WEST:ModernTechnologiesforWebPeopleSearchDmitriV.
KalashnikovZhaoqiChenRabiaNuray-TuranSharadMehrotraZhengZhangComputerScienceDepartmentUniversityofCalifornia,IrvineI.
INTRODUCTIONInthispaperwedescribeWEST(WebEntitySearchTech-nologies)systemthatwehavedevelopedtoimprovepeoplesearchovertheInternet.
RecentlytheproblemofWebPeopleSearch(WePS)hasattractedsignicantattentionfromboththeindustryandacademia.
IntheclassicformulationofWePSproblemtheuserissuesaquerytoawebsearchenginethatconsistsofanameofapersonofinterest.
Forsuchaquery,atraditionalsearchenginesuchasYahooorGooglewouldreturnwebpagesthatarerelatedtoanypeoplewhohappenedtohavethequeriedname.
ThegoalofWePS,instead,istooutputasetofclustersofwebpages,oneclusterpereachdistinctperson,containingallofthewebpagesrelatedtothatperson.
Theuserthencanlocatethedesiredclusterandexplorethewebpagesitcontains.
TheWePSapproachofferssignicantadvantages.
Forex-ample,considersearchingforapersonwhoisanamesakeoftheformerPresidentBillClinton.
Thewebpagesofthelessfamouspersonwillbeovershadowedintoday'ssearchenginesandwillappearfarinthesearch.
WePSsystemsaddressthisproblembyrstpresentingtotheuserthesetofclusters,amongwhichtheuserthencanselecttheclustercontainingthewebpagesofthenamesakeofinterest.
ThekeytechnologyofanyWePSsystem,includingWEST,isthatofEntityResolution.
InasettingofEntityResolutionproblem,adatasetcontainsinformationaboutobjectsandtheirinteractions.
Theobjectsarereferredtovia(textual)descrip-tions/references,whichmightnotbeuniqueidentiersoftheobjects,leadingtoambiguity.
ThetaskofEntityResolutionalgorithmsistoidentifyallofthereferencesthatco-refer,i.
e.
,refertothesamereal-worldentity.
InWePSthewebpagesreturnedbyasearchenginecanbeviewedasreferences.
Theoveralltaskcanbeviewedasthatofndingthewebpagesthatrefertothesamenamesake.
WehavedevelopedthreedifferentEntityResolutionalgo-rithmsthatcanbeemployedbyWEST:1)GraphERapproachextractstheSocialNetwork(peo-ple,organizations,locations)offthewebpagesalongwithhyperlinkandemailinformation.
ItrepresentstheresultingEntity-Relationshipnetworkasagraph.
TheapproachthenanalyzesthisgraphandthewebpageThisresearchwassupportedbyNSFAwards0331707and0331690,andDHSAwardEMW-2007-FP-02535.
textualsimilaritytodeterminewhichwebpagesco-refer[4],[5].
GraphERwillbecoveredinSectionIII-A.
2)EnsembleERapproachcombinesresultsofmultiple"base"ERsystemstoproducetheoverallclustering.
Duringthetrainingphase,EnsembleERapproachem-ployssupervisedlearningtostudyhowwellthebaseERsystemsperformintermsoftheirqualityundervarietyofconditions/contextsbytrainingameta-levelclassier.
Itthenusesthisclassierduringtheactualqueryprocessingtocomputeitsnalclustering[3].
EnsembleERwillbecoveredinSectionIII-B.
3)WebERapproach,unliketheabovetwo(andmanyother)approaches,doesnotlimititsprocessingtoanalyzingtherelevantwebpagesonly.
Instead,itleveragesapowerfulexternaldatasourcetogainitsadvantage.
Specically,likeGraphERitrstextractssocialnetworkofftheweb-pages.
ButthenitqueriestheWebtocollectadditionalinformationonthevariouscomponentsofthisnetwork[6].
WebERwillbecoveredinSectionIII-C.
Eachofthesethreealgorithmshasbeendemonstratedtooutperformthecurrentstateofthearttechniquesonavarietyofdatasets[3]–[6].
Thecomparisonincludes18approachesthathavebeenpartofWePSTaskcompetitiononalargedatasetwhichisnowconsideredtobeadefactostandardfortestingWePSsolutions[1].
WESTprovidesmultipleinterfacestosearch.
TheinputandoutputinterfacesofWESTareillustratedinFigures1and2respectively.
Naturally,WESTsupportsthestandardWePSinterfacewheretheuserprovidesapersonnameasthequery.
Italsosupportsadditionalfunctionality,wheretheusercanspecifycontextqueriestohelplocatethenamesakeofinterestquicker.
Thecontextcanbespeciedintheformoflocation,people,and/ororganizationsassociatedwiththenamesakeofinterest.
NoticethatthecontexthereisnotusedasadditionalkeywordstoquerytheWeb,butisusedtoidentifytherightnamesaketheuserislookingfor.
Thismeansthatthewebpagesintheclusterdoesnothavetoeachcontainthecontextkeywords,andsomeofthemmightevencontainnoneoftheseadditionalcontextkeywords.
BesidestheUIforsearchingforasingleindividual,WESToffersaGroupSearchinterfacetosupporttheGroupIdenti-cationquerycapabilities.
InaGroupIdenticationtask,theinputismultiplenamesofpeoplethatareknowntoberelatedinsomeway.
Forinstance,aquerymightbe"MichaelJordan"Fig.
1.
InputInterfaceofWEST.
Fig.
2.
OutputInterfaceofWEST.
and"MagicJohnson",implyingthatthemeantnamesakesarebasketballplayers.
Theobjectiveistoretrievethewebpagesofthemeantnamesakesonly.
Whilethedemonstrationwillillustrateboththesinglepersonsearchandgroupsearchcapabilities,thesubsequentdiscussionwillfocusonasinglepersonsearch.
Thealgorith-micdetailsoftheGroupSearchcanbefoundin[4].
Therestofthispaperisorganizedasfollows.
SectionIIpresentsthestepsoftheoverallWESTapproach.
ThenSectionIIIcoversthethreeEntityResolutionalgorithms.
Finally,SectionIVdescribesthefunctionalityofWESTthatwillbedisplayedduringthedemo.
II.
OVERALLALGORITHMThestepsoftheoverallWESTapproach,inthecontextofamiddlewarearchitecture,areillustratedinFigure3.
Theyinclude:1)UserInput.
TheuserissuesaqueryviatheWESTinputinterface.
2)Top-KRetrieval.
Thesystem(middleware)sendsaqueryconsistingofapersonnametoasearchengine,suchasGoogle,andretrievesthetop-Kreturnedwebpages.
ThisisastandardstepperformedbymostofthecurrentWePSsystems.
Top-KWebpagesPerson1Person2Person3ResultsClusteringPersonXSearchEnginePreprocessingPreprocessedpagesAuxiliaryInformationPostprocessingTop-KWebpagesPerson1Person2Person3ResultsClusteringPersonXSearchEnginePreprocessingPreprocessedpagesAuxiliaryInformationPostprocessingFig.
3.
OverviewoftheWESTProcessingSteps.
3)Pre-processing.
Thesetop-Kwebpagesarethenprepro-cessed.
Themaintwopre-processingstepsare:a)TF/IDF.
Pre-processingstepsforcomputingTF/IDFarecarriedout.
Theyinclude:stemming,stopwordremoval,nounphraseidentication,in-vertedindexcomputations,etc.
b)Extraction.
NamedEntities,includingpeople,lo-cations,organizationsareextractedusingathirdpartynamedentityextractionsoftware.
Hyperlinksandemailsaddressedareextractedaswell.
Someauxiliarydatastructuresarebuiltonthisdata.
4)Clustering.
OneofthethreeEntityResolutionalgo-rithmsisappliedtothedatatoclusterthewebpages.
ThealgorithmswillbeexplainedinSectionIII.
5)Post-processing.
Thepost-processingstepsinclude:a)ClusterSketchesarecomputed.
b)ClusterRankiscomputedbasedon(a)thecontextkeywords,ifpresentand(b)theoriginalsearchengine'sorderingofthewebpages.
c)WebpageRankiscomputedtodeterminetherela-tiveorderingofwebpagesinsideeachcluster.
6)Visualization.
Theresultingclustersarepresentedtotheuser,whichcanbeinteractivelyexplored.
WenextdiscussthekeycomponentofanyWePSsystem:theEntityResolutionalgorithms.
III.
ENTITYRESOLUTIONALGORITHMSThissectionpresentsanoverviewofthethreeentityreso-lutionalgorithmsusedbytheWESTsystemforclusteringthewebpages.
A.
GraphERTodeterminewhethertworeferencesuandvco-refertraditionalapproachesatthecoreanalyzesimilarityoffeaturesofuandvaccordingtosomefeature-basedsimilarityfunctionf(u,v).
TheGraphERapproachhasbeendevelopedbasedontheobservationthatmanydatasetsarerelationalinnature.
Theycontainnotonlyobjectsandtheirfeaturesbutalsoinformationaboutrelationshipsinwhichtheyparticipate.
InstanceBaseModel1BaseModel1BaseModel1…CombiningModelPredictionInstanceBaseModel1BaseModel1BaseModel1…CombiningModelPredictionFig.
4.
AGeneralFrameworkforCombiningMultipleSystems.
GraphERutilizestheinformationstoredintheserelationshipstoimprovethedisambiguationquality.
TheapproachviewsthedatasetbeinganalyzedasanEntity-RelationshipGraphofnodes(entities)interconnectedviarelationships(edges).
FortheWePSdomain,thenodesarethenamedentities,hyperlinks,andemailsextractedoffthewebpagesduringthepre-processingaswellasthewebpagesthemselves.
Therelationshipsareco-occurrencerelationships,andthosethatarederivedfromhyperlinkanddecompositions.
Thegraphcreationprocedureisdiscussedindetailin[4].
TheentityrelationshipsgraphinthiscaseisacombinationoftheSocialNetworkextractedfromthewebpagesaswellasthehyperlinkgraph.
Todecidewhethertworeferencesuandvco-refer,GraphERanalyzeshowstronglyuandvareconnectedinthisgraphaccordingtoaconnectionstrengthmeasurec(u,v).
Tocomputec(u,v),thealgorithmdiscoversthesetPLuvofallL-shortsimpleu-vpaths.
1Thevalueofc(u,v)iscomputedasthesumoftheconnectionsstrengthcontributedfromeachpathpinPLuv:c(u,v)=p∈PLuvc(p).
Asupervisedlearningprocedure,formulatedasalinearpro-grammingoptimizationtask,isusedtolearnc(p)functionfromdata[4],[5].
Thesimilarityfunctions(u,v)isthendenedasacombinationofc(u,v)andf(u,v).
Theoutputofthisfunctionisusedbyacorrelationclusteringalgorithmtogeneratethenalclustersofwebpages.
B.
EnsembleEREnsembleERapproachismotivatedbytheobservationthatoftenthereisnosingleentityresolution(ER)techniquealwaysperformthebest.
Rather,differentERsolutionsperformbetterindifferentcontexts.
EnsembleERisastacking-likeframeworkthatcombinestheclusteringresultsofmultiplebase-levelERsystemssothatthenalclusteringqualityissuperiortothatofanysinglebaseERsystem.
Thekeyideaistotransformtheoutputofbase-levelERsystems,togetherwithcontext,intoameta-levelfeatureset.
Asupervisedlearningapproachisutilizedtotrainaclassieronthemeta-leveldata.
Thealgorithmthenappliesthemeta-levelclassiertothedatasetbeingprocessedtocreatethenalclusteringresults.
Figure4showsageneralframeworkofcombiningmultiplesystems.
SimilartoGraphERapproach,EnsembleERalsoutilizesagraphrepresentationofthedataset.
Thegraphhoweveris1ApathisL-shortifitslengthdoesnotexceedL.
Apathissimpleifitdoesnotcontainduplicatenodes.
different.
Thenodesarethetop-Kwebpages.
Edge(u,v)betweentwowebpagesuandviscreatedonlyifacertainnumberofthebase-levelERsystemsdecidethatuandvshouldbeinthesamecluster.
Edge(u,v)representsapossibilitythatuandvmightco-refer.
WithrespecttothegraphthattaskofEnsembleERcanbeviewedasdecidingforeachedgewhetheruandvshouldbeputinonecluster.
LetS1,S2,Snbethenbase-levelERsystems.
Foreachedgeei=(u,v),eachSjoutputitsdecisiondij∈{0,1}.
Here,ifuandvareplacedinthesameclusterbySjthendij=1otherwisedij=0.
Then,foreachedgeeiwecandeneadecisionfeaturevectorasdi={di1,di2,din}.
Foredgeeiitslocalcontextisalsoencodedasamulti-dimensionalcontextfeaturevectorfi={fi1,fi2,fim}.
OneoftheinterestingaspectsofEnsembleERsolutionisthatitcreatescontextfeaturesinapredictiveway,basedonrstestimatingsomeunknownparametersofthedatabeingprocessed.
Forinstance,letK1,K2,KnbethenumberofclustersthatsystemsS1,S2,Snoutput.
OneofthefeaturesusedbyEnsembleERiscomputedbyapplyingaregressiontothisdatatoestimatethenumberofnamesakesK,wherethetruenumberofnamesakesK+isunknownbeforehandtothealgorithm.
EnsembleERthenconvertsthedifferencebetweenKandKjintoafeature,basedontheintuitionthattheclosertheKjtoK,themorecondencecanbeplacedintheanswerofsystemSj.
ThegoalofEnsembleERreducestondingamappingdi*fi→ai.
Here,ai={0,1}isthepredictionofthecombinedalgorithmforedgeei=(u,v),whereai=1iftheoverallalgorithmbelievesuandvbelongtothesamecluster,andai=0otherwise.
ThedetailsoftheEnsemblealgorithmcanbefoundin[3].
C.
WebERWebERapproachisconsiderablydifferentfrommostoftheotherWePSsolutions.
UnlikemanyotherWePSsystems,WebERdoesnotlimititsprocessingtoanalyzingonlytheinformationstoredinthetop-Kreturnedwebpages.
RatheritemploystheWebasanexternaldatasourcetogetadditionalinformation,whichultimatelyleadstohigherqualityresults.
WebERisprimarilyintendedtobeaserver-sidesolution.
Thatis,itscodeisexecutedatasearchengine(server)side.
Becauseofthat,mostofthepre-processingcanbeaccomplishedinbulkbeforequeryprocessingstarts,includingextractionandTF/IDFcomputations.
ThequeriestothesearchenginearecarriedoutinternallywithoutgoingviatheInternetthusmakingtheirprocessingmuchfaster.
LetD={d1,d2,dK}bethesetofthetop-Kreturnedwebpages.
WebERrstmergessomeofthewebpagesintoinitialclustersusingNamedEntity(NE)clusteringwithaconservativethresholds.
Thedocument-documentsimilarityiscomputedusingTF/IDFapproachwithcosinesimilarity.
Onlyafewwebpagesthathaveoverwhelmingevidencethattheyrepresentthesamepeoplearemergedduringthisprocess.
LetPiandOibethesetofpeopleandorganizationsextractedfromwebpagedi.
ForeachpairwebpagesdianddjthatALL-IN-ONEUBC-ASUC3MWITDFKI2JHU1-13TITPIUA-ZSASWAT-IVAUGONE-IN-ONEUNNFICOSHEFUVAPSNUSIRST-BPCU-COMSEMWEST00.
10.
20.
30.
40.
50.
60.
70.
80.
9SystemsFpFig.
5.
TheExperimentresultsonWePSdataset.
arenotyetputinthesameclustertheapproachformsandissuesqueriestotheWebtocollecttheco-occurrencestatistics,whichinthiscaseisthenumberofthepagesreturnedforagivenquery.
WebERusestwomaintypesofqueries:NANDCiANDCjCiANDCjHereNisthenameofthepersonbeingqueriedbytheuser,andCiandCjarethecontextofpagesdianddj.
ContextCicanbeeither(a)anORcombinationofpeoplefromPi,or(b)anORcombinationoforganizationsfromOi.
ThesameholdsforCiresultingineightqueriesfordianddjpair.
Theseco-occurrencecountsareindicativeofhowoftentheelementsofthetwosocialnetworksco-occuronthewebandthushowstronglytheyarerelated.
Thesecountsarethentransformedintofeatures,whicharethenusedtocomputethesimilaritybetweenwebpagesdianddj.
OneofthekeycontributionsofthisworkisanewSkyline-basedclassierfordecidingwhichdianddjwebpagesshouldbemergedbasedonthecorrespondingfeaturevector.
Itisaspecializedclassierthatwehavedesignedspecicallyfortheclusteringproblemathand.
Skyline-basedclassiergainsitsadvantageduetoavarietyoffunctionalitiesbuiltintoit,including:Ittakesintoaccountdominancethatispresentinthefeaturesspace.
Italsonetunesitselftothequalitymeasurebeingused.
Ittakesintoaccounttransitivityofmerges:thatis,ac-countsforthefactthattwolargeclusterscanbemergedbyasinglemergedecision,and,thus,onedirectmergedecisioncanleadtomultipleindirectones.
Thesepropertiesallowittoeasilyoutperformotherclassi-cationmethods(whicharegeneric),suchasDTCorSVM.
Theapproachisdiscussedindetailin[6].
IV.
DEMONSTRATIONTheERalgorithmsusedbyWESTareknowntoproducehighlycompetitiveresults.
Figure5presentsthecomparisonresultsoftheWESTwith18otherWePSsolutionsthathavebeenpartoftheWePSTaskchallenge[1].
ThequalityofclusteringisevaluatedintermsofFpmeasure(harmonicmeanofPurityandInversePurity[1]).
ForthegroupidenticationwehavecomparedWESTwiththestateoftheartapproachpublishedin[2].
TheaverageF-measureonthisdatasetachievedbyWESTis92%whichisnearly12%improvementovertheresultreportedin[2].
TheWESTsystemwillbedemonstratedthroughtwoap-plicationsbuiltoverthebasesystem.
SinglePersonSearch(illustratedinFigure1):whereinausercanenterapersonnameandcontextintheformofpeople,locations,and/ororganizationsassociatedwiththepersonbeingqueried.
Theresultswillbeasetofclusters.
Eachclusterwillhaveasetofkeywordsattachedtoindicatethemainaspectofthecorrespondingnamesake.
Theclusterswillbepresentedinarankedorderbasedontheoriginalranksofthewebpagesintheclustersandthecontextkeywords.
Figure2showssampleresultingclustersforthequery"AndrewMcCallum".
TherstreturnedgroupcorrespondstoAndrewMcCallumtheUMassCSprofessor,thesecondtothepresidentoftheAustralianCouncilofSocialServices,thethirdtoaCanadianmusician,etc.
Theuserwillbeabletoclickontheclustersandexploretheirclustersinteractively.
Thewebpagesinaclusterwillbepresentedinarankedorderaswell.
GroupSearch:Anotherinterfacewillbeusedtodemon-stratetheGroupIdenticationsearchcapabilitiesofWEST.
Ingroupqueryinterface,theusercaninputseveralpersonnames.
Theresultwillbethewebpagesthatarerelatedtothemeantnamesakes.
Theseapplicationswillbedemonstratedbothintheonlineandofinemodes.
Intheonlinemode,thequeryinputbytheuserwillbetranslatedintoacorresponding(setof)queriesoverInternetsearchengines(specicallyoverGoogle).
WESTallowstheusertospecifythenumberofwebpagestoretrievefromthesearchengine,whichwillbedisambiguatedintocorrespondingclusters.
Intheonlinemode,WESTusesonlyGraphERandEnsembleERapproachessinceWebERisaserver-sideapproachandisnotamenableforrealizationasamiddleware.
Thedemonstrationwillallowobserverstododiversesearches(perhaps,oftheirownnames)andperceiveboththequalityaswellasefciencyofWEST.
Intheofinemode,WESTwillusepreconstructed"canned"exampleswherewehavealreadycrawledthewebtoretrievethesearchresultsandconstructedthecorrespondingclusters.
Intheofinemode,inadditiontoillustratingtheGraphERandEnsembleERapproaches,wewillalsodemonstratethedisambiguationpoweroftheWebERapproach.
REFERENCES[1]J.
Artiles,J.
Gonzalo,andS.
Sekine.
Thesemeval-2007wepsevaluation:Establishingabenchmarkforthewebpeoplesearchtask.
InSemEval,2007.
[2]R.
BekkermanandA.
McCallum.
Disambiguatingwebappearancesofpeopleinasocialnetwork.
InWWW,2005.
[3]Z.
Chen,D.
V.
Kalashnikov,andS.
Mehrotra.
Combiningentityresolutiontechniqueswithapplicationtowebpeoplesearch.
InUndersubmission.
[4]D.
V.
Kalashnikov,Z.
Chen,S.
Mehrotra,andR.
Nuray.
Webpeoplesearchviaconnectionanalysis.
IEEETKDE,2008.
toappear.
[5]D.
V.
Kalashnikov,S.
Mehrotra,S.
Chen,R.
Nuray,andN.
Ashish.
Disambiguationalgorithmforpeoplesearchontheweb.
InICDE,2007.
[6]D.
V.
Kalashnikov,R.
Nuray-Turan,andS.
Mehrotra.
Towardsbreakingthequalitycurse.
Aweb-queryingapproachtoWebPeopleSearch.
InProc.
ofAnnualInternationalACMSIGIRConference,Singapore,July20–242008.
昔日数据怎么样?昔日数据新上了湖北十堰云服务器,湖北十堰市IDC数据中心 母鸡采用e5 2651v2 SSD MLC企业硬盘 rdid5阵列为数据护航 100G高防 超出防御峰值空路由2小时 不限制流量。目前,国内湖北十堰云服务器,首月6折火热销售限量30台价格低至22元/月。(注意:之前有个xrhost.cn也叫昔日数据,已经打不开了,一看网站LOGO和名称为同一家,有一定风险,所以尽量不要选择...
racknerd怎么样?racknerd今天发布了几款美国特价独立服务器的促销,本次商家主推高配置的服务器,各个配置给的都比较高,有Intel和AMD两种,硬盘也有NVMe和SSD等多咱组合可以选择,机房目前有夏洛特、洛杉矶、犹他州可以选择,性价比很高,有需要独服的朋友可以看看。点击进入:racknerd官方网站RackNerd暑假独服促销:CPU:双E5-2680v3 (24核心,48线程)内存...
Virmach 商家算是比较久且一直在低价便宜VPS方案中玩的不亦乐乎的商家,有很多同时期的商家纷纷关闭转让,也有的转型到中高端用户。而前一段时间也有分享过一次Virmach商家推出所谓的一次性便宜VPS主机,比如很低的价格半年时间,时间到服务器也就关闭。这不今天又看到商家有提供这样的产品。这次的活动产品包括圣何塞和水牛城两个机房,为期六个月,一次性付费用完将会取消,就这么特别的产品,适合短期玩玩...
west为你推荐
软银亏损65亿美元马云仅仅持有阿里8.9%的股份,就有270多亿美元,孙正义的软银占有那么多股份,怎么还不是亚洲首富p图软件哪个好用新手用哪个软件p图较好?机械表和石英表哪个好买石英表还是机械表好啊手机杀毒软件哪个好手机杀毒清理软件哪个好啊游戏盒子哪个好lol游戏盒子哪个好核芯显卡与独立显卡哪个好英特尔核芯显卡怎么样?和独立显卡那个更好?加速器哪个好主流加速器哪个好行车记录仪哪个好行车记录仪什么牌子好电信10000宽带测速怎样测试电信宽带的网速? 771212电信dns服务器地址电信光纤的dns地址怎么设置
企业域名备案 asp.net主机 vps.net 香港机房 kdata softbank官网 免费全能空间 国外在线代理 最好的空间 刀片式服务器 河南移动网 vip购优惠 1元域名 沈阳主机托管 秒杀品 浙江服务器 实惠 小夜博客 移动王卡 香港ip 更多