神经网络设计用MATLAB设计BP神经网络时,inputbias=net.b{2}和 inputbias=net.b{1}对结果有什么影响?二者有什么区别?

神经网络设计  时间:2021-08-03  阅读:()

如何用Tensorflow 快速搭建神经网络

在MNIST数据集上,搭建一个简单神经网络结构,一个包含ReLU单元的非线性化处理的两层神经网络。

在训练神经网络的时候,使用带指数衰减的学习率设置、使用正则化来避免过拟合、使用滑动平均模型来使得最终的模型更加健壮。

程序将计算神经网络前向传播的部分单独定义一个函数inference,训练部分定义一个train函数,再定义一个主函数main。

二、分析与改进设计 1. 程序分析改进 第一,计算前向传播的函数inference中需要将所有的变量以参数的形式传入函数,当神经网络结构变得更加复杂、参数更多的时候,程序的可读性将变得非常差。

第二,在程序退出时,训练好的模型就无法再利用,且大型神经网络的训练时间都比较长,在训练过程中需要每隔一段时间保存一次模型训练的中间结果,这样如果在训练过程中程序死机,死机前的最新的模型参数仍能保留,杜绝了时间和资源的浪费。

第三,将训练和测试分成两个独立的程序,将训练和测试都会用到的前向传播的过程抽象成单独的库函数。

这样就保证了在训练和预测两个过程中所调用的前向传播计7a686964616fe78988e69d8331333363386166算程序是一致的。

2. 改进后程序设计 mnist_inference.py 该文件中定义了神经网络的前向传播过程,其中的多次用到的weights定义过程又单独定义成函数。

通过tf.get_variable函数来获取变量,在神经网络训练时创建这些变量,在测试时会通过保存的模型加载这些变量的取值,而且可以在变量加载时将滑动平均值重命名。

所以可以直接通过同样的名字在训练时使用变量自身,在测试时使用变量的滑动平均值。

mnist_train.py 该程序给出了神经网络的完整训练过程。

mnist_eval.py 在滑动平均模型上做测试。

通过tf.train.get_checkpoint_state(mnist_train.MODEL_SAVE_PATH)获取最新模型的文件名,实际是获取checkpoint文件的所有内容。

BP神经网络的Matlab编程

#include<stdio.h> #include<conio.h> #define RUN 1 void swap(int *a, int *b) { int temp; temp = *a; *a = *b; *b = temp; } void change(int *p) { int i; int j; int *pmax = p, *pmin = p; for (i = 0 ; i < 5 ; i++) { for (j = 0 ; j < 5 ; j++) { if (*pmax < *(p + 5*i + j)) { pmax = (p + 5*i + j); } if (*pmin > *(p + 5*i + j)) { pmin = (p + 5*i + j); } } } swap(pmin, p); swap(pmax, (p + 12)); #if RUN printf("%d %d ", *p, *(p + 12)); #endif pmin = (p + 1); for (i = 0 ; i < 5 ; i++) { for (j = 0 ; j < 5 ; j++) { if (*pmin > *(p + 5*i + j) && (i != 0 || j != 0)) { pmin = (p + 5*i + j); } } } swap(pmin, (p + 4)); #if RUN printf("%d ", *(p + 4)); #endif pmin = (p + 1); for (i = 0 ; i < 5 ; i++) { for (j = 0 ; j < 5 ; j++) { if (*pmin > *(p + 5*i + j) && (i != 0 || j != 0) && (i != 0 || j != 4)) { pmin = (p + 5*i +j); } } } swap(pmin, (p + 5*4)); #if RUN printf("%d ", *(p + 20)); #endif pmin = (p + 1); for (i = 0 ; i < 5 ; i++) { for (j = 0 ; j < 5 ; j++) { if (*pmin > *(p + 5*i + j) && (i != 0 || j != 0) && (i != 4 || j != 0) && (i != 0 || j != 4)) { pmin = (p + 5*i + j); } } } swap(pmin, (p + 4*5 + 4)); #if RUN printf("%d ", *(p + 24)); #endif } main() { int a[5][5]; int *p1 = &a[0][0]; int i, j; printf("input the numbers: "); for (i = 0 ; i < 5 ; i++) { for (j = 0 ; j < 5 ; j++) { scanf("%d", &a[i][j]); } } change(p1); printf("the new is: "); for (i = 0 ; i < 5 ; i++) { for (j = 0 ; j < 5 ; j++) { printf("%d ", *(p1 + 5*i + j)); } printf(" "); } getch(); }

BP神经网络的Matlab编程

#include<stdio.h> #include<conio.h> #define RUN 1 void swap(int *a, int *b) { int temp; temp = *a; *a = *b; *b = temp; } void change(int *p) { int i; int j; int *pmax = p, *pmin = p; for (i = 0 ; i < 5 ; i++) { for (j = 0 ; j < 5 ; j++) { if (*pmax < *(p + 5*i + j)) { pmax = (p + 5*i + j); } if (*pmin > *(p + 5*i + j)) { pmin = (p + 5*i + j); } } } swap(pmin, p); swap(pmax, (p + 12)); #if RUN printf("%d %d ", *p, *(p + 12)); #endif pmin = (p + 1); for (i = 0 ; i < 5 ; i++) { for (j = 0 ; j < 5 ; j++) { if (*pmin > *(p + 5*i + j) && (i != 0 || j != 0)) { pmin = (p + 5*i + j); } } } swap(pmin, (p + 4)); #if RUN printf("%d ", *(p + 4)); #endif pmin = (p + 1); for (i = 0 ; i < 5 ; i++) { for (j = 0 ; j < 5 ; j++) { if (*pmin > *(p + 5*i + j) && (i != 0 || j != 0) && (i != 0 || j != 4)) { pmin = (p + 5*i +j); } } } swap(pmin, (p + 5*4)); #if RUN printf("%d ", *(p + 20)); #endif pmin = (p + 1); for (i = 0 ; i < 5 ; i++) { for (j = 0 ; j < 5 ; j++) { if (*pmin > *(p + 5*i + j) && (i != 0 || j != 0) && (i != 4 || j != 0) && (i != 0 || j != 4)) { pmin = (p + 5*i + j); } } } swap(pmin, (p + 4*5 + 4)); #if RUN printf("%d ", *(p + 24)); #endif } main() { int a[5][5]; int *p1 = &a[0][0]; int i, j; printf("input the numbers: "); for (i = 0 ; i < 5 ; i++) { for (j = 0 ; j < 5 ; j++) { scanf("%d", &a[i][j]); } } change(p1); printf("the new is: "); for (i = 0 ; i < 5 ; i++) { for (j = 0 ; j < 5 ; j++) { printf("%d ", *(p1 + 5*i + j)); } printf(" "); } getch(); }

用MATLAB设计BP神经网络时,inputbias=net.b{2}和 inputbias=net.b{1}对结果有什么影响?二者有什么区别?

net.b是BP神经网络的阈值,你取1和2应该是输入层阈值与输出层阈值,我想你的输出结果是1维变量,所以2是1一个数,取1与输入层变量数应该相同的,更详细的建立你借本书看下阈值方面的。

祝好运

无忧云-河南洛阳BGP,CEPH集群分布式存储,数据安全可靠,活动期间月付大优惠!

 无忧云怎么样?无忧云服务器好不好?无忧云值不值得购买?无忧云是一家成立于2017年的老牌商家旗下的服务器销售品牌,现由深圳市云上无忧网络科技有限公司运营,是正规持证IDC/ISP/IRCS商家,主要销售国内、中国香港、国外服务器产品,线路有腾讯云国外线路、自营香港CN2线路等,都是中国大陆直连线路,非常适合免备案建站业务需求和各种负载较高的项目,同时国内服务器也有多个BGP以及高防节点...

RAKsmart(年79元),云服务器年付套餐汇总 - 香港 美国 日本云服务器

RAKsmart 商家从原本只有专注于独立服务器后看到产品线比较单薄,后来陆续有增加站群服务器、高防服务器、VPS主机,以及现在也有在新增云服务器、裸机云服务器等等。机房也有增加到拥有洛杉矶、圣何塞、日本、韩国、中国香港等多个机房。在年前也有介绍到RAKsmart商家有提供年付129元的云服务器套餐,年后我们看到居然再次刷新年付云服务器低价格。我们看到云服务器低至年79元,如果有需要便宜云服务器的...

Hostodo,美国独立日特价优惠,四款特价VPS云服务器7折,KVM虚拟架构,NVMe阵列,1核512M内存1Gbps带宽3T月流量,13.99美元/月,赠送DirectAdmin授权

Hostodo近日发布了美国独立日优惠促销活动,主要推送了四款特价优惠便宜的VPS云服务器产品,基于KVM虚拟架构,NVMe阵列,1Gbps带宽,默认分配一个IPv4+/64 IPv6,采用solusvm管理,赠送收费版DirectAdmin授权,服务有效期内均有效,大致约为7折优惠,独立日活动时间不定,活动机型售罄为止,有需要的朋友可以尝试一下。Hostodo怎么样?Hostodo服务器好不好?...

神经网络设计为你推荐
drainage排水承泄区指什么?scanf返回值何为函数的返回值,比如scanf()函数的返回值?豆瓣fm电台豆瓣有个电台 是专门读一些好听的文章的 怎么找不到了色温图数码相机上面色温小图标的详细作用小蓝条AU多轨怎么调出每个音轨下面一个小蓝条调整音量数据管理制度简述系统运行管理制度的主要内容阶乘函数C语言中有计算阶乘的函数吗 不是自己写,,,是那种可以直接调用的函数spinmaster街球名人都有哪些免杀远控求最新的免杀远控 收费没关系 主要是实用 键盘记录 屏幕控制 功能多得 骗子别来找骂程序员段子为什么会有程序员间的鄙视链
看国外视频直播vps 域名备案号查询 greengeeks a2hosting 256m内存 私人服务器 iisphpmysql 私有云存储 智能骨干网 数字域名 怎么测试下载速度 服务器维护方案 789电视网 免费全能主机 服务器托管什么意思 空间租赁 贵阳电信测速 防cc攻击 成都主机托管 小夜博客 更多