不完全gamma函数gamma函数收敛性怎么证明
不完全gamma函数 时间:2021-09-20 阅读:(
)
对exp(-A/x)进行定积分应该怎么算?积分区间是0~1
这个积分是没有初等函数表达式的,需要注意的是,不是所有的函数都能够给出初等函数的表达式,对于这个积分就是如此,不过可以利用分部积分进行一些化简,化成Gamma函数的形式,这样就可以在不将积分积出的前提下,对函数进行讨论.
说一下符号的记法,对函数f在a到b区间,关于x积分,就写成:
Integrate[f[x]dx {a, b}]
首先,先换下元,令A/x = t,
所以有 dx = d(A/t)
这样函数积分化为:
Integrate[Exp[-A/x]d(x), {0, 1}]
=Integrate[-Exp[-t]d(A/t), {A, infinity}]
然后分部积分:
Integrate[-Exp[-t]d(A/t), {A, infinity}]
= Exp[-A] + A*Integrate[(1/t)Exp[-t]dt, {A, infinity}]
= Exp[-A] + A*Gamma[0, A]
一般的,Gamma函数被定义为:
Gamma[z] = Integrate[(t^(z-1))*Exp[-t]dt, {0, infinity}]
叫做Euler Gamma Function(欧拉伽玛函数)
但是很多情况下积分限并不总是从零到正无穷,所以人们又定义了plete Gamma Function(不完全伽玛函数),就是上面推导的那个Gamma[0, A]
这个函数被定义为:
Gamma[z, a] = Integrate[(t^(z-1))*Exp[-t]dt, {a, infinity}]
所以Gamma[z] = Gamma[z, 0]
Gamma函数的性质,在任何一本高等数学或者数学分析的书中都有讨论,这样这个积分就可以用Gamma函数的形式表达出来,其实,刚换元之后的函数也是Gamma函数,不过是t的负二次方,也就是:
Integrate[Exp[-A/x]d(x), {0, 1}]
= Integrate[-Exp[-t]d(A/t), {A, infinity}]
= A*Integrate[(t^(-2))*Exp[-t]dt, {A, infinity}]
= A*Gamma(-1, A)
所以这个积分在Gamma函数的意义下,就是:
Integrate[Exp[-A/x]d(x), {0, 1}]
= A*Gamma(-1, A)
= Exp[-A] + A*Gamma[0, A]
上面的讨论需要说明的是,对于一般的Gamma函数Gamma[z, a], z可以在整个复数域上进行取值,Gamma函数本身是个复变函数,并且是解析的,对于z=n取整数的情形,Gamma[n, 0]=n!
最后,如果愣要把上面那个函数算出来的话,你可以直接数值计算,拿个计算机就成;也可以拿个数学手册,去查Gamma函数的函数表;也可以自己手算,把那个被积函数Taylor展开成幂级数,一点儿一点儿算:-)Gammajd是什么意思
伽玛函数(Gamma Function)作为阶乘的延拓,是定义在复数范围内的亚纯函数,通常写成Γ(x). 当函数的变量是正整数时,函数的值就是前一个整数的阶乘,或者说Γ(n+1)=n!。
gamma函数收敛性怎么证明
定义域:Γ函数在s>0时收敛,即定义域为s>0.
连续性:在任何闭区间[a,b](a>0)上一致收敛,所以Γ(s)在s>0上连续。
可微性:Γ(s)在是s>0上可导,且
递推公式:
且当s为正整数时,有
Γ(s)的其他形式:令x=y?,则有
令x=py,则有
扩展资料
1728年,哥德巴赫在考虑数列插值的问题,通俗的说就是把数列的通项公式定义从整数集合延拓到实数集合,例如数列1,4,9,16.....可以用通项公式n?自然的表达,即便 n 为实数的时候,这个通项公式也是良好定义的。
直观的说也就是可以找到一条平滑的曲线y=x?通过所有的整数点(n,n?),从而可以把定义在整数集上的公式延拓到实数集合。
一天哥德巴赫开始处理阶乘序列1,2,6,24,120,720,...,我们可以计算2!,3!,是否可以计算2.5!。
把最初的一些(n,n!)的点画在坐标轴上,容易画出一条通过这些点的平滑曲线。
但是哥德巴赫无法解决阶乘往实数集上延拓的这个问题,于是写信请教尼古拉斯·伯努利和他的弟弟丹尼尔·伯努利,由于欧拉当时和丹尼尔·伯努利在一块,他也因此得知了这个问题。
而欧拉于1729 年完美地解决了这个问题,由此导致了伽玛函数的诞生,当时欧拉只有22岁。
参考资料来源:搜狗百科-伽玛函数
参考资料来源:搜狗百科-欧拉积分
HostYun 商家以前是玩具主机商,这两年好像发展还挺迅速的,有点在要做点事情的味道。在前面也有多次介绍到HostYun商家新增的多款机房方案,价格相对还是比较便宜的。到目前为止,我们可以看到商家提供的VPS主机包括KVM和XEN架构,数据中心可选日本、韩国、香港和美国的多个地区机房,电信双程CN2 GIA线路,香港和日本机房,均为国内直连线路。近期,HostYun上线低价版美国CN2 GIA ...
提速啦的来历提速啦是 网站 本着“良心 便宜 稳定”的初衷 为小白用户避免被坑 由赣州王成璟网络科技有限公司旗下赣州提速啦网络科技有限公司运营 投资1000万人民币 在美国Cera 香港CTG 香港Cera 国内 杭州 宿迁 浙江 赣州 南昌 大连 辽宁 扬州 等地区建立数据中心 正规持有IDC ISP CDN 云牌照 公司。公司购买产品支持3天内退款 超过3天步退款政策。提速啦的市场定位提速啦主...
Sharktech荷兰10G带宽的独立服务器月付319美元起,10Gbps共享带宽,不限制流量,自带5个IPv4,免费60Gbps的 DDoS防御,可加到100G防御。CPU内存HDD价格购买地址E3-1270v216G2T$319/月链接E3-1270v516G2T$329/月链接2*E5-2670v232G2T$389/月链接2*E5-2678v364G2T$409/月链接这里我们需要注意,默...
不完全gamma函数为你推荐
统一身份认证的好处支付宝身份证认证有什么好处ctf网络安全大赛大学生互联网+大赛是干什么的内蒙古工业大学地址内蒙古工业大学的准葛尔校区在哪象形文字图片象形字有哪些?湖北文理学院地址湖北文理学院是哪个街道,邮编号码是多少剑灵服务器剑灵大区和服务器什么意思天津职业大学地址天津职业大学,怎么样,多少分能进去。例外招聘深圳富市康还招工吗是不是只要女孩不要男孩的呢,待遇好吗?出处吧吧求此图的出处720云全景制作720度全景是怎样拍的?
重庆虚拟主机 服务器租用托管 工信部域名备案查询 免费试用vps linuxapache虚拟主机 56折 河南服务器 数字域名 日本bb瘦 最好的qq空间 空间登陆首页 西安服务器托管 服务器维护 免费的域名 阿里云邮箱登陆地址 重庆服务器 广东服务器托管 月付空间 机柜尺寸 傲盾代理 更多