不完全gamma函数gamma函数收敛性怎么证明
不完全gamma函数 时间:2021-09-20 阅读:(
)
对exp(-A/x)进行定积分应该怎么算?积分区间是0~1
这个积分是没有初等函数表达式的,需要注意的是,不是所有的函数都能够给出初等函数的表达式,对于这个积分就是如此,不过可以利用分部积分进行一些化简,化成Gamma函数的形式,这样就可以在不将积分积出的前提下,对函数进行讨论.
说一下符号的记法,对函数f在a到b区间,关于x积分,就写成:
Integrate[f[x]dx {a, b}]
首先,先换下元,令A/x = t,
所以有 dx = d(A/t)
这样函数积分化为:
Integrate[Exp[-A/x]d(x), {0, 1}]
=Integrate[-Exp[-t]d(A/t), {A, infinity}]
然后分部积分:
Integrate[-Exp[-t]d(A/t), {A, infinity}]
= Exp[-A] + A*Integrate[(1/t)Exp[-t]dt, {A, infinity}]
= Exp[-A] + A*Gamma[0, A]
一般的,Gamma函数被定义为:
Gamma[z] = Integrate[(t^(z-1))*Exp[-t]dt, {0, infinity}]
叫做Euler Gamma Function(欧拉伽玛函数)
但是很多情况下积分限并不总是从零到正无穷,所以人们又定义了plete Gamma Function(不完全伽玛函数),就是上面推导的那个Gamma[0, A]
这个函数被定义为:
Gamma[z, a] = Integrate[(t^(z-1))*Exp[-t]dt, {a, infinity}]
所以Gamma[z] = Gamma[z, 0]
Gamma函数的性质,在任何一本高等数学或者数学分析的书中都有讨论,这样这个积分就可以用Gamma函数的形式表达出来,其实,刚换元之后的函数也是Gamma函数,不过是t的负二次方,也就是:
Integrate[Exp[-A/x]d(x), {0, 1}]
= Integrate[-Exp[-t]d(A/t), {A, infinity}]
= A*Integrate[(t^(-2))*Exp[-t]dt, {A, infinity}]
= A*Gamma(-1, A)
所以这个积分在Gamma函数的意义下,就是:
Integrate[Exp[-A/x]d(x), {0, 1}]
= A*Gamma(-1, A)
= Exp[-A] + A*Gamma[0, A]
上面的讨论需要说明的是,对于一般的Gamma函数Gamma[z, a], z可以在整个复数域上进行取值,Gamma函数本身是个复变函数,并且是解析的,对于z=n取整数的情形,Gamma[n, 0]=n!
最后,如果愣要把上面那个函数算出来的话,你可以直接数值计算,拿个计算机就成;也可以拿个数学手册,去查Gamma函数的函数表;也可以自己手算,把那个被积函数Taylor展开成幂级数,一点儿一点儿算:-)Gammajd是什么意思
伽玛函数(Gamma Function)作为阶乘的延拓,是定义在复数范围内的亚纯函数,通常写成Γ(x). 当函数的变量是正整数时,函数的值就是前一个整数的阶乘,或者说Γ(n+1)=n!。
gamma函数收敛性怎么证明
定义域:Γ函数在s>0时收敛,即定义域为s>0.
连续性:在任何闭区间[a,b](a>0)上一致收敛,所以Γ(s)在s>0上连续。
可微性:Γ(s)在是s>0上可导,且
递推公式:
且当s为正整数时,有
Γ(s)的其他形式:令x=y?,则有
令x=py,则有
扩展资料
1728年,哥德巴赫在考虑数列插值的问题,通俗的说就是把数列的通项公式定义从整数集合延拓到实数集合,例如数列1,4,9,16.....可以用通项公式n?自然的表达,即便 n 为实数的时候,这个通项公式也是良好定义的。
直观的说也就是可以找到一条平滑的曲线y=x?通过所有的整数点(n,n?),从而可以把定义在整数集上的公式延拓到实数集合。
一天哥德巴赫开始处理阶乘序列1,2,6,24,120,720,...,我们可以计算2!,3!,是否可以计算2.5!。
把最初的一些(n,n!)的点画在坐标轴上,容易画出一条通过这些点的平滑曲线。
但是哥德巴赫无法解决阶乘往实数集上延拓的这个问题,于是写信请教尼古拉斯·伯努利和他的弟弟丹尼尔·伯努利,由于欧拉当时和丹尼尔·伯努利在一块,他也因此得知了这个问题。
而欧拉于1729 年完美地解决了这个问题,由此导致了伽玛函数的诞生,当时欧拉只有22岁。
参考资料来源:搜狗百科-伽玛函数
参考资料来源:搜狗百科-欧拉积分
云基成立于2020年,目前主要提供高防海内外独立服务器用户,欢迎各类追求稳定和高防优质线路的用户。业务可选:洛杉矶CN2-GIA+高防(默认500G高防)、洛杉矶CN2-GIA(默认带50Gbps防御)、香港CN2-GIA高防(双向CN2GIA专线,突发带宽支持,15G-20G DDoS防御,无视CC)、国内高防服务器(广州移动、北京多线、石家庄BGP、保定联通、扬州BGP、厦门BGP、厦门电信、...
搬瓦工最新优惠码优惠码:BWH3HYATVBJW,节约6.58%,全场通用!搬瓦工关闭香港 PCCW 机房通知下面提炼一下邮件的关键信息,原文在最后面。香港 CN2 GIA 机房自从 2020 年上线以来,网络性能大幅提升,所有新订单都默认部署在香港 CN2 GIA 机房;目前可以免费迁移到香港 CN2 GIA 机房,在 KiwiVM 控制面板选择 HKHK_8 机房进行迁移即可,迁移会改变 IP...
对于DMIT商家已经关注有一些时候,看到不少的隔壁朋友们都有分享到,但是这篇还是我第一次分享这个服务商。根据看介绍,DMIT是一家成立于2017年的美国商家,据说是由几位留美学生创立的,数据中心位于香港、伯力G-Core和洛杉矶,主打香港CN2直连云服务器、美国CN2直连云服务器产品。最近看到DMIT商家有对洛杉矶CN2 GIA VPS端口进行了升级,不过价格没有变化,依然是季付28.88美元起。...
不完全gamma函数为你推荐
裂缝检测房屋裂缝找什么部门做鉴定流动比率计算公式流动比率计算公式中的流动资产和流动负债是用期末数减去期初数后的净值吗?中山大学南校区地址谁知道中山大学的具体位置?要详细的地址!急!!!充电宝摄像机我有一个大功率充电宝,只买一个无线摄像头行吗华为会议终端什么是视频会议终端网络培训系统怎样进入百万公众网络学习工程"?广州全网推广广州有哪些网络全案推广公司比较好,介绍一下???wap地带CMWAP、CMNET、CMTDS有什么区别?四川大学教务处四川大学物理学院教务处电话是多少北京理工大学图书馆北京理工大学珠海学院图书馆允许外人入内吗?我想进去查些资料.
西安域名注册 高防服务器租用 2019年感恩节 轻量 牛人与腾讯客服对话 最好的空间 双拼域名 135邮箱 腾讯实名认证中心 phpmyadmin配置 ftp免费空间 域名与空间 丽萨 新加坡空间 稳定空间 阿里云邮箱个人版 乐视会员免费领取 winserver2008 websitepanel WHMCS 更多