Jordanwest

west  时间:2021-01-25  阅读:()
WEST:ModernTechnologiesforWebPeopleSearchDmitriV.
KalashnikovZhaoqiChenRabiaNuray-TuranSharadMehrotraZhengZhangComputerScienceDepartmentUniversityofCalifornia,IrvineI.
INTRODUCTIONInthispaperwedescribeWEST(WebEntitySearchTech-nologies)systemthatwehavedevelopedtoimprovepeoplesearchovertheInternet.
RecentlytheproblemofWebPeopleSearch(WePS)hasattractedsignicantattentionfromboththeindustryandacademia.
IntheclassicformulationofWePSproblemtheuserissuesaquerytoawebsearchenginethatconsistsofanameofapersonofinterest.
Forsuchaquery,atraditionalsearchenginesuchasYahooorGooglewouldreturnwebpagesthatarerelatedtoanypeoplewhohappenedtohavethequeriedname.
ThegoalofWePS,instead,istooutputasetofclustersofwebpages,oneclusterpereachdistinctperson,containingallofthewebpagesrelatedtothatperson.
Theuserthencanlocatethedesiredclusterandexplorethewebpagesitcontains.
TheWePSapproachofferssignicantadvantages.
Forex-ample,considersearchingforapersonwhoisanamesakeoftheformerPresidentBillClinton.
Thewebpagesofthelessfamouspersonwillbeovershadowedintoday'ssearchenginesandwillappearfarinthesearch.
WePSsystemsaddressthisproblembyrstpresentingtotheuserthesetofclusters,amongwhichtheuserthencanselecttheclustercontainingthewebpagesofthenamesakeofinterest.
ThekeytechnologyofanyWePSsystem,includingWEST,isthatofEntityResolution.
InasettingofEntityResolutionproblem,adatasetcontainsinformationaboutobjectsandtheirinteractions.
Theobjectsarereferredtovia(textual)descrip-tions/references,whichmightnotbeuniqueidentiersoftheobjects,leadingtoambiguity.
ThetaskofEntityResolutionalgorithmsistoidentifyallofthereferencesthatco-refer,i.
e.
,refertothesamereal-worldentity.
InWePSthewebpagesreturnedbyasearchenginecanbeviewedasreferences.
Theoveralltaskcanbeviewedasthatofndingthewebpagesthatrefertothesamenamesake.
WehavedevelopedthreedifferentEntityResolutionalgo-rithmsthatcanbeemployedbyWEST:1)GraphERapproachextractstheSocialNetwork(peo-ple,organizations,locations)offthewebpagesalongwithhyperlinkandemailinformation.
ItrepresentstheresultingEntity-Relationshipnetworkasagraph.
TheapproachthenanalyzesthisgraphandthewebpageThisresearchwassupportedbyNSFAwards0331707and0331690,andDHSAwardEMW-2007-FP-02535.
textualsimilaritytodeterminewhichwebpagesco-refer[4],[5].
GraphERwillbecoveredinSectionIII-A.
2)EnsembleERapproachcombinesresultsofmultiple"base"ERsystemstoproducetheoverallclustering.
Duringthetrainingphase,EnsembleERapproachem-ployssupervisedlearningtostudyhowwellthebaseERsystemsperformintermsoftheirqualityundervarietyofconditions/contextsbytrainingameta-levelclassier.
Itthenusesthisclassierduringtheactualqueryprocessingtocomputeitsnalclustering[3].
EnsembleERwillbecoveredinSectionIII-B.
3)WebERapproach,unliketheabovetwo(andmanyother)approaches,doesnotlimititsprocessingtoanalyzingtherelevantwebpagesonly.
Instead,itleveragesapowerfulexternaldatasourcetogainitsadvantage.
Specically,likeGraphERitrstextractssocialnetworkofftheweb-pages.
ButthenitqueriestheWebtocollectadditionalinformationonthevariouscomponentsofthisnetwork[6].
WebERwillbecoveredinSectionIII-C.
Eachofthesethreealgorithmshasbeendemonstratedtooutperformthecurrentstateofthearttechniquesonavarietyofdatasets[3]–[6].
Thecomparisonincludes18approachesthathavebeenpartofWePSTaskcompetitiononalargedatasetwhichisnowconsideredtobeadefactostandardfortestingWePSsolutions[1].
WESTprovidesmultipleinterfacestosearch.
TheinputandoutputinterfacesofWESTareillustratedinFigures1and2respectively.
Naturally,WESTsupportsthestandardWePSinterfacewheretheuserprovidesapersonnameasthequery.
Italsosupportsadditionalfunctionality,wheretheusercanspecifycontextqueriestohelplocatethenamesakeofinterestquicker.
Thecontextcanbespeciedintheformoflocation,people,and/ororganizationsassociatedwiththenamesakeofinterest.
NoticethatthecontexthereisnotusedasadditionalkeywordstoquerytheWeb,butisusedtoidentifytherightnamesaketheuserislookingfor.
Thismeansthatthewebpagesintheclusterdoesnothavetoeachcontainthecontextkeywords,andsomeofthemmightevencontainnoneoftheseadditionalcontextkeywords.
BesidestheUIforsearchingforasingleindividual,WESToffersaGroupSearchinterfacetosupporttheGroupIdenti-cationquerycapabilities.
InaGroupIdenticationtask,theinputismultiplenamesofpeoplethatareknowntoberelatedinsomeway.
Forinstance,aquerymightbe"MichaelJordan"Fig.
1.
InputInterfaceofWEST.
Fig.
2.
OutputInterfaceofWEST.
and"MagicJohnson",implyingthatthemeantnamesakesarebasketballplayers.
Theobjectiveistoretrievethewebpagesofthemeantnamesakesonly.
Whilethedemonstrationwillillustrateboththesinglepersonsearchandgroupsearchcapabilities,thesubsequentdiscussionwillfocusonasinglepersonsearch.
Thealgorith-micdetailsoftheGroupSearchcanbefoundin[4].
Therestofthispaperisorganizedasfollows.
SectionIIpresentsthestepsoftheoverallWESTapproach.
ThenSectionIIIcoversthethreeEntityResolutionalgorithms.
Finally,SectionIVdescribesthefunctionalityofWESTthatwillbedisplayedduringthedemo.
II.
OVERALLALGORITHMThestepsoftheoverallWESTapproach,inthecontextofamiddlewarearchitecture,areillustratedinFigure3.
Theyinclude:1)UserInput.
TheuserissuesaqueryviatheWESTinputinterface.
2)Top-KRetrieval.
Thesystem(middleware)sendsaqueryconsistingofapersonnametoasearchengine,suchasGoogle,andretrievesthetop-Kreturnedwebpages.
ThisisastandardstepperformedbymostofthecurrentWePSsystems.
Top-KWebpagesPerson1Person2Person3ResultsClusteringPersonXSearchEnginePreprocessingPreprocessedpagesAuxiliaryInformationPostprocessingTop-KWebpagesPerson1Person2Person3ResultsClusteringPersonXSearchEnginePreprocessingPreprocessedpagesAuxiliaryInformationPostprocessingFig.
3.
OverviewoftheWESTProcessingSteps.
3)Pre-processing.
Thesetop-Kwebpagesarethenprepro-cessed.
Themaintwopre-processingstepsare:a)TF/IDF.
Pre-processingstepsforcomputingTF/IDFarecarriedout.
Theyinclude:stemming,stopwordremoval,nounphraseidentication,in-vertedindexcomputations,etc.
b)Extraction.
NamedEntities,includingpeople,lo-cations,organizationsareextractedusingathirdpartynamedentityextractionsoftware.
Hyperlinksandemailsaddressedareextractedaswell.
Someauxiliarydatastructuresarebuiltonthisdata.
4)Clustering.
OneofthethreeEntityResolutionalgo-rithmsisappliedtothedatatoclusterthewebpages.
ThealgorithmswillbeexplainedinSectionIII.
5)Post-processing.
Thepost-processingstepsinclude:a)ClusterSketchesarecomputed.
b)ClusterRankiscomputedbasedon(a)thecontextkeywords,ifpresentand(b)theoriginalsearchengine'sorderingofthewebpages.
c)WebpageRankiscomputedtodeterminetherela-tiveorderingofwebpagesinsideeachcluster.
6)Visualization.
Theresultingclustersarepresentedtotheuser,whichcanbeinteractivelyexplored.
WenextdiscussthekeycomponentofanyWePSsystem:theEntityResolutionalgorithms.
III.
ENTITYRESOLUTIONALGORITHMSThissectionpresentsanoverviewofthethreeentityreso-lutionalgorithmsusedbytheWESTsystemforclusteringthewebpages.
A.
GraphERTodeterminewhethertworeferencesuandvco-refertraditionalapproachesatthecoreanalyzesimilarityoffeaturesofuandvaccordingtosomefeature-basedsimilarityfunctionf(u,v).
TheGraphERapproachhasbeendevelopedbasedontheobservationthatmanydatasetsarerelationalinnature.
Theycontainnotonlyobjectsandtheirfeaturesbutalsoinformationaboutrelationshipsinwhichtheyparticipate.
InstanceBaseModel1BaseModel1BaseModel1…CombiningModelPredictionInstanceBaseModel1BaseModel1BaseModel1…CombiningModelPredictionFig.
4.
AGeneralFrameworkforCombiningMultipleSystems.
GraphERutilizestheinformationstoredintheserelationshipstoimprovethedisambiguationquality.
TheapproachviewsthedatasetbeinganalyzedasanEntity-RelationshipGraphofnodes(entities)interconnectedviarelationships(edges).
FortheWePSdomain,thenodesarethenamedentities,hyperlinks,andemailsextractedoffthewebpagesduringthepre-processingaswellasthewebpagesthemselves.
Therelationshipsareco-occurrencerelationships,andthosethatarederivedfromhyperlinkanddecompositions.
Thegraphcreationprocedureisdiscussedindetailin[4].
TheentityrelationshipsgraphinthiscaseisacombinationoftheSocialNetworkextractedfromthewebpagesaswellasthehyperlinkgraph.
Todecidewhethertworeferencesuandvco-refer,GraphERanalyzeshowstronglyuandvareconnectedinthisgraphaccordingtoaconnectionstrengthmeasurec(u,v).
Tocomputec(u,v),thealgorithmdiscoversthesetPLuvofallL-shortsimpleu-vpaths.
1Thevalueofc(u,v)iscomputedasthesumoftheconnectionsstrengthcontributedfromeachpathpinPLuv:c(u,v)=p∈PLuvc(p).
Asupervisedlearningprocedure,formulatedasalinearpro-grammingoptimizationtask,isusedtolearnc(p)functionfromdata[4],[5].
Thesimilarityfunctions(u,v)isthendenedasacombinationofc(u,v)andf(u,v).
Theoutputofthisfunctionisusedbyacorrelationclusteringalgorithmtogeneratethenalclustersofwebpages.
B.
EnsembleEREnsembleERapproachismotivatedbytheobservationthatoftenthereisnosingleentityresolution(ER)techniquealwaysperformthebest.
Rather,differentERsolutionsperformbetterindifferentcontexts.
EnsembleERisastacking-likeframeworkthatcombinestheclusteringresultsofmultiplebase-levelERsystemssothatthenalclusteringqualityissuperiortothatofanysinglebaseERsystem.
Thekeyideaistotransformtheoutputofbase-levelERsystems,togetherwithcontext,intoameta-levelfeatureset.
Asupervisedlearningapproachisutilizedtotrainaclassieronthemeta-leveldata.
Thealgorithmthenappliesthemeta-levelclassiertothedatasetbeingprocessedtocreatethenalclusteringresults.
Figure4showsageneralframeworkofcombiningmultiplesystems.
SimilartoGraphERapproach,EnsembleERalsoutilizesagraphrepresentationofthedataset.
Thegraphhoweveris1ApathisL-shortifitslengthdoesnotexceedL.
Apathissimpleifitdoesnotcontainduplicatenodes.
different.
Thenodesarethetop-Kwebpages.
Edge(u,v)betweentwowebpagesuandviscreatedonlyifacertainnumberofthebase-levelERsystemsdecidethatuandvshouldbeinthesamecluster.
Edge(u,v)representsapossibilitythatuandvmightco-refer.
WithrespecttothegraphthattaskofEnsembleERcanbeviewedasdecidingforeachedgewhetheruandvshouldbeputinonecluster.
LetS1,S2,Snbethenbase-levelERsystems.
Foreachedgeei=(u,v),eachSjoutputitsdecisiondij∈{0,1}.
Here,ifuandvareplacedinthesameclusterbySjthendij=1otherwisedij=0.
Then,foreachedgeeiwecandeneadecisionfeaturevectorasdi={di1,di2,din}.
Foredgeeiitslocalcontextisalsoencodedasamulti-dimensionalcontextfeaturevectorfi={fi1,fi2,fim}.
OneoftheinterestingaspectsofEnsembleERsolutionisthatitcreatescontextfeaturesinapredictiveway,basedonrstestimatingsomeunknownparametersofthedatabeingprocessed.
Forinstance,letK1,K2,KnbethenumberofclustersthatsystemsS1,S2,Snoutput.
OneofthefeaturesusedbyEnsembleERiscomputedbyapplyingaregressiontothisdatatoestimatethenumberofnamesakesK,wherethetruenumberofnamesakesK+isunknownbeforehandtothealgorithm.
EnsembleERthenconvertsthedifferencebetweenKandKjintoafeature,basedontheintuitionthattheclosertheKjtoK,themorecondencecanbeplacedintheanswerofsystemSj.
ThegoalofEnsembleERreducestondingamappingdi*fi→ai.
Here,ai={0,1}isthepredictionofthecombinedalgorithmforedgeei=(u,v),whereai=1iftheoverallalgorithmbelievesuandvbelongtothesamecluster,andai=0otherwise.
ThedetailsoftheEnsemblealgorithmcanbefoundin[3].
C.
WebERWebERapproachisconsiderablydifferentfrommostoftheotherWePSsolutions.
UnlikemanyotherWePSsystems,WebERdoesnotlimititsprocessingtoanalyzingonlytheinformationstoredinthetop-Kreturnedwebpages.
RatheritemploystheWebasanexternaldatasourcetogetadditionalinformation,whichultimatelyleadstohigherqualityresults.
WebERisprimarilyintendedtobeaserver-sidesolution.
Thatis,itscodeisexecutedatasearchengine(server)side.
Becauseofthat,mostofthepre-processingcanbeaccomplishedinbulkbeforequeryprocessingstarts,includingextractionandTF/IDFcomputations.
ThequeriestothesearchenginearecarriedoutinternallywithoutgoingviatheInternetthusmakingtheirprocessingmuchfaster.
LetD={d1,d2,dK}bethesetofthetop-Kreturnedwebpages.
WebERrstmergessomeofthewebpagesintoinitialclustersusingNamedEntity(NE)clusteringwithaconservativethresholds.
Thedocument-documentsimilarityiscomputedusingTF/IDFapproachwithcosinesimilarity.
Onlyafewwebpagesthathaveoverwhelmingevidencethattheyrepresentthesamepeoplearemergedduringthisprocess.
LetPiandOibethesetofpeopleandorganizationsextractedfromwebpagedi.
ForeachpairwebpagesdianddjthatALL-IN-ONEUBC-ASUC3MWITDFKI2JHU1-13TITPIUA-ZSASWAT-IVAUGONE-IN-ONEUNNFICOSHEFUVAPSNUSIRST-BPCU-COMSEMWEST00.
10.
20.
30.
40.
50.
60.
70.
80.
9SystemsFpFig.
5.
TheExperimentresultsonWePSdataset.
arenotyetputinthesameclustertheapproachformsandissuesqueriestotheWebtocollecttheco-occurrencestatistics,whichinthiscaseisthenumberofthepagesreturnedforagivenquery.
WebERusestwomaintypesofqueries:NANDCiANDCjCiANDCjHereNisthenameofthepersonbeingqueriedbytheuser,andCiandCjarethecontextofpagesdianddj.
ContextCicanbeeither(a)anORcombinationofpeoplefromPi,or(b)anORcombinationoforganizationsfromOi.
ThesameholdsforCiresultingineightqueriesfordianddjpair.
Theseco-occurrencecountsareindicativeofhowoftentheelementsofthetwosocialnetworksco-occuronthewebandthushowstronglytheyarerelated.
Thesecountsarethentransformedintofeatures,whicharethenusedtocomputethesimilaritybetweenwebpagesdianddj.
OneofthekeycontributionsofthisworkisanewSkyline-basedclassierfordecidingwhichdianddjwebpagesshouldbemergedbasedonthecorrespondingfeaturevector.
Itisaspecializedclassierthatwehavedesignedspecicallyfortheclusteringproblemathand.
Skyline-basedclassiergainsitsadvantageduetoavarietyoffunctionalitiesbuiltintoit,including:Ittakesintoaccountdominancethatispresentinthefeaturesspace.
Italsonetunesitselftothequalitymeasurebeingused.
Ittakesintoaccounttransitivityofmerges:thatis,ac-countsforthefactthattwolargeclusterscanbemergedbyasinglemergedecision,and,thus,onedirectmergedecisioncanleadtomultipleindirectones.
Thesepropertiesallowittoeasilyoutperformotherclassi-cationmethods(whicharegeneric),suchasDTCorSVM.
Theapproachisdiscussedindetailin[6].
IV.
DEMONSTRATIONTheERalgorithmsusedbyWESTareknowntoproducehighlycompetitiveresults.
Figure5presentsthecomparisonresultsoftheWESTwith18otherWePSsolutionsthathavebeenpartoftheWePSTaskchallenge[1].
ThequalityofclusteringisevaluatedintermsofFpmeasure(harmonicmeanofPurityandInversePurity[1]).
ForthegroupidenticationwehavecomparedWESTwiththestateoftheartapproachpublishedin[2].
TheaverageF-measureonthisdatasetachievedbyWESTis92%whichisnearly12%improvementovertheresultreportedin[2].
TheWESTsystemwillbedemonstratedthroughtwoap-plicationsbuiltoverthebasesystem.
SinglePersonSearch(illustratedinFigure1):whereinausercanenterapersonnameandcontextintheformofpeople,locations,and/ororganizationsassociatedwiththepersonbeingqueried.
Theresultswillbeasetofclusters.
Eachclusterwillhaveasetofkeywordsattachedtoindicatethemainaspectofthecorrespondingnamesake.
Theclusterswillbepresentedinarankedorderbasedontheoriginalranksofthewebpagesintheclustersandthecontextkeywords.
Figure2showssampleresultingclustersforthequery"AndrewMcCallum".
TherstreturnedgroupcorrespondstoAndrewMcCallumtheUMassCSprofessor,thesecondtothepresidentoftheAustralianCouncilofSocialServices,thethirdtoaCanadianmusician,etc.
Theuserwillbeabletoclickontheclustersandexploretheirclustersinteractively.
Thewebpagesinaclusterwillbepresentedinarankedorderaswell.
GroupSearch:Anotherinterfacewillbeusedtodemon-stratetheGroupIdenticationsearchcapabilitiesofWEST.
Ingroupqueryinterface,theusercaninputseveralpersonnames.
Theresultwillbethewebpagesthatarerelatedtothemeantnamesakes.
Theseapplicationswillbedemonstratedbothintheonlineandofinemodes.
Intheonlinemode,thequeryinputbytheuserwillbetranslatedintoacorresponding(setof)queriesoverInternetsearchengines(specicallyoverGoogle).
WESTallowstheusertospecifythenumberofwebpagestoretrievefromthesearchengine,whichwillbedisambiguatedintocorrespondingclusters.
Intheonlinemode,WESTusesonlyGraphERandEnsembleERapproachessinceWebERisaserver-sideapproachandisnotamenableforrealizationasamiddleware.
Thedemonstrationwillallowobserverstododiversesearches(perhaps,oftheirownnames)andperceiveboththequalityaswellasefciencyofWEST.
Intheofinemode,WESTwillusepreconstructed"canned"exampleswherewehavealreadycrawledthewebtoretrievethesearchresultsandconstructedthecorrespondingclusters.
Intheofinemode,inadditiontoillustratingtheGraphERandEnsembleERapproaches,wewillalsodemonstratethedisambiguationpoweroftheWebERapproach.
REFERENCES[1]J.
Artiles,J.
Gonzalo,andS.
Sekine.
Thesemeval-2007wepsevaluation:Establishingabenchmarkforthewebpeoplesearchtask.
InSemEval,2007.
[2]R.
BekkermanandA.
McCallum.
Disambiguatingwebappearancesofpeopleinasocialnetwork.
InWWW,2005.
[3]Z.
Chen,D.
V.
Kalashnikov,andS.
Mehrotra.
Combiningentityresolutiontechniqueswithapplicationtowebpeoplesearch.
InUndersubmission.
[4]D.
V.
Kalashnikov,Z.
Chen,S.
Mehrotra,andR.
Nuray.
Webpeoplesearchviaconnectionanalysis.
IEEETKDE,2008.
toappear.
[5]D.
V.
Kalashnikov,S.
Mehrotra,S.
Chen,R.
Nuray,andN.
Ashish.
Disambiguationalgorithmforpeoplesearchontheweb.
InICDE,2007.
[6]D.
V.
Kalashnikov,R.
Nuray-Turan,andS.
Mehrotra.
Towardsbreakingthequalitycurse.
Aweb-queryingapproachtoWebPeopleSearch.
InProc.
ofAnnualInternationalACMSIGIRConference,Singapore,July20–242008.

ZJI:韩国BGP+CN2线路服务器,国内三网访问速度优秀,8折优惠码每月实付440元起

zji怎么样?zji最近新上韩国BGP+CN2线路服务器,国内三网访问速度优秀,适用8折优惠码zji,优惠后韩国服务器最低每月440元起。zji主机支持安装Linux或者Windows操作系统,会员中心集成电源管理功能,8折优惠码为终身折扣,续费同价,全场适用。ZJI是原Wordpress圈知名主机商:维翔主机,成立于2011年,2018年9月启用新域名ZJI,提供中国香港、台湾、日本、美国独立服...

DediPath($1.40),OpenVZ架构 1GB内存

DediPath 商家成立时间也不过三五年,商家提供的云服务器产品有包括KVM和OPENVZ架构的VPS主机。翻看前面的文章有几次提到这个商家其中机房还是比较多的。其实对于OPENVZ架构的VPS主机以前我们是遇到比较多,只不过这几年很多商家都陆续的全部用KVM和XEN架构替代。这次DediPath商家有基于OPENVZ架构提供低价的VPS主机。这次四折的促销活动不包括512MB内存方案。第一、D...

无忧云:服务器100G高防云服务器,bgpBGP云,洛阳BGP云服务器2核2G仅38.4元/月起

无忧云怎么样?无忧云值不值得购买?无忧云,无忧云是一家成立于2017年的老牌商家旗下的服务器销售品牌,现由深圳市云上无忧网络科技有限公司运营,是正规持证IDC/ISP/IRCS商家,主要销售国内、中国香港、国外服务器产品,线路有腾讯云国外线路、自营香港CN2线路等,都是中国大陆直连线路,非常适合免备案建站业务需求和各种负载较高的项目,同时国内服务器也有多个BGP以及高防节点。目前,四川雅安机房,4...

west为你推荐
qq空间首页现在QQ空间首页能做吗麒麟820和980哪个好麒麟980和骁龙855那个好一点?轿车和suv哪个好SUV和轿车哪个好点?纠结法兰绒和珊瑚绒哪个好珊瑚绒和法兰绒哪个暖和机械表和石英表哪个好石英表和机械表哪个好电视直播软件哪个好目前最好的网络电视直播软件是哪个?音乐播放器哪个好目前音质最好的音乐播放器空间登录页面登录QQ空间时,如何使登陆界面不直接进入个人中心?360云盘下载选百度云呢还是360云盘呢?360云盘怎么用360云盘如何使用?
国内vps 西部数码vps 私服服务器 suspended 鲜果阅读 godaddy 云鼎网络 亚洲小于500m 好看qq空间 me空间社区 cdn加速是什么 申请网页 多线空间 银盘服务是什么 谷歌搜索打不开 zcloud 回程 海尔t68驱动 ddos攻击软件 国内云主机 更多