二叉树遍历怎么正确理解二叉树的遍历

二叉树遍历  时间:2021-01-13  阅读:()

二叉树遍历

0是初始节点数 输入时请一次性输完ABCффDEфGффFффф在按ENTER键 不要输入一个按一下 #include"stdio.h" #include"string.h" #include"stdlib.h" #define Max 20 //结点的最大个数 typedef struct node{ char data; struct node *lchild,*rchild; }BinTNode; //自定义二叉树的结点类型 typedef BinTNode *BinTree; //定义二叉树的指针 int NodeNum,leaf; //NodeNum为结点数,leaf为叶子数 //==========基于先序遍历算法创建二叉树============== //=====要求输入先序序列,其中加入虚结点"#"以示空指针的位置========== BinTree CreatBinTree(void) { BinTree T; char ch; if((ch=getchar())==) return(NULL); //读入#,返回空指针 else{ T=(BinTNode *)malloc(sizeof(BinTNode));//生成结点 T->data=ch; T->lchild=CreatBinTree(); //构造左子树 T->rchild=CreatBinTree(); //构造右子树 return(T); } } //========NLR 先序遍历============= void Preorder(BinTree T) { if(T) { printf("%c",T->data); //访问结点 Preorder(T->lchild); //先序遍历左子树 Preorder(T->rchild); //先序遍历右子树 } } //========LNR 中序遍历=============== void Inorder(BinTree T) { if(T) { Inorder(T->lchild); //中序遍历左子树 printf("%c",T->data); //访问结点 Inorder(T->rchild); //中序遍历右子树 } } //==========LRN 后序遍历============ void Postorder(BinTree T) { if(T) { Postorder(T->lchild); //后序遍历左子树 Postorder(T->rchild); //后序遍历右子树 printf("%c",T->data); //访问结点 } } //=====采用后序遍历求二叉树的深度、结点数及叶子数的递归算法======== int TreeDepth(BinTree T) { int hl,hr,max; if(T){ hl=TreeDepth(T->lchild); //求左深度 hr=TreeDepth(T->rchild); //求右深度 max=hl>hr? hl:hr; //取左右深度的最大值 NodeNum=NodeNum+1; //求结点数 if(hl==0&&hr==0) leaf=leaf+1; //若左右深度为0,即为叶子。

return(max+1); } else return(0); } //====利用"先进先出"(FIFO)队列,按层次遍历二叉树========== void Levelorder(BinTree T) { int front=0,rear=1; BinTNode *cq[Max],*p; //定义结点的指针数组cq cq[1]=T; //根入队 while(front!=rear) { front=(front+1)%NodeNum; p=cq[front]; //出队 printf("%c",p->data); //出队,输出结点的值 if(p->lchild!=NULL){ rear=(rear+1)%NodeNum; cq[rear]=p->lchild; //左子树入队 } if(p->rchild!=NULL){ rear=(rear+1)%NodeNum; cq[rear]=p->rchild; //右子树入队 } } } //==========主函数================= void main() { BinTree root; int i,depth; printf("NodeNum:%d ",NodeNum); printf("Creat Bin_Tree; Input preorder:"); //输入完全二叉树的先序序列, // 用#代表虚结点,如ABD###CE##F## root=CreatBinTree(); //创建二叉树,返回根结点 do { //从菜单中选择遍历方式,输入序号。

printf(" ********** select ************ "); printf(" 1: Preorder Traversal "); printf(" 2: Iorder Traversal "); printf(" 3: Postorder traversal "); printf(" 4: PostTreeDepth,Node number,Leaf number "); printf(" 5: Level Depth "); //先判断节点数是否已有。

不用再先选择4,求出该树的结点数。

printf(" 0: Exit "); printf(" ******************************* "); scanf("%d",&i); //输入菜单序号(0-5) switch (i){ case 1: printf("Print Bin_tree Preorder: "); Preorder(root); //先序遍历 break; case 2: printf("Print Bin_Tree Inorder: "); Inorder(root); //中序遍历 break; case 3: printf("Print Bin_Tree Postorder: "); Postorder(root); //后序遍历 break; case 4: depth=TreeDepth(root); //求树的深度及叶子数 printf("BinTree Depth=%d BinTree Node number=%d",depth,NodeNum); printf(" BinTree Leaf number=%d",leaf); break; case 5: if(!NodeNum) TreeDepth(root); printf("LevePrint Bin_Tree: "); Levelorder(root); //按层次遍历 break; default: exit(1); } printf(" "); } while(i!=0); }

二叉树的遍历?

9二叉树的遍历

(1)遍历:遍历(traverse)一个有限结点的集合,意味着对该集合中的每个结点访问且仅访问一次。

(2)三种遍历方式

先序遍历(VLR):先序就是先访问结点元素,然后是左,然后是右。

若二叉树不为空

访问根结点;

先序遍历左子树;

先序遍历右子树。

先序遍历序列: A B D C E F

template<class T>

void BinaryTree<T>::PreOrder()

{

PreOrder(root);

}

template<class T>

void BinaryTree<T>::PreOrder(BTNode<T>* t)

{

if(t)

{

cout<<(t->element);

PreOrder(t->lChild);

PreOrder(t->rChild);

}

}

中序遍历(LVR)

若二叉树不为空

中序遍历左子树;

访问根结点;

中序遍历右子树。

中序遍历序列:B D A E C F

template<class T>

void BinaryTree<T>::InOrder()

{

InOrder(root);

}

template<class T>

void BinaryTree<T>::InOrder(BTNode<T>* t)

{

if(t)

{

InOrder(t->lChild);

cout<<(t->element);

InOrder(t->rChild);

}

}

后序遍历 (LRV)

若二叉树不为空 后序遍历左子树; 后序遍历右子树; 访问根结点。

后序遍历序列:D B E F C A

template<class T>

void BinaryTree<T>::PostOrder()

{

PostOrder(root);

}

template<class T>

void BinaryTree<T>::PostOrder(BTNode<T>* t)

{

if(t)

{

PostOrder(t->lChild);

PostOrder(t->rChild);

cout<<(t->element);

}

}

二叉树遍历

很显然你还不懂的遍历一棵二叉树的原理 当你拿到一棵二叉树,无论它的形状如何的千奇百怪 我们都可以将它按照如下的方式划分 根 / 左子树 右子树 一棵有很多个节点的二叉树可以划分为以上的形式 也可以这么理解,只要是按以上形式组合的都可以称为是二叉树 一个仅仅只有根节点的二叉树也可以划分成以上的形式,只不过他的左右子树都为空罢了 所以,我们发现,二叉树的定义其实是一个递归定义的过程 大的二叉树是由小的二叉树构建而成的 所以,当我们考虑要遍历一棵二叉树时 也是首选递归的遍历 遍历二叉树 它的基本思想是先按照上面的形式把整棵二叉树划分为3部分 哪么接下来的工作就很简单了 我们只需要将这3部分都遍历一遍就可以了(这里用到了分而治之的思想) 而对于这3部分来说 根节点的遍历无疑是最方便的,直接访问就ok了 而对于左右子树呢? 我们不难发现,左右子树其实分别成为了两棵完整的树 他们拥有各自独立的根节点,左子树和右子树 对他们的遍历,很显然应该与刚才的遍历方法一致便可 (如果上面的都理解了,那么这个题就是小菜一碟了,如果觉得无法理解,可以按照下面的方法自己多分解几棵树) 对于这个题目,中序遍历这可二叉树 先看根节点 1 / 左子树 右子树 我们应该先遍历左子树 也就是下面这棵树 2 / 4 5 对于这棵树在进行中序遍历 我们应先遍历她的左子树 他只有一个根节点4,左右子树都为空 哪么遍历这个只有一个根节点的二叉树 先访问她的左子树,为空 返回 访问该树的根节点4 在访问右子树也为空 此时,这棵树已经被完全的遍历了 我们需要返回上一e69da5e887aa3231313335323631343130323136353331333238646361层也就是 2 / 4 5 这棵树 此时,她的左子树已经被访问完毕 根据中序遍历的规则 需要访问此树的根节点2 此时的访问顺序是4-2 访问了根节点 在访问右子树只有一个根节点的5(具体过程看4的访问) 5访问完毕 也就意味着 2 / 4 5 这棵树已经访问完了 需要返回上一层 也就是1为根的树 此时这棵树的左子树已经访问完毕 此时访问的顺序是4-2-5应该没有问题 接下来访问根节点1 在访问右子树 3 / 4 7 是不是觉得似曾相识??? 她的访问应该跟 2 / 4 5 一致 哪么最终遍历的顺序也出来了 4-2-5-1-6-3-7 ----------------------------- 花了10多分钟 希望对你有所帮助 顺便自己也复习下 呵呵

怎么正确理解二叉树的遍历

在计算机科学中,二叉树是每个节点最多有两个子树的树结构。

通常子树被称作“左子树”(left subtree)和“右子树”(right subtree)。

二叉树的遍历分为三类:前序遍历、中序遍历和后序遍历。

(1)前序遍历 先访问根节点,再遍历左子树,最后遍历右子树;并且在遍历左右子树时,仍需先遍历左子树,然后访问根节点,最后遍历右子树。

上图的前序遍历如下。

(2)中序遍历 先遍历左子树、然后访问根节点,最后遍历右子树;并且在遍历左右子树的时候。

仍然是先遍历左子树,然后访问根节点,最后遍历右子树。

前图的中序遍历如下。

(3)后序遍历 先遍历左子树,然后遍历右子树,最后访问根节点;同样,在遍历左右子树的时候同样要先遍历左子树,然后遍历右子树,最后访问根节点。

ftlcloud9元/月,美国云服务器,1G内存/1核/20g硬盘/10M带宽不限/10G防御

ftlcloud(超云)目前正在搞暑假促销,美国圣何塞数据中心的云服务器低至9元/月,系统盘与数据盘分离,支持Windows和Linux,免费防御CC攻击,自带10Gbps的DDoS防御。FTL-超云服务器的主要特色:稳定、安全、弹性、高性能的云端计算服务,快速部署,并且可根据业务需要扩展计算能力,按需付费,节约成本,提高资源的有效利用率。活动地址:https://www.ftlcloud.com...

819云互联(800元/月),香港BGP E5 2650 16G,日本 E5 2650 16G

819云互联 在本月发布了一个购买香港,日本独立服务器的活动,相对之前的首月活动性价比更高,最多只能享受1个月的活动 续费价格恢复原价 是有些颇高 这次819云互联与机房是合作伙伴 本次拿到机房 活动7天内购买独立服务器后期的长期续费价格 加大力度 确实来说这次的就可以买年付或者更长时间了…本次是5个机房可供选择,独立服务器最低默认是50M带宽,不限制流量,。官网:https://ww...

SugarHosts糖果主机圣诞节促销 美国/香港虚拟主机低至6折

SugarHosts 糖果主机商我们算是比较熟悉的,早年学会建站的时候开始就用的糖果虚拟主机,目前他们家还算是为数不多提供虚拟主机的商家,有提供香港、美国、德国等虚拟主机机房。香港机房CN2速度比较快,美国机房有提供优化线路和普通线路适合外贸业务。德国欧洲机房适合欧洲业务的虚拟主机。糖果主机商一般是不会发布黑五活动的,他们在圣圣诞节促销活动是有的,我们看到糖果主机商发布的圣诞节促销虚拟主机低至6折...

二叉树遍历为你推荐
印章制作传统印章怎么做站长故事爱迪生发明东西的故事博客外链怎么用博客发外链?快速美白好方法有什么好方法能快速美白?百度抢票浏览器猎豹浏览器,360抢票,百度卫士抢票哪个抢票工具好?吴晓波频道买粉《吴晓波频道》《罗辑思维》《专栏精粹》怎么评价?bluestacks安卓模拟器BlueStacks如何安装使用?二叉树遍历二叉树三种遍历方式原则?网站运营刚创业的网站运营怎么做?网站联盟网络联盟是什么意思
绍兴服务器租用 enom justhost 新加坡服务器 sockscap 主机屋免费空间 网盘申请 免费个人空间申请 阿里云浏览器 免费吧 腾讯实名认证中心 免费申请个人网站 百度云1t 美国网站服务器 umax120 搜索引擎提交入口 cloudlink 免费的asp空间 starry 英国伦敦 更多