大数据日志分析如何用loghao分析日志

大数据日志分析  时间:2021-08-07  阅读:()

大数据上的数据分析要如何实现?

要从收集的数据中提取价值、提高威胁管理活动的效率以及使用法规遵从性活动来推动决策 制定,安全团队需要使用“大数据”方法来进行安全管理。

/docs/DOC-42149 这意味着: 采用敏捷的“横向扩展”基础架构来响应不断变化的 IT 环境和不断发展的威胁。

安全管理需要支持影响 IT 的新业务计划,从新的应用程序到新的交付模式,例如移动性、虚拟化、云计算和外包。

安全管理基础架构必须能够在企业层面上收集和管理安全数据,并进行扩展以满足当今的企业级需求(包括物理要求和经济要求)。

这意味着进行“横向扩展”而非“纵向扩展”,因为将所有这些数据集中化在实际情况中是不可能的。

此外,该基础架构还需要能够轻松扩展以适应新的环境,并时刻准备好发展和完善以支持对不断演变的威胁进行分析。

拥有支持安全分析特性的分析和可视化工具。

安全专家需要专业的分析工具来支持其工作。

有的分析师需要工具来协助自己找出具备某些支持详细信息的基本事件。

经理们可能只需要关键指标的高级可视化图形和趋势图。

恶意内容分析师需要重建可疑的文件和工具,以便自动执行这些文件的测试。

网络取证分析师需要全面重建关于某个会话的所有日志和网络信息,以便精确地确定发生的情况。

拥有威胁智能以便对收集的信息应用数据分析技术。

组织需要了解当前的外部威胁环境,以便将这些威胁与从组织内部收集到的信息进行关联。

这种关联工作对于分析师至关重要,可帮助他们清楚地理解当前的威胁指示因素和他们需要寻找的信息。

如何使用Hive进行大数据分析

Hive 提供了类似 SQL 的连接语义。

内连接是应用程序中使用的最常见的 join 操作,可将它视为默认连接类型。

内连接基于连接谓词将两个表(假设为 A (CDR) 和 B(网络日志))的列值合并在一起。

内部 join 查询将 A 表与 B 表的每一行进行比较,找出满足连接谓词的所有行对。

如果满足连接谓词,则会将该记录的 A 和 B 的列值合并,以建立新的合成记录。

可以这样思考内连接:它获取这两个表的 Cartesian 产品,然后返回满足连接谓词的记录。

大数据分析要学什么?

很多初入大数据领域或者转行进入大数据领域的朋友,需要了解的第一件事不是说各种组件框架生态相关的东西,也不是各种编程语言基础。

  而是,了解清楚以下几个问题:   1)大数据领域到底包含了哪些东西,解决了哪些问题?   2)自己的实际基础是什么,如何结合自己的基础以及兴趣爱好,在整个大数据领域链路中,找到最好的切入点。

只有解决了上面两个问题,才能给自己最精确的定位,找准方向深入下去。

  第一个问题,大数据领域的范围。

  现在一说起大数据分析,简单起来就是一个词,但其实这个方向已经可以形成一个技术领域了,包含了方方面面的技术点,也提供了各种不同的技术岗位。

所以,不同的岗位,对应的需求,工作内容都是不同的。

  我们可以根据数据从下到上,从无到有,到产生价值整个数据业务流程来拆解,并且与此同时,来看看每个环节我们需要的技术储备以及能做的事有哪些。

大数据分析的几大基本业务流程:   收集 -> 传输 -> 转换/清洗 ->存储 -> 再加工 -> 挖掘/统计 -> 上层应用输出   总的来说,可以分以下几个大块。

第一环:数据的收集   在收集阶段,我们来看看数据主要有哪几种存在方式:   1)第三方开放数据集   2)业务数据   3)服务日志   4)行为上报数据   首先针对于第三方开放数据,目前爬取第三方开放数据的形式已经逐渐被认可,并且将会越来越多的人以及企业从互联网开放数据集中获取原始数据。

所以,针对于开放数据的获取,爬虫已经可以单独形成一个体系了,包括不同的爬虫框架,以及近年来对于分布式爬虫的技术需求等,在语言方面主要还是python以及java为主,辅助其他相关脚本知识。

  如果数据是业务数据,那么通常在传统的路子中,业务数据一般存储在传统的数据库中,那么,对于传统数据库相关的技术知识不可避免的需要有所了解。

  我们需要对数据进行统一化处理,又不可避免的涉及到数据的迁移,即从传统数据存储介质中迁移到诸如hadoop生态中,那么涉及的迁移框架诸如sqoop之类的,又是不能不懂一些。

在语言以及基础要求上,对SQL相关的知识需要补充,以及linux操作,简单的python需要掌握。

  最后,如果是数据上报的形式,你需要对整个数据上报的流程熟悉,怎么进行埋点、怎么收集上报的数据,上报过来怎么进行传输接受落地,这里就不多说,最终这种上报过来的数据反倒相对规整。

第二环:数据的传输   数据的传输到底在什么时候会涉及到呢?诸如上面说到的数据上报,在大数据模式下,通常上报过来的数据我们都不会马上进行落地的,因为涉及到不同部分其效率不一样,在峰值波动的情况下,直接落地十有八九都会导致系统宕机。

  所以,数据的传输在大数据领域中有着不可替代的左右,会出现在各种系统耦合之间,一方面用作数据的传输,另一方面用作数据的缓冲、系统解耦。

在hadoop生态中,最有名的莫过于kafka与flume的组合搭配了,收集数据,并进行数据传输,此外还有不少类似的消息队列存在,诸如ActiveMQ、阿里的RocketMQ等等。

第三环:数据的存储   生态中最最核心的存储组件莫过于HDFS了,这是支撑hadoop能够做大批量数据处理的基础支撑,便捷而强悍的横向扩展能力。

还有各种基于此之上不同形式的数据存储方式,诸如hive、HBase、甚至ES、Solr勉强都算,以及不可忽略的传统类型的SQL存储方式。

  我们需要理解的是,不同的存储方式应对于实际的应用场景是不同的,HDFS作为最基础的分布式文件系统,我们就不多说。

如Hive其更作用更多用于类传统式的SQL查询操作,其对于效应效率要求并不高,但对于数据规模的支撑性良好;而HBase则更偏向于即席查询,要求有更高的响应效率,但对于查询的复杂性支持上则相对较弱。

  而我们说诸如ES、Solr都也勉强算是一种数据存储的组织方式,其实也是有一定道理的,因为他们本身也支持这种分布式的数据存储,只不过他们是为了应对于自己框架的检索需求而设计的数据存储组织。

如Redis,也算是目前大数据生态中不可缺少的数据存储方式之一,基于内容,应对于高效的数据存储与读取,在很多的实际应用场景中都用的到。

第四环:数据的再加工   其实这一层主要要说就是基于Hadoop的MR框架以及Spark,当然,也有其他的一些分布式数据处理框架。

  大规模的数据清洗转换、再加工,都离不开分布式处理框架的支持。

我们需要对杂乱的数据进行标准化、对残缺的数据进行补全、对原始的数据进行深度加工提取高级属性等等。

简单的,我们可以通过一些处理脚本来做,但针对于大规模的数据量级,我们依然需要依赖MR或者spark这种框架来处理。

而针对于一些实时的场景,我们也不可避免的需要掌握诸如storm以及spark streaming之类的实时框架。

所以,在这一环,我们不止需要了解不同的大数据处理框架,我们还需要在基于框架的基础上,做数据应用开发,进行数据处理。

最后一环:数据应用价值输出   前面我们做了很多事,包括数据的收集、传输、处理、存储等等,但这些都是手段,都不是我们的目的。

我们的目的是让数据产生价值,这也是企业做大数据的核心目的。

  我们可以用数据来做什么:   1)基于统计分析、数据预测,做数据化运营、决策,提升效率、效果,这是最常见的应用场景。

  2)做推荐,在主体之外产生衍生价值,提升单位价值转换。

  3)画像体系,至于说画像能做什么,只要能做的准,能做的事可多了。

  4)基于数据化、智能化的搜索。

  5)实现业务的数据化、自动化、智能化。

相关推荐 大数据分析要学什么 转行大数据分析师后悔了 大数据分析太难了学的想哭

如何用loghao分析日志

日志是非结构化数据,做分析需要先将日志文件做数据清洗。

将数据清洗为结构化数据,入库分析。

另外,还有考虑数据的管理,譬如日志数据增量更新等等。

针对数据量大,可采用大数据工具存储和计算,譬如开源的Hadoop和Pentaho,或者永洪科技的大数据BI等大数据计算和数据分析一体的工具。

Spinservers美国圣何塞服务器$111/月流量10TB

Spinservers是Majestic Hosting Solutions,LLC旗下站点,主营美国独立服务器租用和Hybrid Dedicated等,数据中心位于美国德克萨斯州达拉斯和加利福尼亚圣何塞机房。TheServerStore.com,自 1994 年以来,它是一家成熟的企业 IT 设备供应商,专门从事二手服务器和工作站业务,在德克萨斯州拥有 40,000 平方英尺的仓库,库存中始终有...

RAKSmart VPS主机半价活动 支持Windows系统 包含香港、日本机房

RAKSmart 商家最近动作还是比较大的,比如他们也在增加云服务器产品,目前已经包含美国圣何塞和洛杉矶机房,以及这个月有新增的中国香港机房,根据大趋势云服务器算是比较技术流的趋势。传统的VPS主机架构方案在技术层面上稍微落后一些,当然也是可以用的。不清楚是商家出于对于传统VPS主机清理库存,还是多渠道的产品化营销,看到RAKSmart VPS主机提供美国、香港和日本机房的半价促销,当然也包括其他...

GigsGigsCloud:$16/月KVM-1GB/30GB/1TB/1.6T高防/洛杉矶CN2 GIA+AS9929

GigsGigsCloud是一家成立于2015年老牌国外主机商,提供VPS主机和独立服务器租用,数据中心包括美国洛杉矶、中国香港、新加坡、马来西亚和日本等。商家VPS主机基于KVM架构,绝大部分系列产品中国访问速度不错,比如洛杉矶机房有CN2 GIA、AS9929及高防线路等。目前Los Angeles - SimpleCloud with Premium China DDOS Protectio...

大数据日志分析为你推荐
ie9下载window7系统下载初始化磁盘如何将磁盘还原为“未初始化”状态?巴西时区巴西现在和北京时间 的时间差是多少啊?安卓模拟器哪个好用手机模拟器哪个好用?求推荐。最好的视频播放器目前最好的视频播放器是什么?碰撞球碰撞分为哪几种,分别解释一下vrrp配置路由器的配置子模式有哪些充值卡充值支付宝可以用充值卡充值吗?邮件服务器软件Windows邮件服务器软件那个好好用的手机杀毒软件大家都在用什么手机杀毒软件?哪个最好用?
域名备案批量查询 免费申请域名和空间 主机测评 lamp vir 国外永久服务器 dns是什么 主机评测 私服服务器 老左博客 河南移动邮件系统 hinet 秒杀汇 129邮箱 100mbps 512mb 空间登录首页 atom处理器 域名和主机 卡巴斯基官网下载 更多