methodsasssd
asssd 时间:2021-01-16 阅读:(
)
PredictionofElectricLoadNeuralNetworkPredictionModelforBigDataGuochenJin1,*,XiangyingTang2,DepingMiao21Departmentofxxxx,yyyyUniversity,Beijing,China2Schoolofaaaa,bbbbUniversity,Changsha,China*Correspondingauthor:cccc@dddd.
comKeywords:NeuralNetwork,PredictionModel,BigData.
Abstract:Powerloadforecastingisveryimportantforpowerdispatching.
Accurateloadforecastingisofgreatsignificanceforsavingenergy,reducinggeneratingcostandimprovingsocialandeconomicbenefits.
Inordertoaccuratelypredictthepowerload,basedonBPneuralnetworktheory,combinedwiththeadvantagesofClementineindealingwithbigdataandpreventingoverfitting,aneuralnetworkpredictionmodelforlargedataisconstructed.
IntroductionTheaccuratepredictionofpowerloadisofgreatsignificancefortheelectricpowerproductionandthesafeoperationofthepowergridandthenationaleconomy[1].
Shorttermloadforecastingisanimportantpartofenergymanagementsystem.
Thepredictionerrordirectlyaffectstheanalysisresultsofsubsequentsafetycheckofpowergrid,whichisofgreatsignificancefordynamicstateestimation,loadschedulingandcostreduction[2-4].
Traditionalpredictionmethodsarebasedonlinearregression,suchastimeseriesmethod,analysismethodandpatternrecognitionmethodhasdefectsofrespectively[5].
ThebasicfunamentalofBPneuralnetwork2.
1ThestructureofBPneuralnetworkBPneuralnetworkisamulti-layernetworkwitherrorreversepropagation,whichiscomposedofinputlayernodes,hiddenlayernodesandoutputlayernodes.
Thisprocesshasbeenreducedtoanacceptableleveloferrortothenetworkoutput,ortoapredeterminednumberoflearningtimes.
ThenetworkstructureisshowninFigure1.
Figure1.
NeuralnetworkstructureThegeneralmodelofartificialneuralnetworkconsistsoffourbasicelements,whichare:(1)TheBPneuralnetworkislinkedbydifferentnodecoefficients.
Whenconnectingweightsandweightsarepositive,itindicatesthatthecurrentlinkisanexcitingstate.
Conversely,ifthelinkcoefficientisnegative,thelinkstateisastateofsuppression.
(2)Theinputsignalandthelinearsignalarethecombinationofthesignalsforeachinputsignal.
(3)Thefunctionofthenonlinearactivationfunction:makingtheneuronoutputsignalwithinacertainrange.
(1)(2)(3)BPneuralnetworkisbackpropagating,mainlycomposedofthreeparts:inputlayer,middlelayerandoutputlayer.
Thenumberofnodesintheinputandoutputlayersisrelativelyeasytodetermine,butthedeterminationofthenumberofnodesinthehiddenlayerisaveryimportantandcomplexproblem.
2.
2ThedeterminationofthenumberofnetworklayersBPneuralnetworkisbackpropagating,mainlycomposedofthreeparts:inputlayer,middlelayerandoutputlayer.
Thenumberofnodesintheinputandoutputlayersisrelativelyeasytodetermine,butthedeterminationofthenumberofnodesinthehiddenlayerisaveryimportantandcomplexproblem.
Results3.
1TheestablishmentofsimulationmodelThelargedatapredictionmodelfortheuser'selectricityconsumptionisimplementedintheClementinesoftware.
3.
2AnalysisofexperimentalresultsByselectingtheloadpredictionresultsof403and411lines.
Wecanseethattheactualvaluesofthelinesbasicallymatchthepredictedvalues,buttherearealsosomeerrors,especiallyinthepeakperiodofelectricityconsumption,asshowninTable.
1.
Table.
1.
Comparisonofpowerloadforecastingof403lineComparisonPowerForecastingA1293792387B92873529837C89452323894Fromthecomparisonbetweenpredictiondataandactualdata,theBPneuralnetworkhasbetterpredictionperformanceandrelativelysmallerror,whichcanmeetthedemandcompletely,andhasfastpredictionspeedandconvenientoperation.
ConclusionsThetrendofmassdatainpowersystemprovidesabasisforloadcharacteristicanalysisandpredictionmodelestablishment,buttheclassicalloadforecastingmethodcannotaffordsuchahugetimeandcomputingresourceconsumption.
Theproblemofoverfittinginlargesamplesetwillaffectthepredictionaccuracy.
Inthispaper,apowerloadforecastingmodelisbuiltbyusingtheBPneuralnetworkmodel,makingfulluseofthepowerfuldataprocessingfunctionofClementineandpreventingtheoverfittingfunction.
TheexperimentalresultsshowthattheBPneuralnetworkmodelhasgoodpredictabilityandrobustness,andhasacertainpracticalapplicationvalue.
AcknowledgementsTheauthorsgratefullyacknowledgethefinancialsupportfromxxxfunds.
ReferencesChengQiyun,SunCaixin,ZhangXiaoxing,etal.
Short-Termloadforecastingmodelandmethodforpowersystembasedoncomplementationofneuralnetworkandfuzzylogic[J].
TransactionsofChinaElectrotechnicalSociety,2004,19(10):53-58.
Fangfang.
ResearchonpowerloadforecastingbasedonImprovedBPneuralnetwork[D].
HarbinInstituteofTechnology,2011.
AmjadyN.
Short-termhourlyloadforecastingusingtimeseriesmodelingwithpeakloadestimationcapability[J].
IEEETransactionsonPowerSystems,2001,16(4):798-805.
MaKunlong.
Shorttermdistributedloadforecastingmethodbasedonbigdata[D].
Changsha:HunanUniversity,2014.
SHIBiao,LIYuXia,YUXhua,YANWang.
Short-termloadforecastingbasedonmodifiedparticleswarmoptimizerandfuzzyneuralnetworkmodel[J].
SystemsEngineering-TheoryandPractice,2010,30(1):158-160.
hostslim美国独立日活动正在进行中,针对一款大硬盘荷兰专用服务器:双E5-2620v2/4x 1TB SATA硬盘,活动价60美元月。HostSlim荷兰服务器允许大人内容,不过只支持电汇、信用卡和比特币付款,商家支持7天内退款保证,有需要欧洲服务器的可以入手试试,记得注册的时候选择中国,这样不用交20%的税。hostslim怎么样?HostSlim是一家成立于2008年的荷兰托管服务器商,...
Digital-VM商家目前也在凑热闹的发布六月份的活动,他们家的机房蛮多的有提供8个数据中心,包括日本、洛杉矶、新加坡等。这次六月份的促销活动全场VPS主机六折优惠。Digital-VM商家还是有一点点特点的,有提供1Gbps和10Gbps带宽的VPS主机,如果有需要大带宽的VPS主机可以看看。第一、商家优惠码优惠码:June40全场主机六折优惠,不过仅可以月付、季付。第二、商家VPS主机套餐1...
欧路云 主要运行弹性云服务器,可自由定制配置,可选加拿大的480G超高防系列,也可以选择美国(200G高防)系列,也有速度直逼内地的香港CN2系列。所有配置都可以在下单的时候自行根据项目 需求来定制自由升级降级 (降级按天数配置费用 退款回预存款)。由专业人员提供一系列的技术支持!官方网站:https://www.oulucloud.com/云服务器(主机测评专属优惠)全场8折 优惠码:zhuji...
asssd为你推荐
免备案虚拟主机哪家免备案虚拟主机好,而且便宜点的?韩国虚拟主机香港和韩国的虚拟主机哪个比较好?大连虚拟主机大连哪些地方的网通机房好?域名停靠域名停放是什么?备案域名购买什么是已备案域名?那里 有已备案域名老域名老域名的利弊有哪些?域名抢注域名怎么抢注?域名城一个域名至少由几个层次构成?根域名服务器计算机的根服务器是什么东西?根域名服务器全球有多少DNS根服务器?
godaddy域名解析 新世界机房 wordpress技巧 suspended 牛人与腾讯客服对话 泉州电信 安徽双线服务器 华为云盘 广州服务器托管 饭桶 29美元 电脑主机声音大 大容量存储控制器 护卫神主机管理系统 北京车牌号申请网站 韩剧网789 海贼王789 免费网络推广 免费网络硬盘 宽带测速电信 更多