拟合度检验如何判断多元线性回归的拟合优度

拟合度检验  时间:2021-07-31  阅读:()

拟合度的拟合度介绍

拟合度检验是对已制作好的预测模型进行检验,比较它们的预测结果与实际发生情况的吻合程度。

通常是对数个预测模型同时进行检验,选其拟合度较好的进行试用。

常用的拟合度检验方法有:剩余平方和检验、卡方(c2)检验和线性回归检验等。

拟合度,也就是“R-squared”。

⑴.剩余平方和检验是将利用预测的理论预测值( )与病害发生的实际情况(y)进行比较,求得它们的差异平方和(Q)、回归误差(S)及曲线相关比(r)的值,希望Q、S的值愈小愈好,曲e68a84e799bee5baa6e79fa5e9819331333361303036线相关比(r)愈大愈好。

, r(曲)=1-(Q/Lyy) ⑵.卡方(c2)检验的计算公式 ⑶.回归误差检验法 (Sy/x检验) 通常,多因素预测方程的通式为: y=b0+b1x1+b2x2+···+bnxn±2Sy/x 方程尾部的Sy/x为方程的回归误差。

在利用预测方程的回归误差进行预测效果的检验时,认为预测值落在2个回归误差的范围之内,就认为预测正确,其实,回归误差是由建立预测方程的原始数据决定的,当原始数据的摆动范围愈大,所建方程的回归误差Sy/x也就愈大,此时用Sy/x作为检验标准,也就扩大了误差范围,因此,该方法的使用尚需探讨。

⑷.参数检验法(线性回归检验法) 在预测模型研制一章中已经提到,要比较几个模型的预测效果时可用参数检验法检查预测值 与病害发生的实测值y的符合情况,即 =y时,它们应符合: =0+1y, 用预测方程所得到的 的与相应的病害发生实测值进行回归,就可以得到如下的线性回归式 =a + by, 当有数个预测方程时,便可得到数个如下的线性回归式: =a1 + b1y, =a2 + b2y,, . . . . . . =an + bny, 。

此时比较几个a值和b值,当a值愈趋近于0,b愈趋近于1,则说明该方程的预测效果愈好。

普通最小二乘法和拟合优度检验有什么相同点和不同点

普通最小二乘法保证了模型最好地拟合了样本观测值,但拟合得好并不意味着质量高,故参数估计量与真值的拟合程度和显著性有待进一步的检验,其中就包括拟合优度检验。

举个通俗的例子:我用比身高的方法把班里相对最高的那位同学选了出来,但是不代表他就很高,他高不高还有待用尺子去量一下。

线性回归拟合优度为多少比较合适

R?的值越接近1,说明回归直线对观测值的拟合程度越好。

拟合优度为指回归直线对观测值的拟合程度。

度量拟合优度的统计量是可决系数R?。

R?最大值为1。

R?的值越接近1,说明回归直线对观测值的拟合程度越好;反之,R?的值越小,说明回归直线对观测值的拟合程度越差。

R?等于回归平方和在总平方和中所占的比率,即回归方程所能解释的因变量变异性的百分比(在MATLAB中,R?=1-"回归平方和在总平方和中所占的比率")。

实际值与平均值的总误差中,回归误差与剩余误差是此消彼长的关系。

扩展资料: 线性回归拟合优度的运用: 1、假定一个总体可分为r类,现从该总体获得了一个样本——这是一批分类数据,需要我们从这些分类数据中出发,去判断总体各类出现的概率是否与已知的概率相符。

2、进行了一元概率分布EDF型检验的功效模拟,将修正AD检验统计量应用于线性回归模型误差分布正态性检验。

3、拟合优度为一个统计术语,衡量金融模型的预期值和现实所得的实际值的差距。

它是一种统计方法应用于金融等领域,基于所得观测值的基础上作出的预测。

参考资料来源:百度百科-拟合优度

计量经济中的拟合优度的检验的思想是什么

拟合优度(Goodness of Fit)是指回归直线对观测值的拟合程度。

度量拟合优度的统计量是可决系数(亦称确定系数)R^2。

R^2的取值范围是[0,1]。

R^2的值越接近1,说明回归直线对观测值的拟合程度越好;反之,R^2的值越接近0,说明回归直线对观测值的拟合程度越差。

主要是运用判定系数和回归标准差,检验模型对样本观测值的拟合程度。

当解释变量为多元时,要使用调整的拟合优度,以解决变量元素增加对拟合优度的影响。

假定一个总体可分为r类,现从该总体获得了一个样本——这是一批分类数据,现在需要我们从这些分类数据中出发,去判断总体各类出现的概率是否与已知的概率相符。

譬如要检验一颗骰子是否是均匀的,那么可以将该骰子抛掷若干次,记录每一面出现的次数,从这些数据出发去检验各面出现的概率是否都是1/6, 拟合优度检验就是用来检验一批分类数据所来自的总体的分布是否与某种理论分布相一致。

如何分析回归模型的拟合度和显著性

模型的拟合度是用R和R方来表示的,一般大于0.4就可以了;自变量的显著性是根据各个自变量系数后面的Sig值判断的,如果小于0.05可以说在95%的显著性水平下显著,小于0.01就可以说在99%的显著性水平下显著了。

如果没有给出系数表,是看不到显著性如何的。

回归分析(regression analysis)是研究一个变量(被解释变量)关于另一个(些)变量(解释变量)的具体依赖关系的计算方法和理论。

从一组样本数据出发,确定变量之间的数学关系式对这些关系式的可信程度进行各种统计检验,并从影响某一特定变量的诸多变量中找出哪些变量的影响显著,哪些不显著。

利用所求的关系式,根据一个或几个变量的取值来预测或控制另一个特定变量的取值,并给出这种预测或控制的精确程度。

其用意:在于通过后者的已知或设定值,去估计和(或)预测前者的(总体)均值。

拓展资料: 回归模型(regression model)对统计关系进行定量描述的一种数学模型。

如多元线性回归的数学模型可以表示为y=β0+β1*x+εi,式中,β0,β1,…,βp是p+1个待估计的参数,εi是相互独立且服从同一正态分布N(0,σ2)的随机变量,y是随机变量;x可以是随机变量,也可以是非随机变量,βi称为回归系数,表征自变量对因变量影响的程度。

(资料来源:百度百科:回归模型)

如何判断多元线性回归的拟合优度

你提的方程显著性检验(f检验),变量显著性检验(t检验) 直接通过线性回归模型就能给出来了,也就是对构建的回归模型是否有效的一个检验。

而同时还能输出一个调整的r?,也算是对回归模型拟合度的一个检验 但是如果要专业的检验回归模型的拟合优度,那就在进行回归分析的时候 选择保存回归的预测值,然后比较预测值和实际值之间的差异,通过这个差异来看构建的模型的拟合度

阿里云香港 16核32G 20M 999元/月

阿里云香港配置图提速啦是成立于2012年的十分老牌的一个商家这次给大家评测的是 阿里云香港 16核32G 20M 这款产品,单单说价格上就是十分的离谱原价8631元/月的现价只要 999元 而且还有个8折循环优惠。废话不多说直接进入正题。优惠时间 2021年8月20日-2021年9月20日 优惠码 wn789 8折优惠阿里云香港BGP专线 16核32G 10M带宽 优惠购买 399元购买链接阿里云...

JUSTG提供俄罗斯和南非CN2 GIA主机年$49.99美元JUSTGgia南非cn2南非CN2justG

JUSTG,这个主机商第二个接触到,之前是有介绍到有提供俄罗斯CN2 GIA VPS主机活动的,商家成立时间不久看信息是2020年,公司隶属于一家叫AFRICA CLOUD LIMITED的公司,提供的产品为基于KVM架构VPS主机,数据中心在非洲(南非)、俄罗斯(莫斯科),国内访问双向CN2,线路质量不错。有很多服务商实际上都是国人背景的,有的用英文、繁体搭建的冒充老外,这个服务商不清楚是不是真...

GigsGigsCloud(年付26美元)国际线路美国VPS主机

已经有一段时间没有听到Gigsgigscloud服务商的信息,这不今天看到商家有新增一款国际版线路的美国VPS主机,年付也是比较便宜的只需要26美元。线路上是接入Cogentco、NTT、AN2YIX以及其他亚洲Peering。这款方案的VPS主机默认的配置是1Gbps带宽,比较神奇的需要等待手工人工开通激活,不是立即开通的。我们看看这款服务器在哪里选择看到套餐。内存CPUSSD流量价格购买地址1...

拟合度检验为你推荐
微软将停止支持32位Win10系统微软即将停止支持当前操作系统,如果不升级会怎么样客服系统方案营销呼叫中心系统的特点及解决方案?vs2005快捷键求eclipse3.3和VS2005的快捷键催收软件哪个好欠钱不还的,怎么利用催收平台帮助催收?智能公共广播系统智能公共广播系统js-3301数码mp3编程器怎么使用linux操作系统好吗linux系统好不好学??云图好看吗电影《云图》到底讲的什么,没看懂,高手来说一下。音响解码音响功放:源码输出和解码输出有什么区别新浪短网址链接生成新浪微博怎么发图文带短连接连接到自己的网站?盈科oa办公系统OA登录页面登录后不退出浏览器再次进入登录页面用别的用户登录显示的还是第一个用户的
国外vps主机 荣耀欧洲 账号泄露 183是联通还是移动 国外代理服务器地址 广州服务器 昆明蜗牛家 电信托管 丽萨 xuni 重庆联通服务器托管 美国主机 symantec paypal登陆 kosskeb4 最好的空间日志 宿迁服务器托管 网络存储服务器 好看的空间图片 双宿主机防火墙 更多