函数2019高考数学二轮复习第一篇微型专题微专题03导数及其应用练习理20190313297(数理化网)

微型网  时间:2021-02-18  阅读:()

03 导数及其应用

1.如图,函数y=f(x)的图象在点P处的切线方程为x-y+2=0,则f(1)+f' (1)=( ) .

A. 1 B.2

C.3 D.4

解析▶ 由条件知(1,f(1) )在直线x-y+2=0上,且f' (1)=1,∴f(1)+f' (1)=3+1=4,故选

D.

答案▶ D

2.已知函数f(x)=x3+ax2+bx-a2-7 a在x=1处取得极大值10,则��的值为( ) .

A.

C.-2或

解析▶ 由题意知f' (x)=3 x2+2 ax+b,

则f' (1)=0,f(1)=10,

即

解得

经检验.

答案▶ A

3.对于R上可导的任意函数f(x) ,若满,则必有( ) .

A.f(0)+f(2)>2f(1)

B.f(0)+f(2)≤2f(1)

C.f(0)+f(2)<2f(1)

D.f(0)+f(2)≥2f(1)

解析▶ 当x<1时,f' (x)<0,此时函数f(x)单调递减;当x>1时,f' (x)>0,此时函数f(x)单调递增.即当x=1时,函数f(x)取得极小值同时也取得最小值f(1) .所以f(0)>f(1) ,f(2)>f(1) ,则f(0)+f(2)>2f(1) .故选A.

答案▶ A

4.若函数y=的取值范围是 .

解析▶ y'=-应有两个不等实根,Δ=4a>0,故a的取值范围是(0, +∞) .

答案▶ (0, +∞)

【例1】 (1)已知曲线f(x)的值为( ) .

A.

(2)曲线f(x)=x2+ln x在点(1,f(1) )处的切线方程为 .

解析▶ (1)对函数f(x)

因为曲线f(x),

所以f' (1).

(2)因为f' (x)=2x

所以曲线f(x)在点(1,f(1) )处的切线斜率为f' (1)=2+1=3.

因为f(1)=1,

所以切线方程为y-1=3(x-1) ,

即3x-y-2=0.

答案▶ (1)D (2)3x-y-2=0

1.求曲线y=f(x)的切线方程的三种类型及方法: (1)已知切点P(x0,y0) ,求y=f(x)过点P的切线方程:先求出切线的斜率f' (x0) ,由点斜式写出方程. (2)已知切线的斜率k,求y=f(x)的切线方程:设切点P(x0,y0) ,通过方程k=f' (x0)解得x0,再由点斜式写出方程. (3)已知切线上一点(非切点) ,求y=f(x)的切线方程:设切点P(x0,y0) ,利用导数求得切线斜率f' (x0) ,然后由斜率公式求得切线斜率,列方程(组)解得x0,再由点斜式或两点式写出方程.

2.利用切线(或方程)与其他曲线的关系求参数:已知过某点的切线方程(斜率)或其与某直线平行、垂直,利用导数的几何意义、切点坐标、切线斜率之间的关系构建方程(组)或函数求解.

1.设曲线y=ex在点(0, 1)处的切线与曲线y=1(x>0)上点P处的切线垂直,则点P的坐标为 .

解析▶ ∵函数ye=x的导函数为y'e=x,

∴曲线y=ex在点(0, 1)处的切线的斜率k1=e0=1.

设P的坐标为(x0,y0) (x0>0) ,

∵函数y

∴曲线y

由题意知k1k2=-1,即1 · -,

又x0>0,∴x0=1.

∵点P在曲线y,

故点P的坐标为(1, 1) .

答案▶ (1, 1)

2.已知曲线y=x+lnx在点(1, 1)处的切线与曲线y=ax2+(a+2)x+1相切,则a= .

解析▶ (法一)令f(x)=x+lnx,求导得f' (x)=1.

又f(1)=1,∴曲线y=x+lnx在点(1, 1)处的切线方程为y-1=2(x-1) ,即y=2x-1.

设直线y=2 x-1与曲线y=ax2+(a+2)x+1相切的切点为P(x0,y0) ,

则当x=x0时.

又a02+(a+2)x0+1=2 x0-1,即a02+ax0+2=0,当a=0时,显然不满足此方程,

∴x0=.

(法二)求出曲线y=x+lnx在点(1, 1)处的切线方程为y=2x-1.

,

∴Δ=a2-8a=0,∴a=8或a=0(显然不成立) .

答案▶ 8

【例2】 (1)函数f(x)=x2lnx的单调递减区间为( ) .

A+∞

(2)若函数f(x)=lnx+ax2-2在的取值范围是( ) .

A. (-∞+∞

C. -2+∞)

解析▶ (1)函数f(x)的定义域为(0, +∞) ,

由题意得f' (x)=2xln x+x=x(2ln x+1) ,

令f

所以函数f(x)的单调递减区间为0,.

故选D.

(2)由题意得f' (x)

若f(x)在内存在单调递增区间,

则f.

又g(x)=.答案▶ (1)D (2)D

利用导数研究函数的单调性: (1)已知函数解析式求单调区间,实质上是求f' (x)>0,f' (x)<0的解集,求单调区间应遵循定义域优先的原则; (2)含参函数的单调性要分类讨论,通过确定导数的符号判断函数的单调性; (3)注意两种表述“函数f(x)在(a,b)上为减函数”与“函数f(x)的减区间为(a,b)”的区别.

1.已知函数f(x)的取值范围为 .

解析▶ ∵f(x)

∴f) .

∵函数f(x)在[1, +∞)上为增函数,

∴f' (x), +∞)恒成立,

∴ax-1≥0对任意的x∈[1, +∞)恒成立,

即a≥.

答案▶ [1, +∞)

2.已知函数f(x)

(1)当a=-1时,求函数f(x)的单调区间.

(2)是否存在实数a,使函数g(x)=f(x)-ax在(0, +∞)上单调递增?若存在,求出a的取值范围;若不存在,说明理由.

解析▶ (1)当a=-1时

则f' (

=(-1) (-2) .

当0<x<1或x>2时,f' (x)>0,f(x)单调递增;当1<x<2时,f' (x)<0,f(x)单调递减.

∴f(x)的单调递增区间为(0, 1) , (2, +∞) ,单调递减区间为(1,2) .

(2)假设存在实数a,使函数g(x)=f(x)-ax在(0, +∞)上单调递增,

∴g' (x)=f' (x)-a=x恒成立.

∴x2-2x-2a≥0对任意的x∈(0, +∞)恒成立,

∴a≤+∞) )恒成立.

又φ(x),

∴当a≤恒成立.

又当a=

故当a∈-∞,-, +∞)上单调递增.

【例3】 若x=3是函数f(x)=(x2+a x+1)ex的极值点,则f(x)的极大值等于( ) .

A.-1 B.3 C.-2e3 D.6e-1

解析▶ ∵函数f(x)=(x2+ax+1 e)x,

∴f' (x)=[x2+(2+a)x+a+1]ex.

∵x=3是函数f(x)=(x2+a x+1)ex的极值点,

∴f' (3)=0,解得a=-4,

故f' (x)=(x2-2x-3)ex,

∴当x=-1时,f(x)取得极大值,极大值为f(-1)=6e-1 .故选D.

答案▶ D

【例4】 已知函数f(x)=ax2+(1-2a)x-lnx.

(1)当a>0时,求函数f(x)的单调递增区间;

(2)当a<0时,求函数f(x)在上的最小值.

解析▶ (1)由函数f(x)=ax2+(1-2 a)x-l n令f' (x)>0

∴x-1>0,得x>1,

∴f(x)的单调递增区间为(1, +∞) .

(2)由(1)可得f' (

已知a<0,令f.

①当上是减函数,

∴f(x)在.

②当时,

若x∈.

因此f(x)在上是增函数,

∴f(x)的最小值为f-.

③当上是增函数,

∴f(x)的最小值为f.

综上,函数f(x)在上的最小值为f(x)

利用导数研究函数极值、最值的方法: (1)若求极值,则先求方程f' (x)=0的根,再检查f' (x)在方程根的左右两边函数值的符号. (2)若已知极值大小或存在情况,则将问题转化为已知方程f' (x)=0根的大小或存在情况来求解. (3)求函数f(x)在闭区间[a,b]上的最值时,在得到极值的基础上,结合区间端点的函数值f(a) ,f(b)与f(x)的各极值进行比较得到函数的最值. (4)研究函数的极值或最值时应注意的问题:①利用导数研究函数的极值和最值时,应先考虑函数的定义域;②导数值为0的点不一定是函数的极值点,它是函数在该点取得极值的必要不充分条件.

已知f(x)=lnx

(1)求f(x)的单调区间和极值;

(2)若对任意x>0,均有x(2ln a-lnx)≤a恒成立,求正数a的取值范围.

解析▶ (1)f+∞) .

①若a≤0,则f' (x)>0,f(x)在(0, +∞)上单调递增,无极值.

②若a>0,当x∈(0,a)时,f' (x)<0,f(x)在(0,a)上单调递减;

当x∈(a, +∞)时,f' (x)>0,f(x)在(a, +∞)上单调递增.

故f(x)在(0, +∞)有极小值,无极大值,f(x)的极小值为f(a)=lna+1.

(2)若对任意x>0,均有x(2ln a-lnx)≤a恒成立,

则对任意x>0,均有2ln a≤恒成立,

由(1)可知f(x)的最小值为lna+1,

故问题转化为2ln a≤lna+1,即lna≤1,解得0<a≤e,故正数a的取值范围是(0,e] .

一、选择题

1.曲线f(x)=2x-ex在点(0,f(0) )处的切线方程是( ) .

A.x+y+1=0 B.x-y+1=0

C.x+y-1=0 D.x-y-1=0

解析▶ 由题意得f' (x)=2e-x,f' (0)=1,f(0)=-1,

故切线方程为x-y-1=0.故选D.

答案▶ D

2.已知函数f(x)=x+sinx,若a=f(3) ,b=f(2) , c=f(log26) ,则a,b, c的大小关系是( ) .

A.a<b<c B. c<b<a

C.b<a<c D.b<c<a

解析▶ 因为f' (x)=1+cos x≥0,

所以函数f(x)为定义域上的增函数,

而2<log26<3,所以b<c<a.故选D.

答案▶ D

3.函数f(x)=3x2+ln x-2x的极值点的个数是( ) .

A.0 B. 1

C.2 D.3

解析▶ 函数f(x)的定义域为(0

令g(x)=6x2-2x+1,因为方程6x2-2x+1=0的判别式Δ=-20<0,所以g(x)>0恒成立,

故f' (x)>0恒成立,即f(x)在定义域上单调递增,无极值点.故选A.

答案▶ A

4.如图,可导函数y=f(x)的图象在点P(x0,f(x0) )处的切线为l:y=g(x) ,设h(x)=f(x)-g(x) ,则下列说法正确的是( ) .

A.h' (x0)=0,x=x0是h(x)的极大值点

B.h' (x0)=0,x=x0是h(x)的极小值点

C.h' (x0)=0,x=x0不是h(x)的极值点

D.h' (x0)≠0

解析▶ 由题设有g(x)=f' (x0) (x-x0)+f(x0) ,

故h(x)=f(x)-f' (x0) (x-x0)-f(x0) ,

所以h' (x)=f' (x)-f' (x0) .

因为h' (x0)=f' (x0)-f' (x0)=0,

又当x<x0时,有h' (x)<0,当x>x0时,有h' (x)>0,

所以x=x0是h(x)的极小值点,故选B.

答案▶ B

5.若函数f(x)=2 x3-3 mx2+6x在区间(2, +∞)上为增函数,则实数m的取值范围为( ) .

A. (-∞,2) B. (-∞,2]

C

解析▶ ∵f' (x)=6x2-6mx+6,当x∈(2, +∞)时,f' (x)≥0恒成立,即x2-mx+1≥0恒成立,∴m≤x, +∞)上单调递增.

答案▶ D

6.设函数f(x)=lnx+ax2的极小值为( ) .

A. ln 2-2 B. ln 2-1

TmhHost香港三网CN2 GIA月付45元起,美国CN2 GIA高防VPS季付99元起

TmhHost是一家国内正规公司,具备ISP\ICP等资质,主营国内外云服务器及独立服务器租用业务,目前,商家新上香港三网CN2 GIA线路VPS及国内镇江BGP高防云主机,其中香港三网CN2 GIA线路最低每月45元起;同时对美国洛杉矶CN2 GIA线路高防及普通VPS进行优惠促销,优惠后美国洛杉矶Cera机房CN2 GIA线路高防VPS季付99元起。香港CN2 GIA安畅机房,三网回程CN2 ...

iON Cloud:七月活动,洛杉矶CN2 GIA线路85折优惠中,价格偏高/机器稳定/更新优惠码

iON Cloud怎么样?iON Cloud是Krypt旗下的云服务器品牌,成立于2019年,是美国老牌机房(1998~)krypt旗下的VPS云服务器品牌,主打国外VPS云服务器业务,均采用KVM架构,整体性能配置较高,云服务器产品质量靠谱,在线率高,国内直连线路,适合建站等用途,支付宝、微信付款购买。支持Windows server 2012、2016、2019中英文版本以及主流Linux发行...

GreenCloudVPS$20/年多国机房可选,1核@Ryzen 3950x/1GB内存/30GB NVMe/10Gbps端口月流量2TB

GreencloudVPS此次在四个机房都上线10Gbps大带宽VPS,并且全部采用AMD处理器,其中美国芝加哥机房采用Ryzen 3950x处理器,新加坡、荷兰阿姆斯特丹、美国杰克逊维尔机房采用Ryzen 3960x处理器,全部都是RAID-1 NVMe硬盘、DDR4 2666Mhz内存,GreenCloudVPS本次促销的便宜VPS最低仅需20美元/年,支持支付宝、银联和paypal。Gree...

微型网为你推荐
办公协同软件oa办公系统软件有哪些苹果5怎么越狱苹果5怎么越狱开机滚动条如何关闭开机滚动条?2012年正月十五2012年正月十五上午9点27分出生的女孩儿五行缺什么,命怎么样虚拟专用网intranet,extranet,虚拟专用网与internet有什么区别与联系网站营运网站运营要学些什么?中国杀毒软件排行榜中国杀软排名office2007简体中文版如何激活office2007 professional简体中文专业版啊?权重高的论坛请问有哪些权重高的论坛可以发贴?地理空间数据云dem数据在什么地方下载
国内最好的虚拟主机 域名备案收费吗 新网域名解析 lunarpages 国外服务器网站 idc测评网 网站保姆 php免费空间 元旦促销 服务器维护方案 佛山高防服务器 重庆双线服务器托管 美国凤凰城 中国电信测速网站 weblogic部署 德国代理 screen nano 回程 海尔t68驱动 更多