J.
FluidMech.
(2010),vol.
644,pp.
5–33.
cCambridgeUniversityPress2010doi:10.
1017/S00221120099922055Thehydrodynamicsofwater-walkingarthropodsDAVIDL.
HUANDJOHNW.
M.
BUSHDepartmentofMathematics,MassachusettsInstituteofTechnology,Cambridge,MA02139,USA(Received24May2008;revised9September2009;accepted11September2009)Wepresenttheresultsofacombinedexperimentalandtheoreticalinvestigationofthedynamicsofwater-walkinginsectsandspiders.
Usinghigh-speedvideography,wedescribetheirnumerousgaits,someanalogoustothoseoftheirterrestrialcounterparts,othersspecializedforlifeattheinterface.
Thecriticalroleoftheroughsurfaceofthesewaterwalkersinbothoatationandpropulsionisdemonstrated.
Theirwaxy,hairysurfaceensuresthattheirlegsremaininawater-repellentstate,thatthebulkoftheirlegisnotwetted,butrathercontactwiththewaterarisesexclusivelythroughindividualhairs.
Maintainingthiswater-repellentstaterequiresthatthespeedoftheirdrivinglegsdoesnotexceedacriticalwettingspeed.
Flowvisualizationrevealsthatthewakesofmostwaterwalkersarecharacterizedbyaseriesofcoherentsubsurfacevorticesshedbythedrivingstroke.
Atheoreticalframeworkisdevelopedinordertodescribethepropulsionintermsofthetransferofforcesandmomentumbetweenthecreatureanditsenvironment.
Theapplicationoftheconservationofmomentumtobiolocomotionattheinterfaceconrmsthatthepropulsionofwaterwalkersmayberationalizedintermsofthesubsurfaceowsgeneratedbytheirdrivingstroke.
Thetwoprincipalmodesofpropulsionavailabletosmallwaterwalkersareelucidated.
Atdrivinglegspeedsinexcessofthecapillarywavespeed,macroscopiccurvatureforcesaregeneratedbydeformingthemeniscus,andthesurfacebehaveseectivelyasatrampoline.
Forslowerspeeds,thedrivinglegsneednotsubstantiallydeformthesurfacebutmayinsteadsimplybrushit:theresultingcontactorviscousforcesactingontheleghairscrossingtheinterfaceservetopropelthecreatureforward.
1.
IntroductionWepresentheretheresultsofanextensiveseriesofexperimentsaimedatelucidatingthepropulsionmechanismsofwater-walkingarthropods.
Ourstudyismotivatedprincipallybyfundamentalinterest,specicallyadesiretorationalizeanumberofnature'sdesigns.
Nevertheless,owingtothescalesinvolved,thisclassofproblemsmayservetoinspireandinformthebiomimeticdesignofmicrouidicdevices.
Forexample,thedynamicinteractionbetweenwater-repellentsolidsanduidsisaproblemofconsiderableinterestinanumberofengineeringapplications,forexamplethedesignofself-cleaninganddrag-reducingsurfaces(Bush,Hu&Prakash2008;Quere2008).
Therehasbeenconsiderableworkreportedinthebiologyliteratureonwater-walkinginsects,beginningwiththatofAldrovandi(1618)andRay(1710).
ThePresentaddress:DepartmentsofMechanicalEngineeringandBiology,GeorgiaInstituteofTechnology,Atlanta,GA30318,USAEmailaddressforcorrespondence:bush@math.
mit.
edu6D.
L.
HuandJ.
W.
M.
Bushintroductionoftheconceptofsurfacetension(Plateau1873)providedthephysicalbasisforunderstandingtheweightsupportofsmallwater-walkinginsects(Brocher1910;Baudoin1955),andthestaticequilibriaofwater-walkinginsectsisnowwellunderstood(Manseld,Sepangi&Eastwood1997;Keller1998).
Thedynamicsofwater-walkingarthropodsissubtlerandrequiresconsiderationofboththesurfacechemistryandthetextureresponsibleforthecreature'swaterrepellency(Bushetal.
2008)andtheinterfacialuiddynamicsgeneratedbyitslegstroke(Bush&Hu2006).
Theformandfunctionofthesurfacelayer(or'integument')ofwater-walkingcreatureshasbeenreviewedinBushetal.
(2008),andthedynamicalsignicanceofthehairgeometryhasbeendemonstratedinPrakash&Bush(submitted).
Water-walkingarthropodsarewaterrepellentbyvirtueoftheirwaxysurfacecoatingthatincreasesthecontactanglebeyondπ/2(Holdgate1955),andasurfaceroughnessthatconsistsofadensearrayofhairs(Andersen1977;Gao&Jiang2004;Stratton,Suter&Miller2004b).
Whenadjoiningthefreesurface,thesehairstrapairpockets,precludebulkwettingofthelegandsomaintaintheleg'swaterrepellency.
Whenthelegismoving,however,themannerinwhichwaterrepellencyismaintainedandforceistransferredfromtheuidtothedrivinglegsisnotimmediatelyclear.
Weheredemonstratethemeansbywhichpropulsiveforcesaregeneratedbythedrivingstrokeofwater-repellentwater-walkingarthropods.
Ithaslongbeenknownthatsurfacetensionplaysacriticalpropulsiveroleformostwater-walkingcreatures(Dufour1833;Brocher1910;Baudoin1955).
Withtheinventionofthehigh-speedcamerain1942,greatstridesweremadetowardsdescribingtheirmotiononthewatersurface.
Itbecameclearthatwaterwalkerspossessavarietyofgaits(Andersen1976;Suteretal.
1997)thatincludewalking,rowingandgalloping.
LocomotionbywaterwalkerssuchasMicrovelia,MesoveliaandHydrometraischaracterizedbyanalternatingtripodgaitanalogoustothatemployedonlandbycockroachesandotherterrestrialhexapods(Altendorferetal.
2001).
Themostecientwaterwalkers,suchaswaterstridersandsherspiders,rowusingtheirmiddlepairoflegs(Andersen1976;Suter,Stratton&Miller2003;Stratton,Suter&Miller2004a).
Bowdan(1978)notedthatwaterstridersreverttoawalkinggaitonauidofhigherviscosity.
Fisherspidersswitchfromrowingtogallopinginordertoachievetheirpeakspeed(Suter&Wildman1999).
Certainwaterwalkerscanclimbstaticmeniscisimplybydeformingthefreesurfacequasi-statically,therebygeneratinglateralcapillaryforces(Baudoin1955;Miyamoto1955;Hu&Bush2005).
Finally,Microveliaandcertainshore-dwellingcreaturespossessanemergencyformofpropulsion:byexcretingsurfactant,theygeneratesurface-tensiongradientsthatpropelthemshortdistancesalongthewatersurface(Linsenmair&Jander1976;Schildknecht1976).
Darnhofer-Demar(1969)showedexperimentallythatwaterstridersgeneratemillimetre-scaleindentationsbystrikingthefreesurfaceandsurmisedthatitwastheassociatedcurvatureforcesthatprovidethestrider'sthrust.
Heemphasizedthepresenceofwavesinthewake,andthisfuelledworksupportingtheideathatwavedragonthedrivinglegplaysacriticalpropulsiverole(Andersen1976;Denny1993;Sun&Keller2001).
ThisinferenceconcerningthecriticalroleofwavedragledtoDenny'sparadox(Suteretal.
1997),theproposalthatinfantwaterstridersunabletogeneratewavesshouldbeincapableofself-propulsion(Denny1993,2004).
Suteretal.
(1997)performedaseriesofexperimentsinwhichthesteady-stateforcesweremeasuredonaspiderlegsuspendedinarotatingume.
Theauthorsestimatedtherelativemagnitudesofforcesonthelegowingtowavedrag,uidinertiaandcurvatureforces;bydemonstratingthepersistenceoftheinertialforcesevenintheThehydrodynamicsofwater-walkingarthropods7absenceofwaves,theauthorseectivelyresolvedDenny'sparadox.
Hu,Chan&Bush(2003)arguedthatthepropulsionofthesecreaturesismosteasilyunderstoodandtheparadoxmosteasilyresolvedbyconsideringmomentumtransferintheirwake,anargumenttobesupportedbythetheoreticaldevelopmentsof§5.
2.
Huetal.
(2003)showedexperimentallythatthemostcommonwater-walkinginsect,thewaterstrider,transfersmomentumprincipallythroughsubsurfacevortices.
Inourexperimentalstudyreportedin§4,wedemonstratethatthegenerationofvorticesbywaterwalkershasabroadgenerality;moreover,wedemonstratethatevenintheabsenceofthegenerationofpronouncedwavesorvortices,water-walkinginsectsareabletopropelthemselvesbyvirtueofthemicroscaleinteractionbetweentheirroughintegumentandthewatersurface.
In§5,wedevelopatheoreticalframeworkthatmaybeusedtointegrateandrationalizeourexperimentalobservationsofwater-walkingarthropods.
Biolocomotionisgenerallyrationalizedintermsofthetransferofforceandmomentumbetweenthecreatureandthesurroundinguid(Childress1981).
Conservationofmomentumallowsonetorationalizethehigh-Reynolds-numberpropulsionofsh(Wilga&Lauder2002)andbirds(Spedding,Rosen&Hedenstrom2003)byconsideringthemomentumtransferintheirwakes,anapproachofparticularvaluewhenthesewakesarecharacterizedbycoherentvorticalstructures.
Themotionofwaterwalkersiscomplicatedbythepresenceofthefreesurface.
ImplicitintheanalysisofHuetal.
(2003)andB¨uhler(2007)forthewaterstriderandinthatofHsieh(2004)forthebasilisklizardisthatmomentumissimilarlyconservedforpropulsionatafreesurface,aresulttobeprovenin§5.
2.
Inthispaper,wereportmicro-andmacroscaleobservationsofthedierentlocomotorystylesofwater-walkingarthropods.
In§2,wedescribeourexperimentaltechniques.
In§3,weconsiderthestateofwettingofthewaterwalker'sleginbothstaticanddynamicstates.
In§4,wecharacterizethelegstrokeandtheresultingdynamicsoftheunderlyingwater.
Weproceedin§5byconsideringthehydrodynamicsofwater-walkingarthropodsfromatheoreticalperspective,characterizingthehydrodynamicforceandmomentumtransferbetweentheinsect,theuidandthefreesurface.
Lastly,in§6wediscusstheimplicationsofourworkandsuggestdirectionsforfutureresearch.
2.
ExperimentaltechniquesSixwater-walkingand20terrestrialinsectsandspiders,commontoourarea,exhibitedarangeofwater-walkingtechniques(gure1).
FreshwaterwalkersweregatheredfromFreshPond,Massachusetts;marinewaterwalkersfromthecoastatRockport,Massachusetts;andterrestrialinsectsfromCambridge,Massachusetts.
Thesecreatureswereraisedincaptivityinaquaria,sustainedonadietofground-dwellinginsects.
Insectlegwidthsweremeasuredusingseverallightmicroscopes(SKope3000100byBoreal,LSMPascalconfocalmicroscopebyZeissandstereomicroscopeSTEMI2000byZeiss);theirmicroscalehaircoveringswereexaminedwithascanningelectronmicroscope(XL30ESEMbyFEI).
Welmedtheinsectsusingadigitalstillcamera(SonyDSC-F707),adigitalvideocamera(SonyDCR-TRV950)andahigh-speeddigitalvideocamera(RedlakeMotionscopePCI8000).
High-speedlmsweredigitizedusingMidasmotionanalysissoftware.
Insectswerelmedat1/1000sexposuretimeat30–500f.
p.
s.
Planviewsoftheirlocomotionwerelmedinashallow8D.
L.
HuandJ.
W.
M.
Bush(a)(d)(e)(f)(b)(c)Figure1.
Thewater-walkingarthropodsexaminedinourexperimentalstudy,orderedbysize:(a)thebroad-shoulderedwaterstriderMicrovelia,(b)thewatertreaderMesovelia,(c)thespringtailAnuridamaritima,(d)thewatermeasurerHydrometrastagnorum,(e)thewaterstriderGerris,(f)thesherspiderDolomedestriton.
Scalebars,1mm.
Water+NaOHLightThymolblueCameraInsectWakeFigure2.
Theexperimentalapparatususedforowvisualization.
Amildlybasicsolutionisilluminatedfrombelowandviewedfromabove.
Themotionofanopaquetracer,ThymolBluedye,isusedtotrackthemotionoftheowsgeneratedbywater-walkinginsects.
tank(15cm*15cm*4cm)andsideviewsinaslendertank(3cm*20cm*20cm)thatconstrainedthepathoftheinsectsothatitremainedinfocus.
Flowvisualizationwasaccomplishedinaseriesofparticletrackinganddyestudiesusingtheapparatusillustratedingure2.
Particletrackingwasperformedbylightingthesubjectfromabove,placingadarkbackgroundbeneaththetankandseedingtheuidwitheitherKalliroscopeAQ-1000orPlioliteparticles(S-6B,GoodyearChemicals),groundtoagrainsizeof50–100μm.
AThymolBluetechnique(Voropayev&Afanasyev1994)wasusedtovisualizesubsurfaceows.
Theshallowtankwaslitfrombelowusingalighttable(LightTracer,Artograph)andlledtoadepthof0.
5–1cmwithaweakdilutionofsodiumhydroxide(pH9.
2).
ThymolBluepowderwassprinkledonthesurfaceinthepathoftheinsect;theinsectpropelleditselfthroughthedyeeldasthedyesanktothebottomofthetank.
TheThymolBluepromptedMarangoniconvectionrollsofwidthcomparabletothedepthofthedyelayer(Scriven&Sternling1970).
ThegraininessoftheseconvectionrollscouldThehydrodynamicsofwater-walkingarthropods9(a)20μm20μm5μmAcc.
VSpotMagn3306xDetSEWD10.
0MIT3.
01.
30kV(b)(c)Figure3.
ScanningelectronmicroscopeimagesofthehairlayeronthedrivinglegsofMesovelia(a,scalebar20μm)andthewaterstrider(b,scalebar20μm;c,scalebar5μm).
Thelegisahairybrushwhosehairsaretiltedat30tothelegsurface.
Hairsaretypically30μmlong,1–3μmthickatthebaseandtapered;theirdensityis12000–16000hairsmm2.
(c)Acloserviewofthehairsshowsthattheirtipsarebentinwardtowardsthelegs;moreover,eachhairispatternedwithgroovesofcharacteristicwidth400nmthatrunitslength.
ImagescourtesyofManuPrakash.
bereducedbystirringtheuid.
Stirringalsoallowedthedye-basedmixturetobeusedrepeatedly.
Wealsoobservedthedeectionofthefreesurfacebytheinsectleg.
Thelegwasneverobservedtopenetratethefreesurface.
Instead,awater-repellentstatewasmaintained:athinairlayerremainedtrappedinitsintegument(Bushetal.
2008).
Someinsectsarealsoabletopulluponthefreesurfacebyvirtueoftheirhydrophilicclaws(Baudoin1955;Noble-Nesbitt1963;Andersen1976),animportantadaptationformeniscusclimbing(Hu&Bush2005).
ThesignofthesurfacedeectionwasdeterminedusingalightingtechniqueadoptedfromBaudoin(1955).
Bylightingdirectlyfromabovetheinsect,thesurfacedeectioncouldbeinferredqualitativelyfromthemannerinwhichlightwasfocusedontothetankbottom.
Depressionsofthefreesurfacedefractedlightradiallyoutwardandweremarkedbydarkspotsonthetankbottom;conversely,peaksinthefreesurfaceweremarkedbybrightspots(gures11,14and16).
Theinsectswereencouragedtomoveusingavarietyoftechniques.
Whentheroomwasdark,abeamoflightproducedbyaashlightwouldattracttheinsects.
Proddingwithawire,shakingthetankorblowingontheinsectwerealsoeectiveinencouragingittomoveinapreferreddirectionor,inthecaseofMicrovelia,tosecretesurfactant.
3.
MicroscaleconsiderationsThemacroscopicowsgeneratedbythedrivingstrokeofwater-walkinginsectswillbeconsideredin§§4and5.
Werstconsiderthemicroscopicinteractionbetweenthearthropodcuticleandtheinterface,specicallyitsroleinwaterrepellency(§3.
1)andpropulsion(§3.
2).
3.
1.
WaterrepellencyWater-walkingarthropodsarecoveredwithadensehairmatthatrendersthemwater-repellent(Figure3;Bushetal.
2008).
Thebodiesofwaterwalkershavetwodistincthairlayers,namelythemacrotrichiaforwaterproongtheinsectonthewatersurfaceandtheshortermicrotrichiafortrappingairshouldtheinsectbesubmergedbyraindropsoracrashingwave(Thorpe&Crisp1947;Hinton1976).
Wenotethatinthecaseofsubmergence,theairtrappedinthemicrotrichiaservesbothasabuoyandanexternalgillthatforcertainarthropodsenablesunderwaterbreathing10D.
L.
HuandJ.
W.
M.
Bush10–4(a)(b)AirHairsWatergdLegHairLeg10–310–2BoδWeδδφσ10–110010010–110–210–3MicroveliaMesoveliaHydrometraWaterstriderFisherspider10–4Figure4.
TheroughnessWebernumberWeδ=ρU2δ/σandBondnumberBoδ=ρgδ2/σcharacterizingthewaterrepellencyofthehairlayersofvespeciesofwater-walkinginsectsandspiders.
HereUrepresentsthepeaklegspeedandδtheinter-hairspacing.
AllwaterwalkersarecharacterizedbylowWebernumber,indicatingthattheirdrivinglegsremaininaCassiestateastheypropelthemselvesonthewatersurface.
Moreover,thelowBondnumberindicatesthattheairlayersbetweenthehairsremainintactinthefaceofhydrostaticpressuresgeneratedbythedrivingstroke.
(a)Across-sectionalviewofanarrayofhairswithspacingδlyingtangenttothefreesurface.
(b)ShowsanobliqueviewofasinglehairoflengthL,widthdandangleφpiercingthefreesurface.
(Flynn&Bush,2008).
Weproceedbyinvestigatingthecharacteristicsofthehairsonthedrivinglegs.
Thesurfaceofthewater-walkingarthropodlegconsistsofamatofmacrotrichiatiltedtowardsthelegtips;thetiltangleφandspacingδvaryamongspecies(gure4a).
TheleghairsofMicroveliaareshowningure3(a)andschematicallyingure5.
ThehairsgenerallyhavealengthLof20–60μmandadiameterdof1–2μmatthebaseandtapertoapointattheirtip.
Inter-speciesvariationinthehairtiltandspacingareshownintable1.
Figure6(a)showsthatthelegofMesoveliaresemblesahairybrush.
Aviewfrombelow(gure7)showsthatthearthropodlegtrapsairwithinitsintegument,thusmaintainingawater-repellentstate.
Theseairpocketscanbeseenasasilveryenvelopearoundthelegswhentheystrikethewatersurfaceasisthecaseforthesherspider(gure8).
Weproceedbyrationalizingthemaintenanceofthisairlayerinbothstaticanddynamicsettings.
Thewaxymaterialcoveringtheintegumentofwater-walkingarthropodshasachemicalcontactangleofθe=105(Holdgate1955)andsoishydrophobic.
Becauseθe>π/2,theadditionofsurfaceroughnessincreasestheenergeticcostofwettingandsodiscourageswetting(Dussan1979;deGennes,Brochard-Wyart&Quere2003).
Theformofcontactbetweenarough,hydrophobicsolidandwaterdependsexplicitlyontheformoftheroughnessandtheuidpressure.
Withmoderateroughness,thewaterentirelywetsthesubstrate,yieldingaWenzelstate(Figure9c;Wenzel1936).
Whentheroughnessisincreasedsuciently,itisenergeticallyfavourableforairinclusionstobetrappedwithintheroughsurface,sothatthesolidiswettedonlyatThehydrodynamicsofwater-walkingarthropods11GaitSpeciesn(hairscm2)L(μm)d(μm)φ(deg.
)δ(μm)HairdensityLengthWidthTiltangleSpacingRowingStrider1.
2–1.
6*10620–401.
5–230–507Velia1*10630–401–250–60–Halobates0.
8–1.
2*10620–30120–40–Fisherspider2.
5–3.
6*105–6–13WalkingMesovelia4*10530–602–35010Hydrometra2–3*1051559015Table1.
Tarsalhairpropertiesofwater-walkinginsectsandspiders.
LeghairsoflengthL,widthdandangleφwithrespecttothelegsurfacearearrangedwithdensitynandspacingδ.
DatareprintedfromAndersen(1976,1977);spiderdatafromStrattonetal.
(2004b).
(a)b(c)(e)(f)(d)(b)c,defFigure5.
ThecontactbetweenthewatertreaderMesoveliaandthefreesurface.
(a)Mesoveliasupportsitsweightbydeformingthesurface.
Scalebar,1mm.
(b)Aschematicofasectionofahairyleg.
Scalebar,100μm.
(c,d)Furtherschematicsofindividualhairspenetratingthesurface.
Scalebar,1μm.
(e)Asinglehairpenetratingthefreesurface.
Scalebar,1μm.
(f)Thehairsarecoveredinnanogroovesthattrapairwhenthehairissubmerged.
Scalebar,0.
1μm.
theextremitiesofitsroughnesselements.
Theapparentcontactangleθofadropintheresultingwater-repellentor'Cassie'stateisgivenbytheCassie–Baxterrelation(Cassie&Baxter1944)cosθ=fs1+fscosθ,(3.
1)12D.
L.
HuandJ.
W.
M.
Bush(a)(b)Figure6.
Thehairylegsof(a)Mesoveliaand(b)thesherspider.
Asisevidentintheinsetof(b),thehairsmaintainanarrayofairpocketswhenpressedagainstthewatersurface.
Scalebars:(a)100μm,(b)0.
15cm.
(a)(b)Figure7.
Brighteldimagesofwater-walkingarthropodsinaCassiestate,asseenfrombelowthroughaninvertedmicroscope.
(a)AliveMicroveliastandingonthewatersurfacegroomingitswater-repellentlegs.
Scalebar400μm.
Acloserlookatthesupportingfoot(thehatchedboxina,magniedinbanditsinset)showsindividualhairpinholescorrespondingtothecontactlinesbetweenthecuticleandthewatersurface.
Scalebars,100μm.
ImagescourtesyofManuPrakash.
wherefsistheexposedareafractionofthesolidsubstrate(e.
g.
theratiooftheareaofthepillartopstototalbaseareaingure9d).
Forsucientlysmallfs,theeectofthetextureistoincreasethecontactangledramaticallyfromθtoθandsoqualifytheintegumentasbeingsuperhydrophobic(θ>150).
Gao&Jiang(2004)measuredthecontactanglesofwaterstriderintegumenttobe168andrationalizedthishighvaluebyvirtueofthenanogroovesonthehairs.
Strattonetal.
(2004b)reportedvaluesof152forsherspiders.
Contactanglesforavarietyofwater-walkingarthropodsarereportedinBushetal.
(2008).
Wenotethataconsequenceofthehydrophobicityviatexturingoftheintegumentofwater-walkingarthropodsisthatifthelegisimmersedinauidwithwhichitThehydrodynamicsofwater-walkingarthropods13(a)(b)Figure8.
High-speedimagesofthesherspider(a)gallopingand(b)leapingbydrivingitslegsagainstthefreesurface.
In(a),itslegpenetratesthefreesurface,asshownintheclose-upviewintheinset,butmaintainsaCassiestate.
Scalebars,7mm.
(a)θeθ*θ*θ*(b)(c)(d)Figure9.
Rougheningasurfacewillamplifyitswettingtendencies:(a)θedenestheequilibriumorchemicalcontactangleonaatsurace.
(b)Onaroughsurface,themicroscopiccontactangleremainsθe,buttheobservedcontactangleonthemacroscopicscale,θ,dependsexplicitlyonthesurfaceroughness.
Thetwogenericstatesofwetting,theWenzelandCassiestates,areshownschematicallyin(c)and(d).
IntheWenzelstate,theporesareimpregnatedbyuid,increasingtheuid–solidcontact.
IntheCassiestate,airpocketsaretrappedbytheoverlyinguid,reducingtheuid–solidcontact.
hasalowcontactangle(θ1,asisthecaseforbasilisklizards(Glasheen&McMahon1996a,b).
Inastaticsituation(Mc=0),(5.
5)yieldsageneralizedformoftheArchimedesprinciple.
Theforceonastaticoatingbodyisequaltotheweightoftheuiddisplaced:Mg·z=Fb·z+Fc·z=Sbρgzn·zds+σCt·zd=ρgVb+ρgVm.
(5.
6)Manseldetal.
(1997)andKeller(1998)showedthatthemagnitudesofthebuoyancyandcurvatureforcesonaoatingbodyareequaltotheweightsoftheuiddisplacedbythemeniscus,respectively,insideandoutsidethelineoftangencyC(respectivelyVbandVmingure20b).
Forlongthinbodiessuchaswater-walkinginsectlegs,theratioofbuoyancytocurvatureforcesisthusgivenbytheratioofthelegradiuswtothecapillarylengthc=√σ/(ρg)or,equivalently,thesquarerootoftheBondnumber:FbFcVbVmwc√Bo.
(5.
7)26D.
L.
HuandJ.
W.
M.
Bush(a)cΘθρσccww(b)VbVmFigure20.
Thestaticweightsupportofthewaterstrider.
(a)Theweightofwater-walkingarthropodsissupportedbycurvatureforcesassociatedwithdeformationsofthefreesurface.
ThelegofwidthwintersectsthefreesurfaceatacontactlineC.
Theinitialangleoftangencybetweenthefreesurfaceandthehorizontalisθ:theresultingmeniscusdecaysoverthecapillarylengthc.
(b)Thelegincross-section;VbandVmdenotethevolumeofuiddisplacedinsideandoutsidethecontactline,respectively.
Asshown,thehairinessofthelegeectivelyincreasesitsvolumewithoutsubstantiallyincreasingitsmass,thuscontributingtoitsbuoyancy.
ThecharacteristicBondnumbersofthewater-walkinginsectsconsideredinourstudyarelistedintable2.
Waterstriders(withtypicalweight3–10dynesandlegwidth20–80μm)have104Therelativelystockysherspider(weight102–103dynesandlegwidthupto0.
17cm)has103Finallywenotethataninsectaugmentsitsbuoyancywiththeairlayertrappedinitsintegument,whichmayincreasethevolumeofuiddisplacedby20–30%(Bushetal.
2008).
5.
1.
2.
LateralpropulsionThehorizontalcomponentoftheforcebalanceonawaterwalkerisgivenbythexcomponentof(5.
4):M˙U·x/(σw)=WeAdSbφtn·xdS+Sbn·xdS+BoSbzn·xdS+Ct·xd.
(5.
8)Forlargecreatures(We1andBo1),surfacetensionisnegligible,and(5.
8)showsthatsuchwater-walkingcreaturesmaypropelthemselvesusinginertialandhydrostaticpressures.
Wenotethatthehydrostaticpressurescanonlyproducealateralforceonabodywithacavitythatisnotfore–aftsymmetric.
Forexample,thebasilisklizardgeneratesthrustusinghydrostaticpressurebygeneratinganaircavitywithitsfeetandpressingagainstthecavity'sbackwall(Glasheen&McMahon1996a).
Intheparameterregimeofmostwater-walkingarthropods,(We,Bo)1,surfacetensiondominatesbothinertialandhydrostaticforces,sothatM˙U·x/(σw)=Ct·xd.
(5.
9)Thedominantlateralpropulsiveforcecomesfromthecurvatureforcethatmaybegeneratedbythedrivingleg.
Theinterfacethusrespondsroughlylikeatrampoline.
Thehydrodynamicsofwater-walkingarthropods27Thecurvaturepressuregeneratedbythestrokeofalegofwidthwisσ/w;therefore,thenetcurvatureforceactingonthedrivinglegsisFσ=Aσ/w,whereAistheareaofthedrivinglegadjoiningthedistortedinterface.
Wenotethatsuchaforcecanonlybeeectivelygeneratedifthespeedofthelegstrikeexceedsthecapillarywavespeed;otherwise,theinterfacewillrespondinaquasi-staticmanner,assumingafore–aftsymmetricformincapableofpropellingthecreatureforwardwithcurvatureforces.
Atsuchlowspeeds,thecreaturemustrelyonthebrushingtechnique,inwhichthepropulsiveforcehasitsoriginsinthemicroscopiccontactforcesorviscousstressesactingonthewettedhairtipsonthedrivingleg.
Byconsideringthelegstrikeonamacroscopicscale,wehavededucedanestimateforthecurvatureforceFσgeneratedbythedrivingstroke.
In(3.
2),wededucedanestimateforthebrushingforceFbrush=nAFcontactassociatedwiththemicrostructureonthedrivinglegs.
TherelativemagnitudesofthesetwoforcesactingonalegareawithhairdensitynandwidthwaregivenbyFbrushFσ=nσLAcosθAσ/w=nwLcosθ.
(5.
10)Themagnitudeofthisratiodependsonthemagnitudeofthecontactanglehysteresis,butitisnoteworthythatthebrushingforceresultingfromthemicroscaleinteractionbetweenintegumentandinterfacemaybecomparabletothecurvatureforces.
Forthephysicalvariableslistedintable2,thisratioassumesvaluesbetween0.
1and1,suggestingthedominanceofmacroscopiccurvaturepressuresinthepropulsiveforce.
However,situationsariseinwhichwater-walkingarthropodsaretoosmall,slowandweaktogeneratesubstantialsurfacedistortionsandpropulsivecurvatureforces.
Insuchsituations,thecreaturesarestillabletomovebybrushingthefreesurface.
Weproceedbyconsideringthehypotheticalcaseofacreaturejumpingonasoaplm.
Notethatthisisbutatheoreticalabstractionowingtothefactthatsoapdestroysthewaterrepellencyofinsectlegs,causingthemtopunctureandbreakthelm.
Intherelevant(We,Bo1)limit,theforcebalanceonthecreature,(5.
1),assumestheformM˙U·z=Cσt·zd+Mg.
(5.
11)Theonlyforcesactingonthecreaturearethosethatareduetosurfacetensionandgravity.
Thecreatureisstatic(˙U=0)whenitsweightisbalancedbythecurvatureforceassociatedwithdeformationofthefreesurface.
Alateralpropulsiveforceispossibleonlyifthemeniscusisdistortedasymmetrically;however,suchadistortionrequiresthatthelegstrikesthelmataspeedexceedingthecapillarywavespeed.
Onasoaplmofthicknessh4μm,thiswavespeedisapproximately√2σ/ρh5ms1,wellbeyondthepeaklegspeedofanywaterwalker.
Consequently,water-walkingarthropodscouldnotpropelthemselvesviacurvatureforcesonasoaplm:theabsenceofinertiaoftheunderlyinguidprecludestheirprinciplemodeofpropulsion.
Wenotethatbrushingforcesmightyetallowmotiononasoaplm,astheydoforslowwaterwalkersatthewatersurface.
Whilethisisbutatheoreticalabstraction,itunderscoresthesubtleinterplayofwettingproperties,wavesandmomentumtransferthatliesattheheartofthisstyleofbiolocomotion.
5.
2.
MomentumtransferHavingconsideredthehydrodynamicforceonanobjectstrikingthefreesurface,wehereconsiderthetransferofmomentumbytheobjectintothecontrolvolume28D.
L.
HuandJ.
W.
M.
BushtAirWater–ngnznnxρσCVSSbFigure21.
Abodystrikingthefreesurface.
ThecontrolvolumeVisboundedoutsidebySandinsidebythebodysurfaceSb.
ThebodyintersectsthefreesurfaceatacontactlineC;ndenotestheoutwardunitnormaltotheuidboundbySb.
illustratedingure21.
OuranalysisbuildsupontheframeworkdevelopedbyChildress(1981)todescribeswimmersandierstoincorporatetheinuenceoftheinterfaceonpropulsion.
Fromrstprinciples,wemaywritetheconservationofmomentumintheuidastVρudV=S(ρuu·n+pn)dS+SbtappdS+VρgdV,(5.
12)wheretappisthelocalstressappliedbytheobjecttotheuidandSbisthewettedbodysurface.
Newton'sthirdlawrequiresthatSbtappdS=SbT·ndS+Cσtd.
(5.
13)Thesumof(5.
1),(5.
12)and(5.
13)yieldsM˙U+tVρudV=S(ρuu·n+pn)dS+Mgzρg(Vm+Vb)z,(5.
14)whereVm+Vbisthenetuidvolumedisplacedbytheobject(gure20).
WenotethatthisreducestothegeneralizedformoftheArchimedesprinciple(5.
6)inthestaticcase.
Italsoindicatesthatcreaturestooheavytooatatthesurfacecanonlyremaintherebygeneratingaverticaluxofuid.
Onemaythusrationalizetheverticalcomponentofthevorticesshedbythedrivingstrokeofthebasilisklizard(Hsieh2003,2004).
Conversely,water-walkingarthropodsrelyonsurfacetensionforweightsupportbutrequirethehorizontaltransferofmomentumfortheirlateralpropulsion.
Equation(5.
14)isthestatementofconservationofmomentumforanobjectatafreesurface:thecreationofhorizontalmomentumintheuidbythedrivingstrokeofawaterwalkerindicatesalateralforceonthecreature.
Notethatsurfacetensiondoesnotarisein(5.
14):whileitcontributesaforcetoboththebodyandthecontrolvolume,thesecontributionsareequalandopposite.
Ofcourse,theabsenceofsurfacetensioninthemomentumbalancemayalsobesimplyunderstoodonthegroundsthatThehydrodynamicsofwater-walkingarthropods29theinterfacecarriesnomass.
Asforswimmingsh(Wilga&Lauder2002)andyingbirds(Speddingetal.
2003),onemayrationalizethepropulsionofwater-walkingcreaturesbyconsideringthemomentumtransferredintheirwake(Dickinson2003;Dabiri2005).
6.
DiscussionThedynamicsofwater-walkingarthropodswaspreviouslydescribed(Denny1993;Vogel1994)bytreatingtheirlegsassmoothcylinders:macroscopiccurvatureforcesweregeneratedastheinterfacerespondedasatrampolinetothedrivingstroke.
Wehavedemonstratedherethatpropulsionattheinterfaceisinsteadarich,multiscaleprobleminwhichthemicron-scaleroughnessoftheintegumentplaysacriticalrole.
Overtherangeofhydrostaticanddynamicpressuresexperiencedbywaterwalkers,theirintegumentmaintainsaCassiestate.
Theintegumentcoupleswiththeunderlyinguidonthemicroscalethroughcombinedviscousandcontactforces,therelativemagnitudesofwhichdependonthegeometryoftheintegument.
Thenotionofcontactforcesisusefulforrationalizingseveralpreviouslyenigmaticbehavioursofwaterwalkers.
Largerwaterwalkerscanstrikethesurfaceataspeedexceedingthecapillarywavespeed,thusgeneratinganasymmetricmeniscusandtheconcomitantmacroscopiccurvatureforces.
Conversely,smaller,weakerwaterwalkersgeneratenegligiblesurfacedeformationduringtheirstrokeandsorelyprincipallyonmicroscalecontactandviscousforcesgeneratedbythelegbrushingthefreesurface.
WehavedemonstratedtheutilityoftheStrouhalnumber,acommonmeasureofdynamiceciencyinothermodesofbiolocomotion,forcharacterizingpropulsiononthewatersurface.
TheStrouhalnumberistheratioofacreature'speakappendagespeedtoitsbodyspeed.
Byvirtueoftheirsolidcontactwiththeground,terrestrialcreatureshaveStrouhalnumbersnear1.
EcientswimmersandierstendtohaveStrouhalnumbersof0.
2–0.
4,asshowninthestudiesofTaylor,Nudds&Thomas(2003)andAlexander(2003).
Forwaterwalkers,forwhich0.
14,thrustisgeneratedbydrivingagainstwater,whiledragisexperiencedinair,atleastduringtheirairbornephase.
Thus,fromaStrouhalnumberperspective,rowingonwaterisofcomparableeciencytoswimmingandying.
Inourexperimentalinvestigation,wehavereportedtheprevalenceofcoherentvorticesinthewakeofwater-walkingarthropods.
Thepropulsionmechanismofwater-walkinginsectsthushasfeaturesincommonwithswimmersandiersinthateachdrivingstrokegeneratesavortex.
Wedevelopedatheoreticalframeworkthatdescribesthetransferofforceandmomentumbetweenthewaterwalkeranditsenvironmentonboththemicroscopicandthemacroscopicscale.
Ourdevelopmentsmakeitclearthatmomentumisconservedbetweentheuidandthecreatureacrosstheinterface,anassumptionmadeimplicitlybyHuetal.
(2003)andB¨uhler(2007)intheirstudiesofthewaterstriderandbyHsieh(2004)inherstudyofthebasilisklizard.
ThevorticalwakesreportedbyHuetal.
(2003)andHsieh(2004)andmorecomprehensivelyheremaythusbeusedtosimplyrationalizethepropulsionofwater-walkingcreatures.
Ourformulationprovidesanintegrativeviewofallformsofwalkingonwater,includingboththeinertia-basedpropulsionoflargewaterwalkersandthesurface-tension-basedpropulsionofwater-walkingarthropods.
Moreover,ourstudyinformstheresolutionofDenny'sparadox(Suteretal.
1997).
Denny'sparadox(Denny1993,2004)wasgeneralizedbySuteretal.
(1997)tothefollowingform:'smallorslow-movingsurfacedwellingarthropodsshouldnotbeabletopropelthemselveshorizontally'.
Wenowseethattheparadoxrestedon30D.
L.
HuandJ.
W.
M.
Bushtwoawedassumptions.
First,waterstrider'smotionwasassumedtorelyonthegenerationofcapillarywaves,sincethepropulsiveforcewasthoughttobethatassociatedwithwavedragonthedrivingleg.
Second,inordertogeneratecapillarywaves,itwasassumedthatthestriderlegspeedmustexceedtheminimumwavespeed,cm=(4gσ/ρ)1/2≈23cms1.
Wenotethatthissecondassumptionisstrictlytrueonlyforsteadymotions(Lighthill1978)andsoisnotstrictlyapplicabletothepropulsivedrivingstrokeofthewaterstrider;indeed,bodiesmovingatunsteadyspeedsuConsiderationofthemicroscaleforcesactingontheintegumentofthedrivinglegsmakesitclearthatwater-walkingarthropodsneedn'trelyonwavedrag,inertialforcesormacroscopiccurvatureforces:contactandviscousforcesarisingfromtheinteractionofthecuticleandtheinterfaceareavailableforpropulsionatanylegspeed.
Denny'sparadoxcanalternativelyberesolvedbynotingthatwater-walkingcreaturestransfermomentumtotheunderlyinguid(Huetal.
2003).
TheprecisepartitioningofmomentumbetweenwavesandvorticesfollowingtheimpulsivestrokewasconsideredexperimentallybyHuetal.
(2003)andtheoreticallybyB¨uhler(2007).
Huetal.
(2003)madearoughestimatethatthemomentumpartitionbetweenwavesandvorticeswasapproximately1–10.
B¨uhler(2007)deducedthatanimpulsiveforcingatafreesurfacegeneratesmomentuminwavesandvorticesofrelativemagnitudes1/3and2/3respectively.
Hsieh(2003,2004)showedthatwater-runningbasilisklizardsalsogeneratewavesandvortices.
Theprecisepartitioningofmomentumtransferinwavesandvorticesinthewakeofvariouswaterwalkersisleftasasubjectforfutureconsideration.
Wehavedemonstratedthatmostwater-walkingarthropodshaveattheirdisposaltwopropulsiveforces.
Iftheystrikethesurfaceataspeedinexcessofthecapillarywavespeed,23cms1,theycanproduceameniscuswhosefore–aftasymmetryresultsinacurvatureforcethatpropelsthemforward.
Suchisthecaseformostadultwater-walkingarthropods,forwhichtheinterfaceserveseectivelyasatrampoline.
Conversely,ifthepeakspeedofthedrivinglegissubstantiallylessthan23cms1,theinterfacerespondsquasi-statically;consequently,itsfore–aftsymmetryismaintained,andnolateralpropulsiveforceresults.
Anumberofsmallandinfantwaterwalkersthususeatechniquethathasnotpreviouslybeendiscussed:bybrushingtheirlegsacrossarelativelyunperturbedsurface,theygenerateacombinationofviscousstressesandcontactforcesontheirwettedintegumentthatservetopropelthemforward.
Wenotethatthelatterbrushingtechnique,inecientthoughitiswhencomparedwithpropulsionviacurvatureforces,operatesatalllegspeeds.
Finally,itisnoteworthythatwehaveassumedthroughoutthisstudythattheinsectintegumentiseectivelyrigid.
Aninterestingavenueforfutureresearchistheroleoftheintegument'selasticityonthewaterrepellencyandthedynamicsofthisclassofcreatures.
Prakash&Bush(submitted)havedemonstratedthatthecuticleofwaterstrider'sintegumentisunidirectionalbyvirtueofitselasticity:contactforcesactingonmovingdropletsaregreatestformotionperpendiculartothelegandsmallestformotiontowardsthelegtip.
Thisobservationraisesanumberofinterestingdynamicalquestions,includingtheroleoftheintegumentindetachingfromthefreesurface.
Thisclassofproblemsiscurrentlyunderconsiderationandislikelytoinformthedesignofbiomimeticwater-walkingdevices(Huetal.
2003,2007;Suhretal.
2005;Thehydrodynamicsofwater-walkingarthropods31Floydetal.
2006;Song,Suhr&Sitti2006;Yuetal.
2007)andsyntheticunidirectionalsuperhydrophobicsurfaces(Prakash&Bush,submitted).
Videoimagesofmanyofourexperimentscanbefoundathttp://www.
me.
gatech.
edu/hu/orontheMultimediaFluidMechanicsCD-ROM(Bush&Hu2004).
TheauthorsthankManuPrakashformanyvaluablediscussionsandhiscontributionstotheguresandLucyMendelandBrianChanfortheirassistancewithillustrations.
TheauthorsgratefullyacknowledgethenancialsupportoftheNSF:J.
B.
throughgrantCTS-0624830andCareerGrantCTS-0130465andD.
H.
throughaMathematicalSciencesPostdoctoralResearchFellowship.
REFERENCESAldrovandi,U.
1618HistoriamnaturalemdeAnimalibusInsectisLibriSeptem.
TypisPauliJacobi.
Alexander,R.
M.
2003PrinciplesofAnimalLocomotion.
PrincetonUniversityPress.
Altendorfer,R.
,Moore,N.
,Komsuoglu,H.
,Buehler,M.
,Brown,H.
B.
Jr.
,McMordie,D.
,Saranli,U.
,Full,R.
&Koditschek,D.
E.
2001RHex:abiologicallyinspiredhexapodrunner.
J.
Auton.
Robots11,207–213.
Andersen,N.
M.
1976Acomparativestudyoflocomotiononthewatersurfaceinsemiaquaticbugs(insects,Hemiptera,Gerromorpha).
Vidensk.
Meddr.
Dansk.
Naturh.
Foren.
139,337–396.
Andersen,N.
M.
1977Finestructureofthebodyhairlayersandmorphologyofthespiraclesofsemiaquaticbugsinrelationtolifeonthewatersurface.
Vidensk.
Meddr.
Dansk.
Naturh.
Foren.
140,7–37.
Bartolo,D.
,Bouamrirene,F.
,Verneuil,E.
,Beguin,A.
,Silberzan,P.
&Moulinet,S.
2006Bouncingorstickydroplets:impalementtransitionsonsuperhydrophobicmicropatternedsurfaces.
Europhys.
Lett.
74,299–305.
Baudoin,R.
1955Laphysico-chimiedessurfacesdanslaviedesArthropodesaeriensdesmiroirsd'eau,desrivagesmarinsetlacustresetdelazoneintercotidale.
Bull.
Biol.
Fr.
Belg.
89,16–164.
Bowdan,E.
1978Walkingandrowinginthewaterstrider,Gerrisremigis.
J.
Compar.
Physiol.
123,43–49.
Brocher,F.
1910Lesphenom`enescapillaires,leurimportancedanslabiologieaquatique.
Ann.
Biol.
Lacustre4,89–139.
B¨uhler,O.
2007Impulsiveuidforcingandwaterstriderlocomotion.
J.
Fluid.
Mech.
573,211–236.
Bush,J.
W.
M.
&Hu,D.
L.
2004Walkingonwater.
InMultimediaFluidMechanicsCD(ed.
G.
M.
Homsy).
CambridgeUniversityPress.
Bush,J.
W.
M.
&Hu,D.
L.
2006Walkingonwater:biolocomotionattheinterface.
Annu.
Rev.
FluidMech.
38,339–369.
Bush,J.
W.
M.
,Hu,D.
L.
&Prakash,M.
2008Theintegumentofwater-walkingarthropods:formandfunction.
Adv.
InsectPhysiol.
34,117–192.
Cassie,A.
B.
D.
&Baxter,S.
1944Wettabilityofporoussurfaces.
Trans.
FaradaySoc.
40,546–551.
Chepelianskii,A.
D.
,Chevy,F.
&Raph¨ael,E.
2008Oncapillary–gravitywavesgeneratedbyaslowlymovingobject.
Phys.
Rev.
Lett.
p.
074504.
Childress,S.
1981MechanicsofSwimmingandFlying.
CambridgeUniversityPress.
Dabiri,J.
O.
2005Ontheestimationofswimmingandyingforcesfromwakemeasurements.
J.
Exp.
Biol.
208,3519–3532.
Darnhofer-Demar,B.
1969Zurfortbewegungdeswasserl¨aufersGerrislacustrisL.
aufdeswasserober¨ache.
Zool.
Anz.
Suppl.
32,430–439.
Denny,M.
W.
1993AirandWater:TheBiologyandPhysicsofLife'sMedia.
PrincetonUniversityPress.
Denny,M.
W.
2004Paradoxlost:answersandquestionsaboutwalkingonwater.
J.
Exp.
Biol.
207,1601–1606.
Dias,F.
&Kharif,C.
1999Numericalstudyofcapillary-gravitysolitarywaves.
Annu.
Rev.
FluidMech.
31,301–346.
32D.
L.
HuandJ.
W.
M.
BushDias,F.
,Menasce,D.
&Vanden-Broeck,J.
M.
1996Numericalstudyofcapillary-gravitysolitarywaves.
Eur.
J.
Mech.
B15,17–36.
Dickinson,M.
H.
2003Animallocomotion:howtowalkonwater.
Nature424,621–622.
Dufour,L.
1833RecherchesAnatomiquesetPhysiologiquessurlesHemipt`eres,AccompagneesdeConsid`erationsRelatives`al'HistoireNaturelleet`alaClassicationdecesInsectes,pp.
68–74.
Impr.
deBachelier,extraitdesMemoiresdessavantsetrangers,tomeIV.
Dussan,E.
B.
1979Onthespreadingofliquidsonsolidsurfaces:staticanddynamiccontactlines.
Annu.
Rev.
FluidMech11,371–400.
Dussan,E.
B.
&Chow,R.
T.
1983Ontheabilityofdropsorbubblestosticktonon-horizontalsurfacesofsolids.
J.
FluidMech.
137,1–29.
Floyd,S.
,Keegan,T.
,Palmisano,J.
&Sitti,M.
2006Anovelwaterrunningrobotinspiredbybasilisklizards.
InProceedingsoftheIEEE/RSJInternationalConferenceonIntelligentRobotsandSystems,pp.
5430–5436.
Flynn,M.
R.
&Bush,J.
W.
M.
2008Underwaterbreathing:themechanicsofplastronrespiration.
J.
FluidMech.
608,275–296.
Gao,X.
&Jiang,L.
2004Water-repellentlegsofwaterstriders.
Nature432,36.
deGennes,P.
G.
,Brochard-Wyart,F.
&Quere,D.
2003CapillarityandWettingPhenomena:Drops,Bubbles,PearlsandWaves.
Springer.
Glasheen,J.
W.
&McMahon,T.
A.
1996aAhydrodynamicmodeloflocomotionintheBasilisklizard.
Nature380,340–342.
Glasheen,J.
W.
&McMahon,T.
A.
1996bSizedependenceofwater-runningabilityinBasilisklizardsBasiliscusbasiliscus.
J.
Exp.
Biol.
199,2611–2618.
Hinton,H.
E.
1976Plastronrespirationinbugsandbeetles.
J.
InsectPhysiol.
22,1529–1550.
Holdgate,M.
W.
1955Thewettingofinsectcuticlebywater.
J.
Exp.
Biol.
pp.
591–617.
Hsieh,T.
S.
2003Three-dimensionalhindlimbkinematicsofwaterrunningintheplumedbasilisklizard(Basiliscusplumifrons).
J.
Exp.
Biol.
206,4363–4377.
Hsieh,T.
S.
2004Runningonwater:three-dimensionalforcegenerationbybasilisklizards.
Proc.
NatlAcad.
Sci.
101,16784–16788.
Hu,D.
L.
&Bush,J.
W.
M.
2005Meniscus-climbinginsects.
Nature437,733–736.
Hu,D.
L.
,Chan,B.
&Bush,J.
W.
M.
2003Thehydrodynamicsofwaterstriderlocomotion.
Nature424,663–666.
Hu,D.
L.
,Prakash,M.
,Chan,B.
&Bush,J.
W.
M.
2007Water-walkingdevices.
Exp.
Fluids43,769–778.
Janssens,F.
2005ChecklistoftheCollembolaoftheworld:noteonthemorphologyandoriginofthefootoftheCollembola.
http://www.
Collembola.
org/publicat/unguis.
htm.
Keller,J.
B.
1998Surfacetensionforceonapartlysubmergedbody.
Phys.
Fluids10,3009–3010.
Lighthill,J.
1978WavesinFluids.
CambridgeUniversityPress.
Linsenmair,K.
E.
&Jander,R.
1976Das'entspannungsschwimmen'vonVeliaandStenus.
Naturwissenschaften50,231.
Mansfield,E.
H.
,Sepangi,H.
R.
&Eastwood,E.
A.
1997Equilibriumandmutualattractionorrepulsionofobjectssupportedbysurfacetension.
Philos.
Trans.
R.
Soc.
Lond.
A355,869–919.
Matsuda,K.
,Watanabe,S.
&Eiju,T.
1985Real-timemeasurementoflargeliquidsurfacedeformationusingaholographicshearinginterferometer.
Appl.
Opt.
24(24),4443–4447.
Milewski,P.
A.
&Vanden-Broeck,J.
M.
1999Time-dependentgravity-capillaryowspastanobstacle.
WaveMot.
29,63–79.
Miyamoto,S.
1955Onaspecialmodeoflocomotionutilizingsurfacetensionatthewater-edgeinsomesemiaquaticinsects.
Kontyu23,45–52.
Noble-Nesbitt,J.
1963TranspirationinPoduraaquaticaL.
(Collembola,Isotomidae)andthewettingpropertiesofitscuticle.
J.
Exp.
Biol.
40,681–700.
Plateau,J.
1873StatiqueExperimentaleetTheoriquedesLiquidesSoumisauxSeulesForcesMoleculaires.
Gauthier-Villars.
Prakash,M.
&Bush,J.
W.
M.
Interfacialpropulsionbydirectionaladhesion.
Nat.
Materials(submitted).
Quere,D.
2008WettingandRoughness.
Annu.
Rev.
Mater.
Res.
38,71–99.
Ray,J.
1710Historiainsectorum.
ImpensisA.
&J.
Churchill.
Thehydrodynamicsofwater-walkingarthropods33Reyssat,M.
,Pepin,A.
,Marty,F.
,Chen,Y.
&Quere,D.
2006Bouncingtransitionsinmicrotexturedmaterials.
Europhys.
Lett.
74,306–312.
Schildknecht,H.
1976Chemicalecology-achapterofmodernnaturalproductschemistry.
Angew.
Chem.
IntlEd.
Engl.
15,214–222.
Scriven,L.
E.
&Sternling,C.
V.
1970TheMarangonieects.
Nature187,186–188.
Song,Y.
S.
,Suhr,S.
H.
&Sitti,M.
2006Modelingofthesupportinglegsfordesigningabiomimeticwaterstriderrobot.
InProceedingsoftheIEEEInternationalConferenceonRoboticsandAutomation,pp.
2303–2310.
Spedding,G.
R.
,Rosen,M.
&Hedenstrom,A.
2003Afamilyofvortexwakesgeneratedbyathrushnightingaleinfreeightinawindtunneloveritsentirenaturalrangeofightspeeds.
J.
Exp.
Biol.
206,2313–2344.
Spilhaus,A.
1948Raindropsize,shapeandfallingspeed.
J.
Atmos.
Sci.
5(3),108–110.
Stratton,G.
E.
,Suter,R.
B.
&Miller,P.
R.
2004aEvolutionofwatersurfacelocomotionbyspiders:acomparativeapproach.
Biol.
J.
Linn.
Soc.
81(1),63–78.
Stratton,G.
E.
,Suter,R.
B.
&Miller,P.
R.
2004bTaxonomicvariationamongspidersintheabilitytorepelwater:surfaceadhesionandhairdensity.
J.
Arachnol.
32,11–21.
Suhr,S.
H.
,Song,Y.
S.
,Lee,S.
J.
&Sitti,M.
2005Biologicallyinspiredminiaturewaterstriderrobot.
Proc.
Robot.
Sci.
Sys.
pp.
42–48.
Sun,S.
M.
&Keller,J.
B.
2001Capillary–gravitywavedrag.
Phys.
Fluids13(8),2146–2151.
Suter,R.
B.
2003Trichobothrialmediationofanaquaticescaperesponse:directionaljumpsbytheshingspider.
J.
InsectSci.
3,1–7.
Suter,R.
B.
&Gruenwald,J.
2000PredatoravoidanceonthewatersurfaceKinematicsandecacyofverticaljumpingbyDolomedes(Araneae,Pisauridae).
J.
Arachnol.
28(2),201–210.
Suter,R.
B.
,Rosenberg,R.
B.
,Loeb,S.
,Wildman,H.
&Long,J.
1997Locomotiononthewatersurface:propulsivemechanismsofthesherspiderDolomedestriton.
J.
Exp.
Biol.
200,2523–2538.
Suter,R.
B.
,Stratton,G.
&Miller,P.
2003Watersurfacelocomotionbyspiders:distinctgaitsindiversefamilies.
J.
Arachnol.
31(3),428–432.
Suter,R.
B.
&Wildman,H.
1999Locomotiononthewatersurface:hydrodynamicconstraintsonrowingvelocityrequireagaitchange.
J.
Exp.
Biol.
202,2771–2785.
Taneda,S.
1991Visualobservationsoftheowaroundahalf-submergedoscillatingsphere.
J.
Fluid.
Mech.
227,193–209.
Taylor,G.
K.
,Nudds,R.
L.
&Thomas,A.
L.
R.
2003FlyingandswimminganimalscruiseataStrouhalnumbertunedforhighpowereciency.
Nature425,707–711.
Thorpe,W.
H.
&Crisp,D.
J.
1947Studiesonplastronrespiration.
PartI.
ThebiologyofApelocheirus[Hemiptera,Aphelocheiridae(Naucoridae)]andthemechanismofplastronrentention.
J.
Exp.
Biol.
24,227–269.
Vanden-Broeck,J.
&Dias,F.
1992Gravity-capillarysolitarywavesinwaterofinnitedepthandrelatedfree-surfaceows.
J.
FluidMech.
240,549–557.
Vogel,S.
1994LifeinMovingFluids.
PrincetonUniversityPress.
Vogel,S.
2006Livinginaphysicalworld.
PartVIII.
Gravityandlifeinwater.
J.
Biosci.
30(3),309–322.
Voropayev,S.
I.
&Afanasyev,Y.
D.
1994VortexStructuresinaStratiedFluid,pp.
35–37.
Chapman&Hall.
Wenzel,R.
N.
1936Resistanceofsolidsurfacestowettingbywater.
Indus.
EngngChem.
28,988–994.
Wilga,C.
&Lauder,G.
2002Functionoftheheterocercaltailinsharks:quantitativewakedynamicsduringsteadyhorizontalswimmingandverticalmaneuvering.
J.
Exp.
Biol.
205,2365–2374.
Yu,Y.
,Guo,M.
,Li,X.
&Zheng,Q.
S.
2007Meniscus-climbingbehaviouranditsminimumfree-energymechanism.
Langmuir23,10546–10550.
螢光云官網萤光云成立于2002年,是一家自有IDC的云厂商,主打高防云服务器产品。在国内有福州、北京、上海、台湾、香港CN2节点,还有华盛顿、河内、曼谷等海外节点。萤光云的高防云服务器自带50G防御,适合高防建站、游戏高防等业务。本次萤光云中秋云活动简单无套路,直接在原有价格上砍了一大刀,最低价格16元/月,而且有没有账户限制,新老客户都可以买,就是直接满满的诚意给大家送优惠了!官网首页:www....
Central美国独立日活动正在进行中,旗下美国达拉斯机房VPS 65折优惠,季付赠送双倍内存(需要发工单),Central租用的Hivelocity的机房,只支持信用卡和加密货币付款,不支持paypal,需要美国独服的可以谨慎入手试试。Central怎么样?Central便宜服务器,Central自称成立于2019年,主营美国达拉斯机房Linux vps、Windows vps、专用服务器和托管...
关于半月湾HMBCloud商家之前也有几篇那文章介绍过这个商家的产品,对于他们家的其他产品我都没有多加留意,而是对他们家的DC5机房很多人还是比较喜欢的,这个比我们有些比较熟悉的某商家DC6 DC9机房限时,而且半月湾HMBCloud商家是相对便宜的。关于半月湾DC5机房的方案选择和介绍:1、半月湾三网洛杉矶DC5 CN2 GIA同款DC6 DC9 1G内存 1TB流量 月$4.992、亲测选择半...
644为你推荐
免费虚拟主机哪个网站可以申请免费虚拟主机空间?vps虚拟主机VPS主机、虚拟主机和云主机 它们之间有什么区别?它们哪一个比较好?免费虚拟主机申请免费域名和免费虚拟主机申请以及绑定求详解域名服务商如何更换域名服务商美国服务器托管美国服务器租用时要注意什么?香港虚拟空间请大哥帮个忙,介绍可靠的香港虚拟主机?虚拟空间哪个好哪个网络服务商的虚拟空间服务比较好呢?100m网站空间网站空间100M指多大北京网站空间自己弄一个简单的网站,大概需要办理什么,大概需要多少钱?100m虚拟主机虚拟主机 100M 和200M 的区别?那个速度快?为什么?
日本动态vps 站群服务器 国外服务器 rackspace 512av 空间打开慢 外国域名 parseerror NetSpeeder 申请空间 论坛空间 qq数据库 好看qq空间 我爱水煮鱼 七夕快乐英文 卡巴斯基免费试用 100mbps vip域名 上海服务器 七夕快乐英语 更多