APPLIEDANDENVIRONMENTALMICROBIOLOGY,June2009,p.
3765–3776Vol.
75,No.
110099-2240/09/$08.
000doi:10.
1128/AEM.
02594-08Copyright2009,AmericanSocietyforMicrobiology.
AllRightsReserved.
ComparativeProteomicAnalysisofToleranceandAdaptationofEthanologenicSaccharomycescerevisiaetoFurfural,aLignocellulosicInhibitoryCompoundFeng-MingLin,BinQiao,andYing-JinYuan*KeyLaboratoryofSystemsBioengineering,MinistryofEducationandDepartmentofPharmaceuticalEngineering,SchoolofChemicalEngineering&Technology,TianjinUniversity,P.
O.
Box6888,Tianjin300072,People'sRepublicofChinaReceived13November2008/Accepted1April2009ThemolecularmechanisminvolvedintoleranceandadaptationofethanologenicSaccharomycescerevisiaetoinhibitors(suchasfurfural,aceticacid,andphenol)representedinlignocellulosichydrolysateisstillunclear.
Here,18O-labeling-aidedshotguncomparativeproteomeanalysiswasappliedtostudytheglobalproteinexpressionprolesofS.
cerevisiaeunderconditionsoftreatmentoffurfuralcomparedwithfurfural-freefermentationproles.
Proteinsinvolvedinglucosefermentationand/orthetricarboxylicacidcyclewereupregulatedincellstreatedwithfurfuralcomparedwiththecontrolcells,whileproteinsinvolvedinglycerolbiosynthesisweredownregulated.
Differentiallevelsofexpressionofalcoholdehydrogenaseswereobserved.
Ontheotherhand,thelevelsofNADH,NAD,andNADH/NADwerereducedwhereasthelevelsofATPandADPwereincreased.
Theseobservationsindicatethatcentralcarbonmetabolism,levelsofalcoholdehydrogenases,andtheredoxbalancemayberelatedtotoleranceofethanologenicyeastforandadaptationtofurfural.
Furthermore,proteinsinvolvedinstressresponse,includingtheunfoldedproteinresponse,oxidativestress,osmoticandsaltstress,DNAdamageandnutrientstarvation,weredifferentiallyexpressed,andingthatwasvalidatedbyquantitativereal-timereversetranscription-PCRtofurtherconrmthatthegeneralstressresponsesareessentialforcellulardefenseagainstfurfural.
Theseinsightsintotheresponseofyeasttothepresenceoffurfuralwillbenetthedesignanddevelopmentofinhibitor-tolerantethanologenicyeastbymetabolicengineeringorsyntheticbiology.
Bioethanolproducedfromrenewableresourcessuchaslignocellulosesisconsideredtobeanattractivealternativetofossilfuels,foritisrenewable,canmakeuseoffast-rotationplants,producesfeweremissions,andgeneratesnonetcarbondioxide.
Nevertheless,therearesomebarriersinthelignocel-lulosic-to-ethanolconversionprocess,includinginhibitortol-erance,ethanoltolerance,andutilizationofxylose(62).
Inhib-itorsformedbyacid-catalyzedhydrolysisoflignocelluloses,whichincludefuranderivatives,weakacids,andphenoliccom-pounds,reduceboththegrowthrateandfermentationofeth-anologenicSaccharomycescerevisiae(2).
Themechanismsofinhibitionactinguponyeastduringfermentationoflignocel-lulosichydrolysatehavebeenstudiedintensively,butmainlywithtraditionalmethodssuchasmetaboliteanalysis,enzymeactivityanalysis,metabolicuxanalysis,andkineticanalysis(50).
Furfuralisoneofthemajorinhibitorsforlignocellulosichydrolysates.
Previousstudieshaveshownthatinmostcases,furfuralcanbeconvertedbyyeasttofurfuralalcohol(12,30).
Sometimesfuroicacid(64),furoinandfuril(47),andacyloinproducts(28,61)canalsobedetectedinthemediumunderdifferentsetsofcultivationconditions.
Thegeneticmecha-nismsinvolvedinfurfuraltolerancehavebeeninvestigatedbyscreeninganS.
cerevisiaedisruptionlibrarytondpotentialrelativegenes(18).
Throughgenecloningandenzymeactivitystudy,Liuetal.
foundthattheconversionoffurfuraliscata-lyzedbymultiplealdehydereductases(40).
Thetraditionalmethodsdescribedabovecananalyzeonlyoneorafewmetabolites,proteins,orgenesandareunabletogloballyassesstheinhibitionissue,whichiscomplexandsys-tematic.
Moreover,previousworkmainlyfocusedonextracel-lularmetabolitesandtheactivityofsomekeyenzymes,whereaswhathappensinsideyeastcellsinresponsetoinhib-itorsremainsa"blackbox"tous.
Integrationofdifferent"om-ics"tools,includingthoseoftranscriptomics,proteomics,andmetabolomics,intothestudyofsystemsbiologyisapotentiallypowerfulapproachtoaddressthesechallenges(61,68).
Manyproteomic,transcriptomic,and/ormetabolomicstudiesofS.
cerevisiaehaveprovideduswithanincreasinglyrichunder-standingoftheresponseofthisorganismtovariousenviron-mentalperturbations.
InvestigationofgenomicexpressionprolesoftheethanologenicyeastS.
cerevisiaetoHMF(5-hydroxymethylfurfural)stressconditionsshowedthatuptoseveralhundredgenesweredifferentiallyexpressedsigni-cantlyinresponsetoHMFtreatment(41,42,58).
Comparativelipidomicsanalysishasbeenappliedtostudytheethanologenicyeastresponsetodifferentinhibitors,suchasfurfural,aceticacid,andphenol(69).
Theresultsofcomparativeproteomeanalysis(8,23)andsmall-moleculemetaboliteprolingofeth-anologenicyeastduringindustrialfermentation(13)havebeenpreviouslyreported,enhancingthemolecularunderstandingofphysiologicaladaptationofindustrialstrainsforoptimizingthe*Correspondingauthor.
Mailingaddress:KeyLaboratoryofSys-temsBioengineering,MinistryofEducationandDepartmentofPhar-maceuticalEngineering,SchoolofChemicalEngineering&Technol-ogy,TianjinUniversity,P.
O.
Box6888,Tianjin300072,People'sRepublicofChina.
Phone:86-22-87401546.
Fax:86-22-27403888.
E-mail:yjyuan@tju.
edu.
cn.
Supplementalmaterialforthisarticlemaybefoundathttp://aem.
asm.
org/.
Publishedaheadofprinton10April2009.
3765onFebruary2,2021byguesthttp://aem.
asm.
org/Downloadedfromperformanceofindustrialbioethanolfermentation.
However,thespecicsofglobalproteinexpressioninresponsetothepresenceofbiomassconversioninhibitorshavenotyetbeenquantitativelymeasuredforethanologenicyeast.
Quantitativeproteomics,i.
e.
,quantifyingproteinexpressionlevelsindifferentsetsofcomplexbiologicalsamplesonalargescale,iscriticalforourunderstandingofbiologicalsystemsandpathwaysasawhole.
Itisconsideredlikelytobeapotentialcornerstoneofsystemsbiologyinthenearfuture(56).
Currentquantitativeproteomicmethodsfallintothreecategories:thetraditionaltwo-dimensional(2D)electrophoresis,stableiso-topelabeling,andnonlabelingmethods(45).
Eachofthedif-ferentlabelingmethodsundergoingdevelopmenthasitsad-vantagesanddisadvantages(seereference45forreviews).
Amongquantitativeproteomicmethods,18Ostableisotopelabelingisconvenienttouse,lowincost,highlyspecicintermsofspecic18OC-terminalmodications,andcapableintheoryoflabelingproteinsglobally.
The18O-labelingmethodhasdemonstrateditsapplicabilityindifferentialcomparativeproteomicswithbiologicalapplicationsperformedusingPor-phyromonasgingivalisstrainW50(4),thehumanplasmapro-teome(55),breastcancercells(5),andthelow-molecular-weightserumproteome(26).
18Olabelingisbecomingapowerfullabelingstrategyforquantitativeproteomicsap-plication.
Togiveinsightsintothetoleranceandadaptationofeth-anologenicyeasttobiomassconversioninhibitorsatthepro-teinlevel,comparativeshotgunproteomicinvestigationscom-bining18Olabelingwith2Dliquidchromatography-tandemmassspectrometry(2D-LC-MS/MS)wereperformedheretosystematicallyidentifyproteinsbytheuseofanindustrialstrainofS.
cerevisiaeandtoquantifycellstreatedwithfurfuralcomparedwithcontrolcellsunderaerobicbatchculturecon-ditions.
Quantitativereal-timereversetranscription-PCR(RT-PCR)andmetaboliteanalysiswereutilizedtoprovideorthog-onalevidenceforthecomparativeproteomeresults.
MATERIALSANDMETHODSYeaststrain.
AnindustrialstrainofS.
cerevisiae,purchasedfromAngelYeastCo.
,Ltd.
(Hubei,People'sRepublicofChina),intheformofalcoholinstantactivedryyeast,wasutilizedinthisstudy.
Thisindustrialstrainhastheadvan-tagesofthermalresistance(38to42°C),low-acidtolerance(pH2.
5),andhighglucosetolerance(60%)andcantolerate13%(vol/vol)ethanol.
Cultivationconditions.
Afterrecoveryfromalyophilizedform,S.
cerevisiaewasmaintainedonagarslantscontainingYEPDmedium(2%glucose,2%yeastextract,1%peptone,and2%agar).
S.
cerevisiaewasinitiallygrownin250-mlconicalaskscontaining50mlofYEPDmedium(2%glucose,2%yeastextract,and1%peptone)onarotaryshakerat30°Cand160rpmfor12h.
Subsequently,the50-mlseedculturesweretransferredinto2-literconicalaskscontaining450mlofYEPDmediumonarotaryshakerat30°Cand90rpmforapproximately12handgrowntoanopticaldensity(OD)ofabout3.
Cellsforthecontrolexperimentandthefurfuraltreatmentexperimentwereharvestedfromthesameinoculationculture.
AninitialODof0.
35wasusedforaerobicbathculturesperformedat30°Cin2-literconicalaskscontaining450mlofmedium,withastirrerspeedof90rpm.
Theaerobicbathculturemediumwascomposedof10%glucose,2%yeastextract,and1%peptone.
Duringexponentialgrowthintherespiratory-fermentativephase,whentheODwasapproximately3to4,50-mlvolumesofaerobicbathculturemediacontaining0and7.
33mloffurfuralwereintroducedintothemediumforthecontrolexperimentandthefurfuraltreat-mentexperiment,respectively.
Samplesforsubsequentproteinextractionwerecollectedbycentrifugationat5,000gfor10minat4°Cfromfurfural-treatedandcontrolculturesat20minand2haftertheadditionoffurfural,respectively.
Theconcentrationoffurfuralinlignocellulosichydrolysatescanrangefrom0.
5to11g/liter,andthereareabroadrangeofothercompoundsthathaveinhibitoryeffectsonmicrobialfermentation(2).
Usually,theinhibitorconcen-trationsusedtotesttheireffectsonfermentationwere10to100timeslargerthantheconcentrationfoundinthehydrolysates(31).
Therefore,basedonourpri-maryfermentationexperimentsandthepertinentliterature,thenalfurfuralconcentrationusedwassetat17g/literforthestudyoftheresponseofyeasttothepresenceoffurfuralunderanextremesetofconditions.
Analysisoffermentationparameters.
Cellgrowthwasdeterminedbymeasur-ingtheabsorbanceofthecultureat600nmwithaspectrometer(model722gratingspectrometer;ShanghaiNo.
3AnalysisEquipmentFactory,Shanghai,China).
Theconcentrationsofglucose,ethanol,glycerol,andfurfuralweremea-suredbyhigh-performanceLC.
Samplesfromanaerobicbathculturewererstlteredthrough0.
22-m-pore-sizesterileltersandloadedontoanAminexHPX-87Hion-exchangecolumn(Bio-Rad,Hercules,CA)operatedat65°Candwerethenelutedwith5mMH2SO4at0.
6ml/min.
Arefractiveindexdetectorwasused.
Cellviabilitywasassessedbymethylene-bluestainingandauores-cencemicroscope(EclipseE800;Nikon,Japan).
Proteinextraction,16O/18Olabeling,and2D-LC-MS/MSanalysis.
Theextrac-tionofwhole-yeast-cellproteinswasconductedasdescribedbyWangandYuan(66),withminormodications.
Afterreductionandalkylation,theproteinswereprecipitatedagainbyusingcoldorganicsolvent(ethanol/acetone/aceticacid,50:50:0.
1)overnightat25°C,followedbycentrifugationandlyophilization.
Thepelletswerestoredat25°Cuntiluse.
Proteinsamplesfromthecontrolexperimentandthefurfuraltreatmentex-perimentweredissolvedindigestionbuffer(1Murea,100mMNH4HCO3)madeusing16Oand18Owater(Isotec,Miamisburg,OH)(95%),witheachsolutionmaintainedataconcentrationof1g/l,andweredigestedwithtrypsin(Promega,Madison,WI)ataratioof50:1at37°Cfor24h.
Then,additionaltrypsinwasaddedtoachieveanalratioof20:1,andtheincubationwasmaintainedat37°Cforanother18h.
Digestionswereterminatedbyaddingformicacidtothenalvolumeconcentrationof5%.
Thecorresponding16O-and18O-labeledsamplesfromthesametimepointwerecombinedimmediatelybefore2D-LC-MS/MSanalysis.
NanoowLC-MS/MSanalysiswasperformedbytheuseofaLCQDecaXPMaxamassspectrometer(ThermoFinnigan,PaloAlto,CA)underthecontroloftheXcaliburdatasystem(ThermoFinnigan,PaloAlto,CA)asdescribedbyWangandYuan(66).
Thereweresomemodicationsintermsofsaltstepsandtheelutiongradient.
A14-stepseparationfromthestrongcationexchangerfollowedbyagradientelutionfromthereverse-phasechromatographyresultswasutilizedtoseparatethepeptides.
The14saltstepsused0,25,40,50,75,100,150,200,250,300,400,500,700,and1,000mMammoniumchloride,respec-tively.
Theelutiongradientforthereverse-phasechromatographyconsistedof1minof100%bufferA(5%[vol/vol]acetonitrile–0.
1%[vol/vol]formicacidinwater);a70-mingradientto30%bufferB(0.
1%[vol/vol]formicacidinaceto-nitrile);a20-mingradientto50%bufferB;a10-mingradientto95%bufferB;5minof95%bufferB;an8-mingradientto100%bufferA;and7minofre-equilibrationat100%bufferA.
Identicationandrelativequanticationofproteins.
MS/MSdataweresearchedusingtheSEQUESTalgorithm,andadatabaseofS.
cerevisiaeopenreadingframeswasdownloadedfromtheSaccharomycesGenomeDatabaseon9March2007.
TheparametersusedfortheanalysisofMS/MSspectraweredetailedinapreviousstudy(66).
Inthisstudy,carboxyl-terminaldouble18Osweredesignatedforuseinvariablemodication.
Then,SEQUESToutputlesweresubmittedtothePeptideProphetandProteinProphetwebsitesoftheSe-attleProteomicsCenter(http://tools.
proteomecenter.
org)forstatisticalassess-mentofpeptideandproteinsequencematches,respectively(65).
INTERACTsoftwarewasutilizedtoorganizeanddisplaytheresults.
Theacceptederrorrateforpeptideandproteinidenticationwascontrolledtoremainbelow10%.
Theabundanceratios(18O/16O)forlabeledpeptidepairswerecalculatedusingreconstructedionchromatogramsandthefollowingequation,whichissimilartoonepreviouslyreported(70)butwithslightmodications:Ratio18O16OI0M4M0I21M2M01M2M0M2M0I0I0(1)whereI0,I2,andI4representthemeasuredrelativeintensitiesforthersttwoisotopicvariantsofunlabeledpeptides,monolabeledpeptides,anddilabeledpeptides,respectively,andM0,M2,andM4representthesumsofthetheoreticalrelativeintensitiesforthersttwoisotopicvariantsofunlabeledpeptides,mono-labeledpeptides,anddilabeledpeptides,respectively.
Thenaturalisotopicdis-tributionwascalculatedusingthepeptidesequenceandtheMS-isotopeprogram(http://prospector.
ucsf.
edu/).
Theisotopedistributionpatternforthe18O-la-beledpeptidewasassumedtobethesameasfortheunlabeledpeptide.
The3766LINETAL.
APPL.
ENVIRON.
MICROBIOL.
onFebruary2,2021byguesthttp://aem.
asm.
org/DownloadedfromlabeledandunlabeledpeptidepairratioswererstsortedbyproteinlocusandlteredusingDixon'stesttoomittheoutliers.
Theremainingpeptideratioswereusedtocalculatetheproteinmeansandstandarddeviations.
RT-PCR.
TotalRNAsfromthreebiologicalreplicateswereisolatedusingTrizolreagent(Invitrogen)forRT-PCR.
Eachbiologicalreplicatewasanalyzedthrice.
Quantitativereal-timePCRassayswereperformedusingSYBRgreenPCRmastermix(ABI)andanABI7300real-timePCRsystem(ABI).
ThesequencesofprimersusedforquantitativePCRaredescribedinTableS1inthesupplementalmaterial.
Thecyclingprogramwasasfollows:aninitialcycleof2minat50°Cand10minat95°C,followedby40cyclesof10sat95°Cand30sat60°C.
Thedisassociationanalysiswascarriedoutinaroutinefashionbyacquiringuorescentreadingsfor1°Cincreasesfrom55to95°C.
Datawereanalyzedusingsystem7300SDSsoftwaretocalculatethresholdcycle(CT)values.
Subsequently,therelativeexpressionratiosforthegenesweredeter-minedaccordingtothefollowingequations:SampleCTCTSampleCTTDH2(2)CTsampleCTcontrolCT(3)Severalfoldincrease(sampleversuscontrol)2CT(4)NAD/NADHandATP/ADPassays.
Rapidsampling,quenching,andmetab-oliteextractionofbiomass(inapproximately10mlofculturebroth)wereperformedaccordingtothemethodofLuoetal.
(44).
AllLC-MSexperimentswerecarriedoutusinganLCQDecaXPMaxmassspectrometer(ThermoFinni-gan,PaloAlto,CA)underthecontroloftheXcaliburdatasystem(ThermoFinnigan,PaloAlto,CA).
Asampleof20lwasloadedontoanAtlantisT34.
6-by250-mmcolumn(Waters,Ireland)(5mporesize),whichwasequilibratedfor30minbeforeloadingwith98%solutionA(5mMNH4HCO3inwater)and2%solutionB(80%methanol–5mMNH4HCO3inwater).
A20-mingradientto60%solutionAanda5-mingradientto60%solutionAwereused.
Thecolumneluentwaselectrosprayeddirectlyintoamassspectrometer.
Themassspectrom-eterwasoperatedinthenegative-ionandselected-reaction-monitoringmode.
Theoptimizedparameterswereasfollows:ion-sprayvoltage,4.
5kV;sheathgasandauxiliarygas,33and5(arbitraryunits),respectively.
Thecapillarytemperaturewas300°C,andthescanrangewas140to850m/z.
Thestandardcurvewasobtainedbyanalyzingstandardsolutions(NADHandNAD;Sigma,St.
Louis,MO)atveconcentrations(50,10,1,0.
5,and0.
1g)selectedforNADHandNADconcentrationcalculations.
ThelevelsofNADH/NADandATP/ADPwerecalculatedaccordingtotheratiosoftheintegratedioncurrents.
Threebiologicalreplicateexperimentswereperformed,withtwoinjectionsforeachsample.
Dataanalysis.
Thefunctionalcategoryandsubcellularlocalizationdetermi-nationsforproteinswerecarriedoutwithFunCatDBsoftware(http://mips.
gsf.
de/projects/funcat),andbiochemicalpathwayswereclassiedandreconstructedbyreferencetotheKEGGdatabase(http://www.
genome.
jp/kegg/)andtheSac-charomycesGenomeDatabase(http://www.
yeastgenome.
org/).
TheSaccharo-mycesGenomeDatabasewasalsoutilizedtoobtaininformationonproteins.
Proteinsquantiedwithrespecttotwoormorepeptideswereconsideredtobesignicantlychangedwhenoneofthefollowingthreecriteriawassatised:(i)expressionchangedbynolessthan1.
5-foldandwithrelativestandarddevia-tions(RSDs)below40%;(ii)determinationofan18O/16Oratiohigherthan3orlowerthan0.
33andanRSDbelow50%;or(3)allcorrespondingpeptideabundanceschangedbynolessthan1.
5-foldwithoutregardtoRSDvalues.
RESULTSANDDISCUSSIONPhysiologicalproleofS.
cerevisiaetreatedwithfurfuralorleftuntreated.
Thephysiologicaleffectoffurfuralonthein-dustrialS.
cerevisiaestrainwasstudiedbycomparisonofcul-tivationwiththeadditionoffurfural(17g/liter)intoaerobicbatchcultivationsduringexponentialgrowthintherespiratory-fermentativephasetothecontrolcultivationsgrownunderthesameconditionswithouttheintroductionoffurfural.
There-sultsarepresentedinFig.
1.
Theadditionoffurfuralalmostcompletelysuppressedcellgrowth,leadingtoveryslowcellgrowthintherst2hafteradditionoffurfuralandahaltinbiomassformationafterthat.
Uponextendedincubationfor9h,noincreaseingrowthwasobserved.
Bothethanolforma-tionandglucoseconsumptionwereinhibited,showingslowratesintherst4handthenstoppingat4haftertheadditionoffurfural.
Glycerolformationwashaltedimmediately,andtherewasnochangeintheglycerolconcentrationaftertheadditionoffurfural.
Incontrast,thefurfuralconcentrationinthemediumdecreasedsharplyduringtherst4handslowlyinthenext4handthenshowednochangewitharesidualcon-centrationofabout6g/liter,indicatingthatfurfuralhadbeenconvertedbyyeastcellstocompoundsoflessertoxicity.
Usingthemethylenebluetechniqueforcellviabilitydeterminationsduringtheexperiment,weobservedthatyeastcellswerenotabletorecoverfromtheinhibitioncausedbyfurfuralandthatallthecellsdiedat8haftertheadditionoffurfural(seeFig.
S1inthesupplementalmaterial).
Itisobviousthattheintroductionoffurfuralintoaerobicbatchyeastcultivationshadanimmediateanddrasticeffectonthephysiologicalbehaviorofyeastandthattheresponseofyeasttothepresenceoffurfuralwasacontinueddynamicprocess.
Confrontedwithfurfural,theindustrialyeastcellsshowedanotabledecreaseincellgrowth,glucoseconsump-tion,ethanolproduction,andglycerolproductionbutstilltriedtodetoxifyfurfuraltoalleviateitsinhibitoryeffects.
Theseresultsmayreectametabolicrearrangementinyeasttocopewithfurfuraldetoxicationandwithdiverseeffectscausedbythepresenceoffurfural,suchasthearrestofcellgrowthand/ortheaccumulationofacetaldehyde,underscoringtheneedforutilizationofsystemsbiologyapproachesforfurtherFIG.
1.
Comparisonofcellgrowthratesandmetaboliteconcentra-tionsduringaerobicbatchcultivationofS.
cerevisiaeinthepresence(lledsymbols)orabsence(emptysymbols)offurfural.
(A)Concen-trationoffurfural(diamond)andglucose(circle);(B)biomass(trian-gle),ethanol(square),glycerol(circle).
Allexperimentswereper-formedinduplicate.
Furfural(17g/liter)wasaddedwhenthecultureshadreachedanODof3to4(denotedbytime0).
VOL.
75,2009COMPARATIVEPROTEOMEOFYEASTINRESPONSETOFURFURAL3767onFebruary2,2021byguesthttp://aem.
asm.
org/DownloadedfromresearchintotheeffectoffurfuralontheindustrialS.
cerevisiaestrain.
Proteinsdifferentiallyexpressedinresponsetofurfural.
TostudytheproteomicresponseoftheindustrialS.
cerevisiaestrainunderconditionsoftreatmentwithfurfural,ashotgunyeastcomparativeproteomeinvestigationhasbeencarriedout.
Twoequivalentwhole-yeastextractsacquiredfromthecontrolexperimentandthefurfuraltreatmentexperimentweretrypsinizedintopeptidesinH216OandH218O,respec-tively.
Samplesfromthesametimepoint(the20-minor2-htimepoint)werecombinedina1:1ratioandsubjectedtothreeroundsofanalysisusing2D-LC-MS/MS.
Proteinswereidenti-edthroughdatabasesearching,andrelativeproteinexpres-sionlevelsweredeterminedbycalculatingcorrected18O/16Opeptideratiosandusingpeakareas.
Atotalof2,037and3,655peptides(correspondingto205and309proteins,respectively)derivedfromthreereplicateexperimentsrunforboth20minand2hwerequantiedmanually.
Ofthoseproteins,175werequantiedforbothofthedatasets.
Accordingtothedata-miningcriteriadescribedabove(seeMaterialsandMethods)asusedforanalysisofproteinsthataredifferentiallyexpressed,70proteinswereupregulatedand6proteinsweredownregu-latedat20min,whereas31proteinswereupregulatedand35proteinsweredownregulatedat2hinresponsetothepresenceoffurfural.
Togetanoverviewofthedifferentiallyexpressedproteinsandguidesubsequentdataanalysis,determinationsofthesub-cellularlocalizationsandfunctionalcategoriesofthedifferen-tiallyexpressedproteinswerecarriedoutusingFunCatDBsoftware.
Thenumbersofdifferentiallyexpressedproteinsforeachcellularcompartmentorfunctionalcategoryfortimepoints20minand2hareshownintheformof100%stackedcolumns,asdisplayedinFig.
2.
Subcellularlocalizationdistributionsofdifferentiallyex-pressedproteinsat20minwerenotablydifferentfromthoseseenat2h.
Proteinswithanabundancechangeat20minwerenotlocalizedtothebud,golgi,orperoxisomecompartments,whereasproteinswithanabundancechangeat2hdidnotoriginatefromthecellwall.
Theothersubcellularcompart-mentswerewellrepresentedandhaddifferentproportionsofdifferentiallyexpressedproteinsineachdataset.
Thediversesubcellularlocalizationdistributionprolingresultsfor20minofcultivationversus2hdemonstratethatfurfuralhasdifferenteffectsoncellularcompartmentsovertime.
Whenintroducedintotheaerobicbatchculture,furfuralrstenteredintotheyeastcellthroughthecellwallandplasmamembraneandaffectedyeastgeneexpressioninaslittleas10min(39).
Asaresult,thenumbersofdifferentiallyexpressedproteinslocal-izedtothecellwall,plasmamembrane,andnucleusweremuchgreaterat20minthanat2h.
Ontheotherhand,morecompartments,includingthebud,golgi,andperoxisomecom-partments,wereaffectedbyfurfuralat2hthanat20min.
Thefunctiondistributionofproteinswithalteredexpressioninresponsetothepresenceoffurfuralat20minand2hispresentedinFig.
2B.
Asawhole,differentiallyexpressedpro-teinsat20minwereoverrepresentedcomparedtothoseseenat2hformostfunctiongroups,withtheexceptionoftheregulationofmetabolismandproteinfunction,unclassiedprotein,anddevelopmentfunctiongroups.
At20minofcul-tivation,furfuralmayaffectyeastmoreseverelyandresultinFIG.
2.
Subcellularlocalizationdistribution(A)andfunctionalcategories(B)of76and65proteinsdifferentiallyexpressedinresponsetothepresenceoffurfuralat20minand2h,respectively.
The100%stackedcolumnchartsareusedtocomparethenumbersofdifferentiallyexpressedproteinsineachcellularcompartmentorfunctioncategoryat20minand2h.
Thetotalnumberofdifferentiallyexpressedproteinsfromthetwotimepointsrepresents100%,whiletheindividualnumbersofdifferentiallyexpressedproteinsat20minand2hcomposethetwostackedelementsthatmakeuponecolumn.
(B)PF,proteinfate;CRDV,cellrescue,defense,andvirulence;CCDP,cellcycleandDNAprocessing;IE,interactionwiththeenvironment;BCC,biogenesisofcellularcomponents;CTD,celltypedifferentiation;CTTFTR,cellulartransport,transportfacilities,andtransportroutes;PS,proteinsynthesis;PBFCR,proteinwithbindingfunctionorcofactorrequirement;CF,cellfate;CC/STM,cellularcommu-nication/signaltransductionmechanism;UP,unclassiedproteins;RMPF,regulationofmetabolismandproteinfunction.
3768LINETAL.
APPL.
ENVIRON.
MICROBIOL.
onFebruary2,2021byguesthttp://aem.
asm.
org/Downloadedfrommoreproteinswithchangesinabundancethanwouldbeseenat2h,duetothehigherconcentrationoffurfuralattheearliertimepoint(15.
9g/literand10.
5g/literat20minand2h,respectively;seeFig.
1).
Yeastcellscanconvertfurfuraltoless-toxiccompounds,resultinginadecreasedconcentrationoffurfuralovertime.
Adose-dependentresponseofethanolo-genicyeasttothepresenceoffurfuralandHMFatconcentra-tionsfrom10to120mMhasbeencharacterizedbyLiuetal.
(43).
Proteinswithabundancechangescausedbythepresenceoffurfuralwerelocalizedtomostcompartmentsandwerefoundtobeinvolvedinalmostallthefunctionsandpathwaysinyeastcells,revealingthattheresponseofyeasttofurfuralisglobalandsystematic.
Furthermore,ourobservationsalsosug-gestthattheresponseofyeasttofurfuralisacontinueddy-namicandcomplexprocess.
Glycolysispathway.
AsimpliedbytheKEGGpathwayanal-ysisofthedifferentiallyexpressedproteins,furfuralmayhaveagreatimpactontheglycolysispathway.
AftertheadditionoffurfuralintotheaerobicbatchculturesoftheindustrialS.
cerevisiaestrain,12outof16proteinsquantiedintheglyco-lysispathwayhadbeendramaticallyupregulatedat20min,whileonly1of17proteinshadbeenupregulatedand3pro-teinsdownregulatedat2h(Fig.
3).
Evidently,theglycolysisofS.
cerevisiaehadrstbeenrapidlyinducedbytheadditionoffurfuralandhadthenreachedcontrollevelsat2hcomparedtothecontrolexperimentresults(veriedbyNADH/NADandATP/ADPassays).
Thisgivesfurtherevidencethatthere-sponseofyeasttothepresenceoffurfuralisacontinuingdynamicprocess,asdescribedabove.
ItisreasonabletobelievethattheexpressionlevelsofproteinscatalyzingthereactionsofFIG.
3.
Relativeexpressionlevelsofproteinsinvolvedincentralcarbonmetabolism,includingglycolysis,theTCAcycle,glycerolbiosynthesis,andthePPP.
The18O/16Oratiosofproteinsarepresentedforthe20-mintimepoint(therstvalueinparentheses)andthe2-htimepoint(thesecondvalueinparentheses).
Theunderlined18O/16Oratioswereobtainedonthebasisofanalysisofonepeptide.
The20-mintimepointdataaremissingbecauseproteinswerenotdetectedat20minby2D-LC-MS/MS.
VOL.
75,2009COMPARATIVEPROTEOMEOFYEASTINRESPONSETOFURFURAL3769onFebruary2,2021byguesthttp://aem.
asm.
org/Downloadedfromglycolysisdecreaseovertime,forglucoseconsumptionhadalmosthaltedandwashoutofthecellcultureshadoccurredat8hundertheconditionsthatincludedtreatmentwithfurfural.
Theideaoftheactivationofglycolysisinthepresenceoffurfuralissupportedbyotherstudies.
Taherzadehetal.
(61)determinedthatglycolysisinducingchangesinabundancewasimmediatelyaffectedbyfurfuralandthatthereductionoffurfuralreliedonactiveglycolysisbyinvestigatingconversionoffurfuralinaerobicandanaerobicbathculturesofS.
cerevi-siaeCBS8066growingonglucose.
Analysisofthemetabolicuxdistributionsforaerobicsteady-statecultureswithandwithoutfurfuralinthemediumshowedthatthepresentationoffurfuralinthemediumresultedinanincreaseof30%inthespecicrateofglycolysiscomparedtotherateseenwithfurfural-freemedium(27).
Throughmetaboliteanalysis,Palmqvistetal.
(48)foundthatfurfuraldecreasedcellrepli-cationwithoutinhibitingcellactivityandhadatwofoldeffectonthekineticsofglucosemetabolisminS.
cerevisiae(i.
e.
,theglucosemetabolismratewasinhibitedbutthenalethanolyieldwasslightlyincreasedatanonlethalconcentrationoffurfural)(48).
Incontrasttotheresultsseenwithactivatedglycolysis,thegrowthandfermentationperformanceoftheindustrialS.
cer-evisiaestrainweresignicantlyretarded.
However,notablere-ductionoffurfuralwasobservedintherst4h,demonstratingthatactivatedglycolysismaycorrelatewiththeconversionoffurfural.
Presumably,thereductionoffurfuraltofurfuralal-coholmaybecatalyzedbyalcoholdehydrogenases(ADHs),withNADHasacofactor(12,46,67),whichwasevidencedherebytheupregulationofAdh5pandAdh1pasdescribedbelow.
ItispossiblethatglycolysisisactivatedbyfurfuraltoprovideasmuchNADHasisrequiredforthereductionoffurfural,whereasethanolproductionisreduced,becausethereductionoffurfuralcompeteswiththereactionofacetalde-hydetoethanolforbothNADHandADHs.
Glycerolbiosynthesis.
DownregulatedlevelsofGpd1p(at20min,notquantied;at2h,0.
46),Rhr2p(0.
58;0),andHor2p(notquantied;0.
43)catalyzingglycerolbiosynthesiswereobservedinfurfural-treatedcellscomparedtocontrolcells(Fig.
3).
Furthermore,asshowninFig.
1,theglycerolconcentrationstayedconstantaftertheintroductionoffurfuraltotheaerobicbathculturesofyeast,indicatingthatfurfuralseverelyinhibitsglycerolformation.
Ithasbeendemonstratedthatthereductionoffurfuraltofurfuralalcoholispreferredtoglycerolproductionasaredoxsink,subsequentlyresultinginthereplacementofglycerolformationbyfurfuralalcoholpro-duction(48,61).
Palmqvistetal.
(49)andTaherzadehetal.
(61)observedthatglycerolproductionwasdecreasedinthepresenceoffurfuralunderanaerobicconditions.
Glycerolbio-synthesisactsasaredoxsink,providingadditionalreoxidationofcytosolicNADH.
Atthesametime,NADHisthemajorcofactorrequiredforreductionoffurfuraltofurfuralalcohol.
Asaresult,glycerolproductionandfurfuralreductioncom-peteforasharedpoolofNADH,asisalsoobservedwiththereactionofacetaldehydetoethanolandfurfuralreduction.
Inthepresenceofahighconcentrationoffurfural,yeastreducestheproductionofglyceroltomeettheurgentrequirementofNADHfortheconversionoffurfuraltofurfuralalcohol(seeFig.
8).
TCAcycle.
Asacentralmetabolicpathway,thetricarboxylicacid(TCA)cycleprovidesprecursorsformanycompounds,includingsomeaminoacids,andgeneratesusefulamountsofATPandNADHunderaerobicconditions.
Noneoftheen-zymesintheTCAcyclewasidentiedat20min,whereasCit1p,Aco1p,Aco2p,Idh1p,andMah1pwereidentiedandquantiedat2handalldisplayedatrendtowardincreasedproduction,withAco2pandMdh1pnoticeablyupregulatedinthepresenceoffurfural.
Analysisofthemetabolicuxdistri-butionsfortheaerobicsteady-statecultureswithandwithoutfurfuralinthemediumshowedthatthepresenceoffurfuralinthemediumresultedina50%increaseinthespecicrateoftheTCAcyclecomparedtotherateseenwithfurfural-freemedium(27).
Theupregulationofenzymesat2hrevealsthattheTCAcyclecanbeactivatedinthepresenceoffurfuraltoproducemoreNADHforthereductionoffurfural(seeFig.
8).
PPP.
Thepentosephosphatepathway(PPP)isanimportantcarbohydratemetabolismpathway,oxidizingglucosetogener-ateNADPHforreductivebiosynthesisreactionswithincellsandribose-5-phosphateforthesynthesisofthenucleotidesandnucleicacid.
However,theexpressionlevelsofGnd1p(at20min,1.
46;at2h,1.
08),Tkl1p(0.
91;0.
98),andTal1p(1.
23;1.
30)involvedinthePPPwerenotaffectedbythepresenceoffurfuralateithertimepoint(Fig.
3).
Thisobservationiscon-sistentwiththeresultsofapreviousstudyshowingthatal-thoughselective-deletionmutantscodedbygenesinthePPPshowedgrowthdecienciesinthepresenceoffurfural,thesemutantswereinefcientinreducingfurfuraltofurfuralalcohol(18).
Therefore,itissuggestedthatthePPPmayhavenodirectcorrelationwithfurfuralconversionundertheconditionsstud-iedhere.
Sinceithasbeenreportedthatthecentralcarbonmetabo-lismofS.
cerevisiaeiscontrolledtoalargeextentviaposttran-scriptionalmechanismsinchemostatstudies(11,32,33),quan-titativeRT-PCRwasnotcarriedouttosubstantiateourndingsconcerningtheinvolvementofthecentralcarbonme-tabolismincellularresponsetothepresenceoffurfural.
In-stead,thelevelsofintracellularNADH,NAD,NADH/NAD,andATP/ADPweremeasuredbyLC/MS(Fig.
4).
TheintracellularconcentrationsofNADandNADHwerede-creasedatleasttwofoldandfourfold,respectively,leadingtoalowerNADH/NADratioinfurfural-treatedcellscomparedwithcontrolcellsatbothtimepoints.
Incontrast,theATP/ADPratiowasincreasedsignicantlyat20minbutnotat2h.
TheurgentrequirementoffurfuralreductioncausedasevereshortageofNADH,leadingtotheupregulationofsomeen-zymesinthecentralcarbonmetabolismtoprovideasmuchNADHandATPaspossibleincellstreatedwithfurfuralcomparedwithcontrolcellsat20minand2h(althoughtheeffectwaslesssignicantat2h).
TheneedforATPmaybesmallerthanthatforNADHinfurfural-treatedcells.
Thus,thelevelsofintracellularNAD,NADH,andNADH/NADweredecreasedwhereastheATP/ADPratiowasincreasedaftertheadditionoffurfural.
Theseresultscorroboratethecomparativeproteomeresultsdescribedabove.
NADandNADHareinvolvedinvariousbiologicalprocesses,includingaging,apoptosis,celldeath,energymetabolism,mitochondrialfunctions,calciumhomeostasis,antioxidation-generationofoxidativestress,geneexpression,andsoon(71).
IthasbeensuggestedthatNADdepletionmediatespoly(ADP-ribose)3770LINETAL.
APPL.
ENVIRON.
MICROBIOL.
onFebruary2,2021byguesthttp://aem.
asm.
org/Downloadedfrompolymerase-1-inducedcelldeath(1).
Previousworkhassug-gestedthatNADandNADHmaybeinvolvedinapoptosis:itwasreportedthatselectiveinhibitorsofNADsynthesiscaninduceapoptosis(24)andthatNADH/NADPHdepletionisanearlyeventinapoptosis(52).
Thus,thedecreaseinbothNADandNADHlevelsinyeastcellsupontreatmentwithfurfural,resultingfromaninhibitionofsynthesisofthesecom-poundsorfromaccelerateddegradation,maybeultimatelyresponsibleforthecelldeathobserved.
Furthermore,ourdatasuggestthatacetaldehydelikelyaccumulatesinthecultureduringfurfuralreductionduetoadecreasedNADHconcen-trationinthecell.
Inapreviousstudy,theaccumulationofacetaldehydeaftertheadditionoffurfuralwasobservedandtheeffectoffurfuraloncellreplicationwasshowntoberelatedtoacetaldehydeformation(48).
Acetaldehydehasbeenfoundtoexertinhibitioneffectsonyeastgrowth(59),whichiscon-sistentwiththearrestofgrowthobservedinthisstudy.
Obvi-ously,thepresenceoffurfuralcausedseveralsecondaryeffects,includingthedropinbothNADandNADHlevels,theac-cumulationofacetaldehyde,andacontributiontothegeneralstressenvironment,whichinturnmayaffectthecellularme-tabolisminyeastcellstreatedwithfurfural.
Thealteredexpressionlevelsofmostproteinscatalyzingthereactionsofcentralcarbonmetabolism(withtheexceptionofthoseinvolvedinthePPP)revealedthattheadditionoffur-furalledtoacentralcarbonmetabolismrearrangementinyeastcellsinordertoinducetolerationoffurfural.
Glycolysisand/ortheTCAcyclewerestimulatedtoprovidesufcientNADHforefcientconversionoffurfural.
Also,NADHwasdivertedfromglycerolsynthesisandethanolproductionintofurfuralalcoholformation.
Thus,theformationofethanolandglycerolwasinhibitedduringtheadaptationofyeasttofurfural(seeFig.
8).
ADHs.
AmongthesevenADHsinyeastcells,threewerequantiedat20minandsixat2h(Fig.
5).
When17goffurfural/literofmediumwasused,theexpressionofAdh5pwasmarkedlyupregulated(i.
e.
,itwasmorethan4timeshigherthanthatseeninfurfural-freemediumatbothtimepoints)whereastranslationallevelsshowednosignicantchanges.
ThisdiscrepancyforAdh5pattheproteinlevelandthetran-scriptlevelhasbeenreportedbyothergroups(6,7,9).
Adh5pcancatalyzetheconversionofacetaldehydetoethanol,withactivityapparentonlyinanadh1andadh3double-deletionstrain(57),andthisconversioncanbeinducedbythepresenceofdimethylsulfoxide(72).
Adh6pwassignicantlyupregulatedat20min(withonepeptidequantied)andshowednochangeat2h.
Larroyetal.
reportedthatAdh6pisanNADPH-dependentADHofbroadsubstratespecicitythatisabletoreducealdehydes,includingcinnamaldehyde,veratraldehyde,andfurfural(34).
Inaddition,thereductionof5-hydroxy-methylfurfuralandfurfuralwithNADPHasacofactorwasincreasedincell-freecrudeextractsfromAdh6p-overexpress-ingstrains(51).
Adh1p,themajorenzymecatalyzingthereac-tionofacetaldehydetoethanol,displayedmediateincreasesatbothtimepoints,whichwereveriedbyquantitativeRT-PCR(seeFig.
7).
Adh1phasbeensuggestedinpreviousstudiestobeanenzymepossiblycatalyzingthereductionoffurfuraltofurfuralalcohol(21).
TheoverexpressionofAdh1pcanin-creasetheformaldehyderesistanceofS.
cerevisiae(20).
Sinceethanolformationwasseverelyinhibitedatbothtimepoints,theenhancementofADHswasnotrelatedtothereactionofFIG.
4.
IntracellularNADHandNADlevels(A),ATP/ADPra-tios(B),andNAD/NADHratios(C)infurfural(fur)-treatedcells(graybars)andcontrol(con)cells(blackbars)at20minand2h.
Threebiologicalreplicateexperimentswereperformedalongwithtwoinjec-tionsforeachsample.
ThePvaluesindicatethestatisticalsignicanceoftheobserveddifferences,withP0.
05consideredtobestatisticallysignicantandP0.
05tobenotstatisticallysignicant,asdeterminedbyatwo-tailedStudentttest.
CDW,celldryweight.
FIG.
5.
HistogramshowingsixmembersoftheADHgenefamilyandtheirrespectivechangeratiosat20minand2h.
Thelledcirclesindicatethatproteinswerenotdetectedatthattimepoint.
VOL.
75,2009COMPARATIVEPROTEOMEOFYEASTINRESPONSETOFURFURAL3771onFebruary2,2021byguesthttp://aem.
asm.
org/Downloadedfromacetaldehydetoethanol.
Furthermore,ithasbeenreportedthatthereductionoffurfuraltofurfuralalcoholislikelycat-alyzedbyADHs(12,46,67).
Thus,inthecontextoftheliteratureandourexperiments,itispossiblethatAdh5p,Adh1p,andAdh6pmaycatalyzethereductionoffurfuraltofurfuralalcohol.
However,furthervalidationstudiesarenec-essarytoconrmthishypothesis,sincetheinductionofAdh5p,Adh1p,andAdh6pbyfurfuralmaybeassociatedwithotherbiologicalprocesses.
Adh2p,Adh4p,andSfa1pweredetectedandquantiedonlyat2h.
Adh2pandSfa1phaddecreasedexpressionlevels,whereastheexpressionabundanceofAdh4pwasnotaffectedbythepresenceoffurfural.
Adh2p,unlikeotherADHs,cata-lyzesthereactionofethanoltoacetaldehydeandisrepressedinthepresenceofglucose(9).
Additionoffurfuralinhibitedtheglucoseconsumptionandledtohigherglucoseconcentra-tionsinthefurfuraltreatmentexperiment(Fig.
1),andthisinturnrepressedtheexpressionofAdh2p.
ThedownregulationofSfa1pisconsistentwiththelowerethanolconcentrationinthemediumwithfurfuralcomparedtothefurfural-freeme-diumat2h,asithadbeenreportedthatSfa1pisinducedbythepresenceofethanol(17).
Thedecreasedlevelsofexpres-sionofAdh2pandSfa1psuggestthattherippleeffectimposedbythepresenceoffurfuralexistsandbecomesmoresignicantwiththepassageoftimeaftertheadditionoffurfural.
Thus,ADHsmayplayaroleinthetoleranceandadaptationofethanologenicyeasttofurfural.
Proteinsrelatedtostressresponse.
Althoughithasbeenmentionedbeforethatfurfuralmayresultintheaccumulationofreactiveoxygenspecies,vacuoleandmitochondrialmem-branedamage,andchromatinandactindamageinS.
cerevisiae(39),therehasbeennopreviousstudyfocusingonthestresseffectscausedinS.
cerevisiaebythepresenceoffurfural.
Thelevelsofabundanceof23proteinsrelatedtostressresponsedisplayedsignicantchangeseitheratonetimepointoratbothtimepoints(Fig.
6A).
Analysiswithrespecttofunctionalcategoryshowedthattheseproteinsareinvolvedinthere-sponseofyeasttounfoldedproteins,oxidativestress,osmoticandsaltstress,DNAdamage,andnutrientstarvation.
Thereareeightproteinsrelatedtounfoldedproteinre-sponse(UPR),includingveHSP70proteins:Ssb1p,Ssb2p,Ssc1p,Ssz1p,andKar2p.
At20minaftertheadditionoffurfural,proteinsrelatedtothefolding,sorting,andtranslo-cationofnewlysynthesizedpolypeptidechainssuchasEgd2p(16),Hsp10p(25),andSsb1pwereupregulated.
At2h,nochangeintheexpressionofEgd2pandSsb1pwasseen,whereasHsp10pwasslightlydownregulated,asshownbytheresultsofquanticationofonepeptide.
Instead,anothergroupFIG.
6.
Proteinsrelatedtostressresponsethatexhibitedsignicantchangesinabundanceinthisstudy(A)andribosomalproteinsquantiedinthisstudy(B).
Thelledcirclesindicatethatproteinswerenotdetectedatthattimepoint.
3772LINETAL.
APPL.
ENVIRON.
MICROBIOL.
onFebruary2,2021byguesthttp://aem.
asm.
org/Downloadedfromofproteins(Ssb2p,Ssc1p,andSsz1p)relatedtothefolding,sorting,andtranslocationofnewlysynthesizedpolypeptidechainsdisplayedincreasedexpressionlevelsat2haftertheadditionoffurfural.
ItisworthnotingthatKar2pwasupregu-latedat2h,sinceKar2pnotonlyisinducedbyUPRbutisalsoinvolvedintheregulationofUPRthroughinteractionwithIre1p.
TheinductionoftheseproteinsrelatedtotheUPRimpliesthattheadditionoffurfuralmayleadtotheaccumu-lationofunfoldedproteins,subsequentlyresultingintriggeringoftheUPR.
Furtherevidencewasobservedwhentheresultsofstimulationofribosomeproteinswererecorded(Fig.
6B).
At20min,allofthe32ribosomalproteinsquantiedinthisstudyexhibitedatrendtoincreasedregulationchangesasagroup;17ofthoseproteinsweresignicantlyupregulatedinresponsetofurfural.
At2h,16of34ribosomalproteinsquantiedshoweddistinctlyincreasedexpressionlevels,while1proteinwasslightlydownregulated.
Atbothtimepoints,27proteinswerequantied,with11proteinsupregulated.
Themainfunc-tionofribosomeistoorganizeproteinsynthesis.
Theupregu-lationofribosomalproteinssuggeststhatproteinsynthesisintheaerobicbatchculturecontainingfurfuralmayhavebeenacceleratedcomparedtothatseenwithfurfural-freeculturesunderthesameconditions.
Theaccelerationofproteinsyn-thesismayleadtotheaccumulationofunfoldedproteinsintheendoplasmicreticulum(ER)lumen,inturnactivatingtheUPRtorestoreprotein-foldingcapacityandadapttonewconditionscausedbythepresenceoffurfural.
TheUPRcanprotectcellsagainstERstress,butwhenthisobjectivecannotbeachievedwithinacertaintimeperiodorwhenERstressisprolonged,theUPRcaninitiatecelldeathorapoptosis.
Theconcentrationoffurfuralappliedinthisstudywassohighthathigh-intensityandlong-termERstressexisted,andwashoutofculturesoccurredat8h.
Proteinsthatrespondtooxidativestressrepresentthesec-ond-largestgroupamongthestress-response-relatedproteinsthatshowedabundancechangesinthepresenceoffurfural.
ThethioredoxinsTrx1pandTrx2p,heatshockproteinHsp12p,andsuperoxidedismutaseSod1pweresignicantlyupregu-latedat20minbutshowednoabundancechangeat2hinresponsetothepresenceoffurfural.
ExpressionofTsa1p,ahousekeepingthioredoxinperoxidase,wasrstnotablyup-regulatedat20minandthenslightlydownregulatedat2h.
TheexpressionlevelofAhp1wasdownregulatedatbothtimepointsaftertheadditionoffurfuralintoaerobicbatchculturesofS.
cerevisiae.
Ahp1pisathiol-specicperoxiredoxinprotect-ingcellsfromoxidativedamagebyreducinghydroperoxides(35).
Yhb1p,anitricoxideoxidoreductasedetoxifyingnitricoxide(38),wasquantiedonlyat2handshowedanincreasedexpressionlevel.
TheoxidativestressmayberelatedtothedecreaseoftheNAD,NADH,andNADH/NADlevels,sinceithasbeensuggestedthatNADandNADHinuenceantioxidationandthegenerationofoxidativestress(71).
Atbothtimepoints,furfuralinducedtheexpressionlevelsofRps3p(at20min,1.
70;at2h,1.
42)andStm1p(3.
25;1.
87),whichrespondtoDNAdamage.
Geneticanalyseshavesug-gestedthatStm1p,aG4quadruplexandpurinemotiftriplexnucleicacid-bindingprotein,participatesinseveralbiologicalprocesses,includinginteractionwithribosomeandsubtelo-mericYDNA(63),telomeremaintenancebyinteractionwithCdc13p,andapoptosis(25,36).
Furthermore,itsaccumulationinducescelldeath(36).
LiketheUPR,theupregulationofStm1patbothtimepointsmaybeinvolvedinthewashoutofculturesat8h.
Incontrast,Rps3pisessentialforviability(15)andisinvolvedinDNAdamageprocessingandwithapurinic-apyrimidinicendonucleaseactivity(29).
Thus,theupregula-tionofexpressionofthesetwoproteinsrevealsthatfurfuralcausesDNAdamageinS.
cerevisiae.
ThePkc1p–mitogen-activatedproteinkinase(Pkc1p-MAPkinase)pathwayregulatescellwallmaintenanceandintegrity,whichareessentialforthegrowthandtheintegrityofprolif-eratingcells(60).
ThePkc1p-MAPkinasepathwayisreportedtobenegativelyregulatedbyZeo1p(at20min,2.
3;at2h,1.
3)(19)andLsp1p(at20min,notquantied;at2h,2.
83)(73),sotheupregulationofexpressionofZeo1pat20minandofLsp1pat2hrevealedthatthispathwayisinactivatedinthepresenceoffurfural,leadingtolackofcellwallintegrityanddefectivecellgrowth.
ThishypothesisisfurthersupportedbythedownregulationofRho1p(at20min,notquantied;at2h,0.
31),whichisrequiredforthePkc1plocalizationtositesofpolarizedgrowththroughoutthecellcycleandalsotoregionsofcellwalldamage(3,54).
Rho1palsoregulatescellwallsynthesizingenzyme1,alsocalled3-beta-glucansynthase(Fks1pandGsc2p)(14,54).
ExpressionofAct1p,astructuralconstituentofthecytoskeletonthatisinvolvedincellpolar-ization,endocytosis,andmanyothercytoskeletalfunctions(53),wassignicantlyupregulatedat20minandunchangedat2h.
Thealteredexpressionofproteinsthatareinvolvedincellintegrity,growth,andsurvivalstronglyimpliesthatthepres-enceoffurfuralhadcausedarearrangementofcellstructureanddamagetoyeastcellintegrity,growth,andsurvival.
More-over,Pho2p,whichparticipatesinnutrientstarvation,wassig-nicantlyupregulatedat20min.
PHO2isknownasatran-scriptionalactivatorofPHO5andPHO81(phosphateutilization),HIS4(histidinebiosynthesis),CYC1,TRP4,andHO;italsoactivatesexpressionoftheADE1,ADE2,ADE5,ADE7,andADE8genes,whichareinvolvedinthemetabolicpathwayofpurinenucleotidebiosynthesis(10,37).
Toconrmtheproteinexpressiondataobtainedby18Olabeling,thetranscriptlevelsofthe10selectedstress-relatedproteinsdescribedaboveweremeasuredbyquantitativeRT-PCRat20minand2h(Fig.
7).
ThequantitativeRT-PCRresultsforAct1p,Hsp10p,Hsp12p,Pho2p,Tsa1p,andZeo1pat20minandforLsp1pandStm1pat2hareconsistentwiththerelativequantitativeproteinexpressionresultsobtainedusing18Olabeling.
Furthermore,thelevelsofexpressionofZeo1p,Hsp10p,andHsp12pchangedinthesamedirectionatboththeproteinlevelandthetranscriptionlevel,althoughthechangesatthetranscriptlevelwerestatisticallysignicantwhereasthoseattheproteinlevelwerenot.
Generally,therewerediscrepanciesbetweenquantitativeRT-PCRresultsandtherelativequantitativeproteinexpressionresultssuchasthoseseenwithAhp1patbothtimepoints.
Thesediscrepan-ciesmayhavebeenduetothefactthat,apartfromtheeffectdeterminedbytheamountofmRNApresent,theproteinexpressionlevelisinuencedbyproteinturnoverandpost-translationalmodications.
Whatismore,themRNAmole-culesmayberelativelyunstablecomparedtoproteinsingen-eral,contributingtothedifferenceinturnoverratesbetweenmRNAandprotein,asreportedinapreviousstudyusingS.
cerevisiae(22).
ThequantitativeRT-PCRresultsprovideor-VOL.
75,2009COMPARATIVEPROTEOMEOFYEASTINRESPONSETOFURFURAL3773onFebruary2,2021byguesthttp://aem.
asm.
org/Downloadedfromthogonalevidenceofthereliabilityoftherelativequantitativeproteinexpressionresultsdeterminedusing18Olabeling.
Clearly,furfuralnotonlyinuencesyeastwithrespecttoprimarycarbonatemetabolicpathwaysandproteinsynthesisbutalsocausestheformationofacomplexstressenvironmentinyeastcells.
Theexpressionlevelsofproteinsinvolvedincommonstressresponses,includingtheUPR,oxidativestress,osmoticandsaltstress,DNAdamage,andnutrientstarvation,werealteredduetothecomplexstressenvironmentformedbytheadditionoffurfuraltotheaerobicbatchculture.
There-directionofresourcestowardstressdefensemayleadtodi-minishingamountsoffreeavailableenergysuppliedbycatab-olismforcellgrowthandinsufcientATPforphosphorylationofglucosetoformglucose-6-phosphate,whichiscriticalfortheutilizationofglucose.
Thus,cellgrowthandglucoseconsump-tionareinhibitedbyfurfural.
Withthepassageoftime,yeastcellsrstdisplayalagphaseandeventuallyadapttofurfuralstress,butwhentheconcentrationoffurfuralistoohighandrequirestoomuchNADH,theyeastcellisseverelydamagedandwashoutoccurs(Fig.
8).
Conclusion.
Theadditionofhighconcentrationsoffurfuraltotheaerobicbatchculturesofanindustrialstrainseverelyinhibitedbiomassgrowth,glucoseconsumption,ethanolpro-duction,andglycerolproduction.
Relativequantitativepro-teomicdatahereprovideadeeperunderstandingofthemo-lecularmechanisminvolvedintheresponseofS.
cerevisiaetofurfuralunderaerobicbatchconditions.
Togetherwithupregu-lationofAdh5pandAdh1p,activationofglycolysisand/ortheTCAcycleandrepressionofglycerolbiosynthesiswereob-served,suggestingthatthereductionoffurfuraltofurfuralalcoholcatalyzedbyAdh5pandAdh1pwithNADHasaco-factormaybeapotentialpathwayfortheconversionoffur-FIG.
7.
Asetof13transcriptlevelswasmeasuredbyquantitativeRT-PCR.
Ratiosbetweenfurfural-treatedandcontrolcelllevelsat20minand2hareshown.
Threebiologicalreplicateexperimentswereperformedalongwiththreetechnicalanalysesforeachbiologicalreplicate.
Astatisticalanalysisofindependentculturereplicateswasperformedusingatwo-tailedStudentttest.
Theproteinscodedbygenesthatweresignicantlytranscriptionallyregulatedaredepicted(*,P0.
05).
FIG.
8.
Modeldepictingtheeffectsofthepresenceoffurfuralonethanologenicyeastunderaerobicbatchconditions.
Underconditionsthatincludedtreatmentwithfurfural,glycolysisand/ortheTCAcyclewasactivated(green)whereasglycerolandethanolproduction(red)wererepressedtoprovideasmuchNADHasrequiredforfurfuralreductiontofurfuralalcohol.
Ontheotherhand,ageneralstressresponse(purple)wascausedbyfurfural.
Asaresult,yeastcellsdisplayedalagphasetotolerateandadapttofurfural,butwhentheconcentrationoffurfuralwastoohigh,leadingtoarequirementfortoomuchNADHandresultinginseveredamagetoyeastcells,washoutoccurred.
3774LINETAL.
APPL.
ENVIRON.
MICROBIOL.
onFebruary2,2021byguesthttp://aem.
asm.
org/Downloadedfromfuraltocompoundsoflessertoxicity.
Whatismore,proteinsinvolvedinstressresponsewerealsodifferentiallyexpressedduetothecomplexstressenvironmentwhoseformationwascausedbythepresenceoffurfural.
Theredirectionofre-sourcestowardfurfuralconversionandstressdefensemayleadtotheinhibitionofyeastcellgrowthandfermentation.
Quan-titativeRT-PCRandmetaboliteanalysis(ofthelevelsofNADH,NAD,NADH/NAD,andATP/ADP)wereutilizedtoprovideorthogonalevidencesupportingthecomparativeproteomicsresults.
Secondaryeffectsduetothepresenceoffurfuralwereobservedandmayhavebeenrelatedtothein-hibitoryeffectsoffurfural.
Theseinsightsintotheresponseofyeasttofurfuralwillbenetthedesignanddevelopmentofinhibitor-tolerantethanologenicyeaststrainsforlignocellu-lose-bioethanolfermentation,whichisoneofthesignicantchallengesforcost-competitivebioethanolproduction.
ACKNOWLEDGMENTSWeareverygratefulforthenancialsupportfromtheNationalScienceFundofChinaforDistinguishedYoungScholars(project20425620),theKeyProgram(project20736006),NationalBasicRe-searchProgram973ofChina(grant2007CB714301),theInternationalCollaborationProjectofMOST(grant2006DFA62400),andKeyProjectsintheNationalScience&TechnologyPillarProgram(grant2007BAD42B02).
REFERENCES1.
Alano,C.
C.
,W.
H.
Ying,andR.
A.
Swanson.
2004.
Poly(ADP-ribose)polymerase-1-mediatedcelldeathinastrocytesrequiresNADdepletionandmitochondrialpermeabilitytransition.
J.
Biol.
Chem.
279:18895–18902.
2.
Almeida,J.
R.
M.
,T.
Modig,A.
Petersson,B.
Hahn-Hagerdal,G.
Liden,andM.
F.
Gorwa-Grauslund.
2007.
Increasedtoleranceandconversionofinhib-itorsinlignocellulosichydrolysatesbySaccharomycescerevisiae.
J.
Chem.
Technol.
Biotechnol.
82:340–349.
3.
Andrews,P.
D.
,andM.
J.
R.
Stark.
2000.
Dynamic,Rho1p-dependentlocalizationofPkc1ptositesofpolarizedgrowth.
J.
CellSci.
113:2685–2693.
4.
Ang,C.
S.
,P.
D.
Veith,S.
G.
Dashper,andE.
C.
Reynolds.
2008.
ApplicationofO-16/O-18reverseproteolyticlabelingtodeterminetheeffectofbiolmcultureonthecellenvelopeproteomeofPorphyromonasgingivalisW50.
Proteomics8:1645–1660.
5.
Brown,K.
J.
,andC.
Fenselau.
2004.
InvestigationofdoxorubicinresistanceinMCF-7breastcancercellsusingshot-guncomparativeproteomicswithproteolyticO-18labeling.
J.
ProteomeRes.
3:455–462.
6.
Chong,P.
K.
,A.
M.
Burja,H.
Radianingtyas,A.
Fazeli,andP.
C.
Wright.
2007.
ProteomeanalysisofSulfolobussolfataricusp2propanolmetabolism.
J.
ProteomeRes.
6:1430–1439.
7.
Chong,P.
K.
,A.
M.
Burja,H.
Radianingtyas,A.
Fazeli,andP.
C.
Wright.
2007.
Proteomeandtranscriptionalanalysisofethanol-grownSulfolobussolfataricusP2revealsADH2,apotentialalcoholdehydrogenase.
J.
Pro-teomeRes.
6:3985–3994.
8.
Chong,P.
K.
,A.
M.
Burja,H.
Radianingtyas,A.
Fazeli,andP.
C.
Wright.
2007.
TranslationalandtranscriptionalanalysisofSulfolobussolfataricusP2toprovideinsightsintoalcoholandketoneutilisation.
Proteomics7:424–435.
9.
Ciriacy,M.
1975.
GeneticsofalcoholdehydrogenaseinSaccharomycescer-evisiae.
II.
Twolocicontrollingsynthesisoftheglucose-repressibleADHII.
Mol.
Gen.
Genet.
138:157–164.
10.
Daignan-Fornier,B.
,andG.
R.
Fink.
1992.
CoregulationofpurineandhistidinebiosynthesisbythetranscriptionalactivatorsBAS1andBAS2.
Proc.
Natl.
Acad.
Sci.
USA89:6746–6750.
11.
DeLuna,A.
,A.
Avendano,L.
Riego,andA.
Gonzalez.
2001.
NADP-gluta-matedehydrogenaseisoenzymesofSaccharomycescerevisiae—purication,kineticproperties,andphysiologicalroles.
J.
Biol.
Chem.
276:43775–43783.
12.
DiazdeVillegas,M.
E.
,P.
Villa,M.
Guerra,E.
Rodriguez,D.
Redondo,andA.
Martinez.
1992.
ConversionoffurfuralintofurfurylalcoholbySaccharo-mycescerevisiae.
ActaBiotechnol.
12:351–354.
13.
Ding,M.
-Z.
,J.
-S.
Cheng,W.
-H.
Xiao,B.
Qiao,andY.
-J.
Yuan.
2009.
Com-parativemetabolomicanalysisonindustrialcontinuousandbatchethanolfermentationprocessesbyGC-TOF-MS.
Metabolomics5:229–238.
14.
Drgonova,J.
,T.
Drgon,K.
Tanaka,R.
Kollar,G.
C.
Chen,R.
A.
Ford,C.
S.
M.
Chan,Y.
Takai,andE.
Cabib.
1996.
Rho1p,ayeastproteinattheinterfacebetweencellpolarizationandmorphogenesis.
Science272:277–279.
15.
Fingen-Eigen,M.
,H.
Domdey,andK.
Kohrer.
1996.
TheribosomalproteingeneRPS3isanessentialsinglecopygeneoftheyeastSaccharomycescerevisiae.
Biochem.
Biophys.
Res.
Commun.
223:397–403.
16.
George,R.
,T.
Beddoe,K.
Landl,andT.
Lithgow.
1998.
Theyeastnascentpolypeptide-associatedcomplexinitiatesproteintargetingtomitochondriainvivo.
Proc.
Natl.
Acad.
Sci.
USA95:2296–2301.
17.
Go¨mpel-Klein,P.
,M.
Mack,andM.
Brendel.
1989.
Molecularcharacteriza-tionofthetwogenesSNQandSFAthatconferhyperresistanceto4-nitro-quinoline-N-oxideandformaldehydeinSaccharomycescerevisiae.
Curr.
Genet.
16:65–74.
18.
Gorsich,S.
W.
,B.
S.
Dien,N.
N.
Nichols,P.
J.
Slininger,Z.
L.
Liu,andC.
D.
Skory.
2006.
Tolerancetofurfural-inducedstressisassociatedwithpentosephosphatepathwaygenesZWF1,GND1,RPE1,andTKL1inSaccharomy-cescerevisiae.
Appl.
Microbiol.
Biotechnol.
71:339–349.
19.
Green,R.
,G.
Lesage,A.
M.
Sdicu,P.
Menard,andH.
Bussey.
2003.
AsyntheticanalysisoftheSaccharomycescerevisiaestresssensorMid2p,andidenticationofaMid2p-interactingprotein,Zeo1p,thatmodulatesthePKC1-MPK1cellintegritypathway.
Microbiology149:2487–2499.
20.
Grey,M.
,M.
Schmidt,andM.
Brendel.
1996.
OverexpressionofADH1confershyper-resistancetoformaldehydeinSaccharomycescerevisiae.
Curr.
Genet.
29:437–440.
21.
Gutierrez,T.
,M.
L.
Buszko,L.
O.
Ingram,andJ.
F.
Preston.
2002.
Reduc-tionoffurfuraltofurfurylalcoholbyethanologenicstrainsofbacteriaanditseffectonethanolproductionfromxylose.
Appl.
Biochem.
Biotechnol.
98:327–340.
22.
Gygi,S.
P.
,Y.
Rochon,B.
R.
Franza,andR.
Aebersold.
1999.
CorrelationbetweenproteinandmRNAabundanceinyeast.
Mol.
Cell.
Biol.
19:1720–1730.
23.
Hansen,R.
,S.
Y.
Pearson,J.
M.
Brosnan,P.
G.
Meaden,andD.
J.
Jamieson.
2006.
ProteomicanalysisofadistillingstrainofSaccharomycescerevisiaeduringindustrialgrainfermentation.
Appl.
Microbiol.
Biotechnol.
72:116–125.
24.
Hasmann,M.
,andI.
Schemainda.
2003.
FK866,ahighlyspecicnoncom-petitiveinhibitorofnicotinamidephosphoribosyltransferase,representsanovelmechanismforinductionoftumorcellapoptosis.
CancerRes.
63:7436–7442.
25.
Hayashi,N.
,andS.
Murakami.
2002.
STM1,agenewhichencodesaguaninequadruplexbindingprotein,interactswithCDC13inSaccharomycescerevi-siae.
Mol.
Genet.
Genomics267:806–813.
26.
Hood,B.
L.
,D.
A.
Lucas,G.
Kim,K.
C.
Chan,J.
Blonder,H.
J.
Issaq,T.
D.
Veenstra,T.
P.
Conrads,I.
Pollet,andA.
Karsan.
2005.
QuantitativeanalysisofthelowmolecularweightserumproteomeusingO-18stableisotopelabelinginalungtumorxenograftmousemodel.
J.
Am.
Soc.
MassSpectrom.
16:1221–1230.
27.
Horvath,I.
S.
,C.
J.
Franzen,M.
J.
Taherzadeh,C.
Niklasson,andG.
Liden.
2003.
EffectsoffurfuralontherespiratorymetabolismofSaccharomycescerevisiaeinglucose-limitedchemostats.
Appl.
Environ.
Microbiol.
69:4076–4086.
28.
Horvath,I.
S.
,M.
J.
Taherzadeh,C.
Niklasson,andG.
Liden.
2001.
EffectsoffurfuralonanaerobiccontinuouscultivationofSaccharomycescerevisiae.
Biotechnol.
Bioeng.
75:540–549.
29.
Jung,S.
O.
,J.
Y.
Lee,andJ.
Kim.
2001.
YeastribosomalproteinS3hasanendonucleaseactivityonAPDNA.
Mol.
Cells12:84–90.
30.
Klinke,H.
B.
,A.
B.
Thomsen,andB.
K.
Ahring.
2004.
Inhibitionofethanol-producingyeastandbacteriabydegradationproductsproducedduringpre-treatmentofbiomass.
Appl.
Microbiol.
Biotechnol.
66:10–26.
31.
Klinke,H.
B.
,A.
B.
Thomsen,andB.
K.
Ahring.
2001.
PotentialinhibitorsfromwetoxidationofwheatstrawandtheireffectongrowthandethanolproductionbyThermoanaerobactermathranii.
Appl.
Microbiol.
Biotechnol.
57:631–638.
32.
Kolkman,A.
,P.
Daran-Lapujade,A.
Fullaondo,M.
M.
A.
Olsthoorn,J.
T.
Pronk,M.
Slijper,andA.
J.
R.
Heck.
2006.
Proteomeanalysisofyeastresponsetovariousnutrientlimitations.
Mol.
Syst.
Biol.
2:2006.
0026.
33.
Kolkman,A.
,M.
M.
A.
Olsthoorn,C.
E.
M.
Heeremans,A.
J.
R.
Heck,andM.
Slijper.
2005.
ComparativeproteomeanalysisofSaccharomycescerevisiaegrowninchemostatcultureslimitedforglucoseorethanol.
Mol.
Cell.
Pro-teomics4:1–11.
34.
Larroy,C.
,M.
R.
Fernandez,E.
Gonzalez,X.
Pares,andJ.
A.
Biosca.
2002.
CharacterizationoftheSaccharomycescerevisiaeYMR318C(ADH6)geneproductasabroadspecicityNADPH-dependentalcoholdehydrogenase:relevanceinaldehydereduction.
Biochem.
J.
361:163–172.
35.
Lee,J.
,D.
Spector,C.
Godon,J.
Labarre,andM.
B.
Toledano.
1999.
Anewantioxidantwithalkylhydroperoxidedefensepropertiesinyeast.
J.
Biol.
Chem.
274:4537–4544.
36.
Ligr,M.
,I.
Velten,E.
Frohlich,F.
Madeo,M.
Ledig,K.
U.
Frohlich,D.
H.
Wolf,andW.
Hilt.
2001.
TheproteasomalsubstrateStm1participatesinapoptosis-likecelldeathinyeast.
Mol.
Biol.
Cell12:2422–2432.
37.
Liu,C.
,Z.
Y.
Yang,J.
Yang,Z.
X.
Xia,andS.
H.
Ao.
2000.
RegulationoftheyeasttranscriptionalfactorPHO2activitybyphosphorylation.
J.
Biol.
Chem.
275:31972–31978.
38.
Liu,L.
M.
,M.
Zeng,A.
Hausladen,J.
Heitman,andJ.
S.
Stamler.
2000.
Protectionfromnitrosativestressbyyeastavohemoglobin.
Proc.
Natl.
Acad.
Sci.
USA97:4672–4676.
39.
Liu,Z.
L.
2006.
Genomicadaptationofethanologenicyeasttobiomassconversioninhibitors.
Appl.
Microbiol.
Biotechnol.
73:27–36.
VOL.
75,2009COMPARATIVEPROTEOMEOFYEASTINRESPONSETOFURFURAL3775onFebruary2,2021byguesthttp://aem.
asm.
org/Downloadedfrom40.
Liu,Z.
L.
,J.
Moon,B.
J.
Andersh,P.
J.
Slininger,andS.
Weber.
2008.
Multiplegene-mediatedNADPH-dependentaldehydereductionisamech-anismofinsitudetoxicationoffurfuraland5-hydroxymethylfurfuralbySaccharomycescerevisiae.
Appl.
Microbiol.
Biotechnol.
81:743–753.
41.
Liu,Z.
L.
,andP.
J.
Slininger.
2005.
Developmentofgeneticallyengineeredstresstolerantethanologenicyeastsusingintegratedfunctionalgenomicsforeffectivebiomassconversiontoethanol,p.
283–294.
InJ.
Outlaw,K.
Collins,andJ.
Dufeld(ed.
),Agricultureasaproducerandconsumerofenergy.
CABInternational,Wallingford,UnitedKingdom.
42.
Liu,Z.
L.
,andP.
J.
Slininger.
2006.
Transcriptomedynamicsofethanolo-genicyeastinresponseto5-hydroxymethylfurfuralstressrelatedtobiomassconversiontoethanol,p.
679–684.
InA.
Marzal,M.
I.
Reviriego,C.
Navarro,F.
deLope,andA.
P.
Mller(ed.
),Recentresearchdevelopmentsinmul-tidisciplinaryappliedmicrobiology,understandingandexploitingmicrobesandtheirinteractions—biological,physical,chemicalandengineeringas-pects.
Wiley,NewYork,NY.
43.
Liu,Z.
L.
,P.
J.
Slininger,B.
S.
Dien,M.
A.
Berhow,C.
P.
Kurtzman,andS.
W.
Gorsich.
2004.
Adaptiveresponseofyeaststofurfuraland5-hydroxy-methylfurfuralandnewchemicalevidenceforHMFconversionto2,5-bis-hydroxymethlfuran.
J.
Ind.
Microbiol.
Biotechnol.
31:345–352.
44.
Luo,B.
,K.
Groenke,R.
Takors,C.
Wandrey,andM.
Oldiges.
2007.
Simul-taneousdeterminationofmultipleintracellularmetabolitesinglycolysis,pentosephosphatepathwayandtricarboxylicacidcyclebyliquidchroma-tography-massspectrometry.
J.
Chromatogr.
A1147:153–164.
45.
Miyagi,M.
,andK.
C.
S.
Rao.
2007.
ProteolyticO-18-labelingstrategiesforquantitativeproteomics.
MassSpectrom.
Rev.
26:121–136.
46.
Modig,T.
,G.
Liden,andM.
J.
Taherzadeh.
2002.
Inhibitioneffectsoffurfuralonalcoholdehydrogenase,aldehydedehydrogenaseandpyruvatedehydrogenase.
Biochem.
J.
363:769–776.
47.
Morimoto,T.
H.
S.
,andN.
Matutani.
1969.
Studiesonfermentationproductfromfurfuralbyyeast.
III.
Identicationoffuroinandfuril.
J.
Ferment.
Technol.
47:486–490.
48.
Palmqvist,E.
,J.
S.
Almeida,andB.
Hahn-Hagerdal.
1999.
InuenceoffurfuralonanaerobicglycolytickineticsofSaccharomycescerevisiaeinbatchculture.
Biotechnol.
Bioeng.
62:447–454.
49.
Palmqvist,E.
,H.
Grage,N.
Q.
Meinander,andB.
Hahn-Hagerdal.
1999.
Mainandinteractioneffectsofaceticacid,furfural,andp-hydroxybenzoicacidongrowthandethanolproductivityofyeasts.
Biotechnol.
Bioeng.
63:46–55.
50.
Palmqvist,E.
,andB.
Hahn-Hagerdal.
2000.
Fermentationoflignocellulosichydrolysates.
II:inhibitorsandmechanismsofinhibition.
Bioresour.
Tech-nol.
74:25–33.
51.
Petersson,A.
,J.
R.
M.
Almeida,T.
Modig,K.
Karhumaa,B.
Hahn-Hagerdal,M.
F.
Gorwa-Grauslund,andG.
Liden.
2006.
A5-hydroxymethylfurfuralreducingenzymeencodedbytheSaccharomycescerevisiaeADH6genecon-veysHMFtolerance.
Yeast23:455–464.
52.
Petit,P.
X.
,M.
C.
Gendron,N.
Schrantz,D.
Metivier,G.
Kroemer,Z.
Maciorowska,F.
Sureau,andS.
Koester.
2001.
Oxidationofpyridinenucle-otidesduringFas-andceramide-inducedapoptosisinJurkatcells:correla-tionwithchangesinmitochondria,glutathionedepletion,intracellularacid-icationandcaspase3activation.
Biochem.
J.
353:357–367.
53.
Pruyne,D.
,andA.
Bretscher.
2000.
Polarizationofcellgrowthinyeast.
II.
Theroleofthecorticalactincytoskeleton.
J.
CellSci.
113:571–585.
54.
Qadota,H.
,C.
P.
Python,S.
B.
Inoue,M.
Arisawa,Y.
Anraku,Y.
Zheng,T.
Watanabe,D.
E.
Levin,andY.
Ohya.
1996.
IdenticationofyeastRho1pGTPaseasaregulatorysubunitof1,3-beta-glucansynthase.
Science272:279–281.
55.
Qian,W.
J.
,M.
E.
Monroe,T.
Liu,J.
M.
Jacobs,G.
A.
Anderson,Y.
F.
Shen,R.
J.
Moore,D.
J.
Anderson,R.
Zhang,S.
E.
Calvano,S.
F.
Lowry,W.
Z.
Xiao,L.
L.
Moldawer,R.
W.
Davis,R.
G.
Tompkins,D.
G.
Camp,R.
D.
Smith,andtheInammationandtheHostResponsetoInjuryLargeScaleCollaborativeResearchProgram.
2005.
QuantitativeproteomeanalysisofhumanplasmafollowinginvivolipopolysaccharideadministrationusingO-16/O-18labelingandtheaccuratemassandtimetagapproach.
Mol.
Cell.
Proteomics4:700–709.
56.
Ramos-Fernandez,A.
,D.
Lopez-Ferrer,andJ.
Vazquez.
2007.
Improvedmethodfordifferentialexpressionproteomicsusingtrypsin-catalyzedO-18labelingwithacorrectionforlabelingefciency.
Mol.
Cell.
Proteomics6:1274–1286.
57.
Smith,M.
G.
,S.
G.
DesEtages,andM.
Snyder.
2004.
Microbialsynergyviaanethanol-triggeredpathway.
Mol.
Cell.
Biol.
24:3874–3884.
58.
Songi,M.
Z.
,andZ.
L.
Liu.
2007.
AlineardiscretedynamicsystemmodelfortemporalgeneinteractionandregulatorynetworkinuenceinresponsetobioethanolconversioninhibitorHMFforethanologenicyeast.
Syst.
Biol.
Comput.
Proteomics4532:77–95.
59.
Stanley,G.
A.
,T.
J.
Hobley,andN.
B.
Pamment.
1997.
EffectofacetaldehydeonSaccharomycescerevisiaeandZymomonasmobilissubjectedtoenviron-mentalshocks.
Biotechnol.
Bioeng.
53:71–78.
60.
Sussman,A.
,K.
Huss,L.
C.
Chio,S.
Heidler,M.
Shaw,D.
Ma,G.
X.
Zhu,R.
M.
Campbell,T.
S.
Park,P.
Kulanthaivel,J.
E.
Scott,J.
W.
Carpenter,M.
A.
Strege,M.
D.
Belvo,J.
R.
Swartling,A.
Fischl,W.
K.
Yeh,C.
Shih,andX.
S.
Ye.
2004.
Discoveryofcercosporamide,aknownantifungalnaturalproduct,asaselectivePkc1kinaseinhibitorthroughhigh-throughputscreen-ing.
Eukaryot.
Cell3:932–943.
61.
Taherzadeh,M.
J.
,L.
Gustafsson,C.
Niklasson,andG.
Liden.
1999.
Con-versionoffurfuralinaerobicandanaerobicbatchfermentationofglucosebySaccharomycescerevisiae.
J.
Biosci.
Bioeng.
87:169–174.
62.
U.
S.
DepartmentofEnergy.
2006.
Breakingthebiologicalbarrierstocellu-losicethanol:ajointresearchagenda.
DOE/SC-0095.
U.
S.
DepartmentofEnergyOfceofScienceandOfceofEnergyEfciencyandRenewableEnergyEfciencyandRenewableEnergy,Washington,DC.
63.
VanDyke,M.
W.
,L.
D.
Nelson,R.
G.
Weilbaecher,andD.
V.
Mehta.
2004.
Stm1p,aG(4)quadruplexandpurinemotiftriplexnucleicacid-bindingprotein,interactswithribosomesandsubtelomericYDNAinSaccharomy-cescerevisiae.
J.
Biol.
Chem.
279:24323–24333.
64.
Villa,G.
P.
,R.
Bartroli,R.
Lopez,M.
Guerra,M.
Enrique,M.
Penas,E.
Rodríquez,D.
Redondo,I.
Iglesias,andM.
Díaz.
1992.
Microbialtransfor-mationoffurfuraltofurfurylalcoholbySaccharomycescerevisiae.
ActaBiotechnol.
12:509–512.
65.
vonHaller,P.
D.
,E.
Yi,S.
Donohoe,K.
Vaughn,A.
Keller,A.
I.
Nesvizhskii,J.
Eng,X.
J.
Li,D.
R.
Goodlett,R.
Aebersold,andJ.
D.
Watts.
2003.
Theapplicationofnewsoftwaretoolstoquantitativeproteinprolingviaiso-tope-codedafnitytag(ICAT)andtandemmassspectrometry—II.
Evalua-tionoftandemmassspectrometrymethodologiesforlarge-scaleproteinanalysis,andtheapplicationofstatisticaltoolsfordataanalysisandinter-pretation.
Mol.
Cell.
Proteomics2:428–442.
66.
Wang,Y.
X.
,andY.
J.
Yuan.
2005.
DirectproteomicmappingofStreptomycesluteogriseusstrain103andcnn1andinsightsintoantibioticbiosynthesis.
J.
ProteomeRes.
4:1999–2006.
67.
Weigert,B.
,K.
Klein,M.
Rizzi,C.
Lauterbach,andH.
Dellweg.
1988.
InuenceoffurfuralontheaerobicgrowthoftheyeastPichiastipitis.
Bio-technol.
Lett.
10:895–900.
68.
Xia,J.
M.
,F.
M.
Lin,andY.
J.
Yuan.
2007.
Systematicanalysisofyeastresponsetoinhibitors.
Prog.
Chem.
19:1159–1163.
69.
Xia,J.
M.
,andY.
J.
Yuan.
2009.
ComparativelipidomicsoffourstrainsofSaccharomycescerevisiaerevealsdifferentresponsestofurfural,phenol,andaceticacids.
J.
Agric.
FoodChem.
57:99–108.
70.
Yao,X.
D.
,A.
Freas,J.
Ramirez,P.
A.
Demirev,andC.
Fenselau.
2001.
ProteolyticO-18labelingforcomparativeproteomics:modelstudieswithtwoserotypesofadenovirus.
Anal.
Chem.
73:2836–2842.
(Erratum,73:2675.
)71.
Ying,W.
H.
2008.
NAD/NADHandNADP/NADPHincellularfunctionsandcelldeath:regulationandbiologicalconsequences.
Antioxid.
RedoxSignal.
10:179–206.
72.
Zhang,W.
,D.
L.
Needham,M.
Cofn,A.
Rooker,P.
Hurban,M.
M.
Tanzer,andJ.
R.
Shuster.
2003.
MicroarrayanalysesofthemetabolicresponsesofSaccharomycescerevisiaetoorganicsolventdimethylsulfoxide.
J.
Ind.
Mi-crobiol.
Biotechnol.
30:57–69.
73.
Zhang,X.
P.
,R.
L.
Lester,andR.
C.
Dickson.
2004.
Pil1pandLsp1pnegativelyregulatethe3-phosphoinositide-dependentproteinkinase-likekinasePkh1panddownstreamsignalingpathwaysPkc1pandYpk1p.
J.
Biol.
Chem.
279:22030–22038.
3776LINETAL.
APPL.
ENVIRON.
MICROBIOL.
onFebruary2,2021byguesthttp://aem.
asm.
org/Downloadedfrom
目前舍利云服务器的主要特色是适合seo和建站,性价比方面非常不错,舍利云的产品以BGP线路速度优质稳定而著称,对于产品的线路和带宽有着极其严格的讲究,这主要表现在其对母鸡的超售有严格的管控,与此同时舍利云也尽心尽力为用户提供完美服务。目前,香港cn2云服务器,5M/10M带宽,价格低至30元/月,可试用1天;;美国cera云服务器,原生ip,低至28元/月起。一、香港CN2云服务器香港CN2精品线...
美国知名管理型主机公司,2006年运作至今,虚拟主机、VPS、云服务器、独立服务器等业务全部采用“managed”,也就是人工参与度高,很多事情都可以人工帮你处理,不过一直以来价格也贵。也不知道knownhost什么时候开始运作无管理型业务的,估计是为了扩展市场吧,反正是出来较长时间了。闲来无事,那就给大家介绍下“unmanaged VPS”,也就是无管理型VPS,低至5美元/月,基于KVM虚拟,...
TNAHosting是一家成立于2012年的国外主机商,提供VPS主机及独立服务器租用等业务,其中VPS主机基于OpenVZ和KVM架构,数据中心在美国芝加哥机房。目前,商家在LET推出芝加哥机房大硬盘高配VPS套餐,再次刷新了价格底线,基于OpenVZ架构,12GB内存,500GB大硬盘,支持月付仅5美元起。下面列出这款VPS主机配置信息。CPU:4 cores内存:12GB硬盘:500GB月流...
ccdp为你推荐
qq讨论组qq讨论组是什么意思?961556225317563152822是哪个银行的暴风影音怎么截图如何在暴风影音中截图?支付宝查询余额怎么查询支付宝里的余额中小企业信息化什么是中小企业信息化途径硬盘人克隆一个人需要多少人多长时间啊qq怎么发邮件怎样在QQ上发送邮件?idc前线钢铁雄心2修改器bt封杀BT下载可以封杀迅雷吗?什么原理?能破吗?分词技术中文分词的应用
域名注册查询 香港vps99idc 韩国空间 php主机 shopex空间 512au 免费博客空间 三拼域名 大容量存储器 国外免费全能空间 息壤代理 购买国外空间 申请网页 路由跟踪 镇江高防 腾讯数据库 服务器硬件配置 建站技术 cdn免备案空间 低价 更多