SNAppliedSciences(2020)2:1011|https://doi.
org/10.
1007/s42452-020-2810-4ReviewPaperContaminationoftitaniumdentalimplants:anarrativereviewJagjitSinghDhaliwal1·ShebaRaniNakkaDavid1·NurulRamizahZulhilmi1·SachinjeetKaurSodhiDhaliwal1·JoeKnights1·RubensFerreiradeAlbuquerqueJunior2Received:13November2019/Accepted:22April2020TheAuthor(s)2020OPENAbstractContaminationoftitaniumdentalimplantsmayleadtoimplantfailure.
Therearetwomajortypesofcontaminants:theinorganicandorganiccontaminants.
Theinorganiccontaminantsmostlyconsistofelementssuchascalcium,phos-phorus,chlorine,sulphur,sodium,silicon,fluorineandsomeorganiccarbons.
Whereasorganiccontaminantsconsistofhydrocarbon,carboxylates,saltsoforganicacids,nitrogenfromammoniumandbacterialcells/byproducts.
Contami-nantscanalterthesurfaceenergy,chemicalpurity,thicknessandcompositionoftheoxidelayer,however,welackclini-calevidencethatcontaminationshaveanyeffectatall.
However,surfacecleanlinessseemstobeessentialforimplantosseointegration.
Thesecontaminantsmaycausedentalimplantstofailinitsfunctiontorestoremissingteethandalsocauseafinancialburdentothepatientandthehealthcareservicestoinvestindecontaminationmethods.
Therefore,itisimportanttodiscusstheaetiologyofdentalimplantfailures.
Inthisnarrativereview,wediscusstwomajortypesofcontaminants:theinorganicandorganiccontaminantsincludingbacterialcontaminants.
ThisreviewalsoaimstodiscussthepotentialeffectofcontaminationonTidentalimplants.
KeywordsDentalimplant·Contamination·Prognosis·Titanium1IntroductionDentalimplantscangetcontaminatedduetotheecologi-calsystemintheoralcavitywithabundantmicroorgan-isms[1].
Commonelementalcontaminationfromorganiccarbonandtracesofelementsincludingoxygen(O),nitrogen(N),calcium(Ca)andphosphorus(P)foundondentalimplantsurfacesarepotentiallylinkedtofailureinre-osseointegrationwhenpartsofanimplanthadlostitsosseointegration[2].
Ithasbeenshownre-osseointegra-tionoccurswhenthereisaformationofadirectstructuralandfunctionalunionbetweenanimplantandbone,ithasbeenshownthatproperlycleanedimplantsindeedmayre-osseointegrate[3].
Henceseveralfactorssuchassurfacetopography,chemicalpurity,thicknessandcompositionoftheoxidelayer,surfacecleanliness,andtheexistenceofmetallicandnon-metalliccompoundsonthesurfaceseemstoinfluencethesuccessofimplantosseointegra-tion[4].
Currently,agrowingamountofevidence[5,6]sug-geststhattheimplantsurfacetopographyandchemistryhasgreatinfluenceontheosseointegrationprocessbyaffectingproteinsignallingandcellmigrationordiffer-entiation.
Bone-implantcontactarea,mechanicalinter-lockingandstressdistributionarerecognisablybetterinsurfaceswithacertaindegreeofroughnessincomparisontosmoothones,favouringosteoblast-likecellcolonisa-tion[7].
However,ithasalsobeenshownthatroughenedsurfacesenhancetheaccumulationofcontaminants[8].
Nevertheless,themechanismsbywhichinorganicandorganiccontaminantsinteractwiththeimplantsurfacesremainundefined.
Althoughmanymethodsofimplant*JagjitSinghDhaliwal,jagjit.
dhaliwal@ubd.
edu.
bn|1PengiranAnakPuteriRashidahSa'adatulBolkiahInstituteofHealthSciences,UniversitiBruneiDarussalam,JalanTungkuLink,Gadong,BruneiDarussalam.
2DepartamentodeMateriaisDentáriosEPrótese,FaculdadedeOdontologiadeRibeiroPreto,UniversidadedeSoPaulo,SoPaulo,Brazil.
ReviewPaperSNAppliedSciences(2020)2:1011|https://doi.
org/10.
1007/s42452-020-2810-4decontaminationhavebeenattempted,noneofthemhavesucceededinproducingpredictableresults.
Implantsurfacedecontaminationremainschallengingandthusthedevelopmentofnew,effectivemethodsisnecessary[9,10].
Topographicalmodificationisfrequentlyadoptedintitanium-basedimplantstoproducethedesiredsurfacepropertiesbyusingdifferentsurfacetreatmentssur-facetreatmentssuchassandblasting,chemicaletching,anodization,lasertreatment,andsurfacecoatings[11].
Althoughthesesurfacetreatmentscanchangetheprop-ertiesoftheimplantsurfacesandonrareoccasions,mayalsoleadtoundesiredpropertiesandhence,contamina-tionoftheimplantsurfaces.
Humanbodyfluidscontaintraceelementssuchaschlorineandfluorideionswhereasourbonecompriseofcollagen,hydroxyapatite(Ca10(PO4)6(OH)2),andsomeani-onicandcationicsubstituentssuchascarbonates(H2CO3),sodium(Na),magnesium(Mg),zinc(Zn),fluorine(F),chlo-rine(Cl),potassium(K)andsilicon(Si)[12].
Thus,whentheforeignmaterialsareimplantedinthehumanbody,theyencounterahostilecorrosiveenvironmentcomprisingofvariousmediasuchasblood,water,Na,Cl,plasma,aminoacids,andmucininsaliva[13].
Inorganicmetaloxidesuchastitaniumoxide(TiO2)anditsalloysarecommonlyusedindentalimplantsduetoitsfavourablebiocompatibilityandmechanicalproperties.
Theabilityoftheoxidelayeroftitanium(Ti)towithstandthecorrosioninsalineandacidicenvironmentmakeitanexcellentimplantmaterialincreasingthechanceofre-osseointegration[14].
However,afterlongterminteractionwithlivingtissue,theTiO2willreleasesmallamountsofcorrosionproductsandleadtodentalimplantcontamina-tion[14].
Corrosionduetobodilyfluidscancausechangesinmaterialstructureandreleaseofunwantedinflamma-toryby-products,andcompromiseimplant'smechanicalstability[15].
Dentalimplantsmayalsobecontaminatedwhentheyaremarketed,i.
e.
priortoanycontaminationfromtheoralcavity.
Therefore,thereisapossibilitythatcontaminationsmayalsodependonothermattersthanbiologicalinsitueffects.
Therefore,sterilepackagedmedicaldevicesmustbeperiodicallyreviewedanddocumentedbythemanu-facturesthattheimplantsarefreeofsurfaceimpurities[16].
Anothercauseofdentalimplantcontaminationisgal-vaniccorrosion.
Thisisanelectrochemicalprocessthatoccurswhenelectronscanflowfreelybetweentwodif-ferentmaterialswithsufficientlydifferentelectricalpoten-tials[17].
Thekeycircumstancesthatcouldinfluencetheini-tialhealingphaseoftheimplantsiteandthesurvivalrateofdentalimplantsarethesurgicalfactors,thetimeofimplantsurgery,siteofimplantplacement,typeofimplantosteotomy,implantdesignandimplantstabil-ity[18].
Thesefactorsheavilyinfluencetheprobabilityofexposuretocontaminants.
Thesecontaminantsmaycausedentalimplantstofailintheirfunctiontorestoremissingteeth.
Also,thereisandalsocauseafinancialburdentothepatientandthehealthcareservicestoinvestindecon-taminationmethods.
Therefore,itisimportanttodiscusstheaetiologyofdentalimplantfailures.
Inthisreview,wediscusstwomajortypesofcontaminants:theinorganicandorganiccontaminantsincludingbacterialcontami-nants.
ThisreviewalsoaimstodiscussthepotentialeffectofthesecontaminantsonTidentalimplants.
2Inorganiccontaminants2.
1Reactiveoxygenandnitrogenspecies(RONS)Reactiveoxygenandnitrogenspecies(RONS)arefreeradi-calsandreactivemoleculesderivedfrommolecularoxy-genandnitrogenspecies,bothasintercellularaswellasintracellularmessengers.
AscanbeseeninTable1,RONScanbefoundinlasers(i.
e.
LLLT-low-levellasertherapy),photosensitizers,bleachingagents,coldplasma,andresincementasaby-productfromdentalapplications[19].
AtlowormoderateconcentrationofRONS,ithasbeneficialeffectswhichresultsintheangiogenesis(formationofnewbloodvessels),proliferationandre-epithelialisationofcellsinthegingivalandothertissuesofthebody,andvascularendothelialgrowthfactor(VEGF)inducedcellmigration[18].
However,atveryhighlevelsofreactiveoxygenspe-cies(ROS),adverseeffectsmayrisecausingperi-implantinflammation,carcinogenesis&mutagenesis,mitochon-drialdysfunctionandcelldeath[19,20].
2.
2Calcium(Ca)AlargeamountoftheCacontaminationwasfoundinthesodiumhydroxide(NaOH)reagent[21].
Kizukietal.
[21]verifiedthattreatmentofTiwithNaOHreagentandheattreatmentsinducedapatiteformationwithbone-bondingabilitywithTimetal.
Unfortunately,withincreasingvolumeofNaOHreagent,theapatiteformationwasdecreasedduetoCacontaminationfoundintheNaOHreagent.
TheCainhibitedapatiteformationontheTimetalinSBF(Syn-thetic/SimulatedBodyFluid)bysuppressingNaionreleasefromthesodiumtitanateintothesurroundingfluid.
EvenaCacontaminationlevelof0.
0005%oftheNaOHrea-gentwassufficienttoinhibittheapatiteformation[21].
ExposureofTitosimulatedphysiologicalsolutions(i.
e.
Ringer'ssolutionandsaline,whichcontainscalciumandphosphateions)leadstoadsorptionofcalciumphosphateSNAppliedSciences(2020)2:1011|https://doi.
org/10.
1007/s42452-020-2810-4ReviewPaperTable1ListoforganicandinorganiccontaminantsonTidentalimplantsandtheirpotentialentryandeffectsondentalimplantsNatureofcontaminantsContaminantPotentialentryPotentiallybeneficialeffectPotentiallydangerouseffectReferencesInorganiccontaminantsReactiveoxygenandnitrogenspecies(RONS)Low-levellasertherapy[19]Photosensitizers[19]Bleachingagents[19]Coldplasma[19]Resincement[19]Angiogenesis[19]Proliferationandre-epithelializationofcells[19]VascularEndothelialGrowthFactor(VEGF)inducedcellmigration[19]Peri-implantinflammation[20]Celldeath[19]Carcinogenesis&mutagenesis[19]Mitochondrialdysfunction[19][19,20]CalciumNaOHreagent[20]Physiologicalsolution(Ringer'ssolu-tionandsaline)[15]Improvedbonecontactandresultsingoodosseointegration[22]Inhibitapatiteformation[21][15,21,22]PhosphorusAnodizationinphosphoricacidsolu-tion[11]Calciumphosphatecoating[24]Biologicalresidue(oralcavity)[25]Modulatecytokinesproduction[23]Promotestemcelldifferentiation[24]Increaseosteoblastsproduction[24]Increaseboneformation[24]WhiteresidueobstructingTiimplant[25][2,11,23–25]PhosphorusAnodizationinphosphoricacidsolu-tion[11]Calciumphosphatecoating[24]Biologicalresidue(oralcavity)[25]Modulatecytokinesproduction[23]Promotestemcelldifferentiation[24]Increaseosteoblastsproduction[24]Increaseboneformation[24]WhiteresidueobstructingTiimplant[25][2,11,23–25]ChlorineHClsolution[26]Low-levelFrequencyUltrasoundTreat-ment[27]Saliva[17]CleanTisurface(HCl)[26]Creatinganacidicenvironment[17]Attacktheoxidationlayer[17]Corrodeimplant-abutmentconnec-tion[17][17,26,27]SulphurSandblasting[31]Acidetchingprocess[32]Sulphuricacid[26]Doubleacidetchingtreatment:Pro-duceddualroughnessTi,improvedosteoblastadhesion,proliferationanddifferentiation[32]DisturbthechemicalmodificationofTisurface[26][26,31,32]SodiumSaline[28]Sodiumhypochlorite[26]Sodiumhydroxide[33]Improveosteoconductionandosteoin-tegration[33]Enhanceearlystageofcelladhesion,proliferation,anddifferentiation[34]Causeprecipitationofmanyminerals,higherwearresistanceoftheimplantsurface[28,33–35]AluminiumSand-blasting[37]Acidetching[37]Physiologicalfluids[15]Ti–Alcoating[38]Enhancecorrosionresistant[15]Improvedosteoblastviability[22]Interfereosseointegrationprocess[39][15,22,37–39]SiliconPassivationprocessSisol–gelcoatingTi[43]Fabricationprocess,cleaningandsterilizationprocess[36]Environmentduringhandlingandstor-age(glassvials)[36]Analysispreparation[36]Promoteosteoblastdifferentiation[41,42]StimulatescollagentypeIsynthesis[41,42]Allowedhumancelladherence[41,42]Mineralizationofhumantissue[41,42]Increaseosteoinductiveproperties[43]Preventbacterialinfectionafterimplantation[44]Enhanceinflammatoryresponse[36,40]Alterationoftheoxidelayersurface[36,40]Failureinre-osseointegration[36,40][36,40–44]ReviewPaperSNAppliedSciences(2020)2:1011|https://doi.
org/10.
1007/s42452-020-2810-4NAnotavailableTable1(continued)NatureofcontaminantsContaminantPotentialentryPotentiallybeneficialeffectPotentiallydangerouseffectReferencesZincToothpaste[40]Mouthwash[40]Increasingthecellproliferationinosteoblasts,boneformationandbiomineralization[46]AntibacterialpropertyPro-angiogenic[1]Goodosteoinductivity[1]Allergicreactiontometal[45][1,40,45,46]FluorineToothpaste[14,47]Mouthwash[14,47]Prophylacticgels[14,47]Acid-etchingprocess[47]Preventdentalcariesdevelopment[14,47]Relievedentalsensitivity[14,47]DegradedtheprotectiveoxidelayerofTianditsalloys[14,47]DiscolourationofTiimplants[17][14,17,40,47]HydrogenAcid-etching[13]Biologicalenvironmentoforalcavity[50]DelayedfracturedonTiimplant[50]ImproveOsteoblasts(Si–Hcoating)[51]Keratinocytesadhesionandviability[51]EmbrittlementoftheTisurfacelayer[13][13,50,51]OrganiccontaminantsHydrocarbonAir[53]Water[53]Cleaningfluid[53]NALessenosteoblastattachment[52]ReducedhydrophilicityofTi[52][52,53]CaboxylatesCoatingofTisurface[54]Osteoblastproliferation,differentia-tion,andmatrixmineralization[54]Increasethe(super-)hydrophilicityofTianddecreasedthebondingwiththeoxide,N,andSatomsonprotein[31]Reducedtheattachmentofcells[31][31,54]SaltsoforganicacidsGlycolysisofbacteria[55]NAReducedpH–favourableforaerobicbacteria[55]Corrosion[55]DiscolourationofTiimplants[55][55]Nitrogenfromammoniumresi-duesBacterialplaque[2]Bolus[2]Saliva[2]InhibitgrowthofE.
coliandactasanoxidantforthecombustionreaction[56]WhiteresidueobstructstheTisurface[2][2,56]BacteriaMicrobesinoralcavity[57]Bacterialcontaminationduringsurgery[58]NADamagedtheTiO2layer[57]Microbialcorrosion[14,17]Inflammation[14]Peri-implantitis[17][14,17,57,58]SNAppliedSciences(2020)2:1011|https://doi.
org/10.
1007/s42452-020-2810-4ReviewPaperonthesurfaceoftheoxidelayer,spontaneously[15].
Pos-itivelychargedCaionsattachedtonegativelycharged(PO4)3and(CO3)2actingasnucleationsitesforapatiteandimprovingbonetoimplantcontact,thusresultingingoodosseointegration[22].
2.
3Phosphorus(P)ChemicalcompositionofthesurfaceoftheTidentalimplantsplaysanimportantrolecreatingasurfacewherethebonecellscanattachwellthusallowingosseointegra-tiontooccur.
Astudyhadbeenconductedtoexaminethesurfacephosphoruscontentsofanodizedmedical-gradeTisamples[11].
TheTisampleswereanodisedinphosphoricacidsolutionatdifferentvoltages(10V,20V,30Vor40V)andcreatedTiO2layersonthesurfaces.
Anodisationinphosphoricacidsolutionincreasesthephosphorcontentofthesurfacemaypromoteosseointegrationandleadtosecondarystabilityforthedentalimplants[11].
Furthermore,dentalimplantsurfacestreatedwith37%phosphoricacidmodulatescytokineproductionbybloodmononuclearcells,establishingabalancebetweenpro-teinswithantiandpro-inflammatoryactivity,thuspro-motingthesuccessofdentalimplants[23].
ATisurfacecoatingbasedoncalciumphosphateshowedhighhydro-philicityandhighosseointegration,promotingstemcelldifferentiation,increasingosteoblastproductionandboneformation,thusresultinginincreasingboneformationinashortertime[24].
OnestudycharacterizedthesurfaceofTihealingabut-mentsbeforeandafterclinicalplacementtoinvestigatetheeffectsoftheoralenvironmentondevicesurfaces[25].
TheresearchersfoundathickwhiteresiduecontainingC,N,O,CaandPcompletelyobstructingtheTisurface.
TheysuggestedthatthepresenceofPcontaminantcamefrombiologicalresidueoftheoralcavity.
2.
4Chlorine(Cl)Hydrochloricacid(HCl)wasusedtocleantheTisurface.
However,aminimalamountofClwasdetectedontheimplantsurfaces.
Fortunately,smallamountofCldidnotweakentheTisurfacesastheClformedTi-Clcomplexandsolubleinwater[26].
Anotherpotentialcontamina-tionbyClwasfromsonicatedsolutionoflow-frequencyultrasound(usedtotreatchronicallyinfectedwounds).
ThesonicationsolutionfromtheultrasoundtreatmentwasabletoaltertheTisurfacechemistry,depositingClaswellasCa,aluminium(Al),Si,NaandKontheimplantsurface[27].
SalivacontainsK,Na,N,chloride,bio-actonateproductsandproteins.
However,duringcrevicecorrosion,thecon-centrationofchlorideionsincreasesandreducesthepHvalueofsalivacreatinganacidicenvironment.
Thechlorideionsattacktheoxidationlayerofdentalimplantsleadingtoacorrodedimplant-abutmentconnection[17].
Hence,sterilesalinecanbeusedtoreducetheminimaltracesofchlorideonimplantsurface[28].
However,ClcanbecompletelyremovedfromtheTiimplantsurfaceseitherbyrinsingorultra-sonication,bothinultra-purewater[29].
2.
5Sulphur(S)Sulphur(S)compoundsaswellasNa,K,Ca,PO4,CO2andmucincanbefoundinthemouth[30].
Tracesofsulphatesalongwithfluorides,magnesiumoxides,silicates,andcal-ciumoxidesarefoundasaresultofthesandblastingandetchingprocessoftheimplantsurfaces[31].
Hydrochloricacid(HCl)andsulphuricacids(H2SO4)arefrequentlyusedtopre-treatedTisurfaces.
SfromtheresidualS2O82orSO42wasdetectedfromthesamplestreatedwitheitherSodiumpersulfate(Na2S2O8)orH2SO4.
However,theTi-acidcomplexes(titaniumsulfate)waslessdissolvedinwater,thusnotsuitablefordecontaminationofTisurfacesasitcandisturbthechemicalmodificationofTisurface[26].
Gineretal.
demonstratedthatadoubleacidetch-ingtreatmentusinghydrofluoricacidfollowedbysulfuricacidproducedadualroughnessTisurfacewhichimprovedosteoblastadhesion,proliferationanddifferentiationthusenhancingosseointegration.
ScanbecompletelyremovedfromtheTisamplesbythenon-thermalplasmatreatmentbutnotbyUVtreatment[32].
2.
6Sodium(Na)TracesofNahavealsobeenreportedonimplantsurfaceswhichhavebeentreatedwithsodium-containingsolu-tionssuchassalineandsodiumhypochlorite,withsodiumhypochloritecausingatenfoldhigheramountoftraceNathansaline[28].
NaOHhasbeenusedinalkalinetreat-menttocreateasodiumtitanatelayerbyincorporatingNaionsontotheTisurface.
Thenanoporoushydroxyapatite/sodiumtitanatebilayerhasbeenreportedtoimprovein-vivoosteoconductionandosteointegration[33].
Moreo-ver,thetreatmentofhydrophilicityofTidiscsusingNaOHtendtoenhancetheearlystagesofcelladhesion,prolif-eration,anddifferentiation[34].
Inonestudy,SBFsolutionhasbeenusedduringacoatingprocedureforTiimplants,causingprecipitationofmanyminerals(e.
g.
Na,Ca,Mg,P)presentedinthesolution,whichleadstoahigherwearresistanceoftheimplantsurface[35].
AstudydonebyShiblietal.
revealedtracesofNacontaminantalongwithcarbon,O,N,Ca,Al,andOontheTisurfaceofthefailedimplants.
TheinfluenceofthecontaminantsblockthesitesfortheoxygencathodicreactionthuspreventingforeignionssuchasironorchromiumtocatalysetheoxygenReviewPaperSNAppliedSciences(2020)2:1011|https://doi.
org/10.
1007/s42452-020-2810-4reaction.
Hence,causinganincreaseinthedissolutionrateofTiimplantsandpreventingre-osseointegration[36].
2.
7Aluminium(Al)SurfaceanalysisofTiimplantsusingX-rayPhotoelectronSpectroscopy(XPS)measurementsrevealedthepresenceofAlandfluoridewhichweredepositedduringthesand-blastingandacidetchingprocess[37].
TheoxidizedstateofAl,(alumina)isconsideredtobestableinphysiologi-calfluidswithveryminortissuereaction.
Therefore,ithasbeenusedasacoatingmaterialtoenhancethecorrosionresistancecharacteristicsofdentalimplants[15].
Inaddi-tion,favourablecellreactionswereobservedforaroughTisurfaceenrichedwithAl,CaandPions,whenincorpo-ratedintotheTisurfaceappearstoimproveviabilityofosteoblasts[22].
SomeTidentalimplantsmaycontainsurfacecontami-nantsthatmaycauseaproblemduringtheosseointegra-tionprocess.
AstudydonebySemezetal.
[38]showedthattheamountofAlinadentalimplantcalledMYIM-PLANT(NobelBiocare,India)was12-foldhigherthanthatfoundinTialloystypicallyusedfordentalimplants(between0andabout0.
06)[38].
Furthermore,anotherstudysuggestedthatahighconcentrationofresidualaluminiumoxide(AlO2)mayinterferenegativelywiththeosseointegrationprocess[39].
2.
8Silicon(Si)SiwasdetectedonthefailedimplantsalongwithP,Ca,Na,S,Cl,Znandcopper(Cu)ontheTisurface.
Ithasbeensuggestedthatthesurfacecontaminantsmayenhancetheinflammatoryresponse,alteringthehealingprocesswhichleadstoalterationoftheoxidelayersurfaceandfailureinreosseointegration.
ThepresenceofSiispossi-blyduetothepassivationprocesswheretheSiwasusedasacoatingorintreatingTisurfaces[36,40].
Otherthanthepassivationprocess,Simaycomefromiondissolutionfromtheglassstoragevialsorprobably(lesslikely)fromrubbergloves.
Itmayalsooriginatefromthefabricationprocess,cleaningandsterilizationprocess,thehandlingenvironmentandstorage(glassvials)andanalysisprepa-rationprocedures[36].
Nevertheless,Siplaysanessentialelementinbonemetabolismincludingpromotingosteoblastdifferen-tiation,stimulationofcollagentypeIsynthesis,allowinghumancelladherenceandmineralizationofhumantis-sue[41,42].
Assuch,SihasbeenusedasacoatingonTidentalimplantsformingaSisol–gelcoatingTi.
AstudydonebyMartnez-Ibanezetal.
[43]showedthattheincor-porationoftetraethylorthosilicate(TEOS)tothesol–gelSicausedhydrolyticdegradationthatleadstoreleasingofSicompoundtothemedia.
ThisresultedinanincreaseintheeffectofosteoinductivepropertiesallowingfordirectcontactbetweennewboneandtheTiimplant[43].
Silicon-basedcoatingshavepropertiesinpreventingbac-terialinfectionpost-implantationandthereforeimprovedpatientoutcomes[44].
2.
9Zinc(Zn)DentalimplantsmadeofZnwerereportedtocauseden-talmetalallergyinJapan[45].
SomeofthetracesofZnioncanbefoundasthismetalisaddedtotoothpasteandmouthwashsolutionsasanti-plaqueagents.
Thisactiv-ityisbelievedtobeduetoretentionin'oralmicroreser-voirs'suchassoftoraltissues,toothsurfacesandbacterialplaque[40].
Nevertheless,Znhasbeenrecognizedasanimportanttraceelementinincreasingthecellproliferationinosteoblasts,boneformationandbiomineralization.
Inaddition,Znhasantibacterialpropertiestherefore,attract-ingresearcherstoincorporatetheZnintoTisurfacesindentalimplantstoenhancebioactivity.
Co-implantedZnandMgionsintoTiimplantsshowedgoodosteoin-ductivity,pro-angiogenicandbacterialeffectswhichcanenhancerapidosseointegration[1,46].
2.
10Fluorine(F)TracesofFandScanbefoundduringtheacid-etchingpro-cess[40].
Fluorideions(upto0.
1wt%)canalsobefoundincommercialtoothpaste,mouthwashsolutionsandpro-phylacticgels.
Itsfunctionsaretopreventdevelopmentofdentalcariesandtoalleviatedentalsensitivity.
How-ever,highconcentrationsoffluorideionsexhibitnegativeeffectsontheprotectiveoxidelayerofTianditsalloys,triggeringlocalizedcorrosivedegradation.
ThedegreeofcorrosionofTianditsalloysaredependsontheconcentra-tionoffluorideionsandthepHofthefluoride-containingenvironments[14,17,47].
Besides,ataconcentrationsof3ppmoffluorideions,Tialloybecomesdiscolouredandataconcentrationabove20ppm,theprotectiveoxidelayerbecomesdegraded[47].
DiscolorationofTiimplantscanbeobservedafterundergoingautoclavingduetoFcon-tamination[48].
2.
11Hydrogen(H)Anacidetchingtechniqueispopularlyusedbymanufac-turerstotexturethesurfaceofdentalimplants.
Combi-nationofacidssuchashydrofluoricacid-nitricacidareoftenusedtoremovetheoxidelayerofTisurfaces.
InthehydrofluoricacidpretreatmentofTisurfaces,theformerattackstheoxidelayerandreactswithTitoformsolubleTifluoridesandH.
WhenthefreeHissaturated,titaniumSNAppliedSciences(2020)2:1011|https://doi.
org/10.
1007/s42452-020-2810-4ReviewPaperhydrideisformed.
ThetitaniumhydridecandramaticallyaffectthemechanicalpropertiesofTiwhichcauseembrit-tlementofthesurfacelayer.
However,byaddingnitricacid,itcanreducefreeHformation[13,49].
AstudyonthefracturesurfaceofretrievedTiscrewthreadsrevealedahighamountofHabsorptionfrombiologicalenvironmentoforalcavitytocausedelayedfractureofaTiimplant[50].
AsynergisticroleofSiandHcoatingimprovestheirinteractionwithosteoblasts.
AstudydonebyMussanoetal.
[51]revealedthathydrogen-richfilmsincreasedkeratinocytesadhesionandviabilitythusenhancingosseointegration.
3Organiccontaminants3.
1HydrocarbonsThecontaminationofTiimplantsurfacestakesonly4weeksforthefreshlycutorpreviouslyphoto-function-alizedimplantstobecoveredwithhydrocarbonsnomat-terthetypeofsurfacetreatmenttheyhaveundergone[37].
ThepresenceofhydrocarbonontheTisurfacemaylessenosteoblastattachmentasthecelladhesionproteincannotattachtosuchsites[52].
Moreover,hydrocarbonfoundintheair,water,orcleaningfluidcanbecontinu-ouslyadsorbedontotheTisurfaceandsignificantlyreducethehydrophilicityofTiduringstorage[53].
Photo-func-tionalizationhasproventobeavalidmethodtoreducetheamountofhydrocarboncontaminationonTidentalimplantsandimproveosseointegration[37].
3.
2CarboxylatesCarboxylatescanbefoundfromthecoatingofTisurfaces.
Carboxylatedmulti-walledcarbonnanotubecoatedTihasbeenshowntohaveincreasedosteoblastproliferation,differentiation,andmatrixmineralization[54].
However,carboxylatescontaminantscancauseadverseeffectsonTisurface.
Highamountsofcarboxylgroupsfromcarbox-ylatesandhydrocarboncanincreasethe(super)hydro-philicityofTi.
Thissubsequentlydecreasethebondingwiththeoxide,N,andSatomsonproteinandreducetheattachmentofcells.
Inordertoremovethecarboxylatecontaminant,high-energyphotonssuchasnon-thermalplasmaandUVlightarerequiredtobreaktheweakbondsbetweencarboxylgroupsandTi[31].
3.
3SaltsoforganicacidsTheproductionoforganicacidscomefromthepro-cessofglycolysisbybacteriaandmayreducepHtocreateafavourableenvironmentforaerobicbacteria.
Accumulationoforganicacidsleadstoanacidicenvi-ronmentandinducescorrosionanddiscolourationofTiimplants[55].
3.
4NitrogenfromammoniumresiduesPresenceofsubstances,likeN,C,O,Ca,andP,foundonthesurfaceoftheTihealingabutmentsformawhiteresidue.
ThesewhiteresiduescauseobstructionontheTisurface.
TheexistenceofNandotherelementsresiduemaycomefrombacterialplaque,bolus,soft-tissueorproteincom-poundsinsalivathathaveadheredtotheTisurface[2].
Inaddition,bacterialbiofilmincreasedthepercentageofbothcarbonandnitrogenontheTisurface.
ByusingH2O2photolysis,thedegradedbiocompatibilityofbiofilm-con-taminatedTisurfacescanberecoveredandmayhavethepotentialforimprovingperi-implantitis[52].
Astudyreportedthatthemicrowave-assisteddryingofHA(hydroxyapatite)sampleswerefoundtobeeffectiveininhibitingthegrowthofEscherichiacoli.
Theformationofammoniumnitrateduringthedryingprocesswhencal-ciumnitrateandammoniawereaddedintothesolutionforTiO2synthesis.
Theresultant,ammoniumnitrate,actsasanoxidantforthecombustionreaction[56].
3.
5BacteriaBacterialcolonizationcandamagethesurfaceTiO2layer.
Astudyreportedthatthecolonizationofbacteriademon-stratesmoreprominentdamageonthesurfacemorphol-ogyandchemistryofimplantsurfaces[57].
Bacteriacancausemicrobialcorrosionwheretheacidicwasteproductscreatedbymicrobesgenerateanacidicenvironment.
Thecorrosionmayleadtoinflammationandoccurrenceofperi-implantitis.
Theseverityofmicrobialcorrosioncanbereducedbyusingantibioticspraysanddipstominimizemicrobepopulations[14,17].
Bacterialcontaminationcanoccurondentalimplantsduringsurgeryandaffecttheosseointegrationandtheprognosisinaclinicallysig-nificantway;howeverscientificevidenceinasystematicreviewconcerningthisisinsufficient[58].
Combinedusageofantisepticssuchaschlorhexidinedigluconate(CHX)orhydrogenperoxideH2O2andpho-todynamictherapy(PDT)wasmoreeffectiveineliminat-ingbacteriabiofilm.
ThiswassupportedbyastudywherethecombinationofantisepticsandPDTshowedeffectivedecontaminationabilityineradicatingStaphylococcusaureusbiofilmfromTisurfaces[59].
Despiteawiderangeoforganicandinorganicimpu-ritiesthatmaycontaminatedentalimplantsurfaces,the10yearclinicalsurvivalrateofthemostcommonlyusedoralimplantsisintherangeof90–95%andtheresultsofReviewPaperSNAppliedSciences(2020)2:1011|https://doi.
org/10.
1007/s42452-020-2810-4"modern,moderatelyroughoralimplantsarebetween95and99%at10years.
[60].
4ConclusionThisreviewistargetedatbothmanufacturersandclini-cians.
Contaminationsofdentalimplantsareintimatelyassociatedwithimplantfailures.
Fromthesummariza-tionofthereview(seeTable1),thecontaminantsmaybecomebeneficialand/orproducedisastrouseffectsondentalimplants.
Thesemayalterthesurfaceenergy,chemicalpurity,thicknessandcompositionoftheoxidelayer.
ItisalsoknownthatthemostcommonelementalcontaminationofTisurfaces,potentiallylinkedtoimplantfailuresaretraceelementssuchasN,Ca,P,Cl,S,Na,SiandF,someorganiccarbonsandbacterialcells/by-products.
However,someofthecontaminantssuchasSiandParebeneficialtothedentalimplantsthatpromoteosseointe-gration.
Thetracesoforganicandinorganiccontaminantscanbefoundfromtheimplantcleaningprocess,Tisurfacetreatmentsuchasacid-etchingandsand-blasting,biologi-calenvironmentandalsothesurroundingenvironment.
Variousmethodsofremovingcontaminantsarealsointro-ducedwiththehopeofpromotingosseointegration.
AcknowledgementsThisstudyissupportedbytheUniversityResearchCouncilunderUniversitiBruneiDarussalamwiththeGrantNumberUBD/RSCH/URC/RG(b)/2018/004,ledbyDrJagjitSinghDhaliwal(PrincipalInvestigator).
CompliancewithethicalstandardsConflictofinterestTheauthorsdeclarethattheyhavenoconflictofinterest.
OpenAccessThisarticleislicensedunderaCreativeCommonsAttri-bution4.
0InternationalLicense,whichpermitsuse,sharing,adap-tation,distributionandreproductioninanymediumorformat,aslongasyougiveappropriatecredittotheoriginalauthor(s)andthesource,providealinktotheCreativeCommonslicence,andindicateifchangesweremade.
Theimagesorotherthirdpartymaterialinthisarticleareincludedinthearticle'sCreativeCommonslicence,unlessindicatedotherwiseinacreditlinetothematerial.
Ifmaterialisnotincludedinthearticle'sCreativeCommonslicenceandyourintendeduseisnotpermittedbystatutoryregulationorexceedsthepermitteduse,youwillneedtoobtainpermissiondirectlyfromthecopyrightholder.
Toviewacopyofthislicence,visithttp://creativecommons.
org/licenses/by/4.
0/.
References1.
YuY,JinG,XueY,WangD,LiuX,SunJ(2017)MultifunctionsofdualZn/Mgionco-implantedtitaniumonosteogenesis,angio-genesisandbacteriainhibitionfordentalimplants.
ActaBio-mater49:590–603.
https://doi.
org/10.
1016/j.
actbio.
2016.
11.
0672.
WheelisSE,ValderramaTGW,RodriguesDC(2017)Surfacecharacterizationoftitaniumimplanthealingabutmentsbeforeandafterplacement.
ClinImplantDentRelatRes.
https://doi.
org/10.
1111/cid.
125663.
SchleeM,RatheF,BrodbeckU,RatkaC,WeiglP,ZipprichH(2019)Treatmentofperi-implantitis—electrolyticcleaningversusmechanicalandelectrolyticcleaning:arandomizedcontrolledclinicaltrial—six-monthresults.
JClinMed8:19094.
EliasCN(2011)Implantdentistry.
In:TurkyilmazI(ed)Arapidlyevolvingpractice.
IntechOpen,Vienna5.
SukumaranA,AnandPS,AlghamdiH,JansenJA(2011)Dentalimplantsurfaceenhancementandosseointegration.
InplantDent.
https://doi.
org/10.
13140/2.
1.
2991.
26446.
SinghJ,NurulD,RahmanA,KnightsJ,GhaniH(2019)Theeffectofdifferentsurfacetopographiesoftitaniumimplantsonbac-terialbiofilm:asystematicreview.
SNApplSci.
https://doi.
org/10.
1007/s42452-019-0638-67.
WennerbergA,AlbrektssonT(2010)Onimplantsurfaces:areviewofcurrentknowledgeandopinions.
IntJOralMaxillofacImplants74:63–748.
RezaeiNM,HasegawaM,IshijimaM,NakhaeiK,OkuboT,Taniy-amaT,OgawaT(2018)Biologicalandosseointegrationcapa-bilitiesofhierarchically(Meso-/micro-/nano-scale)roughenedzirconia.
IntJNanomed13:3381–3395.
https://doi.
org/10.
2147/IJN.
S1599559.
Al-HashediAA,LaurentiM,BenhamouV,TamimiF(2017)Decon-taminationoftitaniumimplantsusingphysicalmethods.
ClinOralImplantRes28(8):1013–1021.
https://doi.
org/10.
1111/clr.
1291410.
MombelliA,HashimD,CioncaN(2018)WhatistheimpactoftitaniumparticlesandbiocorrosiononimplantsurvivalandcomplicationsAcriticalreview.
ClinOralImplantRes29:37–53.
https://doi.
org/10.
1111/clr.
1330511.
KatonaB,DobosG,KissG(2015)Examinationofthesurfacephosphoruscontentofanodizedmedicalgradetitaniumsam-ples.
MaterSciForum812:339–344.
https://doi.
org/10.
4028/www.
scientific.
net/msf.
812.
33912.
upováM(2015)Substitutedhydroxyapatitesforbiomedicalapplications:areview.
CeramInt41(8):9203–9231.
https://doi.
org/10.
1016/j.
ceramint.
2015.
03.
31613.
SasikumarY,IndiraK,RajendranN(2019)Surfacemodificationmethodsfortitaniumanditsalloysandtheircorrosionbehaviorinbiologicalenvironment:areview.
J.
Bio-Tribo-Corros.
https://doi.
org/10.
1007/s40735-019-0229-514.
ChaturvediT(2009)Anoverviewofthecorrosionaspectofden-talimplants(titaniumanditsalloys).
IndianJDentRes20(1):91–98.
https://doi.
org/10.
4103/0970-9290.
4906815.
BahraminasabM,BozorgM,GhaffariS,KavakebianF(2019)ElectrochemicalcorrosionofTi-Al2O3biocompositesinRinger'ssolution.
JAlloysCompd777:34–43.
https://doi.
org/10.
1016/j.
jallcom.
2018.
09.
31316.
DuddeckDU,AlbrektssonT,WennerbergA,LarssonC,BeuerF(2019)Onthecleanlinessofdifferentoralimplantsystems:apilotstudy.
JClinMed8:128017.
NoumbissiS,ScaranoA,GuptaS(2019)Aliteraturereviewstudyonatomicionsdissolutionoftitaniumanditsalloysinimplantdentistry.
Materials(Basel)12(3):1–15.
https://doi.
org/10.
3390/ma1203036818.
ShadidRM,SadaqahNR,OthmanSA(2014)Doestheimplantsurgicaltechniqueaffecttheprimaryand/orsecondarystabil-ityofdentalimplantsAsystematicreview.
IntJDent2014:17.
https://doi.
org/10.
1155/2014/20483819.
JhaN,RyuJJ,ChoiEH,KaushikNK(2017)Reviewarticlegenerationandroleofreactiveoxygenandnitrogenspe-ciesinducedbyplasma,lasers,chemicalagents,andotherSNAppliedSciences(2020)2:1011|https://doi.
org/10.
1007/s42452-020-2810-4ReviewPapersystemsindentistry.
OxidMedCellLongev2017:13.
https://doi.
org/10.
1155/2017/754254020.
BerbelLO,BanczekKarousisEP,KotsakisIK,CostaGA(2019)DeterminantsofcorrosionresistanceofTi-6Al-4ValloydentalimplantsinanInVitromodelofperi-implantinflammation.
PLoSONE14(1):1–17.
https://doi.
org/10.
1371/journal.
pone.
021053021.
KizukiT,TakadamaH,MatsushitaT,NakamuraT,KokuboT(2013)EffectofCacontaminationonapatiteformationinaTimetalsubjectedtoNaOHandheattreatments.
JMaterSci24(3):635–644.
https://doi.
org/10.
1007/s10856-012-4837-622.
Lukaszewska-KuskaM,WirstleinP,MajchrowskiR,Dorocka-BobkowskaB(2018)Osteoblasticcellbehaviouronmodifiedtitaniumsurfaces.
Micron105:55–63.
https://doi.
org/10.
1016/j.
micron.
2017.
11.
01023.
FranaFL,Honorio-FranaAC,HonoriaMS,daSilvaFH,FujimoriM,FranaEL,daAraújoFG,S.
(2019)Dentalimplantsurfacestreatedwithphosphoricacidcanmodulatecytokineproduc-tionbybloodMNcells.
BrazOralRes33(e040):1–10.
https://doi.
org/10.
1590/1807-3107bor-2019.
vol33.
004024.
TrisiP,BerardiniM,FalcoA,SandriniE,VulpianiMP(2017)Anewhighlyhydrophilicelectrochemicalimplanttitaniumsurface:ahistologicalandbiomechanicalinvivostudy.
ImplantDent26(3):429–437.
https://doi.
org/10.
1097/ID.
000000000000060525.
WheelisSE,WilsonTG,ValderramaP,RodriguesDC(2018)Surfacecharacterizationoftitaniumimplanthealingabut-mentsbeforeandafterplacement.
ClinImplantDentRelatRes20(2):180–190.
https://doi.
org/10.
1111/cid.
1256626.
TakeuchiM,AbeY,YoshidaY,NakayamaY,OkazakiM,Aka-gawaY(2003)Acidpretreatmentoftitaniumimplants.
Bio-materials24(10):1821–1827.
https://doi.
org/10.
1016/S0142-9612(02)00576-827.
SedlaczekJ,LohmannCH,LotzEM,HyzySL,BoyanBD,SchwartzZ(2017)Effectsoflow-frequencyultrasoundtreatmentoftita-niumsurfaceroughnessonosteoblastphenotypeandmatu-ration.
ClinOralImplantRes28(10):e151–e158.
https://doi.
org/10.
1111/clr.
1297628.
KotsakisGA,LanC,BarbosaJ,LillK,ChenR,RudneyJ,AparicioC(2016)Antimicrobialagentsusedinthetreatmentofperi-implantitisalterthephysicochemistryandcytocompatibilityoftitaniumsurfaces.
JPeriodontol87(7):809–819.
https://doi.
org/10.
1902/jop.
2016.
15068429.
ZinelisS,SilikasN,ThomasA,SyresK,EliadesG(2012)SurfacecharacterizationofSLActivedentalimplants.
EurJEsthetDent7(1):72–9230.
OshidaY,TunaEB,AktrenO,GenayK(2010)Dentalimplantsystems.
IntJMolSci11(4):1580–1678.
https://doi.
org/10.
3390/ijms1104158031.
HenningsenA,SmeetsR,HeubergerR,JungOT,HankenH,Hei-landM,PrechtC(2018)Changesinsurfacecharacteristicsoftitaniumandzirconiaaftersurfacetreatmentwithultravioletlightornon-thermalplasma.
EurJOralSci126(2):126–134.
https://doi.
org/10.
1111/eos.
1240032.
GinerL,MercadéM,TorrentS,PunsetM,PérezRA,DelgadoLM,GilFJ(2018)Doubleacidetchingtreatmentofdentalimplantsforenhancedbiologicalproperties.
JApplBiomaterFunctMater16(2):83–89.
https://doi.
org/10.
5301/jabfm.
500037633.
CarradoA,Perrin-SchmittF,LeQV,GiraudelM,FischerC,KoenigG,PourroyG(2016)Nanoporoushydroxyapatite/sodiumtitan-atebilayerontitaniumimplantsforimprovedosteointegration.
DentMater33(3):331–332.
https://doi.
org/10.
1016/j.
dental.
2016.
12.
01334.
JiangJ,HanG,ZhengX,ChenG,ZhuP(2019)Characterizationandbiocompatibilitystudyofhydroxyapatitecoatingonthesurfaceoftitaniumalloy.
SurfCoatTechnol375:645–651.
https://doi.
org/10.
1016/j.
surfcoat.
2019.
07.
06735.
KumarDD,KaliarajGS(2018)Multifunctionalzirconiumnitride/coppermultilayercoatingsonmedicalgrade316LSSandtita-niumsubstratesforbiomedicalapplications.
JMechBehavBiomedMater77:106–115.
https://doi.
org/10.
1016/j.
jmbbm.
2017.
09.
00736.
ShibliJA,MarcantonioE,D'AvilaS,GuastaldiAC,MarcantonioEMJr(2005)Analysisoffailedcommerciallypuretitaniumden-talimplants:ascanningelectronmicroscopyandenergy-dis-persivespectrometerX-raystudy.
JPeriodonto76(7):1092–109937.
RoyM,PompellaA,KubackiJ,SzadeJ,RoyRA,HedzelekW(2016)Photofunctionalizationoftitanium:analternativeexpla-nationofitschemical-physicalmechanism.
PLoSONE11(6):1–11.
https://doi.
org/10.
1371/journal.
pone.
015748138.
SemezG,TodeaC,MocutaD,SasIT,LucaR(2018)Chemicalandmorphologicanalysisoftitaniumdentalimplants:X-raypho-toemissiontechniques(XPS)andscanningelectronmicroscopy(SEM)withEDXanalysis.
RevChim69(2):474–47739.
CanabarroA,DinizMG,PaciornikS,CarvalhoL,SampaioEM,BelotiMM,FischerRG(2008)Highconcentrationofresidualaluminumoxideontitaniumsurfaceinhibitsextracellularmatrixmineralization.
JBiomedMaterRes87A(3):588–597.
https://doi.
org/10.
1002/jbm.
a.
3181040.
LázaroP,HerreroM,GilFJ(2010)EvaluationoftitaniumdentalimplantsafterearlyfailureofosseointegrationbymeansofX-rayphotoelectronspectoscopy,electronmicroscopyandhistologicalstudies.
JBiomedSciEng03(11):1073–1077.
https://doi.
org/10.
4236/jbise.
2010.
31113941.
BartkowiakA,SuchanekK,MenaszekE,SzaraniecB,LekkiJ,PerzanowskiM,MarszaekM(2018)Biologicaleffectofhydro-thermallysynthesizedsilicananoparticleswithincrystallinehydroxyapatitecoatingsfortitaniumimplants.
MaterSciEng92:88–95.
https://doi.
org/10.
1016/j.
msec.
2018.
06.
04342.
Romero-gavilanF,Araújo-gomesN,Sánchez-pérezAM,García-arnáezI(2018)Bioactivepotentialofsilicacoatingsanditseffectontheadhesionofproteinstotitaniumimplants.
ColloidsSurfB162:316–325.
https://doi.
org/10.
1016/j.
colsurfb.
2017.
11.
07243.
Martnez-IbanezM,Juan-DazMJ,Lara-SaezI,CosoA,FrancoJ,GurruchagaM,GoniI(2016)Biologicalcharacterizationofanewsiliconbasedcoatingdevelopedfordentalimplants.
JMaterSci.
https://doi.
org/10.
1007/s10856-016-5690-944.
GiffordSM,HuH,KinserER,YuRR,ZafarS(2018)Antibacterialmedicalimplantsurface.
UnitedStatesPatentApplicationPubli-cation.
Patentno.
5217493,June8,199345.
KitagawaM,MurakamiS,AkashiY,OkaH,ShintaniT,OgawaI,KuriharaH(2019)CurrentstatusofdentalmetalallergyinJapan.
JProsthodontRes2018:1–4.
https://doi.
org/10.
1016/j.
jpor.
2019.
01.
00346.
DengC,ShenX,YangW,LuoZ,MaP,ShenT,CaiK(2018)Con-structionofzinc-incorporatednano-networkstructuresonabiomedicaltitaniumsurfacetoenhancebioactivity.
ApplSurfSci453:263–270.
https://doi.
org/10.
1016/j.
apsusc.
2018.
05.
09747.
XuJ,MaJJ,MunroeP,XieZH(2018)InfluenceofFluorideionconcentrationsonthecorrosionbehaviorofTa2Nnanocrys-tallinecoatingfordentalimplantapplications.
SurfRevLett25(4):1–19.
https://doi.
org/10.
1142/S0218625X1850083X48.
LausmaaJ,KasemoB,HanssonS(1985)Acceleratedoxidegrowthontitaniumimplantsduringautoclavingcausedbyfluorinecontamination.
Biomaterials6(1):23–27.
https://doi.
org/10.
1016/0142-9612(85)90033-X49.
Szmukler-MonclerS,BischofM,NedirR,ErmrichM(2010)Titaniumhydrideandhydrogenconcentrationinacid-etchedcommerciallypuretitaniumandtitaniumalloyimplants:acom-parativeanalysisoffiveimplantsystems.
ClinOralImplantRes21:944–950.
https://doi.
org/10.
1111/j.
1600-0501.
2010.
01938.
xReviewPaperSNAppliedSciences(2020)2:1011|https://doi.
org/10.
1007/s42452-020-2810-450.
YokoyamaK,IchikawaT,MurakamiH,MiyamotoY,AsaokaK(2002)Fracturemechanismsofretrievedtitaniumscrewthreadindentalimplant.
Biomaterials23:2459–246551.
MussanoF,GenovaT,LaurentiM,MunaronL,PirriCF,RivoloP,MandracciP(2018)Hydrogenatedamorphoussiliconcoatingsmaymodulategingivalcellresponse.
ApplSurfSci436:603–612.
https://doi.
org/10.
1016/j.
apsusc.
2017.
11.
28352.
NakamuraK,ShiratoM,TenkumoT,KannoT,WesterlundA,rtengrenU,NiwanoY(2019)Hydroxylradicalsgeneratedbyhydrogenperoxidephotolysisreconditionbiofilm-contami-natedtitaniumsurfacesforsubsequentosteoblasticcellprolif-eration.
SciRep9(1):1–19.
https://doi.
org/10.
1038/s41598-019-41126-z53.
JiangL,JinS,GengS,DengC,LinZ,ZhaoB(2019)Maintenanceandrestorationeffectofthesurfacehydrophilicityofpuretitaniumbysodiumhydroxidetreatmentanditseffectonthebioactivityofosteoblasts.
Coatings9(222):1–19.
https://doi.
org/10.
3390/coatings904022254.
SubramaniK,PandruvadaSN,PuleoDA,HartsfieldJK,HujaSS(2016)Invitroevaluationofosteoblastresponsestocarbonnanotube-coatedtitaniumsurfaces.
ProgOrthodont17(1):23.
https://doi.
org/10.
1186/s40510-016-0136-y55.
SiddiquiDA,GuidaL,SridharS,ValderramaP,WilsonTG,Rod-riguesDC(2019)Evaluationoforalmicrobialcorrosiononthesurfacedegradationofdentalimplantmaterials.
JPeriodontol90(1):72–81.
https://doi.
org/10.
1002/JPER.
18-011056.
LamkhaoS,PhayaM,JansakunC,ChandetN,ThongkornK,Ruji-janagulG,RandornC(2019)Synthesisofhydroxyapatitewithantibacterialpropertiesusingamicrowave-assistedcombustionmethod.
SciRep9(1):1–9.
https://doi.
org/10.
1038/s41598-019-40488-857.
SridharS,WangF,WilsonTG,ValderramaP,PalmerK,RodriguesDC(2018)Multifacetedrolesofenvironmentalfactorstowarddentalimplantperformance:observationsfromclinicalretriev-alsandinvitrotesting.
DentMater34(11):e265–e279.
https://doi.
org/10.
1016/j.
dental.
2018.
08.
29958.
JohanssonK,JimboR,stlundP,TranusS,BecktorJP(2017)Effectsofbacterialcontaminationondentalimplantsduringsurgery:asystematicreview.
ImplantDent26(5):778–789.
https://doi.
org/10.
1097/ID.
000000000000066059.
CaiZ,LiY,WangY,ChenS,JiangS,GeH,HuangX(2019)Anti-microbialeffectsofphotodynamictherapywithantisepticsonStaphylococcusaureusbiofilmontitaniumsurface.
PhotodiagnPhotodynTher25(January):382–388.
https://doi.
org/10.
1016/j.
pdpdt.
2019.
01.
02460.
WennerbergA,AlbrektssonT,ChrcanovicB(2018)Long-termclinicaloutcomeofimplantswithdifferentsurfacemodifica-tions.
EurJOralImplant11:123–136Publisher'sNoteSpringerNatureremainsneutralwithregardtojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations.
想必我们有一些朋友应该陆续收到国内和国外的域名注册商关于域名即将涨价的信息。大概的意思是说从9月1日开始,.COM域名会涨价一点点,大约需要单个9.99美元左右一个。其实对于大部分用户来说也没多大的影响,毕竟如今什么都涨价,域名涨一点点也不要紧。如果是域名较多的话,确实增加续费成本和注册成本。今天整理看到Dynadot有发布新的八月份域名优惠活动,.COM首年注册依然是仅需48元,本次优惠活动截止...
UCloud优刻得商家这几年应该已经被我们不少的个人站长用户认知,且确实在当下阿里云、腾讯云服务商不断的只促销服务于新用户活动,给我们很多老用户折扣的空间不多。于是,我们可以通过拓展选择其他同类服务商享受新人的福利,这里其中之一就选择UCloud商家。UCloud服务商2020年创业板上市的,实际上很早就有认识到,那时候价格高的离谱,谁让他们只服务有钱的企业用户呢。这里希望融入到我们大众消费者,你...
瓜云互联怎么样?瓜云互联之前商家使用的面板为WHMCS,目前商家已经正式更换到了魔方云的面板,瓜云互联商家主要提供中国香港和美国洛杉矶机房的套餐,香港采用CN2线路直连大陆,洛杉矶为高防vps套餐,三网回程CN2 GIA,提供超高的DDOS防御,瓜云互联商家承诺打死退款,目前商家提供了一个全场9折和充值的促销,有需要的朋友可以看看。点击进入:瓜云互联官方网站瓜云互联促销优惠:9折优惠码:联系在线客...
myim为你推荐
google地球打不开谷歌地球为啥打不开了?急!!!最新qq空间代码QQ空间代码伪静态如何设置伪静态规则不兼容Google play 服务提示不兼容怎么办?9flash怎么使用ePSXe啊?申请证书申请毕业证书商标注册查询官网怎么查商标有没有注册二层交换机什么是三层交换机?什么是二层叫交换机?有什么区别?小米手柄手机用小米手柄能玩什么游戏分词技术什么是seo分词技术
免费域名注册 工信部域名备案查询 免费cn域名 百度云100as namecheap 全球付 isatap 美国便宜货网站 tk域名 国外免费全能空间 服务器维护方案 网络空间租赁 河南移动网 Updog 香港亚马逊 帽子云排名 移动王卡 wordpress空间 免费获得q币 winds 更多