methodsasssd
asssd 时间:2021-01-16 阅读:(
)
PredictionofElectricLoadNeuralNetworkPredictionModelforBigDataGuochenJin1,*,XiangyingTang2,DepingMiao21Departmentofxxxx,yyyyUniversity,Beijing,China2Schoolofaaaa,bbbbUniversity,Changsha,China*Correspondingauthor:cccc@dddd.
comKeywords:NeuralNetwork,PredictionModel,BigData.
Abstract:Powerloadforecastingisveryimportantforpowerdispatching.
Accurateloadforecastingisofgreatsignificanceforsavingenergy,reducinggeneratingcostandimprovingsocialandeconomicbenefits.
Inordertoaccuratelypredictthepowerload,basedonBPneuralnetworktheory,combinedwiththeadvantagesofClementineindealingwithbigdataandpreventingoverfitting,aneuralnetworkpredictionmodelforlargedataisconstructed.
IntroductionTheaccuratepredictionofpowerloadisofgreatsignificancefortheelectricpowerproductionandthesafeoperationofthepowergridandthenationaleconomy[1].
Shorttermloadforecastingisanimportantpartofenergymanagementsystem.
Thepredictionerrordirectlyaffectstheanalysisresultsofsubsequentsafetycheckofpowergrid,whichisofgreatsignificancefordynamicstateestimation,loadschedulingandcostreduction[2-4].
Traditionalpredictionmethodsarebasedonlinearregression,suchastimeseriesmethod,analysismethodandpatternrecognitionmethodhasdefectsofrespectively[5].
ThebasicfunamentalofBPneuralnetwork2.
1ThestructureofBPneuralnetworkBPneuralnetworkisamulti-layernetworkwitherrorreversepropagation,whichiscomposedofinputlayernodes,hiddenlayernodesandoutputlayernodes.
Thisprocesshasbeenreducedtoanacceptableleveloferrortothenetworkoutput,ortoapredeterminednumberoflearningtimes.
ThenetworkstructureisshowninFigure1.
Figure1.
NeuralnetworkstructureThegeneralmodelofartificialneuralnetworkconsistsoffourbasicelements,whichare:(1)TheBPneuralnetworkislinkedbydifferentnodecoefficients.
Whenconnectingweightsandweightsarepositive,itindicatesthatthecurrentlinkisanexcitingstate.
Conversely,ifthelinkcoefficientisnegative,thelinkstateisastateofsuppression.
(2)Theinputsignalandthelinearsignalarethecombinationofthesignalsforeachinputsignal.
(3)Thefunctionofthenonlinearactivationfunction:makingtheneuronoutputsignalwithinacertainrange.
(1)(2)(3)BPneuralnetworkisbackpropagating,mainlycomposedofthreeparts:inputlayer,middlelayerandoutputlayer.
Thenumberofnodesintheinputandoutputlayersisrelativelyeasytodetermine,butthedeterminationofthenumberofnodesinthehiddenlayerisaveryimportantandcomplexproblem.
2.
2ThedeterminationofthenumberofnetworklayersBPneuralnetworkisbackpropagating,mainlycomposedofthreeparts:inputlayer,middlelayerandoutputlayer.
Thenumberofnodesintheinputandoutputlayersisrelativelyeasytodetermine,butthedeterminationofthenumberofnodesinthehiddenlayerisaveryimportantandcomplexproblem.
Results3.
1TheestablishmentofsimulationmodelThelargedatapredictionmodelfortheuser'selectricityconsumptionisimplementedintheClementinesoftware.
3.
2AnalysisofexperimentalresultsByselectingtheloadpredictionresultsof403and411lines.
Wecanseethattheactualvaluesofthelinesbasicallymatchthepredictedvalues,buttherearealsosomeerrors,especiallyinthepeakperiodofelectricityconsumption,asshowninTable.
1.
Table.
1.
Comparisonofpowerloadforecastingof403lineComparisonPowerForecastingA1293792387B92873529837C89452323894Fromthecomparisonbetweenpredictiondataandactualdata,theBPneuralnetworkhasbetterpredictionperformanceandrelativelysmallerror,whichcanmeetthedemandcompletely,andhasfastpredictionspeedandconvenientoperation.
ConclusionsThetrendofmassdatainpowersystemprovidesabasisforloadcharacteristicanalysisandpredictionmodelestablishment,buttheclassicalloadforecastingmethodcannotaffordsuchahugetimeandcomputingresourceconsumption.
Theproblemofoverfittinginlargesamplesetwillaffectthepredictionaccuracy.
Inthispaper,apowerloadforecastingmodelisbuiltbyusingtheBPneuralnetworkmodel,makingfulluseofthepowerfuldataprocessingfunctionofClementineandpreventingtheoverfittingfunction.
TheexperimentalresultsshowthattheBPneuralnetworkmodelhasgoodpredictabilityandrobustness,andhasacertainpracticalapplicationvalue.
AcknowledgementsTheauthorsgratefullyacknowledgethefinancialsupportfromxxxfunds.
ReferencesChengQiyun,SunCaixin,ZhangXiaoxing,etal.
Short-Termloadforecastingmodelandmethodforpowersystembasedoncomplementationofneuralnetworkandfuzzylogic[J].
TransactionsofChinaElectrotechnicalSociety,2004,19(10):53-58.
Fangfang.
ResearchonpowerloadforecastingbasedonImprovedBPneuralnetwork[D].
HarbinInstituteofTechnology,2011.
AmjadyN.
Short-termhourlyloadforecastingusingtimeseriesmodelingwithpeakloadestimationcapability[J].
IEEETransactionsonPowerSystems,2001,16(4):798-805.
MaKunlong.
Shorttermdistributedloadforecastingmethodbasedonbigdata[D].
Changsha:HunanUniversity,2014.
SHIBiao,LIYuXia,YUXhua,YANWang.
Short-termloadforecastingbasedonmodifiedparticleswarmoptimizerandfuzzyneuralnetworkmodel[J].
SystemsEngineering-TheoryandPractice,2010,30(1):158-160.
星梦云怎么样?星梦云好不好,资质齐全,IDC/ISP均有,从星梦云这边租的服务器均可以备案,属于一手资源,高防机柜、大带宽、高防IP业务,一手整C IP段,四川电信,星梦云专注四川高防服务器,成都服务器,雅安服务器 。官方网站:点击访问星梦云官网活动方案:1、成都电信年中活动机(封锁UDP,不可解封):机房CPU内存硬盘带宽IP防护流量原价活动价开通方式成都电信优化线路4vCPU4G40G+50...
A2Hosting主机,A2Hosting怎么样?A2Hosting是UK2集团下属公司,成立于2003年的老牌国外主机商,产品包括虚拟主机、VPS和独立服务器等,数据中心提供包括美国、新加坡softlayer和荷兰三个地区机房。A2Hosting在国外是一家非常大非常有名气的终合型主机商,拥有几百万的客户,非常值得信赖,国外主机论坛对它家的虚拟主机评价非常不错,当前,A2Hosting主机庆祝1...
野草云服务器怎么样?野草云是一家成立了9年的国人主机商家,隶属于香港 LucidaCloud Limited (HongKong Registration No. 2736053 / 香港網上查冊中心)。目前,野草云主要销售香港、美国的VPS、虚拟主机及独立服务器等产品,本站也给大家分享过多次他家的优惠了,目前商家开启了优惠活动,香港/美国洛杉矶CN2+BGP云服务器,1核1G仅38元/月起!点击...
asssd为你推荐
网络域名注册如何注册网络域名免费注册域名有没有能够免费申请的域名??域名空间代理域名空间服务商哪个好啊?找了一天都没确定哪个好?me域名注册.me是什么域名域名服务域名系统主要是什么?com域名注册com域名是永久注册的吗ip代理地址代理ip地址是怎么来的?免费域名空间哪个免费空间的域名最好香港虚拟空间香港空间,香港虚拟主机,香港虚拟空间推荐一家,公司要做一个网站,需要1G的,不限流量的,其它的空间不要合肥虚拟主机虚拟主机怎么弄!
长沙服务器租用 免费域名申请 阿里云搜索 东莞电信局 virpus simcentric permitrootlogin godaddy优惠券 新站长网 网盘申请 777te 40g硬盘 什么是服务器托管 中国网通测速 支付宝扫码领红包 shopex主机 smtp服务器地址 工信部网站备案查询 中国域名 学生服务器 更多