resultssoftmod
softmod 时间:2021-02-25 阅读:(
)
1Room-temperaturesoftmodeandferroelectriclikepolarizationinSrTiO3ultrathinfilms:InfraredandabinitiostudyWei-weiPeng1,RobertTétot1,2,GangNiu3,EmilieAmzallag2,BertrandVilquin4,Jean-BlaiseBrubach1&PascaleRoy1Duetotheremarkablepossibilitiesofepitaxiallygrowingstrontiumtitanate(SrTiO3orSTO)onsilicon,thisoxideiswidelyusedasabufferlayerforintegratingotherperovskiteoxideswhichallowsforthedevelopmentofvariousfunctionalelectronicdevicesonsilicon.
Moreover,STOisknowntobeanincipientferroelectricinbulkbutmaybecomeferroelectricwhenintheformofstrainedultrathinfilms.
Giventheimportanceofthepotentialapplicationsforelectronicsifthispropertyisdemonstrated,weperformedaspectroscopicstudyofSTOonSi(001)templatescouplingexperimentalandabinitioinvestigations.
Weselectedsixsamplesofultrathinfilms:threestrainedsamples(ofthickness4,9and48nm)andthreerelaxedsamples(ofequivalentthickness).
Theirinfraredspectrashowthatboththemechanicalstressandthethicknessplaymajorroles:higherenergymodesevolveassoftmodesinthinnerstrainedfilms.
Inordertosupporttheseobservations,thedynamicalabinitiocalculationsallowedderivingtheconditionsforSTOfilmstobecomeferroelectricatroomtemperatureasshownbythedevelopmentofasoftmodeandthedivergenceofthein-planedielectricconstant.
Perovskiteoxidesformaclassofelectronicmaterialswhichcoversawiderangeofelectricalpropertiessuchassuperconductivity,piezoelectricity,ferroelectricityandferromagnetism.
Variousfunctionaldevices,likeelectro-mechaniccaptors,electro-opticcouplers,ferroelectricnon-volatilememories,radio-frequencyfiltersetc.
,basedonperovskiteoxidethinfilmsgrownonSrTiO3/Silicon(STO/Si)templatesaredevelopedaroundtheseproper-ties1,2.
Substrate-likeSTO/Si(001)hasbeenthesubjectofseveralstudiesmotivatedbyitspotentialapplicationasatemplatetointegratefunctionaloxideswithperovskitestructureonsilicon3–6.
Indeed,veryrecentworkshaveshownthatSTO/SicrystallinetemplatescouldbeusedforthemonolithicintegrationofIII–Vsemiconductorsonsilicon,duetothepropertiesofthesemiconductor/STOheterointerfaces7–9.
Concurrently,STOitselfisveryattractivefortechnologicalandfundamentalresearchasasystemcombiningstructuralandferroelectricinstabilities10.
STOundergoesacubictotetragonal(I4/mcm-D4h)phasetransitionataround105K,withasmalltetragonaldistortion(c/a=1.
0015)at10K11,connectedwithanantiferrodistorsivesoftphononmode.
STOalsoundergoesapressure-inducedcubictotetragonaltransitionat10GPaatroomtemper-ature12.
Ontheotherhand,STObulkpresentsaremarkablyhighstaticdielectricconstantatroomtemperature(~300K)whichincreasesbyaboutafactorof102at4K.
However,thephononmoderesponsibleforthisferroelectric(FE)behaviordoesnotcondensateatanytemperatureduetoquantumfluctuations,whichmakesSTOaso-calledincipientferroelectric,withacriticaltemperatureTc~32K13–15.
Nevertheless,ithasbeenshownthattheFEphasecanbeinducedinbulkSTObychemicalpressure(18Osubstitution16,17,Cadoping18)orsurfaceeffects19.
Unfortunately,inSTOthinfilms,thedielectricconstanttendstobesignificantlyreduced,therebylimitingtheirapplications.
Thissizeeffectisnotfullyunderstoodandmaybedue,accordingtotheauthors,toadeadlayereffect20,21,internalstress22or/andaprofoundchangeofthelatticedynamicalpropertiesresultinginthehardeningofthesoftmode23–26.
In1SynchrotronSOLEIL,L'OrmedesMerisiers,Saint-Aubin,BP48,F-91192,Gif-sur-Yvette,France.
2CNRS-Universitéparis-Sud,ICMMO(SP2M)UMR8182,Bt410,F-91405,OrsayCedex,France.
3ElectronicMaterialsResearchLaboratory,KeyLaboratoryoftheMinistryofEducation&InternationalCenterforDielectricResearch,Xi'anJiaotongUniversity,Xi'an,710049,China.
4EcoleCentraledeLyon,InstitutdesNanotechnologiesdeLyon(INL),UniversitédeLyon,CNRS-UMR5270,36AvenueGuydeCollongue,F-69134,Ecully,France.
CorrespondenceandrequestsformaterialsshouldbeaddressedtoG.
N.
(email:gangniu@mail.
xjtu.
edu.
cn)orP.
R.
(email:roy@synchrotron-soleil.
fr)Received:28November2016Accepted:5April2017Published:xxxxxxxxOPEN2contrast,manytheoreticalandexperimentalstudieshaveshownthatitispossibletoproduceFEinSTOultra-thinfilmsbyamisfit-strainevenatroomtemperature27–32.
Noticehoweverthat,thevaluesofcriticalstrainandtemper-aturereportedinthesestudiesarenotconsistentamongsteachotherandthatthefilmthicknesswhichcansignifi-cantlyaffectthemechanicalstressofthefilmisnotalwaysspecifiedinthesestudies.
Obviously,determiningtheconditionsforobtainingferroelectricSTOthinfilmsdirectlyonsiliconatroomtemperatureiscrucialfortechnologicalapplications.
Veryinterestingly,Warusawithanaetal.
30observed,bymeansofpiezoresponseforcemicroscopy(PFM),FEnanodomainsattemperatureashighas400KinSTOultrathinfilms(2to4nm)grownonSi(001)substrates,whilesuchdomainswerenolongerobservedforthicker8nmfilms.
PFMiswidelyusedtostudyferroelectricityinthinfilmsasitallowstowrite,readandreversiblyswitchpolardomains.
Suchdomainstructurescanbeobservedusingconventionalscanningprobetechniquesofopticalsecondharmonicgeneration(SHG)30,32–34.
Alternatively,inthispaper,weinvestigatetheferroelectricityinstrainedSTObymeansofthespectroscopicstudyofthesoftmode.
ThesoftmodeconceptwasproposedbyCochran35in1960andithassincebeenusedasanon-ambiguoussignatureofFEtransitions13,23–26.
InordertodefinethespecificrolesofstrainandthicknessfordevelopingFEpropertiesatroomtemperatureinSTO/Si(001)ultrathinfilms,wereporthere(i)thefirstobservationsofthephononsandsoftmodesonsuchnanometerthicksampleswhereferroelectrictransitionisexpected36and(ii)DFTcalculationsofthedielectricconstantandpho-nonmodesfor1.
2,2.
0,2.
5nmthinfilmsforvariousstrainvalues.
Absorbancemeasurementshavebeencarriedoutbetween20–600cm1onsixSTO/Si(001)ultrathinfilms(twoseriesofthreefilms4,10and50nm).
Oneseriesunderwentanannealingafterdepositiontopartiallyrelaxthestraininducedbythe1.
69%mismatchbetweenthecubicSTOparameter(a[100]=3.
905)andtheSi(001)parameter(a[110]=3.
840).
Theotherserieswasas-grownonSiandmayretainsomestraininducedbytheSTO/Si(001)mismatch.
Thestrainoftheas-grownandunstrainedsamplesweredeterminedbyRHEED,XRD(inplaneandoutofplane)andTEM.
Inshort,thein-planestrainoftheas-grownfilmsof4nm,10nmand50nmcanbeestimatedas1.
69%,1.
4%and0%respectivelywhileallunstrainedsamplespresentnodetectablein-planestrain.
Thesynthesisoffilms,straindeterminationanddetailsofIRspectrameasurementsandDFTcalculationsarereportedinMethods.
ExperimentalandcalculatedIRspectraThemeasuredIRspectrumofthethreeunstrainedandofthethreestrainedSTO/Si(001)filmsarepresentedinFig.
1aandb,respectively.
Itcanbeobservedfirstthattheexperimentalspectraappeartobestronglystraindependent,especiallyforthetwothinnerlayers(10and5nm).
Allsixfilmsshowthreemainphononmodes.
Figure1.
MeasuredandcalculatedabsorbanceofSTOthinfilmswithvariousthicknessesandstrainstates.
(a)IRabsorbanceoftheunstrainedSTO/Si(001)filmsofthickness50,10and4nm.
ThethreephononstructuresTO1,TO2andTO4correspondtotheclassificationofthebulkphononmodes.
(b)IRabsorbanceofthestrained(as-grownonSi)STO/Si(001)filmsofthickness48,9and5nm.
ThefourmainstructuresoftheintermediatefilmarelabelledSM,T1,T2,T3,whereSMdesignatessurfaceand/orsoftmodeandT1,T2,T3bulk-likemodes(seedetailsinthetext).
Differencesinthespectraofthetwothickerfilmsmayberelatedtothedifferenceintheirrelaxationmechanism(Seerefs40and41).
Theplasticrelaxationoftheas-grown48nmfilmcausessmalldomainsborderedbydislocationsattheinterface.
(c)CalculatedabsorbanceofSTObulkandfullyrelaxedSTOslabsof7layers(2.
5nm),5layers(2nm)and3layers(1.
2nm).
Thepresenceofmodesatnegativevalues(imaginarymodes)demonstratesthatallslabsaremetastable.
(d)CalculatedabsorbanceofSTOslabsof7,5and3layerswith1.
69%straincorrespondingtothelatticemismatchbetweenSTOandSi(001).
Modesarelabelledasin(b).
In(c–d)sticksareproportionaltooscillatorstrength(maximumintensitynormalizedat1)andlinesrepresentthesumof30cm1wideGaussianseachcenteredatthemodesfrequencies.
3Theunstrainedandstrainedthickestfilms(50nm)presenttheso-calledTO1,TO2andTO4peaksasobservedforbulk13–15,37(SeeTable1).
Forbulkmodes,theassignmentscanberesumedasfollows:TO4andTO2areTi-Ostretchingandbendingmodesrespectively,whiletheSr-TiO3latticevibrationgivesrisetoTO137.
Meanwhile,twoweakerbandsappearonthethinneststrainedfilmat58and81cm1andanintensebandisclearlypresentonthestrained9nmfilmat~40cm1.
Inshort,thestrainedthinnerlayers(5and9nm)presentphononsstruc-turesshiftedathigherfrequencyandextraphononatlowfrequency(probablyduetosurfacemodes)comparedtobulkortothickerrelaxedfilms.
Figure1cpresentsthecalculatedphononstructuresforbulk(bottom),andunstrainedslabsof7,5and3STOlayers(2.
5,2.
0and1.
2nmrespectively).
Notethatthe7layersfilmpresentsathickness(2.
5nm)comparabletoourthinnestmeasuredfilms(4nm).
Thisthicknesswaschosenasitallowedareasonabledurationofthecalculations.
Asamatteroffact,thelossofsymmetryinthedirectionperpendiculartotheslabmakesthecalculationsofIRspectraextremelyCPUtimeconsuming.
Thesimulatedspectrashowanexcellentagreementwithmeasurementsforbulk13–15,37aswellasforthethickerfilms(SeeFig.
1aandbandTable1).
Certainly,intermsofphononpositionsandrelativeintensitiesbothexperimentalandsimulatedspectraincludethreephononstructures,twoweakeraround200cm1and550–600cm1andastrongeronearound100cm1.
Indeed,thenumerousmodesforthevariousslabsresultfromtheappearanceofsurfacemodes.
Itisworthhighlightingthatthecalculatedspectraoffreeslabsexhibitanintenseimaginarymode(140i),showingthatunstrainedslabsaremetastable.
Figure1dpresentsequivalentcalculationsonslabsofthesamethicknessunder1.
69%strain.
NoticethatimaginarymodesofFig.
1carenolongerpresentinthecalculatedspectrashowingthatstrainhasstabilizedtheseslabs.
Comparedtorelaxedslabs,themainspectralfeaturesappearquali-tativelyinthesameenergyrangebutintensephononsarepresentatlowfrequencies.
Mostpeaks,under400cm1,resultfromtheloweringofthesymmetryofslabscomparedtobulkwhichgeneratesmultiplecomponentsfromTO1andTO2modes.
Thislargernumberofmodesisingoodagreementwiththerichexperimental5and9nmstrainedfilmsspectraalthoughnoneofthesimulatedspectrapresentsmodeunder50cm1.
CalculatedspectraanddielectricconstantofSTOultrathinfilmsaccordingtothestrain.
Inthesearchfortheconditionsfordevelopingasoftmode(andtheFEstate),weunderwentsystematiccalculationsonSTOslabforvariousstrainlevelsunder1.
69%(wherenoimaginarymodeisobserved)downtotheoccurrenceofanimaginarymode.
TheresultsarepresentedinFig.
2afortheslabof7layers(resultsfor3and5layersshowthesametrendandarenotshownhere).
This7layersslabcorrespondstoathicknessof2.
5nm,avalueofthesameorderasthe4nmsamplesmeasuredhere,allowingthereforeaqualitativecomparisonbetweenthecalcu-latedandmeasuredspectra.
Indeed,theloweringoftheparallelstrainfrom1.
69%to1.
305%causesaprogressivemodificationofthesim-ulatedspectra:thefrequencyoftheSMmodetendstozeroasthestraindecreasesdownto1.
305%andbecomesimaginaryfor1.
30%,whileT1,T2andT3modesareindependentofstrain.
Notice,however,thatattemptstoevaluatethespectraatintermediatestrainfailedbecausethestructureoscillatesbetweenbeingstableandmetastable.
VibrationalmodesMeasuredFrequency(cm1)CalculatedFrequency(cm1)MainAssignment(fromcalculations)Film4nmFilm10nmFilm50nmBulk(Petzelt14)Bulk7slabsBulk7slabsrelaxedstrainedrelaxedstrainedrelaxedstrainedrelaxedstrained(1305%)relaxedstrained(1.
305%)TiO2SurfaceTransverse/LongitudinalmodesSM505842…28…(S)Ti-O6581…45…(S)Ti-O…141i62…(S)Ti-O(B)O-Ti-OSrOSurfaceTransverse/LongitudinalmodesSM80164/…(B)Sr-O-Sr(B)Sr-O-Sr234260/…(B)O-Ti-O(B)O-Ti-OTransverse/Longitudinalmodes(Bulklike)T114315513314313310593112/846185171(S)Sr-OTi(B)O-Ti-O(B)O-Sr-O(B)O-Sr-OT2187203189191189179176183/171282230/5700(B)Ti-O-Ti(B)Sr-O-Sr(B)O-Ti-OT3544555547553547542548562/489609620(S)Ti-O(B)Sr-O-Ti(B)Ti-Sr-Ti(S)Ti-OTable1.
MeasuredandCalculatedFrequenciesofthemainmodesforultrathinfilmsandBulktogetherwithsomeassignment.
Left:MeasuredfrequenciesofthemainopticalmodesforstrainedandrelaxedSTOthinfilmsofvariousthicknesses(~50,10and4nm)togetherwithexperimentalbulkfrequenciesfromtheliterature37.
Center:Calculatedfrequenciesofthemainopticalmodesfor1.
305%strainedandrelaxedSTOslabof7layerstogetherwithcalculatedbulkfrequencies.
AllmodesaredividedintoTransverseModesT1,T2andT3andSurface/SoftModes(SM).
SMareclassifiedaccordingtoSTOterminatedsurface:SrOorTiO2.
Thepresenceofimaginarymodeat141i(inbold)showsthattherelaxedslabismetastable.
Themodescontributingtothelargedielectricconstantforstrainedslabs(surfacemodesandthelargeLO/TOsplittingT2mode)alsoappearinbold.
Right:Theassignmentbasedoncalculationsofthemainopticalmodesforstrainedandrelaxedtogetherwithcalculatedbulkfrequenciesarepresentedinthethreelastcolumns.
4WithintheCRYSTALcode,thestaticin-planedielectricconstantε(0)//,canbeevaluatedforslabsundercon-strainsasfollows.
First,thepolarisabilityα//(paralleltothesurface)andα⊥(normaltothesurfaces)aredeter-minedasthesecondderivativesoftheenergyoftheslabasafunctionofanexternalelectricfield(//or⊥)accordingtotherelationship:α=EEFF(0)2,iiiii2whereistandsfor//or⊥and=)iEF0iandα=)iiEF0i22.
Thenthetensorε(∞)iiscalculatedbymeansoftherelationshipε∞=πα()()1iV4ii,whereVisthevolumeoftheunitcelloftheslab.
Thetensorε(0)iaswellasthelongitudinalopticalmodes(LO)arefinallycalculatedwiththeCRYSTALcodeusingtheε(∞)itensor.
TheresultsareshowninTable2forbulkandstrainedslabs(1.
69%and1.
305%).
Asthestrainislowered,ε(0)//increaseswhileε(0)⊥remainsconstant.
Thevariationsofε(0)//arereportedinFig.
2btogetherwiththesoftmodefre-quencydependenceonthestrain.
Onecanreadilynoticethatε(0)//tendstoinfinityandthesoftmodefrequencytendstozerobetweenstrainsof1.
305and1.
30%,whichdenotesaFEstate.
Wenowfocusontheoriginofthedivergenceofε(0)//instrainedslabs.
ForacrystalwithNIR-activeopticalmodes,theLyddane-Sachs-Tellerrelation(LST)connectsthedielectricconstanttotheopticalphononfrequencies:∏∏ωωω∞==+shift(0)()1,jNLOTOjNjTO22jjjFigure2.
ResultsofDFTcalculationsforaSTOslabof7layersundervariousin-planestrainsbetween1.
69%and1.
30%.
(a)Simulatedspectraforvariousstrains.
AverystrongdependenceoftheSurface/Softmode(SM)passingfrom~100cm1toanimaginaryvalueasthestraindecreasesisobserved.
At1.
305%strain,theSMislocatedat40cm1whileitbecomesimaginaryforstrainof1.
3%.
(b)VariationsoftheSoftModefrequencyandofthestaticdielectricconstantparalleltotheslabasafunctionofthestrain.
Thevaluesofboththesoftmodeandthein-planestaticdielectricconstantdivergesforstrainvaluesunder1.
305%.
5whereωLOjandωTOjarelongitudinalandtransversalopticalfrequencies,respectively,andωω=shiftjLOTOjj.
Thisrelationappliedtotheslabof7layersspectrumfor1.
305%strainyields=∞2795(0)(),tobecomparedwiththevalue=∞2747(0)()////ofTable2,whichshowsthatthedielectricconstantoftheslabismainlyduetothein-planecomponent.
FromtheLSTrelation,averyhighvalueofε(0)mayarisefromtwoeffects;(i)whenaparticularωTOjtendstozerowithanon-zeroLO-TOshift,(ii)whenaparticularLO-TOshifttendstoinfinity.
Inthepresentcase,botheffectscontributeandtheveryhighvalueofε(0)(13267)ismainlyobtainedfromthecontributionoffourpeaks:thethreepeaksofthesurface/softmodes(SM)andthepeakat220cm1(SeeFig.
3).
InFig.
3,themaincontributionstothestaticdielectricconstantareillustratedforthebulk(topofthefigure)andforthe1.
305%strainedslabof7layers(bottomofthefigure).
Inthebulk,thelowestfrequencyphononTO1-LO1at112cm1–846cm1isthemaincontributiontothestaticdielectriccon-stant.
Theothertwo(TO2-LO2andTO4-LO4)contributeonlymarginally.
Inthestrainedslab,thetransversemodesbetween100and200cm1andat~600cm1arecausedrespectivelybythetransformationofTO1andTO2(mixedcontributionofSr-TiO3stretchingandO-Ti-Obendingforatomslocatedinthemiddleoftheslab),andTO4(mainlyTi-Ostretchingforatomslocatedinthemiddleoftheslab).
Atlowerfrequencies(under100cm1),themodescanbeassignedtosurfacecomponentsofmixedTi-ObendingandstretchingcontributionsparalleltotheTiO2-terminatedsurfacewhilethelowestfrequencymodeisapurebendingofO-Ti-Oatthissurface.
TheBulkV/4π(bohr3)α(bohr3)ε(∞)ε(0)ε(0)/ε(∞)31.
7424.
494.
416637.
3StrainedSlabof7layersStrainV/4π(bohr3)α//(bohr3)α⊥(bohr3)ε(∞)//ε(∞)⊥ε(0)//ε(0)⊥ε(0)///ε(∞)//1.
69%27.
9621.
9223.
54.
636.
3467218.
110091.
31%28.
1622.
3423.
74.
836.
31326718.
12747Table2.
CalculateddielectricpropertiesofSTObulkandslabof7layersfor1.
69%and1.
305%strains.
Thebulkcalculatedvaluesε(∞)=4.
4andε(0)=166canbecomparedtotheexperimentalvalueof5.
6,ontheonehand,andtotheexperimentalvalueof300andtotheLSTbasedvalueof280fromref.
15,ontheotherhand.
Figure3.
MainopticalmodescontributingtothelargestaticdielectricconstantforSTObulk(top)andforaslabof7layersunder1.
305%strain(bottom).
ThebulkTOmodesarerepresentedasblackandredsticks.
Meanwhile,onlythelargeLO-TOshiftfortheTO1mode(shift~700cm)isillustratedwitharedarrow.
Atthebottomofthefigure,themainopticalmodesfora7layersslabunder1.
305%strainarepresented.
Theblacksticksrepresentmodeswhichderivetheirintensitiesfromatomsfurtherfromthesurfaces(bulklikemodes).
ThebluesticksaretransversemodesfromatomsattheTiO2-terminatedsurface.
Theredstickat210cm1correspondstoaTOmodefromTi-Obending(bulklikemode).
TheverylargeLO-TOshiftofthe210cm1mode(indicatedbyaredarrow)contributesstronglytothehighvalueofε(0)//.
Insetstopandbottom:theelementarycellforbulkandfor7layersslab(Sr:biggreensphere,Ti:mediumbluesphere,O:smallredsphere).
6highvalueofε(0)//isduetotheLO-TOshiftofthe220cm1mode(strainindependent)andasmallercontribu-tioncomesfromtheLO-TOshiftsofthethreesurface/softmodes(between3and15),however,thiscontributionincreasesasthestrainapproaches1.
3%whiletheTOfrequenciestendtozero.
ThissecondcontributionisclearlyattheoriginoftheFEtransitioninducedbystrain.
StraindependentCurielawforSTOultrathinfilms.
WhenaferroelectriciscooledtowardsthecriticaltemperatureTc,thesoftmodefrequencytendstozero,accordingtotheCurielaw:ω=*.
.
TconstTT()TOc05SMSincethefrequenciesofallotherphononsarealmosttemperatureindependent,theLSTequationcanbesim-plifiedintoεω∝TT(0)()()TO2SMresultingin:ε=*.
TconstTT(0)()c1Supposingnowthatthelinearthermallatticeexpansionαisaconstant,thelatticeparameterafollowsalinearlaw:α=+aaT(1)0andthestrainα==STaaa00isproportionaltoT.
Hence,thepreviousCurielawappliesaccordingtothestrain:ω=*.
SconstSS()TOc05SMandε=*SconstSS(0)()c1whereScisthecriticalstrain.
ThiscanbeverifiedintheFig.
4(aandb)forSTOslabof3and7layers.
CalculatedpolarizationoftheTiO2-terminatedsurface.
Ourcalculationon1.
305%strainedSTOslabof7layersshowsthattheterminationspresentafirst-layerpuckering,withoxygenionsbeingpulledoutofthesurfacesbyquantitiess(Ti)=0.
058,inqualitativeagreementwiththeexperimentaldataofBickeletal.
19(0.
08±0.
08).
Inparallel,thefirsttwointerlayersdistancesdecreasebyabout0.
1(d0=1.
81insteadof1.
92inthebulk).
FollowingBickeletal.
19wecanevaluatethepolarizationoftheTiO2surface,P=qs/V,whereq(Ti)~2.
5andV=a2*d0.
WeobtainP(Ti)=9.
106C/cm2tobecomparedwiththevalueof24.
106C/cm2fortheexem-plaryroomtemperatureferroelectricBaTiO3,whichconfirmstheferroelectriccharacteroftheslab.
Inconclusion,wedemonstratedbymeansofIRmeasurements,DFTcalculationsandasoftmodeanalysis,thepossibilityofobtainingferroelectricultrathinfilmofSrTiO3directlyonSi(001)atroomtemperature.
TheseresultscorroboratethosebyWarusawithanaetal.
30obtainedbymeansofpiezoresponseforcemicroscopyonsimilarsamples.
WefoundthattheferroelectricityismainlyduetothesoftO-Ti-ObendingmodewhichdevelopsattheTiO2-terminatedsurfaceofthefilm.
Twocriticalparametersmaybecontrolledtoobtainthisresult:thethicknessofthefilmandthein-planestrain.
Toillustrateourresults,weproposetheschematicphasediagramrepresentedinFig.
5.
Thethickerthefilm,thelargerthe(compressive)strainneededtodevelopferroelectricity.
Concerningthethickness,IRspectrashowSMmodesinfilmsofthickness9and5nmwhilethethickerfilmof48nmonlypresentshigherfrequencyfeatures.
SuchlackofSMsuggeststhatthethickerfilmissomewhattoorelaxedtodevelopFEwhichisinqualitativeagreementwiththenon-ferroelectricfilmof8nmthicknessreportedbyWarusawithanaetal.
30.
Noticethatifoneextrapolatesthecalculatedferroelectrictransitionatthefullcom-pressivestraininducedbythemismatchbetweenSTOandSi(001),1.
69%,theFEshoulddevelopforthicknessof~6nm.
Thisstudydemonstratesforthefirsttime,thatalargein-planedielectricconstantcandevelopinultra-thinfilmsforstrainsbetweenacriticalvalue(~1.
23%forathicknessof1.
2nm)upto1.
69%.
Figure4.
RepresentationoftheferroelectricCurielawasafunctionofstrainforSTOslabsof3and7layers.
(a)Softmodefrequencydependenceonthesquarerootofstrain.
(b)Staticparalleldielectricconstantdependenceontheinverseofstrain.
ThedashedlinesaretherepresentationsoftheCurielaw.
OneobservesthattheCurielawisfollowedinamuchlargerstrainrangeforslabof3layerswhichcanbeexplainedbythemuchlargerroleofsurfacesinthiscase.
7MethodsSrTiO3/Si(001)filmssynthesis.
Forthisstudy,sixSTOthinfilmsonp-typeSi(001)substratesweredevel-opedbymolecularbeamepitaxy(MBE)asdescribedindetailinourpreviousstudies38–41.
Wesummarizethemainstepshere.
SrandTimetaleffusioncellsandaneedlevalvecontrolledhigh-puritymolecularoxygensourcewereused.
In-situRHEEDwasemployedtomonitorthefilmsurfacestructuralpropertiesinrealtimeduringthegrowth.
ThesiliconsubstratewaspreparedbyaSr-assistedpassivationmethodleadingtoa1/2monolayer(ML)-coveredSisurface39forthesubsequentSTOgrowth.
TheSTOfilmswerethendepositedonSi(001)atwellcon-trolledtemperatures(360and600°C)andunderaprecisecontroloftheoxygenpartialpressure.
ThecrystallinepropertiesoftheSTOfilmwerecharacterizedusingahighresolutionRigakufour-circlediffractometer.
Avac-uumscienceworkshop(VSW)XPSchamberequippedwithafocusedunpolarisedmonochromaticAlKαX-raysource(υ=1486.
6eV)andanacceptanceanglearound2°wasusedtostudythefilmandtheinterfacestructure.
WedeterminethethicknessoftheSTOfilmsusingHighResolutionX-RayReflectometry(HRXRR),followedbyafastFourierTransform(FFT)analysisfrominterferencefringesmeasurements.
Inref.
38,typical2θ/ωscanaroundSTO(002)Braggreflectionconditionarereported.
STOpossessesaperovskite-typestructure(Pm3m)andthelatticemismatchbetweenSTO(a=3.
905)andSi(001)(a=5.
431/rac(2)=3.
84)is1.
69%withSTOunitcellrotated45°aroundSisurface[001]axis.
TheSTO(002)peakappearsalongwiththeSi(004)peak,confirmingtheout-of-planeepitaxialrelationshipSTO(001)//Si(001).
Furthermore,thePendellsungfringesattheshoulderoftheprincipalSTO(002)peak,atteststhegoodcrystallinityandflatnessoftheSTOepitaxialfilms.
Figure3ofref.
38dis-playsthehighresolutiontransmissionelectronmicroscopycross-sectionalviewimagesofthe4nmSTO/Sisamplesgrownat360°C.
Asexpected42,theepitaxialrelationshipbetweenSTOandSiis[100]STO(001)//[110]Si(001)andthefilmpresentsagoodstructuralqualityandanatomicallyabruptinterfacewithsilicon.
Atotalofsixsampleshavebeenretained:threestrainedsamples(ofthickness4nm,9nmand48nm)obtainedthroughagrowingat360°Candthreerelaxedsamples(ofthickness4nm,10nmand50nm)grownfollowingatwo-stepprocess.
Forstrainedsamples,thetemperatureof360°CwasselectedasitallowsforSTOdepositionwithagoodcrystallizationwithouttheformationofSioxidesattheinterface38.
Concerningthetwostepprocess,twomonolayersofSTOwerefirstlydepositedat360°CtoobtainadirectSTO-Siinterface;then,theepitaxialtemperaturewasincreasedto600°Callowingforabettercrystallizationandsmallerlatticemismatch.
Indeed,allSrTiO3/Si(001)filmspresentgoodcrystallization,andsharpinterface.
Thestraindetailsoftheas-grownsample(strainedsample)wereobtainedbyRHEED,XRD(in-planeandout-of-plane)andTEM.
Thein-planestrainof4,10,50nmwereestimatedas1.
69%,1.
4%and0%respectivelyasdescribedbyNiuetal.
41whileallunstrainedsamplespresentnodetectablein-planestrain38,40.
ThecationandoxygenstoichiometryforallsixsampleswasconfirmedusingRutherfordbackscatteringmethodwhichisbulksensitive,andXPSwhichissurfacesensitive.
Figures6and7presentexamplesofsuchmeasurementsforthe10nmsamples.
Indeed,Rutherfordcharacterization(Fig.
1)onthe10nmfilmgrownat360°Cdidnotdetectanydifferencesinthebulkstoichiometrycomparedtotheidealstoichiometry.
Similarly,XPScharacterizationdidnotdetectanydifferencesinoxygensurfacestoichiometrybetweenthesamplesgrownat360°Candat600°C.
Moreover,theTi2ppeaksintheXPSspectra(Fig.
2b)confirmedthatthetitaniumatoms(moredifficulttooxidizedcomparedtothanSr)arefullyoxidized(i.
e.
thesamplecontainsanegligibleamountofoxygenvacancies).
Clearly,theabsenceofshoulderontherightsideofTi2p3/2peakdemonstratestheabsenceofoxygenvacancies.
InfraredandTHzspectroscopy.
ThefilmsvibrationalstructureswereprobedusingIRtransmissionmeas-urementsattheinfraredbeamlineAILES(AdvancedInfraredLineExploitedforSpectroscopy),SynchrotronFigure5.
Schematicthickness-strainphasediagrambasedonDFTanalysisforSTOultrathinfilmsatroomtemperature.
Thestrainisvariedbetween1.
69%(Si(001)inducedstrain)and0%(fullyrelaxed)andthicknessbetween0.
5and2.
5nm.
Theferroelectricstransitioncorrespondstothezeroingofasoftmode.
Themetastablephasecorrespondstothedevelopmentofanimaginarymode.
8SOLEIL43,44.
Exploitingthehighbrightnessoftheedgesynchrotronradiation45,IRspectrainthe20–600cm1range(1cm1resolution)wereobtainedusingaBrukerE55Fouriertransformspectrometerequippedwitha6micronsMylarbeamsplitterandcombinedwithabolometer(IRLab).
Theinterferometerandthebeamlinewereevacuatedat104mbar(orbetter)toavoidabsorptionbywaterandresidualgas.
ThespectraofthesixSTOfilmswereobtainedbymeasuringthesignaltransmittedinthefarinfrared(FIR)andTHzdividedbyanaccuraterefer-enceprovidedbythesignalthroughanequivalentSisubstrateusingtherelationTfilm=Tsubstrate+film/Tsubstrate46,withTthetransmission.
Theabsorbance,A,wasthenevaluatedusingtherelationA=logT.
Forallfilmsmeasure-ments,ahighprecisionsampleholderallowedplacingthesampleandthereferenceatthesamepositionrelativetotheincidentbeamwhichresultedinacompletecompensationofthefringingfromthesubstrate.
Anexampleoftheincidentbeammeasurement(nosample),Si(001)substrateonlytransmissionandSTOonSi(001)50nmfilmispresentedinFig.
8togetherwiththeresultingabsorbance.
DFTcalculations.
TheequilibriumstructuralparametersandthephononmodesoftheIRspectrawerecalculatedusingabinitiocalculationsattheDFTlevelbymeansoftheCRYSTAL09code47wherethecrystallineorbitalsareexpandedintermsoflocalizedatomicGaussianbasisset.
TheB3PWfunctional,basedonBecke'sthreeparametersadiabaticconnectionexchangefunctional48incombinationwiththenon-localcorrelationPWGGA49,hasbeenusedinthiswork.
Titaniumandoxygenweretreatedatanall-electronlevelandthestandardbasissetHAYWSC311(1d)GforstrontiumwereusedfororbitalexpansionwhensolvingtheDFT-SCFequationiteratively.
ThenumberofkpointsinthefirstirreducibleBrillouinzone(Pack–Monkorstlattice)50atwhichtheHamiltonianmatrixisdiago-nalizedisequalto40.
Inoptimizingthegeometry,weallowedtherelaxationofallatoms.
Amodifiedconjugatedgradientalgorithm51hasbeenimplementedintheCRYSTALcodetooptimizecellparametersandfractionaryatomiccoordinates.
Ingeometryoptimization,thecriterionforconvergenceonthetotalenergyissetto108Hartree.
Γ-pointvibrationalfrequenciesandabsorbancearecalculatedwithaprecisionof10cm1onthefre-quencyand30%ontherelativeabsorbance.
Figure6.
Rutherfordbackscatteringspectraonthe10nmthinfilmsynthetizedat360°C.
Theexperiment(blackcurve)showsthesamestoichiometryasthesimulatedidealSTO(redcurve).
Figure7.
XPSspectraon10nmthicksamplessynthetizedat360°C(blackcurve)and600°C(redcurves).
(a)zoomontheSr3Pregion,(b)zoomontheTi2pregion.
9Thefulloptimizationofthebulkcellgeometryleadstothelatticeparametera=3.
9212(0.
4%greaterthantheexperimentalvaluesa=3.
905)andadensityof5.
06g.
cm3(1.
2%greaterthanexperimentalvalue).
Theinterionicdistance,dSr-O=2.
773anddTi-O=1.
961areingoodagreement(+0.
4%)withexperimentalvalues(2.
761and1.
952respectively).
TheMullikenchargesarerespectivelyQSr=1.
856,QTi=2.
486andQO=1.
449.
TheabsorbancespectrumforbulkcubicSTOwascalculatedusingtherelaxedstructuredescribedpreviously.
Absorbancecalculationshavealsobeenperformedforslabsof3,5and7SrTiO3layersalongthe[001]direction(periodicboundaryconditionsareimposedinthe[100]and[010]directions).
Inthiscase,theperiodicsimulationboxcontainsa50nmemptyspacebetweentwoadjacentslabsinordertoavoidsurfaceinteraction.
Ourresultsmaybecomparedwithprevioustheoreticalstudies52–54.
References1.
Setter,N.
etal.
Ferroelectricthinfilms:Reviewofmaterials,properties,andapplications.
J.
Appl.
Phys.
100,051606,doi:10.
1063/1.
2336999(2006).
2.
Abel,S.
etal.
Astrongelectro-opticallyactivelead-freeferroelectricintegratedonsilicon.
NatureCommunications4,1671,doi:10.
1038/ncomms2695(2013).
3.
Ohtomo,A.
&Hwang,H.
Y.
Ahigh-mobilityelectrongasattheLaAlO3/SrTiO3heterointerface.
Nature427,(2004).
4.
Yu,Z.
etal.
Advancesinheteroepitaxyofoxidesonsilicon.
ThinSolidFilms462–463,51–56,doi:10.
1016/j.
tsf.
2004.
05.
088(2004).
5.
Liao,J.
H.
,Lo,Y.
S.
&Wu,T.
B.
SurfacecharacterizationofultrathinLa0.
75Sr0.
25MnO3epitaxialfilmsonSrTiO3substrate.
J.
Cryst.
Growth310,3861–3863,doi:10.
1016/j.
jcrysgro.
2008.
05.
050(2008).
6.
Herdier,R.
etal.
ThepropertiesofepitaxialPMNTthinfilmsgrownonSrTiO3substrates.
J.
Cryst.
Growth311,123–127,doi:10.
1016/j.
jcrysgro.
2008.
10.
070(2008).
7.
Saint-Girons,G.
etal.
SpontaneouscomplianceoftheInP∕SrTiO3heterointerface.
Appl.
Phys.
Lett.
92,241907,doi:10.
1063/1.
2944140(2008).
8.
Saint-Girons,G.
,Regreny,P.
,Largeau,L.
,Patriarche,G.
&Hollinger,G.
DirectepitaxialgrowthofInPbasedheterostructuresonSrTiO3/Si(001)crystallinetemplates.
Appl.
Phys.
Lett.
91,241912(2007).
9.
Saint-Gironsetal.
Accommodationattheinterfaceofhighlydissimilarsemiconductor/oxideepitaxialsystems.
Phys.
Rev.
B80,155308,doi:10.
1103/PhysRevB.
80.
155308(2009).
10.
Uwe,H.
&Sakudo,T.
Stress-inducedferroelectricityandsoftmodeinSrTiO3.
Phys.
Rev.
B13,271–286,doi:10.
1103/PhysRevB.
13.
271(1976).
11.
Loetzsch,R.
etal.
ThecubictotetragonalphasetransitioninSrTiO3singlecrystalnearitssurfaceunderinternalandexternalstrain.
Appl.
Phys.
Lett.
96,071901,doi:10.
1063/1.
3324695(2010).
12.
Guennou,M.
,Bouvier,P.
&Kreisel,J.
Pressure-temperaturephasediagramofSrTiO3upto53GPa.
Phys.
Rev.
B81,054115,doi:10.
1103/PhysRevB.
81.
054115(2010).
13.
Servoin,J.
L.
,Luspin,Y.
&Gervais,F.
InfrareddispersioninSrTiO3athightemperature.
Phys.
Rev.
B22(11),5501–5506,doi:10.
1103/PhysRevB.
22.
5501(1980).
14.
Kamaras,K.
etal.
ThelowtemperatureinfraredopticalfunctionsofSrTiO3determinedbyreflectancespectroscopyandspectroscopicellipsometry.
J.
Appl.
Phys.
78(2),1235–1240,doi:10.
1063/1.
360364(1995).
15.
Petzelt,J.
etal.
Dielectric,infrared,andRamanresponseofundopedSrTiO3ceramics:Evidenceofpolargrainboundaries.
Phys.
Rev.
B64(184111),1–9(2001).
16.
Itoth,M.
etal.
Ferroelectricityinducedbyoxygenisotopeexchangeinstrontiumtitanateperovskite.
Phys.
Rev.
Lett.
82(17),3540–3543,doi:10.
1103/PhysRevLett.
82.
3540(1999).
17.
Deng,H.
,Lam,C.
&Huang,H.
T.
Ontheoriginofoxygenisotopeexchangeinducedferroelectricityinstrontiumtitanate.
Eur.
Phys.
J.
B85,234,doi:10.
1140/epjb/e2012-30069-3(2012).
Figure8.
IRspectra.
Incidentinfraredintensity(redline)andbeamtransmittedthroughaSi(001)substrate(blackline)anda50nmSTO/Si(001)filmgrownat360°C(blueline).
Inset:Absorbanceof50nmSTO/Si(001)filmcalculatedusingtheSi(001)substratesignalasthereference(a).
1018.
Khomoto,T.
Doping-InducedFerroelectricPhaseTransitionandUltraviolet-IlluminationEffectinaQuantumParaelectricMaterialStudiedbyCoherentPhononSpectroscopy.
MaterialsScience"AdvanceinFerroelectrics",EditedbyAiméPeláiz,Barranco,ISBN978-953-51-0885-6,542pages,Publisher:InTech,ChapterspublishedNovember19,2012underCCBY3.
0license,Chap.
12,doi:10.
5772/45744.
19.
Bickel,N.
,Schmidt,G.
,Heinz,K.
&Müller,K.
FerroelectricrelaxationoftheSrTiO3(100)surface.
Phys.
Rev.
B62(17),2009–2011,doi:10.
1103/PhysRevLett.
62.
2009(1989).
20.
Zhou,C.
&Newns,D.
M.
Intrinsicdeadlayereffectandtheperformanceofferroelectricthinfilmcapacitors.
J.
Appl.
Phys.
82,3081–3088,doi:10.
1063/1.
366147(1997).
21.
Li,H.
C.
etal.
ThicknessdependenceofdielectriclossinSrTiO3thinfilms.
Appl.
Phys.
Lett.
73,464–466,doi:10.
1063/1.
121901(1998).
22.
Fedorov,I.
etal.
Far-infraredspectroscopyofaSrTiO3thinfilm.
Ferroelectrics208-209,413–427,doi:10.
1080/00150199808014890(1998).
23.
Sirenko,A.
A.
etal.
Soft-modehardeninginSrTiO3thinfilms.
Nature404,373–376,doi:10.
1038/35006023(2000).
24.
Ostapchuk,T.
etal.
Originofsoft-modestiffeningandreduceddielectricresponseinSrTiO3thinfilms.
Phys.
Rev.
B66,235406,doi:10.
1103/PhysRevB.
66.
235406(2002).
25.
Katayama,I.
etal.
ObservationofSoft-ModeHardeningandBroadeninginSrTiO3ThinFilmsbyBroadbandTerahertzTime-DomainSpectroscopy.
2007OSA/CLEO2007.
26.
Misra,M.
,Kotani,K.
,Kawayama,I.
,Murakami,H.
&Tonuchi,M.
ObservationofTO1softmodeinSrTiO3filmsbyterahertztimedomainspectroscopy.
Appl.
Phys.
Lett.
87,182909,doi:10.
1063/1.
2128039(2005).
27.
Pertsev,N.
A.
,Tagantsev,A.
K.
&Setter,N.
Phasetransitionsandstrained-inducedferroelectricityinSrTiO3epitaxialthinfilms.
Phys.
Rev.
B61,R825–R829,doi:10.
1103/PhysRevB.
61.
R825(2000).
28.
Haeni,J.
H.
etal.
Room-temperatureferroelectricityinstrainedSrTiO3.
Nature430,758–761,doi:10.
1038/nature02773(2004).
29.
Antons,A.
,Neatons,J.
B.
,Rabe,N.
B.
&Vanderbilt,D.
TunabilityofthedielectricresponseofepitaxiallystrainedSrTiO3fromfirstprinciples.
Phys.
Rev.
B71,024102,doi:10.
1103/PhysRevB.
71.
024102(2005).
30.
Warusawithana,M.
P.
etal.
AFerroelectricOxideMadeDirectlyonSilicon.
Science324,367–70,doi:10.
1126/science.
1169678(2009).
31.
Jang,H.
W.
etal.
Ferroelectricityinstrain-freeSrTiO3thinfilm.
Phys.
Rev.
Lett.
104,197601,doi:10.
1103/PhysRevLett.
104.
197601(2010).
32.
Vasudevarao,A.
etal.
MultiferroicDomainDynamicinStrainedStrontiumTitanate.
Phys.
Rev.
Lett.
97,2576023,doi:10.
1103/PhysRevLett.
97.
257602(2006).
33.
Kumar,A.
etal.
Probingmixedtetragonal/rhombohedral-likemonoclinicphasesinstrainedbismuthferritefilmsbyopticalsecondharmonicgeneration.
Appl.
Phys.
Lett.
97,112903,doi:10.
1063/1.
3483923(2010).
34.
Dubourdieu,C.
etal.
SwitchingofferroelectricpolarizationinepitaxialBaTiO3filmsonsiliconwithoutaconductingbottomelectrode.
NatureNanotechnology8,881–881,doi:10.
1038/nnano.
2013.
226(2013).
35.
Cochran,W.
Crystalstabilityandthetheoryofferroelectricity.
Adv.
Phys.
9,387–423,doi:10.
1080/00018736000101229(1960).
36.
Petzelt,J.
InfraredandTHzspectroscopyandnanostructureddielectrics.
ProcessingandapplicationsofCeramics3,145–155,doi:10.
2298/PAC0903145P(2009).
37.
Perry,C.
H.
&Khanna,B.
N.
Infraredstudiesofperovskitetitanates.
Phys.
Rev.
B135,A408–A412,doi:10.
1103/PhysRev.
135.
A408(1964).
38.
Niu,G.
etal.
DirectepitaxialgrowthofSrTiO3onSi(001):Interface,crystallizationandIRevidenceofphasetransition.
ThinSolidFilms519(17),5722–5725,doi:10.
1016/j.
tsf.
2010.
12.
208(2011).
39.
Wei,Y.
etal.
Si(100)surfacecleaningusingSrandSrO.
Unknown.
Journal716,139–144(2002).
40.
Niu,G.
etal.
HeteroepitaxyofSrTiO3thinfilmsonSi(001)usingdifferentgrowthstrategies:Towardsubstrate-likequality.
J.
Vac.
Sci.
Tech.
B29(4),041207,doi:10.
1116/1.
3609813(2011).
41.
Niu,G.
etal.
EvidencefortheFormationofTwoPhasesduringtheGrowthofSrTiO3onSilicon.
Phys.
Rev.
B83,054105,doi:10.
1103/PhysRevB.
83.
054105(2011).
42.
Ramdani,J.
etal.
Interfacecharacterizationofhigh-qualitySrTiO3thinfilmsonSi(100)substratesgrownbymolecularbeamepitaxy.
Appl.
Surf.
Sci.
159–160,127–133,doi:10.
1016/S0169-4332(00)00050-7(2000).
43.
Roy,P.
,Rouzieres,M.
,Qi,Z.
&Chubar,O.
TheAILESinfraredBeamlineonthethirdgenerationSynchrotronRadiationfacilitySOLEIL.
InfraredPhysics&Technology49(1–2),139(2006).
44.
Brubachetal.
P.
PerformanceoftheAILESTHz-InfraredbeamlineatSOLEILforHighresolutionspectroscopy.
AIPConferenceProceedings1214,81–84,doi:10.
1063/1.
3326356(2010).
45.
Roy,P.
,Cestelli,M.
G.
&Nucara,A.
etal.
SpectralDistributionofInfraredSynchrotronRadiationbyanInsertionDeviceandItsEdges:AComparisonBetweenExperimentalandSimulatedSpectra.
Phys.
Rev.
Lett.
84(3),483–6,doi:10.
1103/PhysRevLett.
84.
483(2000).
46.
Paolone,A.
,Roy,P.
,Rousse,G.
,Masquelier,C.
&Rodriguez-Carvajal,J.
InfraredspectroscopyinvestigationofthechargeorderingtransitioninLiMn2O4.
SolidStateCommun.
111,453–8,doi:10.
1016/S0038-1098(99)00208-2(1999).
47.
Dovesi,R.
etal.
CRYSTAL09user'smanual,UniversitàdiTorino:Torino(2013).
48.
Becke,A.
D.
&Density-functional,A.
D.
thermochemistry.
iiitheroleofexactexchange.
J.
Chem.
Phys.
98,5648–5652,doi:10.
1063/1.
464913(1993).
49.
Perdew,J.
P.
&Wang,Y.
Accurateandsimpleanalyticrepresentationoftheelectrongascorrelationenergy.
Phys.
Rev.
B45,13244–13249,doi:10.
1103/PhysRevB.
45.
13244(1992).
50.
Monkhorst,H.
J.
&Pack,J.
D.
SpecialpointsforBrillouin-zoneintegrations.
Phys.
Rev.
B13,5188(1976).
51.
Schlegel,H.
B.
J.
Optimizationofequilibriumgeometriesandtransitionstructures.
Comput.
Chem.
3,214–218,doi:10.
1002/(ISSN)1096-987X(1982).
52.
Cheng,C.
,Kunc,K.
&Lee,M.
H.
StructuralrelaxationandlongitudinaldipolemomentofSrTiO3(001)(1*1)surfaces.
Phys.
Rev.
B62,10409–5898,doi:10.
1103/PhysRevB.
62.
10409(2000).
53.
Sai,N.
&Vanderbilt,D.
First-principlestudyofferroelectricandantiferrodistordiveinstabilitiesintetragonalSrTiO3.
Phys.
Rev.
B62,13942–13950,doi:10.
1103/PhysRevB.
62.
13942(2000).
54.
Evarestov,R.
A.
,Blokhin,E.
,Gryaznov,D.
,Kotomin,E.
A.
&Maier,J.
PhononcalculationsincubicandtetragonalphasesofSrTiO3:AcomparativeLCAOandplane-wavestudy.
Phys.
Rev.
B83,134108,doi:10.
1103/PhysRevB.
83.
134108(2011).
AcknowledgementsThiswork,partlyrealizedonNanolyonplatform,wassupportedbytheFrenchAgenceNationaledelaRecherche(ANR,ProjectNo.
ANR-07-BLAN-0312MINOS)andJSPS-EGIDESakuraproject.
WethankK.
Raderforacriticalreadingofthemanuscript.
11AuthorContributionsG.
N.
andB.
V.
preparedthesamples,W.
P.
,J.
B.
andP.
R.
performedtheIRmeasurements,E.
A.
andR.
T.
performedDFTcalculations.
R.
T.
andP.
R.
wrotethepaperandsupervisedtheresearch.
AdditionalInformationCompetingInterests:Theauthorsdeclarethattheyhavenocompetinginterests.
Publisher'snote:SpringerNatureremainsneutralwithregardtojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations.
OpenAccessThisarticleislicensedunderaCreativeCommonsAttribution4.
0InternationalLicense,whichpermitsuse,sharing,adaptation,distributionandreproductioninanymediumorformat,aslongasyougiveappropriatecredittotheoriginalauthor(s)andthesource,providealinktotheCre-ativeCommonslicense,andindicateifchangesweremade.
Theimagesorotherthirdpartymaterialinthisarticleareincludedinthearticle'sCreativeCommonslicense,unlessindicatedotherwiseinacreditlinetothematerial.
Ifmaterialisnotincludedinthearticle'sCreativeCommonslicenseandyourintendeduseisnotper-mittedbystatutoryregulationorexceedsthepermitteduse,youwillneedtoobtainpermissiondirectlyfromthecopyrightholder.
Toviewacopyofthislicense,visithttp://creativecommons.
org/licenses/by/4.
0/.
TheAuthor(s)2017
PacificRack在本月发布了几款特价产品,其中最低款支持月付仅1.5美元,基于KVM架构,洛杉矶机房,PR-M系列。PacificRack简称PR,QN机房旗下站点,主要提供低价VPS主机产品,基于KVM架构,数据中心为自营洛杉矶机房,现在只有PR-M一个系列,分为了2个类别:常规(Elastic Compute Service)和多IP产品(Multi IP Server)。下面列出几款秒...
易探云服务器怎么过户/转让?易探云支持云服务器PUSH功能,该功能可将云服务器过户给指定用户。可带价PUSH,收到PUSH请求的用户在接收云服务器的同时,系统会扣除接收方的款项,同时扣除相关手续费,然后将款项打到发送方的账户下。易探云“PUSH服务器”的这一功能,可以让用户将闲置云服务器转让给更多需要购买的用户!易探云服务器怎么过户/PUSH?1.PUSH双方必须为认证用户:2.买家未接收前,卖家...
hosteons当前对美国洛杉矶、达拉斯、纽约数据中心的VPS进行特别的促销活动:(1)免费从1Gbps升级到10Gbps带宽,(2)Free Blesta License授权,(3)Windows server 2019授权,要求从2G内存起,而且是年付。 官方网站:https://www.hosteons.com 使用优惠码:zhujicepingEDDB10G,可以获得: 免费升级10...
softmod为你推荐
yy频道中心yy频道怎么进频道中心,求图~!arm开发板开发板是什么?如ARM开发板,DSP开发板等。。它和最终目标板有何区别?直播加速有没有软件使已经下载好了的视频播放加速,例如30分钟的视频15分钟或者20分钟播放完迅雷云点播账号求迅雷云播账号srv记录如何解析一个SRV域名的ip什么是云平台什么是家庭云平台?网站优化方案几种常用的网站优化方法Qzongqzong皮肤上怎样写字价格在线最好的免费b2b?南北互通从南方发往北方的产品一般是什么
空间域名 中文国际域名 美国加州vps 域名备案流程 香港机房托管 天猫双十一秒杀 标准机柜尺寸 警告本网站美国保护 网站木马检测工具 免费全能主机 gtt 宏讯 photobucket wordpress中文主题 江苏徐州移动 服务器硬件配置 netvigator 数据湾 register.com cx域名 更多