methodsasssd
asssd 时间:2021-01-16 阅读:(
)
PredictionofElectricLoadNeuralNetworkPredictionModelforBigDataGuochenJin1,*,XiangyingTang2,DepingMiao21Departmentofxxxx,yyyyUniversity,Beijing,China2Schoolofaaaa,bbbbUniversity,Changsha,China*Correspondingauthor:cccc@dddd.
comKeywords:NeuralNetwork,PredictionModel,BigData.
Abstract:Powerloadforecastingisveryimportantforpowerdispatching.
Accurateloadforecastingisofgreatsignificanceforsavingenergy,reducinggeneratingcostandimprovingsocialandeconomicbenefits.
Inordertoaccuratelypredictthepowerload,basedonBPneuralnetworktheory,combinedwiththeadvantagesofClementineindealingwithbigdataandpreventingoverfitting,aneuralnetworkpredictionmodelforlargedataisconstructed.
IntroductionTheaccuratepredictionofpowerloadisofgreatsignificancefortheelectricpowerproductionandthesafeoperationofthepowergridandthenationaleconomy[1].
Shorttermloadforecastingisanimportantpartofenergymanagementsystem.
Thepredictionerrordirectlyaffectstheanalysisresultsofsubsequentsafetycheckofpowergrid,whichisofgreatsignificancefordynamicstateestimation,loadschedulingandcostreduction[2-4].
Traditionalpredictionmethodsarebasedonlinearregression,suchastimeseriesmethod,analysismethodandpatternrecognitionmethodhasdefectsofrespectively[5].
ThebasicfunamentalofBPneuralnetwork2.
1ThestructureofBPneuralnetworkBPneuralnetworkisamulti-layernetworkwitherrorreversepropagation,whichiscomposedofinputlayernodes,hiddenlayernodesandoutputlayernodes.
Thisprocesshasbeenreducedtoanacceptableleveloferrortothenetworkoutput,ortoapredeterminednumberoflearningtimes.
ThenetworkstructureisshowninFigure1.
Figure1.
NeuralnetworkstructureThegeneralmodelofartificialneuralnetworkconsistsoffourbasicelements,whichare:(1)TheBPneuralnetworkislinkedbydifferentnodecoefficients.
Whenconnectingweightsandweightsarepositive,itindicatesthatthecurrentlinkisanexcitingstate.
Conversely,ifthelinkcoefficientisnegative,thelinkstateisastateofsuppression.
(2)Theinputsignalandthelinearsignalarethecombinationofthesignalsforeachinputsignal.
(3)Thefunctionofthenonlinearactivationfunction:makingtheneuronoutputsignalwithinacertainrange.
(1)(2)(3)BPneuralnetworkisbackpropagating,mainlycomposedofthreeparts:inputlayer,middlelayerandoutputlayer.
Thenumberofnodesintheinputandoutputlayersisrelativelyeasytodetermine,butthedeterminationofthenumberofnodesinthehiddenlayerisaveryimportantandcomplexproblem.
2.
2ThedeterminationofthenumberofnetworklayersBPneuralnetworkisbackpropagating,mainlycomposedofthreeparts:inputlayer,middlelayerandoutputlayer.
Thenumberofnodesintheinputandoutputlayersisrelativelyeasytodetermine,butthedeterminationofthenumberofnodesinthehiddenlayerisaveryimportantandcomplexproblem.
Results3.
1TheestablishmentofsimulationmodelThelargedatapredictionmodelfortheuser'selectricityconsumptionisimplementedintheClementinesoftware.
3.
2AnalysisofexperimentalresultsByselectingtheloadpredictionresultsof403and411lines.
Wecanseethattheactualvaluesofthelinesbasicallymatchthepredictedvalues,buttherearealsosomeerrors,especiallyinthepeakperiodofelectricityconsumption,asshowninTable.
1.
Table.
1.
Comparisonofpowerloadforecastingof403lineComparisonPowerForecastingA1293792387B92873529837C89452323894Fromthecomparisonbetweenpredictiondataandactualdata,theBPneuralnetworkhasbetterpredictionperformanceandrelativelysmallerror,whichcanmeetthedemandcompletely,andhasfastpredictionspeedandconvenientoperation.
ConclusionsThetrendofmassdatainpowersystemprovidesabasisforloadcharacteristicanalysisandpredictionmodelestablishment,buttheclassicalloadforecastingmethodcannotaffordsuchahugetimeandcomputingresourceconsumption.
Theproblemofoverfittinginlargesamplesetwillaffectthepredictionaccuracy.
Inthispaper,apowerloadforecastingmodelisbuiltbyusingtheBPneuralnetworkmodel,makingfulluseofthepowerfuldataprocessingfunctionofClementineandpreventingtheoverfittingfunction.
TheexperimentalresultsshowthattheBPneuralnetworkmodelhasgoodpredictabilityandrobustness,andhasacertainpracticalapplicationvalue.
AcknowledgementsTheauthorsgratefullyacknowledgethefinancialsupportfromxxxfunds.
ReferencesChengQiyun,SunCaixin,ZhangXiaoxing,etal.
Short-Termloadforecastingmodelandmethodforpowersystembasedoncomplementationofneuralnetworkandfuzzylogic[J].
TransactionsofChinaElectrotechnicalSociety,2004,19(10):53-58.
Fangfang.
ResearchonpowerloadforecastingbasedonImprovedBPneuralnetwork[D].
HarbinInstituteofTechnology,2011.
AmjadyN.
Short-termhourlyloadforecastingusingtimeseriesmodelingwithpeakloadestimationcapability[J].
IEEETransactionsonPowerSystems,2001,16(4):798-805.
MaKunlong.
Shorttermdistributedloadforecastingmethodbasedonbigdata[D].
Changsha:HunanUniversity,2014.
SHIBiao,LIYuXia,YUXhua,YANWang.
Short-termloadforecastingbasedonmodifiedparticleswarmoptimizerandfuzzyneuralnetworkmodel[J].
SystemsEngineering-TheoryandPractice,2010,30(1):158-160.
整理一下CloudCone商家之前推送的闪购VPS云服务器产品,数量有限,活动推出可能很快机器就售罄了,有需要美国便宜VPS云服务器的朋友可以关注一下。CloudCone怎么样?CloudCone服务器好不好?CloudCone值不值得购买?CloudCone是一家成立于2017年的美国服务器提供商,国外实力大厂,自己开发的主机系统面板,CloudCone主要销售美国洛杉矶云服务器产品,优势特点是...
看到群里网友们在讨论由于不清楚的原因,有同学的网站无法访问。他的网站是没有用HTTPS的,直接访问他的HTTP是无法访问的,通过PING测试可以看到解析地址已经比较乱,应该是所谓的DNS污染。其中有网友提到采用HTTPS加密证书试试。因为HTTP和HTTPS走的不是一个端口,之前有网友这样测试过是可以缓解这样的问题。这样通过将网站绑定设置HTTPS之后,是可以打开的,看来网站的80端口出现问题,而...
tmhhost为2021年暑假开启了全场大促销,全部都是高端线路的VPS,速度快有保障。美国洛杉矶CN2 GIA+200G高防、洛杉矶三网CN2 GIA、洛杉矶CERA机房CN2 GIA,日本软银(100M带宽)、香港BGP直连200M带宽、香港三网CN2 GIA、韩国双向CN2。本次活动结束于8月31日。官方网站:https://www.tmhhost.com8折优惠码:TMH-SUMMER日本...
asssd为你推荐
linux虚拟主机如何配置linux虚拟主机免费虚拟主机空间谁知道有没有免费的虚拟主机空间租服务器租服务器是什么意思?域名备案查询如何查网站备案信息国外空间租用好用的国外空间网站域名各种网站的域名香港虚拟空间香港虚拟空间 好不、现在还有人买嘛万网虚拟主机万网,云服务器和与虚拟主机有什么区别?我是完全不知到的那种,谢谢。用前者还是后者合适。怎么做网页。深圳虚拟主机深圳鼎峰网络科技 虚拟主机空间怎么样青岛虚拟主机虚拟主机在什么地方买好?又便宜?
中国十大域名注册商 怎样注册域名 winhost 美元争夺战 商务主机 上海域名 空间出租 股票老左 免费dns解析 t云 微软服务器操作系统 idc查询 上海服务器 吉林铁通 双线机房 web服务器是什么 沈阳主机托管 东莞服务器托管 秒杀品 lamp是什么意思 更多