不完全gamma函数gamma函数收敛性怎么证明
不完全gamma函数 时间:2021-09-20 阅读:(
)
对exp(-A/x)进行定积分应该怎么算?积分区间是0~1
这个积分是没有初等函数表达式的,需要注意的是,不是所有的函数都能够给出初等函数的表达式,对于这个积分就是如此,不过可以利用分部积分进行一些化简,化成Gamma函数的形式,这样就可以在不将积分积出的前提下,对函数进行讨论.
说一下符号的记法,对函数f在a到b区间,关于x积分,就写成:
Integrate[f[x]dx {a, b}]
首先,先换下元,令A/x = t,
所以有 dx = d(A/t)
这样函数积分化为:
Integrate[Exp[-A/x]d(x), {0, 1}]
=Integrate[-Exp[-t]d(A/t), {A, infinity}]
然后分部积分:
Integrate[-Exp[-t]d(A/t), {A, infinity}]
= Exp[-A] + A*Integrate[(1/t)Exp[-t]dt, {A, infinity}]
= Exp[-A] + A*Gamma[0, A]
一般的,Gamma函数被定义为:
Gamma[z] = Integrate[(t^(z-1))*Exp[-t]dt, {0, infinity}]
叫做Euler Gamma Function(欧拉伽玛函数)
但是很多情况下积分限并不总是从零到正无穷,所以人们又定义了plete Gamma Function(不完全伽玛函数),就是上面推导的那个Gamma[0, A]
这个函数被定义为:
Gamma[z, a] = Integrate[(t^(z-1))*Exp[-t]dt, {a, infinity}]
所以Gamma[z] = Gamma[z, 0]
Gamma函数的性质,在任何一本高等数学或者数学分析的书中都有讨论,这样这个积分就可以用Gamma函数的形式表达出来,其实,刚换元之后的函数也是Gamma函数,不过是t的负二次方,也就是:
Integrate[Exp[-A/x]d(x), {0, 1}]
= Integrate[-Exp[-t]d(A/t), {A, infinity}]
= A*Integrate[(t^(-2))*Exp[-t]dt, {A, infinity}]
= A*Gamma(-1, A)
所以这个积分在Gamma函数的意义下,就是:
Integrate[Exp[-A/x]d(x), {0, 1}]
= A*Gamma(-1, A)
= Exp[-A] + A*Gamma[0, A]
上面的讨论需要说明的是,对于一般的Gamma函数Gamma[z, a], z可以在整个复数域上进行取值,Gamma函数本身是个复变函数,并且是解析的,对于z=n取整数的情形,Gamma[n, 0]=n!
最后,如果愣要把上面那个函数算出来的话,你可以直接数值计算,拿个计算机就成;也可以拿个数学手册,去查Gamma函数的函数表;也可以自己手算,把那个被积函数Taylor展开成幂级数,一点儿一点儿算:-)Gammajd是什么意思
伽玛函数(Gamma Function)作为阶乘的延拓,是定义在复数范围内的亚纯函数,通常写成Γ(x). 当函数的变量是正整数时,函数的值就是前一个整数的阶乘,或者说Γ(n+1)=n!。
gamma函数收敛性怎么证明
定义域:Γ函数在s>0时收敛,即定义域为s>0.
连续性:在任何闭区间[a,b](a>0)上一致收敛,所以Γ(s)在s>0上连续。
可微性:Γ(s)在是s>0上可导,且
递推公式:
且当s为正整数时,有
Γ(s)的其他形式:令x=y?,则有
令x=py,则有
扩展资料
1728年,哥德巴赫在考虑数列插值的问题,通俗的说就是把数列的通项公式定义从整数集合延拓到实数集合,例如数列1,4,9,16.....可以用通项公式n?自然的表达,即便 n 为实数的时候,这个通项公式也是良好定义的。
直观的说也就是可以找到一条平滑的曲线y=x?通过所有的整数点(n,n?),从而可以把定义在整数集上的公式延拓到实数集合。
一天哥德巴赫开始处理阶乘序列1,2,6,24,120,720,...,我们可以计算2!,3!,是否可以计算2.5!。
把最初的一些(n,n!)的点画在坐标轴上,容易画出一条通过这些点的平滑曲线。
但是哥德巴赫无法解决阶乘往实数集上延拓的这个问题,于是写信请教尼古拉斯·伯努利和他的弟弟丹尼尔·伯努利,由于欧拉当时和丹尼尔·伯努利在一块,他也因此得知了这个问题。
而欧拉于1729 年完美地解决了这个问题,由此导致了伽玛函数的诞生,当时欧拉只有22岁。
参考资料来源:搜狗百科-伽玛函数
参考资料来源:搜狗百科-欧拉积分
LightNode是一家成立于2002年,总部位于香港的VPS服务商。提供基于KVM虚拟化技术.支持CentOS、Ubuntu或者Windows等操作系统。公司名:厦门靠谱云股份有限公司官方网站:https://www.lightnode.com拥有高质量香港CN2 GIA与东南亚节点(河内、曼谷、迪拜等)。最低月付7.71美金,按时付费,可随时取消。灵活满足开发建站、游戏应用、外贸电商等需求。首...
imidc怎么样?imidc彩虹数据或彩虹网络现在促销旗下日本多IP站群独立服务器,原价159美元的机器现在只需要88美元,而且给13个独立IPv4,30Mbps直连带宽,不限制月流量!IMIDC又名为彩虹数据,rainbow cloud,香港本土运营商,全线产品都是商家自营的,自有IP网络资源等,提供的产品包括VPS主机、独立服务器、站群独立服务器等,数据中心区域包括香港、日本、台湾、美国和南非...
易探云怎么样?易探云隶属于纯乐电商旗下网络服务品牌,香港NTT Communications合作伙伴,YiTanCloud Limited旗下合作云计算品牌,数十年云计算行业经验。发展至今,我们已凝聚起港内领先的开发和运维团队,积累起4年市场服务经验,提供电话热线/在线咨询/服务单系统等多种沟通渠道,7*24不间断服务,3分钟快速响应。目前,易探云提供香港大带宽20Mbps、16G DDR3内存、...
不完全gamma函数为你推荐
科达视频会议科达视频会议系统是否支持指挥调度?北京移动官网北京的移动网站官网是必须注册吗?象形文字图片象形字有哪些呢?相应的字图是怎样的呢?宾馆客房管理系统宾馆客房管理系统哪家好?杭州工作室杭州哪里的工作室好,到底是影楼好还是工作室好呢,该如何选择啊上海长宽上海长宽ftp的网址是多少?女网管石家庄女网管怎么啦ibm磁盘阵列IBM X3650服务器如何做raid 5和raid 1例外招聘招聘技巧的人员要求香港大陆香港和大陆有什么不同
seovip win8.1企业版升级win10 搜狗12306抢票助手 租空间 彩虹ip 太原联通测速平台 vip购优汇 cdn联盟 域名评估 卡巴斯基破解版 台湾谷歌 主机管理系统 英雄联盟台服官网 域名转入 supercache 腾讯数据库 mteam 七十九刀 windows2008 forwarder 更多