WEST:ModernTechnologiesforWebPeopleSearchDmitriV.
KalashnikovZhaoqiChenRabiaNuray-TuranSharadMehrotraZhengZhangComputerScienceDepartmentUniversityofCalifornia,IrvineI.
INTRODUCTIONInthispaperwedescribeWEST(WebEntitySearchTech-nologies)systemthatwehavedevelopedtoimprovepeoplesearchovertheInternet.
RecentlytheproblemofWebPeopleSearch(WePS)hasattractedsignicantattentionfromboththeindustryandacademia.
IntheclassicformulationofWePSproblemtheuserissuesaquerytoawebsearchenginethatconsistsofanameofapersonofinterest.
Forsuchaquery,atraditionalsearchenginesuchasYahooorGooglewouldreturnwebpagesthatarerelatedtoanypeoplewhohappenedtohavethequeriedname.
ThegoalofWePS,instead,istooutputasetofclustersofwebpages,oneclusterpereachdistinctperson,containingallofthewebpagesrelatedtothatperson.
Theuserthencanlocatethedesiredclusterandexplorethewebpagesitcontains.
TheWePSapproachofferssignicantadvantages.
Forex-ample,considersearchingforapersonwhoisanamesakeoftheformerPresidentBillClinton.
Thewebpagesofthelessfamouspersonwillbeovershadowedintoday'ssearchenginesandwillappearfarinthesearch.
WePSsystemsaddressthisproblembyrstpresentingtotheuserthesetofclusters,amongwhichtheuserthencanselecttheclustercontainingthewebpagesofthenamesakeofinterest.
ThekeytechnologyofanyWePSsystem,includingWEST,isthatofEntityResolution.
InasettingofEntityResolutionproblem,adatasetcontainsinformationaboutobjectsandtheirinteractions.
Theobjectsarereferredtovia(textual)descrip-tions/references,whichmightnotbeuniqueidentiersoftheobjects,leadingtoambiguity.
ThetaskofEntityResolutionalgorithmsistoidentifyallofthereferencesthatco-refer,i.
e.
,refertothesamereal-worldentity.
InWePSthewebpagesreturnedbyasearchenginecanbeviewedasreferences.
Theoveralltaskcanbeviewedasthatofndingthewebpagesthatrefertothesamenamesake.
WehavedevelopedthreedifferentEntityResolutionalgo-rithmsthatcanbeemployedbyWEST:1)GraphERapproachextractstheSocialNetwork(peo-ple,organizations,locations)offthewebpagesalongwithhyperlinkandemailinformation.
ItrepresentstheresultingEntity-Relationshipnetworkasagraph.
TheapproachthenanalyzesthisgraphandthewebpageThisresearchwassupportedbyNSFAwards0331707and0331690,andDHSAwardEMW-2007-FP-02535.
textualsimilaritytodeterminewhichwebpagesco-refer[4],[5].
GraphERwillbecoveredinSectionIII-A.
2)EnsembleERapproachcombinesresultsofmultiple"base"ERsystemstoproducetheoverallclustering.
Duringthetrainingphase,EnsembleERapproachem-ployssupervisedlearningtostudyhowwellthebaseERsystemsperformintermsoftheirqualityundervarietyofconditions/contextsbytrainingameta-levelclassier.
Itthenusesthisclassierduringtheactualqueryprocessingtocomputeitsnalclustering[3].
EnsembleERwillbecoveredinSectionIII-B.
3)WebERapproach,unliketheabovetwo(andmanyother)approaches,doesnotlimititsprocessingtoanalyzingtherelevantwebpagesonly.
Instead,itleveragesapowerfulexternaldatasourcetogainitsadvantage.
Specically,likeGraphERitrstextractssocialnetworkofftheweb-pages.
ButthenitqueriestheWebtocollectadditionalinformationonthevariouscomponentsofthisnetwork[6].
WebERwillbecoveredinSectionIII-C.
Eachofthesethreealgorithmshasbeendemonstratedtooutperformthecurrentstateofthearttechniquesonavarietyofdatasets[3]–[6].
Thecomparisonincludes18approachesthathavebeenpartofWePSTaskcompetitiononalargedatasetwhichisnowconsideredtobeadefactostandardfortestingWePSsolutions[1].
WESTprovidesmultipleinterfacestosearch.
TheinputandoutputinterfacesofWESTareillustratedinFigures1and2respectively.
Naturally,WESTsupportsthestandardWePSinterfacewheretheuserprovidesapersonnameasthequery.
Italsosupportsadditionalfunctionality,wheretheusercanspecifycontextqueriestohelplocatethenamesakeofinterestquicker.
Thecontextcanbespeciedintheformoflocation,people,and/ororganizationsassociatedwiththenamesakeofinterest.
NoticethatthecontexthereisnotusedasadditionalkeywordstoquerytheWeb,butisusedtoidentifytherightnamesaketheuserislookingfor.
Thismeansthatthewebpagesintheclusterdoesnothavetoeachcontainthecontextkeywords,andsomeofthemmightevencontainnoneoftheseadditionalcontextkeywords.
BesidestheUIforsearchingforasingleindividual,WESToffersaGroupSearchinterfacetosupporttheGroupIdenti-cationquerycapabilities.
InaGroupIdenticationtask,theinputismultiplenamesofpeoplethatareknowntoberelatedinsomeway.
Forinstance,aquerymightbe"MichaelJordan"Fig.
1.
InputInterfaceofWEST.
Fig.
2.
OutputInterfaceofWEST.
and"MagicJohnson",implyingthatthemeantnamesakesarebasketballplayers.
Theobjectiveistoretrievethewebpagesofthemeantnamesakesonly.
Whilethedemonstrationwillillustrateboththesinglepersonsearchandgroupsearchcapabilities,thesubsequentdiscussionwillfocusonasinglepersonsearch.
Thealgorith-micdetailsoftheGroupSearchcanbefoundin[4].
Therestofthispaperisorganizedasfollows.
SectionIIpresentsthestepsoftheoverallWESTapproach.
ThenSectionIIIcoversthethreeEntityResolutionalgorithms.
Finally,SectionIVdescribesthefunctionalityofWESTthatwillbedisplayedduringthedemo.
II.
OVERALLALGORITHMThestepsoftheoverallWESTapproach,inthecontextofamiddlewarearchitecture,areillustratedinFigure3.
Theyinclude:1)UserInput.
TheuserissuesaqueryviatheWESTinputinterface.
2)Top-KRetrieval.
Thesystem(middleware)sendsaqueryconsistingofapersonnametoasearchengine,suchasGoogle,andretrievesthetop-Kreturnedwebpages.
ThisisastandardstepperformedbymostofthecurrentWePSsystems.
Top-KWebpagesPerson1Person2Person3ResultsClusteringPersonXSearchEnginePreprocessingPreprocessedpagesAuxiliaryInformationPostprocessingTop-KWebpagesPerson1Person2Person3ResultsClusteringPersonXSearchEnginePreprocessingPreprocessedpagesAuxiliaryInformationPostprocessingFig.
3.
OverviewoftheWESTProcessingSteps.
3)Pre-processing.
Thesetop-Kwebpagesarethenprepro-cessed.
Themaintwopre-processingstepsare:a)TF/IDF.
Pre-processingstepsforcomputingTF/IDFarecarriedout.
Theyinclude:stemming,stopwordremoval,nounphraseidentication,in-vertedindexcomputations,etc.
b)Extraction.
NamedEntities,includingpeople,lo-cations,organizationsareextractedusingathirdpartynamedentityextractionsoftware.
Hyperlinksandemailsaddressedareextractedaswell.
Someauxiliarydatastructuresarebuiltonthisdata.
4)Clustering.
OneofthethreeEntityResolutionalgo-rithmsisappliedtothedatatoclusterthewebpages.
ThealgorithmswillbeexplainedinSectionIII.
5)Post-processing.
Thepost-processingstepsinclude:a)ClusterSketchesarecomputed.
b)ClusterRankiscomputedbasedon(a)thecontextkeywords,ifpresentand(b)theoriginalsearchengine'sorderingofthewebpages.
c)WebpageRankiscomputedtodeterminetherela-tiveorderingofwebpagesinsideeachcluster.
6)Visualization.
Theresultingclustersarepresentedtotheuser,whichcanbeinteractivelyexplored.
WenextdiscussthekeycomponentofanyWePSsystem:theEntityResolutionalgorithms.
III.
ENTITYRESOLUTIONALGORITHMSThissectionpresentsanoverviewofthethreeentityreso-lutionalgorithmsusedbytheWESTsystemforclusteringthewebpages.
A.
GraphERTodeterminewhethertworeferencesuandvco-refertraditionalapproachesatthecoreanalyzesimilarityoffeaturesofuandvaccordingtosomefeature-basedsimilarityfunctionf(u,v).
TheGraphERapproachhasbeendevelopedbasedontheobservationthatmanydatasetsarerelationalinnature.
Theycontainnotonlyobjectsandtheirfeaturesbutalsoinformationaboutrelationshipsinwhichtheyparticipate.
InstanceBaseModel1BaseModel1BaseModel1…CombiningModelPredictionInstanceBaseModel1BaseModel1BaseModel1…CombiningModelPredictionFig.
4.
AGeneralFrameworkforCombiningMultipleSystems.
GraphERutilizestheinformationstoredintheserelationshipstoimprovethedisambiguationquality.
TheapproachviewsthedatasetbeinganalyzedasanEntity-RelationshipGraphofnodes(entities)interconnectedviarelationships(edges).
FortheWePSdomain,thenodesarethenamedentities,hyperlinks,andemailsextractedoffthewebpagesduringthepre-processingaswellasthewebpagesthemselves.
Therelationshipsareco-occurrencerelationships,andthosethatarederivedfromhyperlinkanddecompositions.
Thegraphcreationprocedureisdiscussedindetailin[4].
TheentityrelationshipsgraphinthiscaseisacombinationoftheSocialNetworkextractedfromthewebpagesaswellasthehyperlinkgraph.
Todecidewhethertworeferencesuandvco-refer,GraphERanalyzeshowstronglyuandvareconnectedinthisgraphaccordingtoaconnectionstrengthmeasurec(u,v).
Tocomputec(u,v),thealgorithmdiscoversthesetPLuvofallL-shortsimpleu-vpaths.
1Thevalueofc(u,v)iscomputedasthesumoftheconnectionsstrengthcontributedfromeachpathpinPLuv:c(u,v)=p∈PLuvc(p).
Asupervisedlearningprocedure,formulatedasalinearpro-grammingoptimizationtask,isusedtolearnc(p)functionfromdata[4],[5].
Thesimilarityfunctions(u,v)isthendenedasacombinationofc(u,v)andf(u,v).
Theoutputofthisfunctionisusedbyacorrelationclusteringalgorithmtogeneratethenalclustersofwebpages.
B.
EnsembleEREnsembleERapproachismotivatedbytheobservationthatoftenthereisnosingleentityresolution(ER)techniquealwaysperformthebest.
Rather,differentERsolutionsperformbetterindifferentcontexts.
EnsembleERisastacking-likeframeworkthatcombinestheclusteringresultsofmultiplebase-levelERsystemssothatthenalclusteringqualityissuperiortothatofanysinglebaseERsystem.
Thekeyideaistotransformtheoutputofbase-levelERsystems,togetherwithcontext,intoameta-levelfeatureset.
Asupervisedlearningapproachisutilizedtotrainaclassieronthemeta-leveldata.
Thealgorithmthenappliesthemeta-levelclassiertothedatasetbeingprocessedtocreatethenalclusteringresults.
Figure4showsageneralframeworkofcombiningmultiplesystems.
SimilartoGraphERapproach,EnsembleERalsoutilizesagraphrepresentationofthedataset.
Thegraphhoweveris1ApathisL-shortifitslengthdoesnotexceedL.
Apathissimpleifitdoesnotcontainduplicatenodes.
different.
Thenodesarethetop-Kwebpages.
Edge(u,v)betweentwowebpagesuandviscreatedonlyifacertainnumberofthebase-levelERsystemsdecidethatuandvshouldbeinthesamecluster.
Edge(u,v)representsapossibilitythatuandvmightco-refer.
WithrespecttothegraphthattaskofEnsembleERcanbeviewedasdecidingforeachedgewhetheruandvshouldbeputinonecluster.
LetS1,S2,Snbethenbase-levelERsystems.
Foreachedgeei=(u,v),eachSjoutputitsdecisiondij∈{0,1}.
Here,ifuandvareplacedinthesameclusterbySjthendij=1otherwisedij=0.
Then,foreachedgeeiwecandeneadecisionfeaturevectorasdi={di1,di2,din}.
Foredgeeiitslocalcontextisalsoencodedasamulti-dimensionalcontextfeaturevectorfi={fi1,fi2,fim}.
OneoftheinterestingaspectsofEnsembleERsolutionisthatitcreatescontextfeaturesinapredictiveway,basedonrstestimatingsomeunknownparametersofthedatabeingprocessed.
Forinstance,letK1,K2,KnbethenumberofclustersthatsystemsS1,S2,Snoutput.
OneofthefeaturesusedbyEnsembleERiscomputedbyapplyingaregressiontothisdatatoestimatethenumberofnamesakesK,wherethetruenumberofnamesakesK+isunknownbeforehandtothealgorithm.
EnsembleERthenconvertsthedifferencebetweenKandKjintoafeature,basedontheintuitionthattheclosertheKjtoK,themorecondencecanbeplacedintheanswerofsystemSj.
ThegoalofEnsembleERreducestondingamappingdi*fi→ai.
Here,ai={0,1}isthepredictionofthecombinedalgorithmforedgeei=(u,v),whereai=1iftheoverallalgorithmbelievesuandvbelongtothesamecluster,andai=0otherwise.
ThedetailsoftheEnsemblealgorithmcanbefoundin[3].
C.
WebERWebERapproachisconsiderablydifferentfrommostoftheotherWePSsolutions.
UnlikemanyotherWePSsystems,WebERdoesnotlimititsprocessingtoanalyzingonlytheinformationstoredinthetop-Kreturnedwebpages.
RatheritemploystheWebasanexternaldatasourcetogetadditionalinformation,whichultimatelyleadstohigherqualityresults.
WebERisprimarilyintendedtobeaserver-sidesolution.
Thatis,itscodeisexecutedatasearchengine(server)side.
Becauseofthat,mostofthepre-processingcanbeaccomplishedinbulkbeforequeryprocessingstarts,includingextractionandTF/IDFcomputations.
ThequeriestothesearchenginearecarriedoutinternallywithoutgoingviatheInternetthusmakingtheirprocessingmuchfaster.
LetD={d1,d2,dK}bethesetofthetop-Kreturnedwebpages.
WebERrstmergessomeofthewebpagesintoinitialclustersusingNamedEntity(NE)clusteringwithaconservativethresholds.
Thedocument-documentsimilarityiscomputedusingTF/IDFapproachwithcosinesimilarity.
Onlyafewwebpagesthathaveoverwhelmingevidencethattheyrepresentthesamepeoplearemergedduringthisprocess.
LetPiandOibethesetofpeopleandorganizationsextractedfromwebpagedi.
ForeachpairwebpagesdianddjthatALL-IN-ONEUBC-ASUC3MWITDFKI2JHU1-13TITPIUA-ZSASWAT-IVAUGONE-IN-ONEUNNFICOSHEFUVAPSNUSIRST-BPCU-COMSEMWEST00.
10.
20.
30.
40.
50.
60.
70.
80.
9SystemsFpFig.
5.
TheExperimentresultsonWePSdataset.
arenotyetputinthesameclustertheapproachformsandissuesqueriestotheWebtocollecttheco-occurrencestatistics,whichinthiscaseisthenumberofthepagesreturnedforagivenquery.
WebERusestwomaintypesofqueries:NANDCiANDCjCiANDCjHereNisthenameofthepersonbeingqueriedbytheuser,andCiandCjarethecontextofpagesdianddj.
ContextCicanbeeither(a)anORcombinationofpeoplefromPi,or(b)anORcombinationoforganizationsfromOi.
ThesameholdsforCiresultingineightqueriesfordianddjpair.
Theseco-occurrencecountsareindicativeofhowoftentheelementsofthetwosocialnetworksco-occuronthewebandthushowstronglytheyarerelated.
Thesecountsarethentransformedintofeatures,whicharethenusedtocomputethesimilaritybetweenwebpagesdianddj.
OneofthekeycontributionsofthisworkisanewSkyline-basedclassierfordecidingwhichdianddjwebpagesshouldbemergedbasedonthecorrespondingfeaturevector.
Itisaspecializedclassierthatwehavedesignedspecicallyfortheclusteringproblemathand.
Skyline-basedclassiergainsitsadvantageduetoavarietyoffunctionalitiesbuiltintoit,including:Ittakesintoaccountdominancethatispresentinthefeaturesspace.
Italsonetunesitselftothequalitymeasurebeingused.
Ittakesintoaccounttransitivityofmerges:thatis,ac-countsforthefactthattwolargeclusterscanbemergedbyasinglemergedecision,and,thus,onedirectmergedecisioncanleadtomultipleindirectones.
Thesepropertiesallowittoeasilyoutperformotherclassi-cationmethods(whicharegeneric),suchasDTCorSVM.
Theapproachisdiscussedindetailin[6].
IV.
DEMONSTRATIONTheERalgorithmsusedbyWESTareknowntoproducehighlycompetitiveresults.
Figure5presentsthecomparisonresultsoftheWESTwith18otherWePSsolutionsthathavebeenpartoftheWePSTaskchallenge[1].
ThequalityofclusteringisevaluatedintermsofFpmeasure(harmonicmeanofPurityandInversePurity[1]).
ForthegroupidenticationwehavecomparedWESTwiththestateoftheartapproachpublishedin[2].
TheaverageF-measureonthisdatasetachievedbyWESTis92%whichisnearly12%improvementovertheresultreportedin[2].
TheWESTsystemwillbedemonstratedthroughtwoap-plicationsbuiltoverthebasesystem.
SinglePersonSearch(illustratedinFigure1):whereinausercanenterapersonnameandcontextintheformofpeople,locations,and/ororganizationsassociatedwiththepersonbeingqueried.
Theresultswillbeasetofclusters.
Eachclusterwillhaveasetofkeywordsattachedtoindicatethemainaspectofthecorrespondingnamesake.
Theclusterswillbepresentedinarankedorderbasedontheoriginalranksofthewebpagesintheclustersandthecontextkeywords.
Figure2showssampleresultingclustersforthequery"AndrewMcCallum".
TherstreturnedgroupcorrespondstoAndrewMcCallumtheUMassCSprofessor,thesecondtothepresidentoftheAustralianCouncilofSocialServices,thethirdtoaCanadianmusician,etc.
Theuserwillbeabletoclickontheclustersandexploretheirclustersinteractively.
Thewebpagesinaclusterwillbepresentedinarankedorderaswell.
GroupSearch:Anotherinterfacewillbeusedtodemon-stratetheGroupIdenticationsearchcapabilitiesofWEST.
Ingroupqueryinterface,theusercaninputseveralpersonnames.
Theresultwillbethewebpagesthatarerelatedtothemeantnamesakes.
Theseapplicationswillbedemonstratedbothintheonlineandofinemodes.
Intheonlinemode,thequeryinputbytheuserwillbetranslatedintoacorresponding(setof)queriesoverInternetsearchengines(specicallyoverGoogle).
WESTallowstheusertospecifythenumberofwebpagestoretrievefromthesearchengine,whichwillbedisambiguatedintocorrespondingclusters.
Intheonlinemode,WESTusesonlyGraphERandEnsembleERapproachessinceWebERisaserver-sideapproachandisnotamenableforrealizationasamiddleware.
Thedemonstrationwillallowobserverstododiversesearches(perhaps,oftheirownnames)andperceiveboththequalityaswellasefciencyofWEST.
Intheofinemode,WESTwillusepreconstructed"canned"exampleswherewehavealreadycrawledthewebtoretrievethesearchresultsandconstructedthecorrespondingclusters.
Intheofinemode,inadditiontoillustratingtheGraphERandEnsembleERapproaches,wewillalsodemonstratethedisambiguationpoweroftheWebERapproach.
REFERENCES[1]J.
Artiles,J.
Gonzalo,andS.
Sekine.
Thesemeval-2007wepsevaluation:Establishingabenchmarkforthewebpeoplesearchtask.
InSemEval,2007.
[2]R.
BekkermanandA.
McCallum.
Disambiguatingwebappearancesofpeopleinasocialnetwork.
InWWW,2005.
[3]Z.
Chen,D.
V.
Kalashnikov,andS.
Mehrotra.
Combiningentityresolutiontechniqueswithapplicationtowebpeoplesearch.
InUndersubmission.
[4]D.
V.
Kalashnikov,Z.
Chen,S.
Mehrotra,andR.
Nuray.
Webpeoplesearchviaconnectionanalysis.
IEEETKDE,2008.
toappear.
[5]D.
V.
Kalashnikov,S.
Mehrotra,S.
Chen,R.
Nuray,andN.
Ashish.
Disambiguationalgorithmforpeoplesearchontheweb.
InICDE,2007.
[6]D.
V.
Kalashnikov,R.
Nuray-Turan,andS.
Mehrotra.
Towardsbreakingthequalitycurse.
Aweb-queryingapproachtoWebPeopleSearch.
InProc.
ofAnnualInternationalACMSIGIRConference,Singapore,July20–242008.
bluehost怎么样?bluehost推出新一代VPS美国云主机!前几天,BlueHost也推出了对应的周年庆活动,全场海外虚拟主机月付2.95美元起,年付送免费的域名和SSL证书,通过活动进入BlueHost中文官网,购买虚拟主机、云虚拟主机和独立服务器参与限时促销。今天,云服务器网(yuntue.com)小编给大家介绍的是新一代VPS美国云主机,美国SSD云主机,2核2G/20GB空间,独立...
RAKsmart商家一直以来在独立服务器、站群服务器和G口和10G口大端口流量服务器上下功夫比较大,但是在VPS主机业务上仅仅是顺带,尤其是我们看到大部分主流商家都做云服务器,而RAKsmart商家终于开始做云服务器,这次试探性的新增美国硅谷机房一个方案。月付7.59美元起,支持自定义配置,KVM虚拟化,美国硅谷机房,VPC网络/经典网络,大陆优化/精品网线路,支持Linux或者Windows操作...
LOCVPS发来了针对XEN架构VPS的促销方案,其中美国洛杉矶机房7折,其余日本/新加坡/中国香港等机房全部8折,优惠后日本/新加坡机房XEN VPS月付仅29.6元起。这是成立较久的一家国人VPS服务商,目前提供美国洛杉矶(MC/C3)、和中国香港(邦联、沙田电信、大埔)、日本(东京、大阪)、新加坡、德国和荷兰等机房VPS主机,基于XEN或者KVM虚拟架构,均选择国内访问线路不错的机房,适合建...
west为你推荐
cf蜗牛外挂蜗牛透视怎么开?具体些哦天玑1000plus和骁龙865哪个好CPU型号 MediaTek MT6853 5G,和天玑1000+哪个好?滚筒洗衣机和波轮洗衣机哪个好滚筒洗衣机和波轮洗衣机有什么不同法兰绒和珊瑚绒哪个好法兰绒和珊瑚绒睡衣哪个好?压缩软件哪个好解压软件哪个好机械表和石英表哪个好买石英表还是机械表好啊朗逸和速腾哪个好大众速腾和朗逸哪个好啊?ps软件哪个好Photoshop哪个软件好用点?网页传奇哪个好玩近有什么好玩的网页传奇介绍么核芯显卡与独立显卡哪个好独立显卡和核芯显卡有什么区别
国外域名 域名注册使用godaddy com域名抢注 l5639 国外idc 国外服务器 evssl证书 win8.1企业版升级win10 免费ddos防火墙 日本空间 发包服务器 坐公交投2700元 183是联通还是移动 息壤代理 安徽双线服务器 银盘服务 最漂亮的qq空间 域名dns 联通网站 申请网站 更多