BatteryEnergyStorageTechnologyAssessmentPlatteRiverPowerAuthorityNovember29,2017PrincipalInvestigatorsToddAquino,PEMathewRolingChrisBakerLukasRowlandBatteryEnergyStorageTechnologyAssessmentPlatteRiverPowerAuthorityNovember29,2017|iContents1Scope12ExecutiveSummary13AvailableTechnologies23.
1Lithium-ion.
23.
2SodiumSulfur.
43.
3VanadiumRedoxFlow53.
4OtherEmergingTechnologies64DeploymentTrends.
75CostEstimates85.
1Li-ionInstalledCosts.
85.
2NaSInstalledCosts.
95.
3VrBInstalledCosts.
106ReserveCapability127CapacityCredit.
158SystemDurations.
169Conclusion.
1810References18TablesTable1.
Li-ionBatterySystemCosts–4MW/16MWhInstallation8Table2.
EstimatedNaSBatterySystemCosts–4MW/16MWhInstallation.
9Table3.
EstimatedVrBBatterySystemCosts–4MW/16MWhInstallation.
10Table4.
BatteryCostComparison–4MW/16MWhInstalledSystem11Table5.
Four-HourReserveCapacityInstalledCost13Table6.
CostEstimateofBESSforPeakShaving14Table7.
Li-ionCharacteristicsData.
17Table8.
NaSCharacteristicsData.
17Table9.
VrBCharacteristicsData.
17FiguresFigure1.
U.
S.
Q22017DeploymentinMegawattHoursup6PercentoverPreviousYear7Figure2.
Li-ionTechnologyContinuestoHoldMorethan94percentShare.
7Figure3.
Li-ionBatteryMaterialCosts.
8Figure4.
PeakShavingUsingBESS(PlatteRiver2017SummerPeak)13Figure5.
CapacityValueofStorageasaFunctionofStoredEnergy16Figure6.
TypicalDurationsofCommonEnergyStorageServices17BatteryEnergyStorageTechnologyAssessmentPlatteRiverPowerAuthorityii|November29,2017AppendicesAppendixA.
TechnicalGuides.
A-1AppendixB.
PlatteRiver2017PeakLoadDataB-1BatteryEnergyStorageTechnologyAssessmentPlatteRiverPowerAuthorityNovember29,2017|11ScopePlatteRiverPowerAuthority(PlatteRiver)isdevelopingestimatesforinputsintothe"Net-Zero-Carbon"(NZC)renewablesanalysisandisinterestedinincludingBatteryEnergyStorageSystems(BESS)inthisanalysis.
Aspartoftheseefforts,thisBatteryEnergyStorageTechnologyAssessmentreportisintendedtoprovideananalysisofthefeasibilityofcontemporaryutility-scaleBESSforuseonPlatteRiver'ssystem,includingthetechnicalcharacteristicsrequiredformodeling,deploymenttrends,andcostinformation.
Itisnottheintentionofthisreporttoendorseorpromoteanyspecificvendor,buttoincorporateawiderpictureofthebatteryenergystorageindustryasitappliestoutilities.
2ExecutiveSummaryThereisawideassortmentofBESStechnologiesavailableforutility-scaleapplications.
Afewoftheseoptionshavereachedcommercialmaturityandarebeingdeployedregularlytoday.
Theseincludelithiumion(Li-ion),sodiumsulfur,andvanadiumredoxflow.
Eachofthesetechnologieshasdifferentcharacteristicsandcoststhatmakethemsuitablefordifferentapplications,whichisdiscussedindepthinthisreport.
Generallyspeaking,theBESSindustryisinthemidstofsignificantgrowth.
Thisisexpectedtocontinueasinstalledcostsaredecliningrapidly.
Statisticsareprovidedinthisreportthatillustratethecurrentandprojecteddeploymenttrendsoftheindustryasawhole,andabreakdownofdeploymentsbytechnology.
Li-ionisleadingtheway,maintainingalargemajorityofinstalledprojectsinrecentyears.
Detailedcostestimatesofthediscussedtechnologiesarealsoprovidedinthisreportforcomparison.
BESScanprovidemanyvaluableservicestothegrid,includingreservesupport.
Ifasystemisadequatelysizedtomeetthereserverequirements,itcanreliablyoperateasaspinningreserve,supplementalreserve,andbackupsupplywithnearlyinstantaneousresponsetimes.
However,BESSarelimitedbytheirdurationsandwithcurrentmarketpricesitmaynotbecosteffectivetorelystrictlyonBESStoserve100percentofsystemloadfor4-hour+periods.
AcostestimateoftheamountofBESSrequiredtoserve100percentofPlatteRiver's2017peakdayisprovidedinthisreport.
Thereiscurrentlymuchdiscussionintheindustryoverstrategiesforassigningcapacitycreditstoenergystorageresources.
ThereisnoexplicitvaluethatcanbeappliedtoanyBESS,asthecapacitycreditisheavilydependentonthedurationofthebatteryandthecharacteristicsofthesystemonwhichitismodeled.
Generallyspeaking,thereisastrongcorrelationbetweenthedurationofaBESSandtheresultingcapacitycredit.
Severalframeworkshavebeendevelopedforcalculatingcapacitycreditsofenergystorageresourcesusinganiterativemodelingprocess(seeAppendixA).
ThisreportdiscussestheresultsofacapacitycreditstudyperformedonamodelofERCOT'sgridtoquantitativelyillustratethisrelationship.
Thestudyconcludedthatabatterywithsufficientduration(4+hours)canbeassignedacapacitycreditequivalenttotheavailabilityoftheBatteryEnergyStorageTechnologyAssessmentPlatteRiverPowerAuthority2|November29,2017system,ornearly100percent.
ThisassumesthattheBESSisnotbeingusedforanyapplicationotherthancapacity.
Ifotherapplicationsarebeingperformedsimultaneously,thestate-of-chargeofthebatterymaybelessthanmaximum,resultinginalowercapacitycredit.
TypicaldurationsofBESStechnologiesarealsocoveredinthisreport.
3AvailableTechnologiesWithgrowinginterestinusingbatteriesforutilityscaleenergystorageapplications,therehasbeenanoutpouringofinvestmentintoR&Dforawidearrayofbatterychemistriesandform-factors.
Afewofthesechemistrieshaveemergedascommerciallymaturetechnologiesthatarebeingdeployedandutilizedatlargescaletoday.
Thefollowingsectionprovidesabrieftechnicaloverviewofthebatterytechnologiesproventobecommerciallyviableforutilityscaleapplications.
3.
1Lithium-ionPRICERANGEMediumDURATION0.
25-4hoursBackgroundLi-ionbatterieshaverapidlybecometheworkhorseofthebatterystorageindustry.
Largescalemanufacturingandproductionofmultiplechemistries(LithiumNickelManganeseCobaltOxide(LiNiMnCoO2orNMC),LithiumIronPhosphate(LiFePO4orLFP),andLithiumTitanate(Li4Ti5O12orLTO)havegivenitasignificantportionofthecommerciallyviableenergystoragemarket.
Li-ion'scompetitiveenergydensityandpowerdensityhasmadeitthestandardforportableapplications.
TheglobaldemandforportabletechnologieshasplayedadirectpartinLi-ioninvestmentthatinturncarriesoverintolargescaleLi-ionproduction.
MaturityLi-ionisthesecond-mostmaturetechnologyinthestationarybatteryenergystoragemarket,afterleadacid.
Thetechnologywasfirstproposedin1970,releasedcommerciallyin1991,andisnowthestandardtechnologyforportableelectronicsandelectricvehicles.
Thesametechnologyusedforelectricvehiclesformsthecoretechnologyforstationaryenergystorage.
Since2009,over100Li-ionprojectshavebeeninstalledintheU.
S.
withatotalcapacityofabout300MW.
Over200MWwascompletedin2015alone.
Thelargestprojectsinclude32MW/8MWhinLaurelMountain,WestVirginia,8MW/32MWhinTehachapi,CA,and20MW/80MWhinMiraLoma,CA.
Anadditional6.
6GWisestimatedtobeunderdevelopmentatthistime(GTMResearch2016).
BatteryEnergyStorageTechnologyAssessmentPlatteRiverPowerAuthorityNovember29,2017|3Alargenumberofvendorsproducethetechnology,includingBosch,Panasonic,JohnsonControls,LGChem,NEC,Samsung,Saft,BYD,Hitachi,andGSYuasa(Mitsubishi).
Anumberofstartupswithnewerlithiumtechnologieswentbankruptinthe2000sandwereacquiredbylargervendors.
NewerstartupslikeTeslaareprimarilyengagedinthemarketingandproductdevelopmentsideofthebusiness.
Tesla,forexample,utilizesbatteriesmanufacturedbyPanasonicandwillcontinuetodosoinitsnewU.
S.
-basedfactory.
TechnologicalCharacteristicsLi-ionbatteriesconsistofarangeoftechnologiesvaryinginsize,shape,andchemistry.
Theprimarychemistriesinusetodayarelithiumnickelmanganesecobaltoxide(NMC),lithiummanganeseoxide(LMO),lithiumironphosphate(LFP),andlithiumtitanate(LTO).
Forstationaryapplications,thebatteryindustryismovingtowardmoreheavilyutilizingNMC.
NMCarethemosttypicalchemistriesingrid-scaleESS.
Thesechemistriesdemonstratebalancedperformancecharacteristicsintermsofenergy,power,cost,andcyclelife.
IncontrasttotheNMCbattery,theLFPtechnologyisalowercostbatteryforitshighpowerdensity,meaningtheamountofspaceoccupiedbyanNMCbatteryofacertainpowerratingislessthanthatofotherchemistrieswiththesamepowerrating.
TheLFPhasaconstantdischargevoltage,thecellcanproducefullpowerto100percentdepthofdischarge(DOD)anditschemistryisseenashighlysafewhencomparedtootherLi-ionchemistries.
ThedrawbacktotheLFPtechnologyistherelativelylowdemandforapplicationssuitedtoitslowenergycapacity,whichistheamountofenergythatcanbestoredbyafullychargedbattery(typicallymeasuredinwatt-hours).
LFPbatteriesarealsopronetoahigherdegreeofself-discharge.
UnlikeNMCandLFP,theLTOtechnologyhasalowerenergydensitywithahighercostcomparedtotheothers.
Toitsadvantage,however,LTOtechnologydoeshavefastchargingcharacteristicsandisconsideredastableLi-ionchemistrywithhigherthanaveragecyclelifetimeandahighpowerdensity.
Li-ionbatterycellstypicallyconsistofagraphiteanode,metal-oxidecathode,andalithiumsaltelectrolytegel.
Forstationaryapplicationsthesearetypicallypackagedinaflatpouchorrolleduplikeajelly-roll(prismatic).
Batterycellsareintegratedintobatterymodules,whichareinstalledinstandard19-inch-widerackssimilartothoseusedfortelecomequipment.
Theracksaretheninstalledinabuildingorspeciallypreparedshippingcontainertofunctionasanintegratedbatterysystem.
Li-ionbatteriesarehighlysensitivetotemperature.
Thebuildingorcontaineristypicallyprovidedwithanactivecoolingsystemtomaintainthebatterieswithinanoptimaltemperaturerange.
Thesystemwillbede-ratedifoperatedorstoredforanysignificantlengthoftimeoutsideoftheseoptimaltemperatureranges.
Li-ionbatteriesaretypicallydesignedforoperationinanambienttemperatureof70°F,thoughtheoptimalpointwillvarybyvendorandintendeduse.
Duetothetemperaturesensitivity,firehazard,andspecialshippingrequirements,manystatesclassifystationaryLi-ionsystemsashazardousmaterials.
FacilitiesinWashingtonStatehaverequiredhazardousmaterialmanagementplans(HMMPs).
CarefulBatteryEnergyStorageTechnologyAssessmentPlatteRiverPowerAuthority4|November29,2017considerationshouldbegiventofiresuppressionconsistingofeithergaseous(dry)systems,whichmayrequireairpermittingorliquidsystemsthatmaycauseconcernswiththeCleanWaterAct.
3.
2SodiumSulfurPRICERANGEModeratetoHighDURATION5hoursBackgroundSodium-sulfur(NaS)batterieswereoriginallydevelopedbyFordMotorCompanyin1967forelectricvehicles.
Itwasnotuntil2002thattheNaSbatterywasfirstcommerciallyinstalledduetoaninitiativebyTokyoElectricPowerCompany(TEPCO).
MaturityThereisoneprimaryvendorofsodium-basedbatteries:NGKInsulators.
NGKisprimarilyaceramicsvendorwithproductsfortheelectricutility,emissionsreductions,andelectronicssectors.
NGKhas450MWofinstalledsystemsworldwide,halfofwhichareinJapan.
AllNGKsystemsintheU.
S.
todatehavebeeninpartnershipwithS&CElectric.
S&CprovidedthePowerConversionSystem(PCS)controlsystem.
S&Calsoperformstheday-to-daymonitoringofthesystem.
SystemsoutsidetheU.
S.
haveutilizedPCSsfromToshibaandTMEIC.
NGKoffersastandard2-yearwarrantyextendableto15years.
Warrantiesincludealong-termserviceagreementandperformanceguarantees.
Maintenanceisexpectedtobeminimal,thoughbatterymodulereplacementmaybeneededatendoflife.
ExistingsystemsfromNGKintheU.
S.
havenotyetreachedendoflifeandhavenotrequiredreplacementsduringtheiroperatinglife.
NGKliststhelifetimeofthesystemat4500cycles.
SimilartoLi-ion,thelifeofthebatterywillvarywithitsintendeduse.
Oneothervendoralsoproducessodium-basedbatteries.
GeneralElectric(GE)producesasodiumnickelbatteryunderthebrandDurathon.
GEgenerallydoesn'toffertheseforstationaryapplicationsastheyaregenerallynotcostcompetitivewithLi-ionbatteries.
TechnologicalCharacteristicsAmongtheprevalenttechnologies,NaSbatterieshavehighenergydensitiesthatareonlylowerthanthatofLi-ion.
TheefficiencyofNaSvariessomewhat,dependingonthedutycycle.
Thisisduetotheparasiticloadofmaintainingthebatteriesatthehigherrequiredoperatingtemperatureof330°C.
NaSbatterycellsareacombinationofmoltenliquidsodiumandsulfur,withanoperationaltemperatureof300-350°Cwithinporcelaincontainers.
Thesodiumandsulfurareseparatedbyahightemperatureceramic.
Thesystemoperatesatahightemperatureandisgenerallyinsensitivetoenvironmentalconditions.
Thesystemwillremainattemperaturewhenoperating,butwillneedtobeheatedifleftinstandbyforlongperiodsoftime.
Theancillarycomponents(BatteryBatteryEnergyStorageTechnologyAssessmentPlatteRiverPowerAuthorityNovember29,2017|5ManagementSystem(BMS),switches,etc.
)aresubjecttostandardequipmentoperatingtemperaturesof-20°Cto45°C.
Newersystemsarestructuredlikeotherbatteries.
Individualcellsarepackagedintomodules,modulesarepackagedintocontainers,andcontainersarepackagedintocompletesystems.
EachcontainerizedsystemconsistsofsixbatterymodulesandaBMS.
Eachcontainerhasanameplateof220kW/1170kWhforapproximately5hoursofstorage.
Thebatteriessitinfireproofcompartmentstolimitthespreadoffirefromonemoduletothenext.
Nofiresuppressionisincluded.
Afaultedbatterymodulewillburnoutwithoutdamagingtheadjacentequipment.
Itisunclearifthecontainerwillactassecondarycontainmentintheeventofabatteryleak.
Additionalcontainmentmayberequired.
Criticaltothedesignofthesesystemsisthatthesystemhasdifferingchargeanddischargerates.
Themaximumchargingcurrentisapproximately92percentofthemaximumdischargecurrent.
3.
3VanadiumRedoxFlowPRICERANGEModeratetoHighDURATION2–8HoursBackgroundVanadiumRedoxBatteries(VrBs)areafundamentallydifferenttypeofbatteryenergystoragetotheformspreviouslydiscussed.
AVrBsystem,similartoaNaSsystem,usesaliquidanodeandcathoderatherthanasingleliquidelectrolyte.
UnliketheNaSsystem,theanodeandcathodefluidsarecirculatedthroughthebatterycellintoholdingtanks.
Thesystemsarerelativelynewandearlyversionswerecomplexcustomengineeredsystems.
TheVrBindustryismovingmoretowardspre-packagedsystemsincontainerstocompetewithLi-ionsystems.
Thereismuchinterestinthesesystemsastheyhaveahighcyclelife,havelargeallowabletemperaturerange,operateatlowtemperature,andhavelongstoragedurations.
MaturityWhilethefirstoperationalsystemwasdemonstratedinAustraliainthe1980s,thereareonlyafewsystemsinoperationworldwide.
Anumberofvendorsmakethesesystems,includingUniEnergyTechnologies(UET),Gildemeister(AmericanVanadium),RongkePower,PrudentEnergy,ViZnEnergy,VionxEnergy,andSumitomo.
Theindustryiscurrentlyinaphaseofcontinuousimprovement,withthreegenerationsoftechnologyavailable.
Onlyafewsystemscommerciallyoperatefromaworldwideperspective.
VrBsystemsuseelectrodestogeneratecurrentsthroughflowingVanadiumelectrolytes.
Thesizeandshapeoftheelectrodesgovernpowerdensity,whereastheamountofelectrolytegovernstheenergycapacityofthesystem.
Thecellstacksarecomprisedoftwocompartmentsseparatedbyanionexchangemembrane.
TwoseparatestreamsofBatteryEnergyStorageTechnologyAssessmentPlatteRiverPowerAuthority6|November29,2017electrolyteflowinandoutofeachcellwithionorprotonexchangethroughthemembraneandelectronexchangethroughtheexternalcircuit.
VrBsystemsarerecognizedfortheirlongservicelife(upto20,000lifecycleswithroutinepumpmaintenance)aswellastheirabilitytoprovidesystemsizingflexibilityintermsofpowerandenergy.
Theseparationmembranepreventsthemixofelectrolyteflow,makingrecyclingpossible.
Theendoflifecanbeextendedbyreplacingtheelectrolyteandthemembrane.
Theindustry,markedbyUETandGildemeister,ismovingawayfromcustomsystemstoprepackagedsystemstocompetewithLi-ion.
UETisalsooffering2-to20-yearwarrantieswithperformanceguaranteesandlong-termserviceagreements.
Theindustryiscurrentlyhamperedbytheinfancyofthecompaniesprovidingthetechnology.
Manyofthevendorsareventure-capitalbackedcompanieswithonlyasingleproductline.
Additionally,thesystemstendtobeuneconomicforstoragedurationslessthan3hoursandbettersuitedforlongerdurationapplications.
Whilethistechnologyholdspromise,itisstillinitsearlyphasesofcommercialization.
TechnologicalCharacteristicsAllflowbatteriessharethecommontopologyofabatterycellwithflowableelectrolytepumpedbetweenstoragetanks.
Electrolyteispumpedthroughthecellforchargingordischarging,andisstoredinseparatetanksforlongerdurationstorage.
Thevolumeofthestoragetankdeterminesthedurationofenergystorage.
Earlysystems,andthoseprovidedbyPrudentEnergyandSumitomo,arestillcustomengineeredwithvaryingdurationsofstorage.
Asnotedpreviously,theindustryismovingtowardcontainerizedsystemswithpre-determinedstoragedurationsof3to5hours.
Theprepackagedsystemsutilizedoneormorecontainersperbattery.
InthecaseofUET,a4MW/16MWhsystemutilizesfive20-footISOcontainers,fourforthebatteryandoneforthePCS.
Thecontainerstypicallyhavebothsecondaryandtertiarycontainmentfortheelectrolytefluid.
VrBbatteriesarecharacterizedbyahighcyclelifeandinsensitivitytotemperature.
Theyoperateatalowtemperatureandareonlylimitedbythetemperatureratingoftheauxiliarycomponents(pumps,sensors,etc.
).
Theelectrolytedegradesveryslowlyovertime,allowingforaveryhighcyclelife.
Duetothepumps,theyhaveahighstationserviceloadyieldingalowerroundtripefficiencythanothertechnologies.
Criticaltothedesignofthesesystemsisthattheenergyavailablefromthebatterydependsonthedischargerate.
Foracontinuousdischargeataspecifiedrate(resourceadequacy),thestoragedurationcouldvaryfrom2to8hours.
3.
4OtherEmergingTechnologiesInadditiontotheaforementionedchemistries,thereareseveralothersthathavedemonstratedpotentialtobecomeacommerciallyviableresourceinthefuture.
TheseincludeAdvancedLead-Acid,Zinc-BromineFlow,andZinc-AirFlowbatteries.
ThesetechnologiesremainlargelyintheR&Dordemonstrationphase,buttherecouldbegrowthindeploymentinthefuture.
BatteryEnergyStorageTechnologyAssessmentPlatteRiverPowerAuthorityNovember29,2017|74DeploymentTrendsThemostsignificantgrowthinenergystorageinstallationshasbeenintheareaofbatterytechnologies.
In2016,itwasreportedthatover300MWhofbatterycapacitywasinstalledintheU.
S.
withover95percentofthiscapacitybeingLi-ionbatterytechnology.
TheU.
S.
deployed50.
4MWhofenergystorageinQ22017,down78percentfromQ12017butup6percentyear-over-year.
Q12017wasarecordquarterforenergystoragedeploymentasthefinalAlisoCanyonprojectscameon-line,andthusasharpdecreaseinQ22017wasexpected(GTMResearch2017).
Figure1.
U.
S.
Q22017DeploymentinMegawattHoursup6PercentoverPreviousYearSource:GTMResearchInQ22017,Li-ionbatteriesdominatedtheenergystoragemarketfortheeleventhstraightquarter,holding94.
2percentofthemarket.
Themajorityofutility-scaleprojectsdeployedinQ22017employedLi-ionchemistry,andthetechnologyisalsofavoredinthebehind-the-metersegment.
GrowingacceptanceofLi-ionisexpectedtocausethistrendtocontinueoverthenextfewyears.
Vanadium-redoxflowbatteriesheld5percentofthemarketinQ22017,attributableto2.
0MWofdeployments.
Lead-acidbatteriesaccountedfor0.
5percentofthemarket(GTMResearch2017).
Figure2.
Li-ionTechnologyContinuestoHoldMorethan94percentShareSource:GTMResearchBatteryEnergyStorageTechnologyAssessmentPlatteRiverPowerAuthority8|November29,20175CostEstimatesThecostsforbatterystoragetechnologiesareexpectedtocontinuetofallasmaturityisgainedandtheeconomiesofmarketordersaresecured.
ThecostofLi-ionbatterieshavecontinuedtodropandaretrendingdownatarateofapproximately14percentayearoverthepast5years,havingdroppednearly90percentfromtheircommercializationinearly1990.
Mostindicationsshowthatthedownwardtrendwillcontinueassupplierscontinuetoimprovemanufacturingprocessesandproductioncapacity,butitmaybegintoflatten.
Thegraphbelowshowstheapproximatebatterypricetrendoutto2018.
Figure3.
Li-ionBatteryMaterialCosts*collectedfromindustrydata5.
1Li-ionInstalledCostsEstimatedLi-ionbatterysystemcostsfora4MW,16MWhinstallationin2017dollarsareasfollows:Table1.
Li-ionBatterySystemCosts–4MW/16MWhInstallationItemLi-IonNMCLi-IonLFPLi-IonLTOBattery($/kWh)$340-$450$340-$590$500-$850PCS($/kW)$150-$350$150-$350$150-$350Powercontrolsystemcost($/kW)$80-$120$80-$120$80-$120BalanceofPlant($/kW)$90-$120$90-$120$90-$120BatteryEnergyStorageTechnologyAssessmentPlatteRiverPowerAuthorityNovember29,2017|9Table1.
Li-ionBatterySystemCosts–4MW/16MWhInstallationItemLi-IonNMCLi-IonLFPLi-IonLTOEPC($/kWh)$150-$180$140-$180$140-$180FixedO&Mcost($/kWyr)$6-$14$6-$14$6-$14InstalledLow$9,120,000$9,120,000$11,680,000InstalledHigh$12,840,000$13,384,000$18,840,000Assumptionsutilizedforthedevelopmentoftheabovepricinginclude:Warranty:1.
5percentofcontractpriceperyear,years3–10PerformanceGuarantee:2percentofcontractpriceperyear,years0–10Oversizedtoaccountfor85percentdegradationoverthe10yearlifeVariableO&M:$0.
0003/kWh5.
2NaSInstalledCostsSystemcostsarehigherthanothercomparablesystems,thoughinitiativeslikecontainerizationshouldreducethecost.
ThesystemutilizeslesslandthanacomparableLi-ionsystem,whichmakesthembettersuitedtoareaswithlandconstraints.
EstimatedNaSbatterysystemcostsfora4MW,16MWhinstallationin2017dollarsareasfollows:Table2.
EstimatedNaSBatterySystemCosts–4MW/16MWhInstallationItemNaSBattery($/kWh)$500-$1000PCS($/kW)$500-$750Powercontrolsystemcost($/kW)$80-$120BalanceofPlant($/kW)$100-$125EPC($/kWh)$140-$200FixedO&Mcost($/kWyr)$7-$15InstalledLow$12,960,000InstalledHigh$23,180,000BatteryEnergyStorageTechnologyAssessmentPlatteRiverPowerAuthority10|November29,2017Assumptionsutilizedforthedevelopmentofthesecostsinclude:Warranty:IncludedPerformanceGuarantee:Included5.
3VrBInstalledCostsEstimatedVrBbatterysystemcostsfora4MW,16MWhinstallationin2017dollarsareasfollows:Table3.
EstimatedVrBBatterySystemCosts–4MW/16MWhInstallationItemVrBBattery/PCS/powercontrolsystems($/kWh)$730-1200BalanceofPlant($/kW)$100-$125EPC($/kWh)$140-$200FixedO&Mcost($/kWyr)$7-$16InstalledLow$14,320,000InstalledHigh$22,900,000Assumptionsutilizedforthedevelopmentofthesecostsinclude:Warranty:IncludedwithESSPerformanceGuarantee:$261,720per0.
5MW/4hrsystemVariableO&M:$0.
0003/kWhHDRbasedtheper-kWhandper-kWpriceonoperatingthesystemata4hourdischarge.
NotethekWhavailablefromthesystemvarieswiththerateofdischarge.
Thefollowingtableprovidesacomparisonofthetechnicalparametersandestimatedcostsforeachofthepreviouslyidentifiedstoragetechnologies.
Theincludedcharacteristicsarebynomeansanexhaustivelistbutareintendedtoshowacomparisonofthetechnologiesreviewed.
BatteryEnergyStorageTechnologyAssessmentPlatteRiverPowerAuthorityNovember29,2017|11Table4.
BatteryCostComparison–4MW/16MWhInstalledSystemCollectedfromindustrydataCostsin2017$ItemLeadAcidLi-IonNCMLi-IonLiFePO4Li-IonLTONaSVRBZnBrZinc-airBATTERY($/kWh)$200-$500$340-$450$340-$590$500-$850$500-$1000$525-$725$200-$400PCS($/kW)$150-$350$150-$350$150-$350$150-$350$500-$750$500-$750$350-$500Powercontrolsystemcost($/kW)$80-$120$80-$120$80-$120$80-$120$80-$120$100-$140$100-$140BalanceofPlant($/kW)$120-$250$90-$120$90-$120$90-$120$100-$125$100-$125$100-$125$80-$100EPC($/kWh)$150-$180$150-$180$140-$180$140-$180$140-$200$140-$200$140-$200$120-$180FixedO&Mcost($/kWyr)$7-$15$6-$14$6-$14$6-$14$7-$15$7-$16$7-$17$6-$13InstalledLow7,000,000$9,120,000$9,120,000$11,680,000$12,960,000$14,320,000$13,440,000$7,240,000$InstalledHigh14,160,000$12,840,000$13,384,000$18,840,000$23,180,000$22,900,000$18,860,000$12,240,000$$730-1200BatteryEnergyStorageTechnologyAssessmentPlatteRiverPowerAuthority12|November29,20176ReserveCapabilityWhencharged,storagecan,inmostcases,providereservesmerelybybeingavailabletodischarge.
Thiswouldenableprimarygeneratorstoworkatoptimumpoweroutputandeliminatetheneedforbackupgeneratorsrunningidleonthesystem.
So,whenusingstorageaselectricsupplyreservecapacity,theneedandcostforgeneration-basedreservesisoffsetand,toalesserextent,operationcostincurredforgeneration-basedreservecapacityarereduced/avoided.
Theintentofspinningreserveistostabilizethesystemforarelativelyshortperiodoftime,untilprimarygeneratorsareabletocomeonline.
Spinningreservesystemsneedtorespondwithin10minutesandsupplypowerforapproximatelyanhour.
AnappropriatelysizedBESScanmeetorexceedthisrequirement,providingresponsetimesontheorderofmilliseconds.
Similarly,BESScanalsoprovidesupplementalreserveandbackupsupplymerelybybeingreadytodischargewithintherequiredtimeperiodandfortherequiredduration.
ABESSneedsonlytobesizedappropriatelytomeetthepower,energy,andresponsetimerequirementsoftheintendedservice.
BESSarelimitedbytheirenergycapacityandthereforeduration.
Thispresentschallengeswhenconsideringbatteriesasapracticalsourceforfirmcapacityreservesinan80-100percentrenewablescenario.
Theperiodofautonomyneedstobeconsidered,whichistheperiodoftimethatenergystoragecanserve100percentofthesystemloadwithoutadditionalgeneration.
Theprobabilityofhavingzerogenerationforextendedperiodsoftime,whetherbycontingencyeventsoralackofsolarorwind,islow.
Therefore,investmentsintoadditionalstorageresourcestomeetthesescenarioshaveadiminishingreturn,makingthemcostprohibitive.
Toillustratethisquantitatively,PlatteRiverprovidedhourlyloaddatafortheirpeakdayin2017.
UsingthedataprovidedinSection5,theapproximatecostsofserving100percentofPlatteRiver's-hourpeakload(from2:00p.
m.
to6:00p.
m.
)isasfollows:4-hourPeakLoad:2,400MWho(150)4MW/16MWhsystemsrequiredo$9,120,000-$12,840,000persystem(Li-ionNCM)oTotalinstalledcost:$1,368,000,000–$1,926,000,000Intraditionalgenerationportfolios,reservesaresizedasaproportionofexpectedpeakload.
SouthwestPowerPool(SPP)settheir2017PlanningReserveMarginat12percent(SPP2017)Desiredreservemarginsmaychangeconsiderablyinan80percent-100percentrenewableportfolio;however,moredetailedplanningwouldberequiredtoquantifythisadjustment.
Dispatchdurationisalsoacriteriaconsideredbyothersystemoperatorsasaqualificationforfirmcapacity.
Forexample,CAISO'sResourceAdequacymarketrequiresloadservingentitiestohavetheabilitytooperateatmaximumpoweroutputforaminimumof4consecutivehoursperday,for3consecutivedays.
WiththisBatteryEnergyStorageTechnologyAssessmentPlatteRiverPowerAuthorityNovember29,2017|13modela4-hourBESScanqualifybychargingduringoff-peakhoursanddischargingduring4-hourpeakperiods.
Table5showsthecostforvariousBESSsizesbasedon4-hourreservecapabilities.
Table5.
Four-HourReserveCapacityInstalledCostBESSSizeCost(min-max)75MW(300MWh)$171,000,000-$240,750,000150MW(600MWh)$342,000,000-$481,500,000280MW(1120MWh)(RawhideEquivalent)$638,400,000-$898,800,000BESScouldalsoserveasasteppingstoneinPlatteRiver'splannedtransitiontoanNZCrenewableportfoliobyreplacingthermalpeakingplants.
ThiswouldinvolvedispatchingBESSduringPlatteRiver'safternoonpeakloadperiodsto"shave"loadusingenergystoredfromlow-demandperiods,therebyeliminatingtheneedforresourceslikenaturalgasordieselgeneratorstomeetpeakload.
Figure4depictsthepeakshavingservicethatcouldbeprovidedbya50MW/150MWhBESS(orfleetofBESS),adjustingfor85percentround-tripefficiency,usingdatafromPlatteRiver's2017summerpeakload.
Figure4.
PeakShavingUsingBESS(PlatteRiver2017SummerPeak)SeeAppendixBfordata.
-5050150250350450550650MWTIMELoad(MW)LoadWithBESS(MW)BESSOutput(MW)BatteryEnergyStorageTechnologyAssessmentPlatteRiverPowerAuthority14|November29,2017Theestimatedcostrangeofsuchasystem,usingdatafromSection5forLi-ionNMC,isshowninTable6.
Table6.
CostEstimateofBESSforPeakShavingItemLi-IonNMCBattery($/kWh)$340-$450PCS($/kW)$150-$350Powercontrolsystemcost($/kW)$80-$120BalanceofPlant($/kW)$90-$120EPC($/kWh)$150-$180FixedO&Mcost($/kWyr)$6-$14InstalledLow$74,500,000InstalledHigh$106,000,000Basedona50MW/150MWhsystemInadditiontoreserves,storagesystemsofferthefollowingrecognizedbenefitstothetransmissiongrid,andinsomelocationsmanyofthesebenefitsarebeingmonetizedinlocalmarkets.
Arbitrage;Capacity(ResourceAdequacy);DemandResponse/DemandChargeReduction;FrequencyRegulationandResponse;Resilience;RenewablesIntegration;T&DSystemUpgradeDeferral;andOtherAncillaryServices:oVoltageSupport;oSpinningReserve.
BatteryEnergyStorageTechnologyAssessmentPlatteRiverPowerAuthorityNovember29,2017|157CapacityCreditAssigningcapacitycredit(CC)valuestoenergystoragesystemsisatopicofmuchdiscussionintheenergystorageindustrytoday.
TheabilityofaBESStoprovidereliablecapacitydependsgreatlyonthecharacteristicsoftheBESSitself,particularlythedurationofthesystem.
Assuch,thereisnostandardCCvaluethatcanbeattributedtoBESS.
SeveralframeworksforassessingCCvaluesforstoragesystemshavebeendeveloped,whichcalculateCCvaluesiterativelybasedonthestoragesystemparametersandthecharacteristicsofthesystemonwhichtheyaremodeled(seeAppendixA).
Ingeneral,therearethreemainfactorsthatinhibitastorageresource'sabilitytoprovidefirmcapacityduringastressevent(GreatBritain2017):1.
StresseventsmaylastlongerthanthedurationoftheBESS.
2.
ThedecliningperformanceofBESSovertimereducestheircontributiontosecurityofsupply.
3.
SomeBESSmaybelessthanfullychargedatthestartofastresseventiftheyaresimultaneouslyprovidingmultiplegridservices.
Therefore,thehigherthedurationofastorageresource,thehighertheCCthatcanbeassignedtoit.
Anenergystoragesystemwithadurationofmanyhourswouldbehavesimilarlytoathermalgeneratorintermsofitsabilitytoprovidefirmenergytothegridatthetimeofneed(CC=availability).
Inaddition,itmustbeassumedthattheresourceisavailableduringtheperiod(s)withthehighestloadatafullstate-of-charge.
Whentheresourceisbeingusedsimultaneouslyforanalternativeapplication(suchasfrequencyresponse),thismaynotbethecase.
Toaccountforthis,aBESScanbeover-builttoprovidemultipleservicesbyallocatingportionsofitsenergycapacitytoeachservice.
Forexample,a20MWhBESScanassign4MWhofitsenergycapacitytofrequencyregulation,whiletheremaining16MWhcanbeusedforsupplyingcapacityreserves.
A2016studybyICFsoughttoquantifytherelationshipbetweendurationandCCbymodelingenergystoragesystemsofvaryingdurationsontheERCOTgrid.
Theresultsofthestudyindicatedthata1-hourenergystoragedeviceprovidesnearlyhalfthecapacityvalue,anda4-hourenergystoragedeviceprovidesalmostfullcapacityvalue.
Figure5showstherelationshipbetweentheElectricLoadCarryingCapability(ELCC)ofanenergystoragedeviceandthedurationofthedevice(Johal,Harjeet,etal2016).
BatteryEnergyStorageTechnologyAssessmentPlatteRiverPowerAuthority16|November29,2017Figure5.
CapacityValueofStorageasaFunctionofStoredEnergySource:ICFTheanalysisonthemodeledgridindicatesthatsmallerdurationofenergystorageprovidespartialcapacitybenefits,whileanenergystoragesystemwith4hoursorhigherofstoredenergycouldobtainalmost100percentELCC.
Inotherwords,a100MWenergystoragesystemwith1-hourofstoredenergycanprovide46MWoffirmcapacity,whilea100MWstorageresourcewith4hoursofstoredenergycanprovide99MWoffirmcapacity(Johal,Harjeet,etal2016).
Severalregulatoryentitiesareexploringmarket/regulatoryreformtoaccountfortheuniqueattributesofenergy-limitedresourcesandtheirparticipationincapacitymarkets.
TheDepartmentforBusiness,Energy&IndustrialStrategyintheUKrecentlyproposedasetofchangestotheCapacityMarketrulesinGreatBritain.
Theproposedrulessuggestdividingstorageresourcesintomultiplecategoriesbasedontheirduration.
Thesecategoriesrangefrom30minutesto4hours,at30minuteincrements.
Resourceswithshorterdurationswouldbede-ratedaccordingtotheirEquivalentFirmCapacity(EFC).
TheEFCvaluesofeachcategorywouldbecalculatedusingasimulation-basedassessment.
Storageresourceswithadurationgreaterthan4hourswouldbede-ratedasanyothertraditionalgenerationresource(GreatBritain2017).
8SystemDurationsThemodularnatureofBESSallowsforagreatdealofflexibilityindurationsofsystems.
Dependingontheintendeduse-case(s),BESSdurationscanbedesignedfordurationsanywherebetween15minutesto4+hours.
Someuse-casesrequireapower-specificdesign,wheretheintentionistoprovidehighpowerchargingordischargingforshorterperiodsoftime.
Theseincludefrequencyresponse,spinningreserves,andotherancillaryservices.
Otheruse-casesaremoreenergyfocused,wherethegoalistoshiftBatteryEnergyStorageTechnologyAssessmentPlatteRiverPowerAuthorityNovember29,2017|17largeamountsofenergyintimeovermultiplehours.
Theseincludeenergyarbitrage,resourceadequacy,andT&Dupgradedeferral.
Figure6.
TypicalDurationsofCommonEnergyStorageServicesSource:ICFBESSalsoexperienceanaturaldegradationinbothpowerandenergycapacityovertime.
Therateatwhichthesesystemsdegradedependsheavilyonhowtheyareused.
Forexample,operatingabatterytofulldepth-of-dischargecyclesforanenergyapplicationwillcauseafasterdegradationratethanmaintainingamoremoderatestate-of-charge(SOC)forapowerapplication.
ThefollowingtablescomparevarioustechnicalcharacteristicsoftheBESStechnologiesunderdiscussion,includingdegradationrangesandexpectedlifecycles.
Table7.
Li-ionCharacteristicsDataTable8.
NaSCharacteristicsDataTable9.
VrBCharacteristicsDataSOCHighLimitSOCLowLimitEnergyPowerYearsCyclesLi-IonNCM90%10%30-40%10-20%103,500Li-IonLiFePO485%15%20-40%15-25%102,000Li-IonLTO98%10%15-25%5-15%1015,000EnergyCharacteristicsDataComparisonStorageType77-85%78-91%77-85%1C2C-1CLifeCapacityDegradationChargeRateRoundTripEfficiencyAvailability97%97%96%3C-1CSOCHighLimitSOCLowLimitEnergyPowerYearsCyclesNaS90%10%15-30%5-15%154,5001C-0.
5C77-83%95%CharacteristicsDataComparisonStorageTypeEnergyChargeRateRoundTripEfficiencyAvailabilityCapacityDegradationLifeSOCHighLimitSOCLowLimitEnergyPowerYearsCyclesVRB95%5%5-10%5-10%155,0001C-0.
25C65-78%95%CharacteristicsDataComparisonStorageTypeEnergyChargeRateRoundTripEfficiencyAvailabilityCapacityDegradationLifeBatteryEnergyStorageTechnologyAssessmentPlatteRiverPowerAuthority18|November29,20179ConclusionWhilethereiscertainlynoclearorobviouschoicewhenselectingaBESStechnology,theversatilityandaffordabilityofLi-ionisdifficulttoignore.
Theintendeduse-caseofasystemisthekeydriveroftheselectionprocess.
ItisimportanttodesignaBESStobestmeettheperformancerequirementsoftheintendeduse-case.
Li-ionBESScanbesuitablydesignedformanyuse-cases;however,asasystemisscaledup(i.
e.
,200+MWh),itcouldbecomemorecosteffectivetouseadifferenttechnologysuchasaflowbattery.
Theperformancemetricsandcostsbehindflowbatteriestendtofavorstoragesystemswithdurationsof4hoursormore,althoughthereispotentialforhighermaintenancecostsduetomoremovingparts(i.
e.
,pumpsandpipesthatcanfailorleak).
Theconsensusoftheindustry'seffortstoproduceCCsforenergystoragesystemsisthatasystemwithsufficientlylongdurationcanbeattributedaCCroughlyequivalenttotheavailabilityofthesystem.
A4-hourBESScanberatedatsystemavailability(~99percent),butamoreconservativeapproachwouldbetode-ratethesystemto90to96percent,dependingontheclient'spreference.
BESSarecapableofbeingdeployedforreservecapabilities;however,thecostbecomesprohibitivewhenrelyingsolelyonBESSforseverecontingenciesthatrequirefirmcapacityfor4+hourstomultipledays.
Forthesescenarios,itisadvisabletopairBESSsystemswithstandardthermalgenerationthatcanprovidelong-durationreservecapacityinacosteffectivemanner.
Additionally,BESScanactasausefulstepping-stoneinPlatteRiver'stransitiontoaNZCrenewableportfoliobyprovidingpeak-shavingservicesthatcouldreplacetraditionalthermalpeakers.
10ReferencesThefollowingreferenceswerecitedinthepreparationofthisreport.
FederalEnergyRegulatoryCommission,"MarketOversightGlossary",http://www.
ferc.
gov/market-oversight/guide/glossary.
asp.
ERCOT"NodalProtocols".
ERCOTConceptPaper,"FutureAncillaryServicesInERCOT",DraftVersion1.
1,2013.
IESOWebsite.
MidcontinentISO,"BusinessPracticesManual002"and"BusinessPracticesManual015".
FERCDocketNo.
ER12-1664-000,IssuedSeptember20,2012.
SBCEnergyInstitute,"ElectricityStorageFactbook",September,2013.
NYISO,"MarketAdministrationandControlAreaServicesTariff,15.
3MSTRateSchedule3".
NYISO,"AncillaryServicesManual",V.
4,2014.
BatteryEnergyStorageTechnologyAssessmentPlatteRiverPowerAuthorityNovember29,2017|19PJM,"StateoftheMarketReport",2014.
PJM,"Manual11,Energy&AncillaryServicesMarketOperations",Revision73,April,2015.
DepartmentofEnergy,"Grid-ScaleEnergyStorageDemonstrationusingUltrabatteryTechnology",October,2012.
UniEnergyTechnologiesWebsite.
RockyMountainInstitute,HOMEREnergy,andglobalX,"TheEconomicsofLoadDeflection",April,2015.
NERC,"AncillaryServicesSummaryAcrossNorthAmericanRTOsandISOs".
GTMResearch,"U.
S.
EnergyStorageMonitor:2014YearinReview:ExecutiveSummary"TheBrattleGroup,"TheValueofDistributedElectricityStorageinTexas",PreparedforONCOR,November,2014.
SandiaNationalLaboratories,"PerformanceAssessmentofthePNMProsperityElectricityStorageProject",ReportSAND2014-2883,May,2014.
SandiaNationalLaboratories,"MarketandPolicyBarrierstoEnergyStorageDeployment:AStudyfortheEnergyStorageSystemsProgram",ReportSAND2013-7606,September,2013.
SandiaNationalLaboratories,"ProtocolforUniformlyMeasuringandExpressingthePerformanceofEnergyStorageSystems",ReportSAND2013-7084,August,2013.
InternationalEnergyAgency,"TechnologyRoadmap:EnergyStorage",2014.
USDepartmentofEnergy(DOE),"GridEnergyStorage",December,2013.
USDepartmentofEnergy(DOE),"EnergyStorageSafetyStrategicPlan",December,2014.
CAISO,"AdvancingandMaximizingtheValueofEnergyStorageTechnology:ACaliforniaRoadmap",December,2014.
CAISO,"DraftEnergyStorageRoadmapforCalifornia",October,2014.
DOE,"DOE/EPRI2013ElectricityStorageHandbook",inCollaborationwithNRECA,July,2013.
PNNLandDOE,"NationalAssessmentofEnergyStorageforGridBalancingandArbitrage",Phases1(WECC)and2(CostandPerformanceCharacterization),Volumes1and2,June,2012andSeptember,2013.
EPRI,"Cost-EffectivenessofEnergyStorageinCalifornia",June2013LuxResearch"GridStorageundertheMicroscope:"April,2012SandiaReport,"EstimatingtheMaximumPotentialRevenueforGridConnectedElectricityStorage:ArbitrageandRegulation,"Dec.
2012BatteryEnergyStorageTechnologyAssessmentPlatteRiverPowerAuthority20|November29,2017GTMResearch,"USEnergyStorageMonitor:Q32017ExecutiveSummary.
"Www.
gtmresearch.
com,Sept.
2017,www.
greentechmedia.
com/research/subscription/u-s-energy-storage-monitor.
Johal,Harjeet,etal.
"UnlockingtheHidden(Capacity)ValueinEnergyStorage.
"Icf.
com,2016.
GreatBritain,DepartmentforBusiness,EnergyandIndustrialStrategy,"CapacityMarketConsultation-ImprovingtheFramework,"July2017.
www.
gov.
uk/government/consultations/capacity-market-consultation-improving-the-framework-detailed-proposals.
SPP,"SPP2017RESOURCEADEQUACYREPORT.
"Www.
spp.
org,19June2017BatteryEnergyStorageTechnologyAssessmentPlatteRiverPowerAuthorityNovember29,2017|A-1AppendixA.
TechnicalGuideshttp://journals.
plos.
org/plosone/articleid=10.
1371/journal.
pone.
0178466http://ieeexplore.
ieee.
org/document/7491545/BatteryEnergyStorageTechnologyAssessmentPlatteRiverPowerAuthorityNovember29,2017|B-1AppendixB.
PlatteRiver2017PeakLoadDataTimeLoad(MW)LoadWithBESS(MW)BESSOutput(MW)0:0037237201:0034334302:00329357‐283:00312357‐454:00312357‐455:00324357‐336:0034234207:0037837808:0041841809:00453453010:00497497011:00536536012:00589589013:00623620314:006646204415:006706205016:006506203017:00621620118:00590590019:00563563020:00545545021:00518518022:00468468023:004194190
VPSDime是2013年成立的国外VPS主机商,以大内存闻名业界,主营基于OpenVZ和KVM虚拟化的Linux套餐,大内存、10Gbps大带宽、大硬盘,有美国西雅图、达拉斯、新泽西、英国、荷兰机房可选。在上个月搞了一款达拉斯Linux系统VPS促销,详情查看:VPSDime夏季促销:美国达拉斯VPS/2G内存/2核/20gSSD/1T流量/$20/年,此次推出一款Windows VPS,依然是...
Friendhosting商家在前面的篇幅中也又陆续介绍到,是一家保加利亚主机商,主要提供销售VPS和独立服务器出租业务,数据中心分布在:荷兰、保加利亚、立陶宛、捷克、乌克兰和美国洛杉矶等。这不近期黑色星期五活动,商家也有推出了黑五优惠,VPS全场一次性45折,虚拟主机4折,全球多机房可选,老用户续费可获9折加送1个月使用时长,VDS折后最低仅€14.53/年,有需要的可以看看。Friendhos...
无忧云怎么样?无忧云,无忧云是一家成立于2017年的老牌商家旗下的服务器销售品牌,现由深圳市云上无忧网络科技有限公司运营,是正规持证IDC/ISP/IRCS商家,主要销售国内、中国香港、国外服务器产品,线路有腾讯云国外线路、自营香港CN2线路等,都是中国大陆直连线路,非常适合免备案建站业务需求和各种负载较高的项目,同时国内服务器也有多个BGP以及高防节点。一、无忧云官网点击此处进入无忧云官方网站二...
batterydetective为你推荐
压缩软件哪个好解压软件哪个好浮动利率和固定利率哪个好对于企业来说固定利率贷款与浮动利率贷款优缺点各是什么?谢谢了。手机炒股软件哪个好手机炒股哪个软件好 要免费的qq空间登录网址开通QZONe东莞电信宽带资费东莞电信无线宽带上网卡资费首选dns服务器地址首选DNS服务器是什么意思铁通dns服务器地址嘉兴铁通的DNS服务器地址是多少?360云盘网页版360云盘电脑版与网页版有什么区别?如果资料全存在360云盘电脑版里面,那网页版会是空的还是自动同步?假如电脑坏了,或重装了,那电脑版里面的资料如何才能找回不?360云盘官网360网盘下载手机版官网360云盘关闭360云盘,关闭了吗?
网游服务器租用 二级域名申请 阿云浏览器 联通c套餐 diahosting cloudstack paypal认证 好看的留言 国外空间 大容量存储 牛人与腾讯客服对话 河南移动邮件系统 双线主机 hostloc 免费防火墙 网通服务器托管 电信主机 360云服务 域名与空间 移动服务器托管 更多