Jordanwest

west  时间:2021-01-25  阅读:()
WEST:ModernTechnologiesforWebPeopleSearchDmitriV.
KalashnikovZhaoqiChenRabiaNuray-TuranSharadMehrotraZhengZhangComputerScienceDepartmentUniversityofCalifornia,IrvineI.
INTRODUCTIONInthispaperwedescribeWEST(WebEntitySearchTech-nologies)systemthatwehavedevelopedtoimprovepeoplesearchovertheInternet.
RecentlytheproblemofWebPeopleSearch(WePS)hasattractedsignicantattentionfromboththeindustryandacademia.
IntheclassicformulationofWePSproblemtheuserissuesaquerytoawebsearchenginethatconsistsofanameofapersonofinterest.
Forsuchaquery,atraditionalsearchenginesuchasYahooorGooglewouldreturnwebpagesthatarerelatedtoanypeoplewhohappenedtohavethequeriedname.
ThegoalofWePS,instead,istooutputasetofclustersofwebpages,oneclusterpereachdistinctperson,containingallofthewebpagesrelatedtothatperson.
Theuserthencanlocatethedesiredclusterandexplorethewebpagesitcontains.
TheWePSapproachofferssignicantadvantages.
Forex-ample,considersearchingforapersonwhoisanamesakeoftheformerPresidentBillClinton.
Thewebpagesofthelessfamouspersonwillbeovershadowedintoday'ssearchenginesandwillappearfarinthesearch.
WePSsystemsaddressthisproblembyrstpresentingtotheuserthesetofclusters,amongwhichtheuserthencanselecttheclustercontainingthewebpagesofthenamesakeofinterest.
ThekeytechnologyofanyWePSsystem,includingWEST,isthatofEntityResolution.
InasettingofEntityResolutionproblem,adatasetcontainsinformationaboutobjectsandtheirinteractions.
Theobjectsarereferredtovia(textual)descrip-tions/references,whichmightnotbeuniqueidentiersoftheobjects,leadingtoambiguity.
ThetaskofEntityResolutionalgorithmsistoidentifyallofthereferencesthatco-refer,i.
e.
,refertothesamereal-worldentity.
InWePSthewebpagesreturnedbyasearchenginecanbeviewedasreferences.
Theoveralltaskcanbeviewedasthatofndingthewebpagesthatrefertothesamenamesake.
WehavedevelopedthreedifferentEntityResolutionalgo-rithmsthatcanbeemployedbyWEST:1)GraphERapproachextractstheSocialNetwork(peo-ple,organizations,locations)offthewebpagesalongwithhyperlinkandemailinformation.
ItrepresentstheresultingEntity-Relationshipnetworkasagraph.
TheapproachthenanalyzesthisgraphandthewebpageThisresearchwassupportedbyNSFAwards0331707and0331690,andDHSAwardEMW-2007-FP-02535.
textualsimilaritytodeterminewhichwebpagesco-refer[4],[5].
GraphERwillbecoveredinSectionIII-A.
2)EnsembleERapproachcombinesresultsofmultiple"base"ERsystemstoproducetheoverallclustering.
Duringthetrainingphase,EnsembleERapproachem-ployssupervisedlearningtostudyhowwellthebaseERsystemsperformintermsoftheirqualityundervarietyofconditions/contextsbytrainingameta-levelclassier.
Itthenusesthisclassierduringtheactualqueryprocessingtocomputeitsnalclustering[3].
EnsembleERwillbecoveredinSectionIII-B.
3)WebERapproach,unliketheabovetwo(andmanyother)approaches,doesnotlimititsprocessingtoanalyzingtherelevantwebpagesonly.
Instead,itleveragesapowerfulexternaldatasourcetogainitsadvantage.
Specically,likeGraphERitrstextractssocialnetworkofftheweb-pages.
ButthenitqueriestheWebtocollectadditionalinformationonthevariouscomponentsofthisnetwork[6].
WebERwillbecoveredinSectionIII-C.
Eachofthesethreealgorithmshasbeendemonstratedtooutperformthecurrentstateofthearttechniquesonavarietyofdatasets[3]–[6].
Thecomparisonincludes18approachesthathavebeenpartofWePSTaskcompetitiononalargedatasetwhichisnowconsideredtobeadefactostandardfortestingWePSsolutions[1].
WESTprovidesmultipleinterfacestosearch.
TheinputandoutputinterfacesofWESTareillustratedinFigures1and2respectively.
Naturally,WESTsupportsthestandardWePSinterfacewheretheuserprovidesapersonnameasthequery.
Italsosupportsadditionalfunctionality,wheretheusercanspecifycontextqueriestohelplocatethenamesakeofinterestquicker.
Thecontextcanbespeciedintheformoflocation,people,and/ororganizationsassociatedwiththenamesakeofinterest.
NoticethatthecontexthereisnotusedasadditionalkeywordstoquerytheWeb,butisusedtoidentifytherightnamesaketheuserislookingfor.
Thismeansthatthewebpagesintheclusterdoesnothavetoeachcontainthecontextkeywords,andsomeofthemmightevencontainnoneoftheseadditionalcontextkeywords.
BesidestheUIforsearchingforasingleindividual,WESToffersaGroupSearchinterfacetosupporttheGroupIdenti-cationquerycapabilities.
InaGroupIdenticationtask,theinputismultiplenamesofpeoplethatareknowntoberelatedinsomeway.
Forinstance,aquerymightbe"MichaelJordan"Fig.
1.
InputInterfaceofWEST.
Fig.
2.
OutputInterfaceofWEST.
and"MagicJohnson",implyingthatthemeantnamesakesarebasketballplayers.
Theobjectiveistoretrievethewebpagesofthemeantnamesakesonly.
Whilethedemonstrationwillillustrateboththesinglepersonsearchandgroupsearchcapabilities,thesubsequentdiscussionwillfocusonasinglepersonsearch.
Thealgorith-micdetailsoftheGroupSearchcanbefoundin[4].
Therestofthispaperisorganizedasfollows.
SectionIIpresentsthestepsoftheoverallWESTapproach.
ThenSectionIIIcoversthethreeEntityResolutionalgorithms.
Finally,SectionIVdescribesthefunctionalityofWESTthatwillbedisplayedduringthedemo.
II.
OVERALLALGORITHMThestepsoftheoverallWESTapproach,inthecontextofamiddlewarearchitecture,areillustratedinFigure3.
Theyinclude:1)UserInput.
TheuserissuesaqueryviatheWESTinputinterface.
2)Top-KRetrieval.
Thesystem(middleware)sendsaqueryconsistingofapersonnametoasearchengine,suchasGoogle,andretrievesthetop-Kreturnedwebpages.
ThisisastandardstepperformedbymostofthecurrentWePSsystems.
Top-KWebpagesPerson1Person2Person3ResultsClusteringPersonXSearchEnginePreprocessingPreprocessedpagesAuxiliaryInformationPostprocessingTop-KWebpagesPerson1Person2Person3ResultsClusteringPersonXSearchEnginePreprocessingPreprocessedpagesAuxiliaryInformationPostprocessingFig.
3.
OverviewoftheWESTProcessingSteps.
3)Pre-processing.
Thesetop-Kwebpagesarethenprepro-cessed.
Themaintwopre-processingstepsare:a)TF/IDF.
Pre-processingstepsforcomputingTF/IDFarecarriedout.
Theyinclude:stemming,stopwordremoval,nounphraseidentication,in-vertedindexcomputations,etc.
b)Extraction.
NamedEntities,includingpeople,lo-cations,organizationsareextractedusingathirdpartynamedentityextractionsoftware.
Hyperlinksandemailsaddressedareextractedaswell.
Someauxiliarydatastructuresarebuiltonthisdata.
4)Clustering.
OneofthethreeEntityResolutionalgo-rithmsisappliedtothedatatoclusterthewebpages.
ThealgorithmswillbeexplainedinSectionIII.
5)Post-processing.
Thepost-processingstepsinclude:a)ClusterSketchesarecomputed.
b)ClusterRankiscomputedbasedon(a)thecontextkeywords,ifpresentand(b)theoriginalsearchengine'sorderingofthewebpages.
c)WebpageRankiscomputedtodeterminetherela-tiveorderingofwebpagesinsideeachcluster.
6)Visualization.
Theresultingclustersarepresentedtotheuser,whichcanbeinteractivelyexplored.
WenextdiscussthekeycomponentofanyWePSsystem:theEntityResolutionalgorithms.
III.
ENTITYRESOLUTIONALGORITHMSThissectionpresentsanoverviewofthethreeentityreso-lutionalgorithmsusedbytheWESTsystemforclusteringthewebpages.
A.
GraphERTodeterminewhethertworeferencesuandvco-refertraditionalapproachesatthecoreanalyzesimilarityoffeaturesofuandvaccordingtosomefeature-basedsimilarityfunctionf(u,v).
TheGraphERapproachhasbeendevelopedbasedontheobservationthatmanydatasetsarerelationalinnature.
Theycontainnotonlyobjectsandtheirfeaturesbutalsoinformationaboutrelationshipsinwhichtheyparticipate.
InstanceBaseModel1BaseModel1BaseModel1…CombiningModelPredictionInstanceBaseModel1BaseModel1BaseModel1…CombiningModelPredictionFig.
4.
AGeneralFrameworkforCombiningMultipleSystems.
GraphERutilizestheinformationstoredintheserelationshipstoimprovethedisambiguationquality.
TheapproachviewsthedatasetbeinganalyzedasanEntity-RelationshipGraphofnodes(entities)interconnectedviarelationships(edges).
FortheWePSdomain,thenodesarethenamedentities,hyperlinks,andemailsextractedoffthewebpagesduringthepre-processingaswellasthewebpagesthemselves.
Therelationshipsareco-occurrencerelationships,andthosethatarederivedfromhyperlinkanddecompositions.
Thegraphcreationprocedureisdiscussedindetailin[4].
TheentityrelationshipsgraphinthiscaseisacombinationoftheSocialNetworkextractedfromthewebpagesaswellasthehyperlinkgraph.
Todecidewhethertworeferencesuandvco-refer,GraphERanalyzeshowstronglyuandvareconnectedinthisgraphaccordingtoaconnectionstrengthmeasurec(u,v).
Tocomputec(u,v),thealgorithmdiscoversthesetPLuvofallL-shortsimpleu-vpaths.
1Thevalueofc(u,v)iscomputedasthesumoftheconnectionsstrengthcontributedfromeachpathpinPLuv:c(u,v)=p∈PLuvc(p).
Asupervisedlearningprocedure,formulatedasalinearpro-grammingoptimizationtask,isusedtolearnc(p)functionfromdata[4],[5].
Thesimilarityfunctions(u,v)isthendenedasacombinationofc(u,v)andf(u,v).
Theoutputofthisfunctionisusedbyacorrelationclusteringalgorithmtogeneratethenalclustersofwebpages.
B.
EnsembleEREnsembleERapproachismotivatedbytheobservationthatoftenthereisnosingleentityresolution(ER)techniquealwaysperformthebest.
Rather,differentERsolutionsperformbetterindifferentcontexts.
EnsembleERisastacking-likeframeworkthatcombinestheclusteringresultsofmultiplebase-levelERsystemssothatthenalclusteringqualityissuperiortothatofanysinglebaseERsystem.
Thekeyideaistotransformtheoutputofbase-levelERsystems,togetherwithcontext,intoameta-levelfeatureset.
Asupervisedlearningapproachisutilizedtotrainaclassieronthemeta-leveldata.
Thealgorithmthenappliesthemeta-levelclassiertothedatasetbeingprocessedtocreatethenalclusteringresults.
Figure4showsageneralframeworkofcombiningmultiplesystems.
SimilartoGraphERapproach,EnsembleERalsoutilizesagraphrepresentationofthedataset.
Thegraphhoweveris1ApathisL-shortifitslengthdoesnotexceedL.
Apathissimpleifitdoesnotcontainduplicatenodes.
different.
Thenodesarethetop-Kwebpages.
Edge(u,v)betweentwowebpagesuandviscreatedonlyifacertainnumberofthebase-levelERsystemsdecidethatuandvshouldbeinthesamecluster.
Edge(u,v)representsapossibilitythatuandvmightco-refer.
WithrespecttothegraphthattaskofEnsembleERcanbeviewedasdecidingforeachedgewhetheruandvshouldbeputinonecluster.
LetS1,S2,Snbethenbase-levelERsystems.
Foreachedgeei=(u,v),eachSjoutputitsdecisiondij∈{0,1}.
Here,ifuandvareplacedinthesameclusterbySjthendij=1otherwisedij=0.
Then,foreachedgeeiwecandeneadecisionfeaturevectorasdi={di1,di2,din}.
Foredgeeiitslocalcontextisalsoencodedasamulti-dimensionalcontextfeaturevectorfi={fi1,fi2,fim}.
OneoftheinterestingaspectsofEnsembleERsolutionisthatitcreatescontextfeaturesinapredictiveway,basedonrstestimatingsomeunknownparametersofthedatabeingprocessed.
Forinstance,letK1,K2,KnbethenumberofclustersthatsystemsS1,S2,Snoutput.
OneofthefeaturesusedbyEnsembleERiscomputedbyapplyingaregressiontothisdatatoestimatethenumberofnamesakesK,wherethetruenumberofnamesakesK+isunknownbeforehandtothealgorithm.
EnsembleERthenconvertsthedifferencebetweenKandKjintoafeature,basedontheintuitionthattheclosertheKjtoK,themorecondencecanbeplacedintheanswerofsystemSj.
ThegoalofEnsembleERreducestondingamappingdi*fi→ai.
Here,ai={0,1}isthepredictionofthecombinedalgorithmforedgeei=(u,v),whereai=1iftheoverallalgorithmbelievesuandvbelongtothesamecluster,andai=0otherwise.
ThedetailsoftheEnsemblealgorithmcanbefoundin[3].
C.
WebERWebERapproachisconsiderablydifferentfrommostoftheotherWePSsolutions.
UnlikemanyotherWePSsystems,WebERdoesnotlimititsprocessingtoanalyzingonlytheinformationstoredinthetop-Kreturnedwebpages.
RatheritemploystheWebasanexternaldatasourcetogetadditionalinformation,whichultimatelyleadstohigherqualityresults.
WebERisprimarilyintendedtobeaserver-sidesolution.
Thatis,itscodeisexecutedatasearchengine(server)side.
Becauseofthat,mostofthepre-processingcanbeaccomplishedinbulkbeforequeryprocessingstarts,includingextractionandTF/IDFcomputations.
ThequeriestothesearchenginearecarriedoutinternallywithoutgoingviatheInternetthusmakingtheirprocessingmuchfaster.
LetD={d1,d2,dK}bethesetofthetop-Kreturnedwebpages.
WebERrstmergessomeofthewebpagesintoinitialclustersusingNamedEntity(NE)clusteringwithaconservativethresholds.
Thedocument-documentsimilarityiscomputedusingTF/IDFapproachwithcosinesimilarity.
Onlyafewwebpagesthathaveoverwhelmingevidencethattheyrepresentthesamepeoplearemergedduringthisprocess.
LetPiandOibethesetofpeopleandorganizationsextractedfromwebpagedi.
ForeachpairwebpagesdianddjthatALL-IN-ONEUBC-ASUC3MWITDFKI2JHU1-13TITPIUA-ZSASWAT-IVAUGONE-IN-ONEUNNFICOSHEFUVAPSNUSIRST-BPCU-COMSEMWEST00.
10.
20.
30.
40.
50.
60.
70.
80.
9SystemsFpFig.
5.
TheExperimentresultsonWePSdataset.
arenotyetputinthesameclustertheapproachformsandissuesqueriestotheWebtocollecttheco-occurrencestatistics,whichinthiscaseisthenumberofthepagesreturnedforagivenquery.
WebERusestwomaintypesofqueries:NANDCiANDCjCiANDCjHereNisthenameofthepersonbeingqueriedbytheuser,andCiandCjarethecontextofpagesdianddj.
ContextCicanbeeither(a)anORcombinationofpeoplefromPi,or(b)anORcombinationoforganizationsfromOi.
ThesameholdsforCiresultingineightqueriesfordianddjpair.
Theseco-occurrencecountsareindicativeofhowoftentheelementsofthetwosocialnetworksco-occuronthewebandthushowstronglytheyarerelated.
Thesecountsarethentransformedintofeatures,whicharethenusedtocomputethesimilaritybetweenwebpagesdianddj.
OneofthekeycontributionsofthisworkisanewSkyline-basedclassierfordecidingwhichdianddjwebpagesshouldbemergedbasedonthecorrespondingfeaturevector.
Itisaspecializedclassierthatwehavedesignedspecicallyfortheclusteringproblemathand.
Skyline-basedclassiergainsitsadvantageduetoavarietyoffunctionalitiesbuiltintoit,including:Ittakesintoaccountdominancethatispresentinthefeaturesspace.
Italsonetunesitselftothequalitymeasurebeingused.
Ittakesintoaccounttransitivityofmerges:thatis,ac-countsforthefactthattwolargeclusterscanbemergedbyasinglemergedecision,and,thus,onedirectmergedecisioncanleadtomultipleindirectones.
Thesepropertiesallowittoeasilyoutperformotherclassi-cationmethods(whicharegeneric),suchasDTCorSVM.
Theapproachisdiscussedindetailin[6].
IV.
DEMONSTRATIONTheERalgorithmsusedbyWESTareknowntoproducehighlycompetitiveresults.
Figure5presentsthecomparisonresultsoftheWESTwith18otherWePSsolutionsthathavebeenpartoftheWePSTaskchallenge[1].
ThequalityofclusteringisevaluatedintermsofFpmeasure(harmonicmeanofPurityandInversePurity[1]).
ForthegroupidenticationwehavecomparedWESTwiththestateoftheartapproachpublishedin[2].
TheaverageF-measureonthisdatasetachievedbyWESTis92%whichisnearly12%improvementovertheresultreportedin[2].
TheWESTsystemwillbedemonstratedthroughtwoap-plicationsbuiltoverthebasesystem.
SinglePersonSearch(illustratedinFigure1):whereinausercanenterapersonnameandcontextintheformofpeople,locations,and/ororganizationsassociatedwiththepersonbeingqueried.
Theresultswillbeasetofclusters.
Eachclusterwillhaveasetofkeywordsattachedtoindicatethemainaspectofthecorrespondingnamesake.
Theclusterswillbepresentedinarankedorderbasedontheoriginalranksofthewebpagesintheclustersandthecontextkeywords.
Figure2showssampleresultingclustersforthequery"AndrewMcCallum".
TherstreturnedgroupcorrespondstoAndrewMcCallumtheUMassCSprofessor,thesecondtothepresidentoftheAustralianCouncilofSocialServices,thethirdtoaCanadianmusician,etc.
Theuserwillbeabletoclickontheclustersandexploretheirclustersinteractively.
Thewebpagesinaclusterwillbepresentedinarankedorderaswell.
GroupSearch:Anotherinterfacewillbeusedtodemon-stratetheGroupIdenticationsearchcapabilitiesofWEST.
Ingroupqueryinterface,theusercaninputseveralpersonnames.
Theresultwillbethewebpagesthatarerelatedtothemeantnamesakes.
Theseapplicationswillbedemonstratedbothintheonlineandofinemodes.
Intheonlinemode,thequeryinputbytheuserwillbetranslatedintoacorresponding(setof)queriesoverInternetsearchengines(specicallyoverGoogle).
WESTallowstheusertospecifythenumberofwebpagestoretrievefromthesearchengine,whichwillbedisambiguatedintocorrespondingclusters.
Intheonlinemode,WESTusesonlyGraphERandEnsembleERapproachessinceWebERisaserver-sideapproachandisnotamenableforrealizationasamiddleware.
Thedemonstrationwillallowobserverstododiversesearches(perhaps,oftheirownnames)andperceiveboththequalityaswellasefciencyofWEST.
Intheofinemode,WESTwillusepreconstructed"canned"exampleswherewehavealreadycrawledthewebtoretrievethesearchresultsandconstructedthecorrespondingclusters.
Intheofinemode,inadditiontoillustratingtheGraphERandEnsembleERapproaches,wewillalsodemonstratethedisambiguationpoweroftheWebERapproach.
REFERENCES[1]J.
Artiles,J.
Gonzalo,andS.
Sekine.
Thesemeval-2007wepsevaluation:Establishingabenchmarkforthewebpeoplesearchtask.
InSemEval,2007.
[2]R.
BekkermanandA.
McCallum.
Disambiguatingwebappearancesofpeopleinasocialnetwork.
InWWW,2005.
[3]Z.
Chen,D.
V.
Kalashnikov,andS.
Mehrotra.
Combiningentityresolutiontechniqueswithapplicationtowebpeoplesearch.
InUndersubmission.
[4]D.
V.
Kalashnikov,Z.
Chen,S.
Mehrotra,andR.
Nuray.
Webpeoplesearchviaconnectionanalysis.
IEEETKDE,2008.
toappear.
[5]D.
V.
Kalashnikov,S.
Mehrotra,S.
Chen,R.
Nuray,andN.
Ashish.
Disambiguationalgorithmforpeoplesearchontheweb.
InICDE,2007.
[6]D.
V.
Kalashnikov,R.
Nuray-Turan,andS.
Mehrotra.
Towardsbreakingthequalitycurse.
Aweb-queryingapproachtoWebPeopleSearch.
InProc.
ofAnnualInternationalACMSIGIRConference,Singapore,July20–242008.

BuyVM老牌商家新增迈阿密机房 不限流量 月付2美元

我们很多老用户对于BuyVM商家还是相当熟悉的,也有翻看BuyVM相关的文章可以追溯到2014年的时候有介绍过,不过那时候介绍这个商家并不是很多,主要是因为这个商家很是刁钻。比如我们注册账户的信息是否完整,以及我们使用是否规范,甚至有其他各种问题导致我们是不能购买他们家机器的。以前你嚣张是很多人没有办法购买到其他商家的机器,那时候其他商家的机器不多。而如今,我们可选的商家比较多,你再也嚣张不起来。...

免费注册宝塔面板账户赠送价值3188礼包适合购买抵扣折扣

对于一般的用户来说,我们使用宝塔面板免费版本功能还是足够的,如果我们有需要付费插件和专业版的功能,且需要的插件比较多,实际上且长期使用的话,还是购买付费专业版或者企业版本划算一些。昨天也有在文章中分享年中促销活动。如今我们是否会发现,我们在安装宝塔面板后是必须强制我们登录账户的,否则一直有弹出登录界面,我们还是注册一个账户比较好。反正免费注册宝塔账户还有代金券赠送。 新注册宝塔账户送代金券我们注册...

Vultr新用户省钱福利,最新可用优惠码/优惠券更新

如今我们无论线上还是线下选择商品的时候是不是习惯问问是不是有优惠活动,如果有的话会加速购买欲望。同样的,如果我们有准备选择Vultr商家云服务器的时候,也会问问是不是有Vultr优惠码或者优惠券这类。确实,目前Vultr商家有一些时候会有针对新注册用户赠送一定的优惠券活动。那就定期抽点时间在这篇文章中专门整理最新可用Vultr优惠码和商家促销活动。不过需要令我们老用户失望的,至少近五年我们看到Vu...

west为你推荐
无纺布和熔喷布口罩哪个好无纺布除了做尿布湿口罩这些,还有其他什么用处吗?手机管家哪个好手机管理软件哪个好用海克斯皮肤哪个好诺手二周年皮肤好不好,和海克斯那个比哪个好,二周年属于稀有吗网络机顶盒哪个好机顶盒哪个好用美国国际集团IDG在美国是干什么的?美国国际东西方大学明尼苏达大学(是莫瑞斯分校)和美国东北大学 应该去哪一个 是这个方面的专家回答啊!有偏见性的不要说!电信10000宽带测速怎样测试电信宽带的网速? 771212首选dns服务器首选DNS服务器和备用DNS服务器有什么区别?广东联通官方旗舰店广东联通沃商城什么时候买车最便宜告诉你 一年中什么时候买车最便宜
网站空间申请 动态ip的vps 360抢票助手 美国php主机 NetSpeeder 699美元 网站卫士 流量计费 空间购买 华为k3 江苏徐州移动 卡巴斯基官网下载 阿里云个人邮箱 万网服务器 香港ip 香港博客 防盗链 linuxvi 赵荣博客 电脑主机 更多