methodsasssd
asssd 时间:2021-01-16 阅读:(
)
PredictionofElectricLoadNeuralNetworkPredictionModelforBigDataGuochenJin1,*,XiangyingTang2,DepingMiao21Departmentofxxxx,yyyyUniversity,Beijing,China2Schoolofaaaa,bbbbUniversity,Changsha,China*Correspondingauthor:cccc@dddd.
comKeywords:NeuralNetwork,PredictionModel,BigData.
Abstract:Powerloadforecastingisveryimportantforpowerdispatching.
Accurateloadforecastingisofgreatsignificanceforsavingenergy,reducinggeneratingcostandimprovingsocialandeconomicbenefits.
Inordertoaccuratelypredictthepowerload,basedonBPneuralnetworktheory,combinedwiththeadvantagesofClementineindealingwithbigdataandpreventingoverfitting,aneuralnetworkpredictionmodelforlargedataisconstructed.
IntroductionTheaccuratepredictionofpowerloadisofgreatsignificancefortheelectricpowerproductionandthesafeoperationofthepowergridandthenationaleconomy[1].
Shorttermloadforecastingisanimportantpartofenergymanagementsystem.
Thepredictionerrordirectlyaffectstheanalysisresultsofsubsequentsafetycheckofpowergrid,whichisofgreatsignificancefordynamicstateestimation,loadschedulingandcostreduction[2-4].
Traditionalpredictionmethodsarebasedonlinearregression,suchastimeseriesmethod,analysismethodandpatternrecognitionmethodhasdefectsofrespectively[5].
ThebasicfunamentalofBPneuralnetwork2.
1ThestructureofBPneuralnetworkBPneuralnetworkisamulti-layernetworkwitherrorreversepropagation,whichiscomposedofinputlayernodes,hiddenlayernodesandoutputlayernodes.
Thisprocesshasbeenreducedtoanacceptableleveloferrortothenetworkoutput,ortoapredeterminednumberoflearningtimes.
ThenetworkstructureisshowninFigure1.
Figure1.
NeuralnetworkstructureThegeneralmodelofartificialneuralnetworkconsistsoffourbasicelements,whichare:(1)TheBPneuralnetworkislinkedbydifferentnodecoefficients.
Whenconnectingweightsandweightsarepositive,itindicatesthatthecurrentlinkisanexcitingstate.
Conversely,ifthelinkcoefficientisnegative,thelinkstateisastateofsuppression.
(2)Theinputsignalandthelinearsignalarethecombinationofthesignalsforeachinputsignal.
(3)Thefunctionofthenonlinearactivationfunction:makingtheneuronoutputsignalwithinacertainrange.
(1)(2)(3)BPneuralnetworkisbackpropagating,mainlycomposedofthreeparts:inputlayer,middlelayerandoutputlayer.
Thenumberofnodesintheinputandoutputlayersisrelativelyeasytodetermine,butthedeterminationofthenumberofnodesinthehiddenlayerisaveryimportantandcomplexproblem.
2.
2ThedeterminationofthenumberofnetworklayersBPneuralnetworkisbackpropagating,mainlycomposedofthreeparts:inputlayer,middlelayerandoutputlayer.
Thenumberofnodesintheinputandoutputlayersisrelativelyeasytodetermine,butthedeterminationofthenumberofnodesinthehiddenlayerisaveryimportantandcomplexproblem.
Results3.
1TheestablishmentofsimulationmodelThelargedatapredictionmodelfortheuser'selectricityconsumptionisimplementedintheClementinesoftware.
3.
2AnalysisofexperimentalresultsByselectingtheloadpredictionresultsof403and411lines.
Wecanseethattheactualvaluesofthelinesbasicallymatchthepredictedvalues,buttherearealsosomeerrors,especiallyinthepeakperiodofelectricityconsumption,asshowninTable.
1.
Table.
1.
Comparisonofpowerloadforecastingof403lineComparisonPowerForecastingA1293792387B92873529837C89452323894Fromthecomparisonbetweenpredictiondataandactualdata,theBPneuralnetworkhasbetterpredictionperformanceandrelativelysmallerror,whichcanmeetthedemandcompletely,andhasfastpredictionspeedandconvenientoperation.
ConclusionsThetrendofmassdatainpowersystemprovidesabasisforloadcharacteristicanalysisandpredictionmodelestablishment,buttheclassicalloadforecastingmethodcannotaffordsuchahugetimeandcomputingresourceconsumption.
Theproblemofoverfittinginlargesamplesetwillaffectthepredictionaccuracy.
Inthispaper,apowerloadforecastingmodelisbuiltbyusingtheBPneuralnetworkmodel,makingfulluseofthepowerfuldataprocessingfunctionofClementineandpreventingtheoverfittingfunction.
TheexperimentalresultsshowthattheBPneuralnetworkmodelhasgoodpredictabilityandrobustness,andhasacertainpracticalapplicationvalue.
AcknowledgementsTheauthorsgratefullyacknowledgethefinancialsupportfromxxxfunds.
ReferencesChengQiyun,SunCaixin,ZhangXiaoxing,etal.
Short-Termloadforecastingmodelandmethodforpowersystembasedoncomplementationofneuralnetworkandfuzzylogic[J].
TransactionsofChinaElectrotechnicalSociety,2004,19(10):53-58.
Fangfang.
ResearchonpowerloadforecastingbasedonImprovedBPneuralnetwork[D].
HarbinInstituteofTechnology,2011.
AmjadyN.
Short-termhourlyloadforecastingusingtimeseriesmodelingwithpeakloadestimationcapability[J].
IEEETransactionsonPowerSystems,2001,16(4):798-805.
MaKunlong.
Shorttermdistributedloadforecastingmethodbasedonbigdata[D].
Changsha:HunanUniversity,2014.
SHIBiao,LIYuXia,YUXhua,YANWang.
Short-termloadforecastingbasedonmodifiedparticleswarmoptimizerandfuzzyneuralnetworkmodel[J].
SystemsEngineering-TheoryandPractice,2010,30(1):158-160.
这几天有几个网友询问到是否有Windows VPS主机便宜的VPS主机商。原本他们是在Linode、Vultr主机商挂载DD安装Windows系统的,有的商家支持自定义WIN镜像,但是这些操作起来特别效率低下,每次安装一个Windows系统需要一两个小时,所以如果能找到比较合适的自带Windows系统的服务器那最好不过。这不看到PacificRack商家有提供夏季促销活动,其中包括年付便宜套餐的P...
咖啡主机怎么样?咖啡主机是一家国人主机销售商,成立于2016年8月,之前云服务器网已经多次分享过他家的云服务器产品了,商家主要销售香港、洛杉矶等地的VPS产品,Cera机房 三网直连去程 回程CUVIP优化 本产品并非原生地区本土IP,线路方面都有CN2直连国内,机器比较稳定。咖啡主机目前推出美国洛杉矶弹性轻量云主机仅13元/月起,高防云20G防御仅18元/月;香港弹性云服务器,香港HKBN CN...
justhost怎么样?justhost是一家俄罗斯主机商,2006年成立,提供各种主机服务,vps基于kvm,有HDD和SSD硬盘两种,特色是200Mbps不限流量(之前是100Mbps,现在升级为200Mbps)。下面是HDD硬盘的KVM VPS,性价比最高,此外还有SSD硬盘的KVM VPS,价格略高。支持Paypal付款。国内建议选择新西伯利亚或者莫斯科DataLine。支持Paypal付...
asssd为你推荐
域名注册公司一般公司注册的都是什么域名?免费虚拟主机空间请问哪里有:免费一级域名申请,免费虚拟主机,免费空间linux主机linux主机与Windows主机的区别?谢谢info域名注册百度还收录新注册的info域名吗?域名购买域名注册和购买是一个意思吗?虚拟空间免费试用目前哪里有免费试用的虚拟主机 或者服务器用啊?asp网站空间ASP空间是什么?asp网站空间什么是ASP空间?虚拟主机服务商现在市场上那家服务商的虚拟主机性价比最高?论坛虚拟主机最适合做论坛的虚拟主机是什么?
过期域名查询 highfrequency 美国便宜货网站 香港新世界电讯 标准机柜尺寸 租空间 元旦促销 165邮箱 韩国名字大全 lol台服官网 服务器是干什么用的 vul 免费网络空间 免费主页空间 服务器托管价格 mteam sonya cdn加速技术 winserver2008下载 饭桶 更多