不完全gamma函数gamma函数收敛性怎么证明
不完全gamma函数 时间:2021-09-20 阅读:(
)
对exp(-A/x)进行定积分应该怎么算?积分区间是0~1
这个积分是没有初等函数表达式的,需要注意的是,不是所有的函数都能够给出初等函数的表达式,对于这个积分就是如此,不过可以利用分部积分进行一些化简,化成Gamma函数的形式,这样就可以在不将积分积出的前提下,对函数进行讨论.
说一下符号的记法,对函数f在a到b区间,关于x积分,就写成:
Integrate[f[x]dx {a, b}]
首先,先换下元,令A/x = t,
所以有 dx = d(A/t)
这样函数积分化为:
Integrate[Exp[-A/x]d(x), {0, 1}]
=Integrate[-Exp[-t]d(A/t), {A, infinity}]
然后分部积分:
Integrate[-Exp[-t]d(A/t), {A, infinity}]
= Exp[-A] + A*Integrate[(1/t)Exp[-t]dt, {A, infinity}]
= Exp[-A] + A*Gamma[0, A]
一般的,Gamma函数被定义为:
Gamma[z] = Integrate[(t^(z-1))*Exp[-t]dt, {0, infinity}]
叫做Euler Gamma Function(欧拉伽玛函数)
但是很多情况下积分限并不总是从零到正无穷,所以人们又定义了plete Gamma Function(不完全伽玛函数),就是上面推导的那个Gamma[0, A]
这个函数被定义为:
Gamma[z, a] = Integrate[(t^(z-1))*Exp[-t]dt, {a, infinity}]
所以Gamma[z] = Gamma[z, 0]
Gamma函数的性质,在任何一本高等数学或者数学分析的书中都有讨论,这样这个积分就可以用Gamma函数的形式表达出来,其实,刚换元之后的函数也是Gamma函数,不过是t的负二次方,也就是:
Integrate[Exp[-A/x]d(x), {0, 1}]
= Integrate[-Exp[-t]d(A/t), {A, infinity}]
= A*Integrate[(t^(-2))*Exp[-t]dt, {A, infinity}]
= A*Gamma(-1, A)
所以这个积分在Gamma函数的意义下,就是:
Integrate[Exp[-A/x]d(x), {0, 1}]
= A*Gamma(-1, A)
= Exp[-A] + A*Gamma[0, A]
上面的讨论需要说明的是,对于一般的Gamma函数Gamma[z, a], z可以在整个复数域上进行取值,Gamma函数本身是个复变函数,并且是解析的,对于z=n取整数的情形,Gamma[n, 0]=n!
最后,如果愣要把上面那个函数算出来的话,你可以直接数值计算,拿个计算机就成;也可以拿个数学手册,去查Gamma函数的函数表;也可以自己手算,把那个被积函数Taylor展开成幂级数,一点儿一点儿算:-)Gammajd是什么意思
伽玛函数(Gamma Function)作为阶乘的延拓,是定义在复数范围内的亚纯函数,通常写成Γ(x). 当函数的变量是正整数时,函数的值就是前一个整数的阶乘,或者说Γ(n+1)=n!。
gamma函数收敛性怎么证明
定义域:Γ函数在s>0时收敛,即定义域为s>0.
连续性:在任何闭区间[a,b](a>0)上一致收敛,所以Γ(s)在s>0上连续。
可微性:Γ(s)在是s>0上可导,且
递推公式:
且当s为正整数时,有
Γ(s)的其他形式:令x=y?,则有
令x=py,则有
扩展资料
1728年,哥德巴赫在考虑数列插值的问题,通俗的说就是把数列的通项公式定义从整数集合延拓到实数集合,例如数列1,4,9,16.....可以用通项公式n?自然的表达,即便 n 为实数的时候,这个通项公式也是良好定义的。
直观的说也就是可以找到一条平滑的曲线y=x?通过所有的整数点(n,n?),从而可以把定义在整数集上的公式延拓到实数集合。
一天哥德巴赫开始处理阶乘序列1,2,6,24,120,720,...,我们可以计算2!,3!,是否可以计算2.5!。
把最初的一些(n,n!)的点画在坐标轴上,容易画出一条通过这些点的平滑曲线。
但是哥德巴赫无法解决阶乘往实数集上延拓的这个问题,于是写信请教尼古拉斯·伯努利和他的弟弟丹尼尔·伯努利,由于欧拉当时和丹尼尔·伯努利在一块,他也因此得知了这个问题。
而欧拉于1729 年完美地解决了这个问题,由此导致了伽玛函数的诞生,当时欧拉只有22岁。
参考资料来源:搜狗百科-伽玛函数
参考资料来源:搜狗百科-欧拉积分
美国特价云服务器 2核4G 19.9元杭州王小玉网络科技有限公司成立于2020是拥有IDC ISP资质的正规公司,这次推荐的美国云服务器也是商家主打产品,有点在于稳定 速度 数据安全。企业级数据安全保障,支持异地灾备,数据安全系数达到了100%安全级别,是国内唯一一家美国云服务器拥有这个安全级别的商家。E5 2696v2x2 2核 4G内存 20G系统盘 10G数据盘 20M带宽 100G流量 1...
ZJI原名维翔主机,是原来Wordpress圈知名主机商家,成立于2011年,2018年9月更名为ZJI,提供香港、日本、美国独立服务器(自营/数据中心直营)租用及VDS、虚拟主机空间、域名注册业务。ZJI今年全新上架了台湾CN2线路服务器,本月针对香港高主频服务器和台湾CN2服务器提供7折优惠码,其他机房及产品提供8折优惠码,优惠后台湾CN2线路E5服务器月付595元起。台湾一型CPU:Inte...
弘速云是创建于2021年的品牌,运营该品牌的公司HOSU LIMITED(中文名称弘速科技有限公司)公司成立于2021年国内公司注册于2019年。HOSU LIMITED主要从事出售香港VPS、美国VPS、香港独立服务器、香港站群服务器等,目前在售VPS线路有CN2+BGP、CN2 GIA,该公司旗下产品均采用KVM虚拟化架构。可联系商家代安装iso系统。国庆活动 优惠码:hosu10-1产品介绍...
不完全gamma函数为你推荐
模拟考试系统有哪些好用的考试软件裂缝检测房屋裂缝找什么部门做鉴定华为技术华为技术有限公司怎么样?长角牛网络监控机ARP网关欺骗攻击软件和IP冲突软件下载地址动易系统动易系统设置-网站信息配置打不开?720云全景制作720全景哪个做的好?香港大陆请问为什么在香港说大陆叫内地,广州全网推广全网营销是什么 怎么做全网整合营销推广fusioninsightAutodesk Inventor Fusion是干什么用的?在线客服系统哪个比较好哪款呼叫中心系统比较好用?朋友们了解吗?
什么是二级域名 新秒杀 hostmaster 国外php主机 香港cdn 创宇云 150邮箱 申请个人网站 秒杀预告 jsp空间 双线主机 国外代理服务器软件 100mbps 电信主机 360云服务 web服务器搭建 英国伦敦 智能dns解析 畅行云 永久免费空间 更多