拟合度检验如何判断多元线性回归的拟合优度

拟合度检验  时间:2021-07-31  阅读:()

拟合度的拟合度介绍

拟合度检验是对已制作好的预测模型进行检验,比较它们的预测结果与实际发生情况的吻合程度。

通常是对数个预测模型同时进行检验,选其拟合度较好的进行试用。

常用的拟合度检验方法有:剩余平方和检验、卡方(c2)检验和线性回归检验等。

拟合度,也就是“R-squared”。

⑴.剩余平方和检验是将利用预测的理论预测值( )与病害发生的实际情况(y)进行比较,求得它们的差异平方和(Q)、回归误差(S)及曲线相关比(r)的值,希望Q、S的值愈小愈好,曲e68a84e799bee5baa6e79fa5e9819331333361303036线相关比(r)愈大愈好。

, r(曲)=1-(Q/Lyy) ⑵.卡方(c2)检验的计算公式 ⑶.回归误差检验法 (Sy/x检验) 通常,多因素预测方程的通式为: y=b0+b1x1+b2x2+···+bnxn±2Sy/x 方程尾部的Sy/x为方程的回归误差。

在利用预测方程的回归误差进行预测效果的检验时,认为预测值落在2个回归误差的范围之内,就认为预测正确,其实,回归误差是由建立预测方程的原始数据决定的,当原始数据的摆动范围愈大,所建方程的回归误差Sy/x也就愈大,此时用Sy/x作为检验标准,也就扩大了误差范围,因此,该方法的使用尚需探讨。

⑷.参数检验法(线性回归检验法) 在预测模型研制一章中已经提到,要比较几个模型的预测效果时可用参数检验法检查预测值 与病害发生的实测值y的符合情况,即 =y时,它们应符合: =0+1y, 用预测方程所得到的 的与相应的病害发生实测值进行回归,就可以得到如下的线性回归式 =a + by, 当有数个预测方程时,便可得到数个如下的线性回归式: =a1 + b1y, =a2 + b2y,, . . . . . . =an + bny, 。

此时比较几个a值和b值,当a值愈趋近于0,b愈趋近于1,则说明该方程的预测效果愈好。

普通最小二乘法和拟合优度检验有什么相同点和不同点

普通最小二乘法保证了模型最好地拟合了样本观测值,但拟合得好并不意味着质量高,故参数估计量与真值的拟合程度和显著性有待进一步的检验,其中就包括拟合优度检验。

举个通俗的例子:我用比身高的方法把班里相对最高的那位同学选了出来,但是不代表他就很高,他高不高还有待用尺子去量一下。

线性回归拟合优度为多少比较合适

R?的值越接近1,说明回归直线对观测值的拟合程度越好。

拟合优度为指回归直线对观测值的拟合程度。

度量拟合优度的统计量是可决系数R?。

R?最大值为1。

R?的值越接近1,说明回归直线对观测值的拟合程度越好;反之,R?的值越小,说明回归直线对观测值的拟合程度越差。

R?等于回归平方和在总平方和中所占的比率,即回归方程所能解释的因变量变异性的百分比(在MATLAB中,R?=1-"回归平方和在总平方和中所占的比率")。

实际值与平均值的总误差中,回归误差与剩余误差是此消彼长的关系。

扩展资料: 线性回归拟合优度的运用: 1、假定一个总体可分为r类,现从该总体获得了一个样本——这是一批分类数据,需要我们从这些分类数据中出发,去判断总体各类出现的概率是否与已知的概率相符。

2、进行了一元概率分布EDF型检验的功效模拟,将修正AD检验统计量应用于线性回归模型误差分布正态性检验。

3、拟合优度为一个统计术语,衡量金融模型的预期值和现实所得的实际值的差距。

它是一种统计方法应用于金融等领域,基于所得观测值的基础上作出的预测。

参考资料来源:百度百科-拟合优度

计量经济中的拟合优度的检验的思想是什么

拟合优度(Goodness of Fit)是指回归直线对观测值的拟合程度。

度量拟合优度的统计量是可决系数(亦称确定系数)R^2。

R^2的取值范围是[0,1]。

R^2的值越接近1,说明回归直线对观测值的拟合程度越好;反之,R^2的值越接近0,说明回归直线对观测值的拟合程度越差。

主要是运用判定系数和回归标准差,检验模型对样本观测值的拟合程度。

当解释变量为多元时,要使用调整的拟合优度,以解决变量元素增加对拟合优度的影响。

假定一个总体可分为r类,现从该总体获得了一个样本——这是一批分类数据,现在需要我们从这些分类数据中出发,去判断总体各类出现的概率是否与已知的概率相符。

譬如要检验一颗骰子是否是均匀的,那么可以将该骰子抛掷若干次,记录每一面出现的次数,从这些数据出发去检验各面出现的概率是否都是1/6, 拟合优度检验就是用来检验一批分类数据所来自的总体的分布是否与某种理论分布相一致。

如何分析回归模型的拟合度和显著性

模型的拟合度是用R和R方来表示的,一般大于0.4就可以了;自变量的显著性是根据各个自变量系数后面的Sig值判断的,如果小于0.05可以说在95%的显著性水平下显著,小于0.01就可以说在99%的显著性水平下显著了。

如果没有给出系数表,是看不到显著性如何的。

回归分析(regression analysis)是研究一个变量(被解释变量)关于另一个(些)变量(解释变量)的具体依赖关系的计算方法和理论。

从一组样本数据出发,确定变量之间的数学关系式对这些关系式的可信程度进行各种统计检验,并从影响某一特定变量的诸多变量中找出哪些变量的影响显著,哪些不显著。

利用所求的关系式,根据一个或几个变量的取值来预测或控制另一个特定变量的取值,并给出这种预测或控制的精确程度。

其用意:在于通过后者的已知或设定值,去估计和(或)预测前者的(总体)均值。

拓展资料: 回归模型(regression model)对统计关系进行定量描述的一种数学模型。

如多元线性回归的数学模型可以表示为y=β0+β1*x+εi,式中,β0,β1,…,βp是p+1个待估计的参数,εi是相互独立且服从同一正态分布N(0,σ2)的随机变量,y是随机变量;x可以是随机变量,也可以是非随机变量,βi称为回归系数,表征自变量对因变量影响的程度。

(资料来源:百度百科:回归模型)

如何判断多元线性回归的拟合优度

你提的方程显著性检验(f检验),变量显著性检验(t检验) 直接通过线性回归模型就能给出来了,也就是对构建的回归模型是否有效的一个检验。

而同时还能输出一个调整的r?,也算是对回归模型拟合度的一个检验 但是如果要专业的检验回归模型的拟合优度,那就在进行回归分析的时候 选择保存回归的预测值,然后比较预测值和实际值之间的差异,通过这个差异来看构建的模型的拟合度

六一云互联(41元)美国(24元)/香港/湖北/免费CDN/免费VPS

六一云互联六一云互联为西安六一网络科技有限公司的旗下产品。是一个正规持有IDC/ISP/CDN的国内公司,成立于2018年,主要销售海外高防高速大带宽云服务器/CDN,并以高质量.稳定性.售后相应快.支持退款等特点受很多用户的支持!近期公司也推出了很多给力的抽奖和折扣活动如:新用户免费抽奖,最大可获得500元,湖北新购六折续费八折折上折,全场八折等等最新活动:1.湖北100G高防:新购六折续费八折...

妮妮云(119元/季)日本CN2 2核2G 30M 119元/季

妮妮云的知名度应该也不用多介绍了,妮妮云旗下的云产品提供商,相比起他家其他的产品,云产品还是非常良心的,经常出了一些优惠活动,前段时间的八折活动推出了很多优质产品,近期商家秒杀活动又上线了,秒杀产品比较全面,除了ECS和轻量云,还有一些免费空间、增值代购、云数据库等,如果你是刚入行安稳做站的朋友,可以先入手一个119/元季付的ECS来起步,非常稳定。官网地址:www.niniyun.com活动专区...

hosthatch:14个数据中心15美元/年

hosthatch在做美国独立日促销,可能你会说这操作是不是晚了一个月?对,为了准备资源等,他们拖延到现在才有空,这次是针对自己全球14个数据中心的VPS。提前示警:各个数据中心的网络没有一个是针对中国直连的,都会绕道而且ping值比较高,想买的考虑清楚再说!官方网站:https://hosthatch.com所有VPS都基于KVM虚拟,支持PayPal在内的多种付款方式!芝加哥(大硬盘)VPS5...

拟合度检验为你推荐
mobilepartnerMobile Partner是什么东西?谷歌德语在线翻译德语翻译~java学习思维导图怎样使用思维导图软件excel2003官方哪有excel下载啊?最好是excel官方下载?微信语音在哪个文件夹怎么把微信语音导出来 从哪个文件夹导出啊催收软件哪个好靠谱的催收方式除了正规要账公司,还有哪些渠道的?flv转换aviflv怎么转换成avi腾讯汽车论坛如何推广一个小城市的汽车论坛handoff怎么用如何令Yosemite使用iPhone的通话功能和Handoff设置罗振宇2017跨年演讲“时间的朋友”跨年演讲办了多少场,分别是什么主题?
上海域名注册 windows虚机 独享100m 联通c套餐 softlayer winhost mach5 godaddy续费优惠码 轻博 mysql主机 hnyd panel1 本网站在美国维护 linux空间 免空 秒杀预告 亚马逊香港官网 smtp服务器地址 德讯 lamp架构 更多