallographiclattice,suchatilingmaybeseenasaquasilatticewithmorethanoneunitcellofgen-eralshape.
Inacovering,oneormoretypesofpartiallyoverlappingcoveringclustersfullycoveratilingorquasiperiodicpattern.
InthenDdescription,dDquasiperiodicstructuresresultfromirrationalphysical-spacecutsofap-propriateperiodicnDhypercrystalstructures.
Rationalapproximantscanbeobtainedinthesamewayaftershearinghypercrystalstructuresintothere-spectiverationalcutorientations.
InthenDapproach,otherwisehiddenstructuralcorrelationsarerevealed.
Forinstance,theformationofdiractionpatternswithBraggreectionsand5-foldsymmetry,causingsomuchcontroversyinthersttimeafterthediscov-eryofquasicrystals,1canbeeasilyexplainedinthisway.
ThenDapproachalsoclearlyidentiesaparticularkindofcorrelatedatomicjumps(phasonips)asoriginatingfromphasonmodes,whichareexcitationsalreadyknownfromthestudyofincommensuratelymodulatedstructures.
DespitethepowerandeleganceofthenDapproach,onehastokeepinmind,however,thatrealquasicrystalsare3Dobjectsandthattheirphysicalinteractionstakeplaceinthreedimensions,indeed.
WhatisaCrystalBeforewedenethetermquasicrystalweshouldclarifywhatwemeanbycrystalandnD(hyper)crystal,ingeneral.
IntheInternationalTablesforCrys-tallography,VolA,chapter8.
1Basicconcepts,2onewillndthefollowing:Crystalsareniterealobjectsinphysicalspacewhichmaybeidealizedbyinnitethree-dimensionalperiodiccrystalstructuresinpointspace.
Three-dimensionalperiodicitymeansthattherearetranslationsamongthesymmetryoperationsoftheobjectwiththetranslationvectorsspanningathree-dimensionalspace.
Extendingthisconceptofcrystalstructuretomoregeneralperiodicobjectsandton-dimensionalspace,oneobtainsthefollowingdenition:1see,e.
g.
,W.
Steurer,S.
Deloudi(2008):FascinatingQuasicrystals.
ActaCrystal-logr.
A64,1–11,andreferencestherein.
2H.
Wondratschek:BasicConcepts.
In:InternationalTablesforCrystallography,vol.
A,KluwerAcademicPublisher,Dordrecht/Boston/London,pp.
720–740(2002)PartIConcepts3Denition:Anobjectinn-dimensionalpointspaceEniscalledann-dimensionalcrystallographicpatternor,forshort,crystalpatternifamongitssymmetryoperations(i)therearentranslations,thetranslationvectorst1,tnofwhicharelinearlyindependent,(ii)alltranslationvectors,exceptthezerovectoro,havealengthofatleastd>0.
Condition(i)guaranteesthen-dimensionalperiodicityandthusexcludessubperiodicsymmetrieslikelayergroups,rodgroupsandfriezegroups.
Condition(ii)takesintoaccountthenitesizeofatomsinactualcrystals.
Acrucialpropertyofideal,fullyorderedcrystalsofanydimensionisthattheypossesspurepointFourierspectra.
ThismeansthattheirdiractionpatternsshowBraggreections(Diracδ-peaks)only,andnostructuraldiusescattering.
Arealcrystalcanbedescribedbycomparingitwiththemodelofanidealcrystalandbyclassifyingthedeviationsfromit.
Inthefollowing,sometermsarelistedwhichareusedforthedescriptionofrealcrystalsortheiridealizedmodels:IdealcrystalThecounterparttoarealcrystal.
Innitemathematicalobjectwithanidealizedcrystalstructure;anidealcrystalcanbeorderedordisordered(disorderedidealcrystal);ifitisdisordered,itisnotperiodicanymore,however,ithasaperiodicaveragestructure.
RealcrystalThecounterparttoanidealcrystal.
Reallyexistingcrystalwhichcanbeperfectorimperfect.
PerfectcrystalCrystalinthermodynamicequilibrium,whichcanbeor-deredordisordered;theonlydefectspossiblearepointdefectssuchasthermalvacancies,impurities.
ImperfectcrystalCrystalcontainingadditionallydefectsthatarenotinthermodynamicequilibriumsuchasdislocations.
NanocrystalRealcrystalwithdimensionsonthescaleofnanometers;duetothelargesurfacearea,itsstructuremayfundamentallydierfromthatoflargercrystalswiththesamecompositionandthermalhistory.
MetacrystalCrystalconsistingofbuildingunitsotherthanatoms(ions,molecules),suchasphotonicorphononiccrystals.
WhatisaQuasicrystalOneofthetermsmissingintheabovelistisaperiodiccrystalwhichisusedashypernymforincommensuratelymodulatedstructures(IMS),compositecrys-tals(CS),andquasicrystalsQC.
AlthoughtheirstructureslackdDtransla-tionalperiodicity,theirFourierspectrashowBraggpeaksonly.
ThispropertyhasbeenusedbytheIUCrAd-interimCommissiononAperiodicCrystalstoidentifyaperiodiccrystalsbytheiressentiallydiscretediractiondiagram.
33AdinterimCommissiononAperiodicCrystals.
ActaCrystallogr.
A48,928(1992)4PartIConceptsConsequently,dDtranslationalperiodicityisnomoreseenasanecessaryconditionforcrystallinity.
Thereciprocalspacedenitionofacrystalbyitsspectralpropertiescanbemuchsimplerthantheonebasedondirectspace.
Additionally,ithastheadvantageofbeingdirectlyaccessibleexperimentallybydiractionmethods.
Howeverpragmaticthisdenitionmaybe,itisalsofuzzy.
Thetermdirac-tiondiagramreferstoanexperimentallyobtainedimage,butdoesnottakeintoaccountthattheshapesofreectionsdependonthekindofradiationused,theresolutionanddynamicrangeofthedetectoraswellasthequalityandsizeofthecrystalstudied.
Astronglyabsorbing,large,andirregularlyshapedcrystalofpoorquality,forinstance,wouldnotatallgiveanessentiallydiscretediractiondiagramevenforsimpleperiodicstructures.
Consequently,theconceptofanaperiodiccrystalhastorefertoanidealaperiodiccrystalofinnitesizeandtoitsFourierspectrumratherthantoitsdiractionimage.
Adenitionofthedierenttypesofaperiodiccrystalsingeneralandofquasicrystalsinparticularwillbegiveninchapter3.
HowdoweusethetermquasicrystalinthisbookBythetermquasicrystalwedenoterealcrystalswithdiractionpatternsshowingnon-crystallographicsymmetry.
Thisexperiment-relatedreciprocalspacedenitionofquasicrystalsmakessymmetryanalysissimpleandallowstheapplicationoftoolsthatarewellestablishedinstandardcrystalstructureanalysis.
Weclearlywanttodistinguishbetweenquasicrystals(QC)inthismeaningandtheotherkindsofaperiodiccrystalswithcrystallographicsymmetrysuchasincommensuratelymodulatedstructures(IMS)andcompositestructures(CS).
Inthemathematicalmeaningofthetermquasiperiodicity,allthreeofthemarequasiperiodicstructures,whichhavesomesimilaritiesintheirhigher-dimensionaldescription.
ThemaindierencebetweenaQCandanIMSisthatanIMScanbedescribedasmodulationofaperiodiccrystalstructure.
Ifthemodulationamplitudeapproacheszero,theperiodicbasicstructureoftheIMSisobtained.
ACS,ontheotherhand,canbedescribedas,sometimesmutuallymodulated,intergrowthofperiodicstructures.
Suchadirectone-to-onerelationshiptoperiodicstructuresisnotpossibleinthecaseofQCwithnon-crystallographicsymmetry.
Furthermore,forbothIMSandCS,theorientational(rotationalpoint)symmetrydoesnotplaceanyconstraintontheirrationallengthscalesin-volved.
ThisisdierentforQC,where,forinstance,thenumberτ=2cosπ/5isrelatedto5-foldrotationalsymmetry.
Finally,wedonotusethetermsquasicrystalandquasiperiodicstruc-turesynonymously.
QCmayhavestrictlyquasiperiodicstructureswithnon-crystallographicsymmetryinanidealizeddescription.
However,theirstructuremayalsobequasiperiodiconaverageonly;or,evenonlysomehowrelatedtoquasiperiodicity.
Strictlyquasiperiodicstructuresmustobeytheclosenesscon-ditioninthenDdescription,thismaynotbethecaseforthestructureofrealQC,whichthenwouldcorrespondtoakindoflock-instate.
PartIConcepts5StructuralComplexityUnaryphasesA:If,duetoonlyisotropicinteractions,eachatomisequallydenselysurroundedbytheotheratomsintherstcoordinationshell,densespherepackingsaretheconsequence.
Atomicenvironmenttypes(AET)caneitherbecuboctahedra,suchasinfcccF4-Al,ordisheptahedra,suchasinhcphP2-Mg,withthecoordinationnumberCN=12inbothcases.
Incaseofanisotropicinteractions(directionalbonding,magneticinteractions,dispro-portionationunderpressure,etc.
),morecomplexstructurescanformsuchascI58-MnoroC84-Cs-III.
4Anisotropicinteractions,however,canalsoleadtothegeometricallysimplestpossiblestructure,thatofcP1-Po.
5BinaryphasesA–B:InabinaryintermetalliccompoundAxBy,eachatomhastobesurroundedbyatleastsomeatomsoftheotherspeciesinordertomaximizethenumberofattractiveinteractions,otherwisethepureelementphaseswouldseparate.
Stoichiometry,atomicsizeratios,direction-alityofatomicinteractions,andtheelectronicbandstructuredeterminetherespectiveAET.
Thesemaycompriseseveralcoordinationshellsandareusu-allycalledclusters.
ThesizeoftheunitcellofanintermetalliccompoundisdeterminedbythemostecientpackingofitsconstitutingAET(clusters),whichisthatwiththelowestfreeenergy,ofcourse.
Consequently,themostecientpackingcanbequitedierentforhigh-andlow-temperaturephasesduetotheentropicalcontributionsofthermalvibrationsandchemicaldisorder.
ThecomplexityofbinaryintermetalliccompoundsrangesbetweencP2-NiAlandmC7,448-Yb2Cu9.
6TernaryphasesA-B-C:Ontheonehand,threedierentconstituentsgivemoreexibilityinoptimizinginteractions.
Ontheotherhand,particularlyinthecaseofrepulsiveinteractionsbetweentwoofthethreeatomtypes,itcangetmuchmorediculttorealizethemostecientpacking.
MoredierentAETorclustersmaybeneededtocreatetheoptimumenvironmentsofA,B,andC.
ThecomplexityofternaryintermetalliccompoundsrangesbetweenhP3-BaPtSb7andcF23,158-Al55.
4Cu5.
4Ta39.
1.
84McMahon,M.
I.
,Nelmes,R.
J.
,Rekhi,S.
:ComplexCrystalStructureofCesium-III.
Phys.
Rev.
Lett.
87,art.
no.
255502(2001)5Legut,D.
,Friak,M.
,ˇSob,M.
:WhyispoloniumsimplecubicandsohighlyanisotropicPhys.
Rev.
Lett.
99,art.
no.
016402(2007)6ˇCerny,R.
,Francois,M.
,Yvon,K.
,Jaccard,D.
,Walker,E.
,Petˇrˇcek,V.
,Csaˇrova,I.
,Nissen,H.
-U.
,Wessicken,R.
:Asingle-crystalx-rayandHRTEMstudyoftheheavy-fermioncompoundYbCu4.
5.
J.
Condens.
Matter8,4485–4493(1996)7Villars,P.
,Calvert,L.
D.
:PearsonsHandbookofCrystallographicDataforIn-termetallicPhases(ASM,USA),Vols.
1–4(1991)8Weber,T.
,Dshemuchadse,J.
,Kobas,M.
,Conrad,M.
,Harbrecht,B.
,Steurer,W.
:Large,larger,largest-afamilyofcluster-basedtantalum-copper-aluminideswithgiantunitcells.
PartA:Structuresolutionandrenement.
ActaCrystallogr.
B65,308–317(2009)6PartIConceptsIncaseofquasicrystals,thenumberofdierentclustersinaparticularcompoundissmall,usuallyonlyoneortwo.
Quasiperiodiclong-rangeor-dermainlyoriginatesfromtheirnon-crystallographicsymmetrytogetherwiththeirabilitytooverlapinawell-denedwaywitheachother.
Thequestionis,howcomplexarequasicrystalscomparedtoperiodicin-termetallicsAretheymorecomplexthanthemostcomplexperiodiccom-pounds,suchascF23,158-Al55.
4Cu5.
4Ta39.
1,builtfrommuchmoredierentunitclustersthananyQCStructuralcomplexityisdiculttodene.
Itiscertainlynotsucienttojustcountthenumberofatomsperunitcell,whatwouldbeimpossibleforaquasicrystalanyway.
Forinstance,the192atomslocatedonthegeneralWyckopositioninacubicunitcellwithspacegroupsymmetryFm3m,canbedescribedjustbythecoordinatesofasingleatom,i.
e.
3parameters.
ForthesamenumberofatomsinatriclinicunitcellandspacegroupP1,576parameterswouldbeneeded.
Ontheotherhand,itisalsonotjustthenumberoffreeparameters.
AcubicstructurewithspacegroupsymmetryFm3mand4atomsperunitcellneedsthreeparameters,aswell,butitseemstobemuchsimpler.
Particularly,becauseitisjustthecubicclosestpacking.
OnepossibilityforindicatingthedegreeofcomplexitycouldbethenumberofdierentAETortheR-atlas.
TheR-atlasofastructureconsistsofalldierentatomiccongurationswithinacircleofradiusR.
Thismayworkforcomparing(quasi)periodicstructureswith(quasi)periodicones,butnotforcomparingperiodicwithquasiperiodicstructures.
Inthelattercase,onecouldcompare,forinstance,theR-atlasesuptoamaximumR,whichisgivenbythedimensionsoftheunitcell.
Anotherpossibilitywouldbetocomparetheinformationneededtofullydescribetheoneandtheotherstructureortogrowitinthecomputer.
Complexityisreectedinbroaddistributionfunctions(histogramms)ofatomicdistances,largenumberofdierentAETsforeachkindofatom,largenumberofindependentparametersforthedescriptionofastructure,lowsymmetry.
Complexityresultsfromunfavorablesizeratiosofatomshinderinggeometricallyoptimuminterac-tions,preferenceofcoordinations(AET,clusters)hinderingoptimumpackings(e.
g.
5-foldsymmetry),parametersthatareclosetooptimumbutnotoptimal(pseudosymmetry).

Hostodo(年付12美元)斯波坎VPS六六折,美国西海岸机房

Hostodo是一家成立于2014年的国外VPS主机商,现在主要提供基于KVM架构的VPS主机,美国三个地区机房:拉斯维加斯、迈阿密和斯波坎,采用NVMe或者SSD磁盘,支持支付宝、PayPal、加密货币等付款方式。商家最近对于上架不久的斯波坎机房SSD硬盘VPS主机提供66折优惠码,适用于1GB或者以上内存套餐年付,最低每年12美元起。下面列出几款套餐配置信息。CPU:1core内存:256MB...

老用户专享福利 腾讯云 免费领取轻量云2核4G服务器一年

感恩一年有你!免费领取2核4G套餐!2核4G轻量应用服务器2核 CPU 4GB内存 60G SSD云硬盘 6Mbps带宽领取地址:https://cloud.tencent.com/act/pro/lighthousethankyou活动规则活动时间2021年9月23日 ~ 2021年10月23日活动对象腾讯云官网已注册且完成实名认证的国内站用户(协作者与子用户账号除外),且符合以下活动条件:账号...

星梦云:四川100G高防4H4G10M月付仅60元

星梦云怎么样?星梦云资质齐全,IDC/ISP均有,从星梦云这边租的服务器均可以备案,属于一手资源,高防机柜、大带宽、高防IP业务,一手整C IP段,四川电信,星梦云专注四川高防服务器,成都服务器,雅安服务器。星梦云目前夏日云服务器促销,四川100G高防4H4G10M月付仅60元;西南高防月付特价活动,续费同价,买到就是赚到!点击进入:星梦云官方网站地址1、成都电信年中活动机(成都电信优化线路,封锁...

directspace为你推荐
服务器租用武汉服务器租用,托管哪个公司好?me域名注册me 域名 还能备案吗美国主机空间美国主机空间不限制内容吗info域名注册百度还收录新注册的info域名吗?域名注册查询如何查域名有没有被注册北京网站空间什么样的网站空间好手机网站空间手机网页空间需要多大?apache虚拟主机为何apache要配置虚拟主机论坛虚拟主机最适合做论坛的虚拟主机是什么?论坛虚拟主机虚拟主机禁止放论坛
buyvm BWH cloudstack permitrootlogin php探针 ubuntu更新源 彩虹ip 河南移动邮件系统 韩国名字大全 admit的用法 me空间社区 双11秒杀 湖南idc 免费asp空间申请 学生服务器 免费网络空间 nnt 删除域名 windowsserver2012 中国域名根服务器 更多