函数2019高考数学二轮复习第一篇微型专题微专题03导数及其应用练习理20190313297(数理化网)

微型网  时间:2021-02-18  阅读:()

03 导数及其应用

1.如图,函数y=f(x)的图象在点P处的切线方程为x-y+2=0,则f(1)+f' (1)=( ) .

A. 1 B.2

C.3 D.4

解析▶ 由条件知(1,f(1) )在直线x-y+2=0上,且f' (1)=1,∴f(1)+f' (1)=3+1=4,故选

D.

答案▶ D

2.已知函数f(x)=x3+ax2+bx-a2-7 a在x=1处取得极大值10,则��的值为( ) .

A.

C.-2或

解析▶ 由题意知f' (x)=3 x2+2 ax+b,

则f' (1)=0,f(1)=10,

即

解得

经检验.

答案▶ A

3.对于R上可导的任意函数f(x) ,若满,则必有( ) .

A.f(0)+f(2)>2f(1)

B.f(0)+f(2)≤2f(1)

C.f(0)+f(2)<2f(1)

D.f(0)+f(2)≥2f(1)

解析▶ 当x<1时,f' (x)<0,此时函数f(x)单调递减;当x>1时,f' (x)>0,此时函数f(x)单调递增.即当x=1时,函数f(x)取得极小值同时也取得最小值f(1) .所以f(0)>f(1) ,f(2)>f(1) ,则f(0)+f(2)>2f(1) .故选A.

答案▶ A

4.若函数y=的取值范围是 .

解析▶ y'=-应有两个不等实根,Δ=4a>0,故a的取值范围是(0, +∞) .

答案▶ (0, +∞)

【例1】 (1)已知曲线f(x)的值为( ) .

A.

(2)曲线f(x)=x2+ln x在点(1,f(1) )处的切线方程为 .

解析▶ (1)对函数f(x)

因为曲线f(x),

所以f' (1).

(2)因为f' (x)=2x

所以曲线f(x)在点(1,f(1) )处的切线斜率为f' (1)=2+1=3.

因为f(1)=1,

所以切线方程为y-1=3(x-1) ,

即3x-y-2=0.

答案▶ (1)D (2)3x-y-2=0

1.求曲线y=f(x)的切线方程的三种类型及方法: (1)已知切点P(x0,y0) ,求y=f(x)过点P的切线方程:先求出切线的斜率f' (x0) ,由点斜式写出方程. (2)已知切线的斜率k,求y=f(x)的切线方程:设切点P(x0,y0) ,通过方程k=f' (x0)解得x0,再由点斜式写出方程. (3)已知切线上一点(非切点) ,求y=f(x)的切线方程:设切点P(x0,y0) ,利用导数求得切线斜率f' (x0) ,然后由斜率公式求得切线斜率,列方程(组)解得x0,再由点斜式或两点式写出方程.

2.利用切线(或方程)与其他曲线的关系求参数:已知过某点的切线方程(斜率)或其与某直线平行、垂直,利用导数的几何意义、切点坐标、切线斜率之间的关系构建方程(组)或函数求解.

1.设曲线y=ex在点(0, 1)处的切线与曲线y=1(x>0)上点P处的切线垂直,则点P的坐标为 .

解析▶ ∵函数ye=x的导函数为y'e=x,

∴曲线y=ex在点(0, 1)处的切线的斜率k1=e0=1.

设P的坐标为(x0,y0) (x0>0) ,

∵函数y

∴曲线y

由题意知k1k2=-1,即1 · -,

又x0>0,∴x0=1.

∵点P在曲线y,

故点P的坐标为(1, 1) .

答案▶ (1, 1)

2.已知曲线y=x+lnx在点(1, 1)处的切线与曲线y=ax2+(a+2)x+1相切,则a= .

解析▶ (法一)令f(x)=x+lnx,求导得f' (x)=1.

又f(1)=1,∴曲线y=x+lnx在点(1, 1)处的切线方程为y-1=2(x-1) ,即y=2x-1.

设直线y=2 x-1与曲线y=ax2+(a+2)x+1相切的切点为P(x0,y0) ,

则当x=x0时.

又a02+(a+2)x0+1=2 x0-1,即a02+ax0+2=0,当a=0时,显然不满足此方程,

∴x0=.

(法二)求出曲线y=x+lnx在点(1, 1)处的切线方程为y=2x-1.

,

∴Δ=a2-8a=0,∴a=8或a=0(显然不成立) .

答案▶ 8

【例2】 (1)函数f(x)=x2lnx的单调递减区间为( ) .

A+∞

(2)若函数f(x)=lnx+ax2-2在的取值范围是( ) .

A. (-∞+∞

C. -2+∞)

解析▶ (1)函数f(x)的定义域为(0, +∞) ,

由题意得f' (x)=2xln x+x=x(2ln x+1) ,

令f

所以函数f(x)的单调递减区间为0,.

故选D.

(2)由题意得f' (x)

若f(x)在内存在单调递增区间,

则f.

又g(x)=.答案▶ (1)D (2)D

利用导数研究函数的单调性: (1)已知函数解析式求单调区间,实质上是求f' (x)>0,f' (x)<0的解集,求单调区间应遵循定义域优先的原则; (2)含参函数的单调性要分类讨论,通过确定导数的符号判断函数的单调性; (3)注意两种表述“函数f(x)在(a,b)上为减函数”与“函数f(x)的减区间为(a,b)”的区别.

1.已知函数f(x)的取值范围为 .

解析▶ ∵f(x)

∴f) .

∵函数f(x)在[1, +∞)上为增函数,

∴f' (x), +∞)恒成立,

∴ax-1≥0对任意的x∈[1, +∞)恒成立,

即a≥.

答案▶ [1, +∞)

2.已知函数f(x)

(1)当a=-1时,求函数f(x)的单调区间.

(2)是否存在实数a,使函数g(x)=f(x)-ax在(0, +∞)上单调递增?若存在,求出a的取值范围;若不存在,说明理由.

解析▶ (1)当a=-1时

则f' (

=(-1) (-2) .

当0<x<1或x>2时,f' (x)>0,f(x)单调递增;当1<x<2时,f' (x)<0,f(x)单调递减.

∴f(x)的单调递增区间为(0, 1) , (2, +∞) ,单调递减区间为(1,2) .

(2)假设存在实数a,使函数g(x)=f(x)-ax在(0, +∞)上单调递增,

∴g' (x)=f' (x)-a=x恒成立.

∴x2-2x-2a≥0对任意的x∈(0, +∞)恒成立,

∴a≤+∞) )恒成立.

又φ(x),

∴当a≤恒成立.

又当a=

故当a∈-∞,-, +∞)上单调递增.

【例3】 若x=3是函数f(x)=(x2+a x+1)ex的极值点,则f(x)的极大值等于( ) .

A.-1 B.3 C.-2e3 D.6e-1

解析▶ ∵函数f(x)=(x2+ax+1 e)x,

∴f' (x)=[x2+(2+a)x+a+1]ex.

∵x=3是函数f(x)=(x2+a x+1)ex的极值点,

∴f' (3)=0,解得a=-4,

故f' (x)=(x2-2x-3)ex,

∴当x=-1时,f(x)取得极大值,极大值为f(-1)=6e-1 .故选D.

答案▶ D

【例4】 已知函数f(x)=ax2+(1-2a)x-lnx.

(1)当a>0时,求函数f(x)的单调递增区间;

(2)当a<0时,求函数f(x)在上的最小值.

解析▶ (1)由函数f(x)=ax2+(1-2 a)x-l n令f' (x)>0

∴x-1>0,得x>1,

∴f(x)的单调递增区间为(1, +∞) .

(2)由(1)可得f' (

已知a<0,令f.

①当上是减函数,

∴f(x)在.

②当时,

若x∈.

因此f(x)在上是增函数,

∴f(x)的最小值为f-.

③当上是增函数,

∴f(x)的最小值为f.

综上,函数f(x)在上的最小值为f(x)

利用导数研究函数极值、最值的方法: (1)若求极值,则先求方程f' (x)=0的根,再检查f' (x)在方程根的左右两边函数值的符号. (2)若已知极值大小或存在情况,则将问题转化为已知方程f' (x)=0根的大小或存在情况来求解. (3)求函数f(x)在闭区间[a,b]上的最值时,在得到极值的基础上,结合区间端点的函数值f(a) ,f(b)与f(x)的各极值进行比较得到函数的最值. (4)研究函数的极值或最值时应注意的问题:①利用导数研究函数的极值和最值时,应先考虑函数的定义域;②导数值为0的点不一定是函数的极值点,它是函数在该点取得极值的必要不充分条件.

已知f(x)=lnx

(1)求f(x)的单调区间和极值;

(2)若对任意x>0,均有x(2ln a-lnx)≤a恒成立,求正数a的取值范围.

解析▶ (1)f+∞) .

①若a≤0,则f' (x)>0,f(x)在(0, +∞)上单调递增,无极值.

②若a>0,当x∈(0,a)时,f' (x)<0,f(x)在(0,a)上单调递减;

当x∈(a, +∞)时,f' (x)>0,f(x)在(a, +∞)上单调递增.

故f(x)在(0, +∞)有极小值,无极大值,f(x)的极小值为f(a)=lna+1.

(2)若对任意x>0,均有x(2ln a-lnx)≤a恒成立,

则对任意x>0,均有2ln a≤恒成立,

由(1)可知f(x)的最小值为lna+1,

故问题转化为2ln a≤lna+1,即lna≤1,解得0<a≤e,故正数a的取值范围是(0,e] .

一、选择题

1.曲线f(x)=2x-ex在点(0,f(0) )处的切线方程是( ) .

A.x+y+1=0 B.x-y+1=0

C.x+y-1=0 D.x-y-1=0

解析▶ 由题意得f' (x)=2e-x,f' (0)=1,f(0)=-1,

故切线方程为x-y-1=0.故选D.

答案▶ D

2.已知函数f(x)=x+sinx,若a=f(3) ,b=f(2) , c=f(log26) ,则a,b, c的大小关系是( ) .

A.a<b<c B. c<b<a

C.b<a<c D.b<c<a

解析▶ 因为f' (x)=1+cos x≥0,

所以函数f(x)为定义域上的增函数,

而2<log26<3,所以b<c<a.故选D.

答案▶ D

3.函数f(x)=3x2+ln x-2x的极值点的个数是( ) .

A.0 B. 1

C.2 D.3

解析▶ 函数f(x)的定义域为(0

令g(x)=6x2-2x+1,因为方程6x2-2x+1=0的判别式Δ=-20<0,所以g(x)>0恒成立,

故f' (x)>0恒成立,即f(x)在定义域上单调递增,无极值点.故选A.

答案▶ A

4.如图,可导函数y=f(x)的图象在点P(x0,f(x0) )处的切线为l:y=g(x) ,设h(x)=f(x)-g(x) ,则下列说法正确的是( ) .

A.h' (x0)=0,x=x0是h(x)的极大值点

B.h' (x0)=0,x=x0是h(x)的极小值点

C.h' (x0)=0,x=x0不是h(x)的极值点

D.h' (x0)≠0

解析▶ 由题设有g(x)=f' (x0) (x-x0)+f(x0) ,

故h(x)=f(x)-f' (x0) (x-x0)-f(x0) ,

所以h' (x)=f' (x)-f' (x0) .

因为h' (x0)=f' (x0)-f' (x0)=0,

又当x<x0时,有h' (x)<0,当x>x0时,有h' (x)>0,

所以x=x0是h(x)的极小值点,故选B.

答案▶ B

5.若函数f(x)=2 x3-3 mx2+6x在区间(2, +∞)上为增函数,则实数m的取值范围为( ) .

A. (-∞,2) B. (-∞,2]

C

解析▶ ∵f' (x)=6x2-6mx+6,当x∈(2, +∞)时,f' (x)≥0恒成立,即x2-mx+1≥0恒成立,∴m≤x, +∞)上单调递增.

答案▶ D

6.设函数f(x)=lnx+ax2的极小值为( ) .

A. ln 2-2 B. ln 2-1

国内云服务器 1核 2G 2M 15元/月 萤光云

标题【萤光云双十二 全场6折 15元/月 续费同价】今天站长给大家推荐一家国内云厂商的双十二活动。萤光云总部位于福建福州,其成立于2002 年。主打高防云服务器产品,主要提供福州、北京、上海 BGP 和香港 CN2 节点。萤光云的高防云服务器自带 50G 防御,适合高防建站、游戏高防等业务。这家厂商本次双十二算是性价比很高了。全线产品6折,上海 BGP 云服务器折扣更大 5.5 折(测试了一下是金...

Hostodo,美国独立日特价优惠,四款特价VPS云服务器7折,KVM虚拟架构,NVMe阵列,1核512M内存1Gbps带宽3T月流量,13.99美元/月,赠送DirectAdmin授权

Hostodo近日发布了美国独立日优惠促销活动,主要推送了四款特价优惠便宜的VPS云服务器产品,基于KVM虚拟架构,NVMe阵列,1Gbps带宽,默认分配一个IPv4+/64 IPv6,采用solusvm管理,赠送收费版DirectAdmin授权,服务有效期内均有效,大致约为7折优惠,独立日活动时间不定,活动机型售罄为止,有需要的朋友可以尝试一下。Hostodo怎么样?Hostodo服务器好不好?...

VirtVPS抗投诉瑞士VPS上线10美元/月

专心做抗投诉服务器的VirtVPS上线瑞士机房,看中的就是瑞士对隐私的保护,有需要欧洲抗投诉VPS的朋友不要错过了。VirtVPS这次上新的瑞士服务器采用E-2276G处理器,Windows/Linux操作系统可选。VirtVPS成立于2018年,主营荷兰、芬兰、德国、英国机房的离岸虚拟主机托管、VPS、独立服务器、游戏服务器和外汇服务器业务。VirtVPS 提供世界上最全面的安全、完全受保护和私...

微型网为你推荐
手游运营手册堡垒之夜新武器是什么 堡垒之夜新武器介绍图文解析bbsxpdvbbs bbsxp LeadBBS 对比中国电信互联星空中国电信宽带于互联星空的区别二叉树遍历怎么正确理解二叉树的遍历伪静态伪静态和真静态哪种静态方式好在线代理网站求有效的代理服务器地址?保护气球什么气球可以骑?lockdowndiphone4s 完美越狱5.1.1时出现Could not connect to lockdownd。求救啊!!idc前线求电影敢死队电影里的歌曲!mate8价格华为mate8 128g售价多少钱
海外域名 紧急升级请记住新域名 广东vps kvmla 国外服务器网站 linkcloud 美国主机论坛 天猫双十一抢红包 嘟牛 有益网络 卡巴斯基官方免费版 789电视 网站卫士 永久免费空间 lamp的音标 百度新闻源申请 ubuntu安装教程 卡巴斯基免费版 卡巴斯基官方下载 neicun 更多