协方差矩阵协方差矩阵有什么意义

协方差矩阵  时间:2021-06-22  阅读:()

协方差矩阵 迹的意义是什么

协方差矩阵的详细说明 在做人脸识别的时候经常与协方差矩阵打交道,但一直也只是知道其形式,而对其意义却比较模糊,现在我根据单变量的协方差给出协方差矩阵的详细推导以及在不同应用背景下的不同形式。

变量说明: 设为一组随机变量,这些随机变量构成随机向量 ,每个随机变量有m个样本,则有样本矩阵 (1) 其中 对应着每个随机向量X的样本向量, 对应着第i个随机单变量的所有样本值构成的向量。

单随机变量间的协方差: 随机变量 之间的协方差可以表示为 (2) 根据已知的样本值可以得到协方差的估计值如下: (3) 可以进一步地简化为: (4) 协方差矩阵: (5) 其中 ,从而得到了协方差矩阵表达式。

如果所有样本的均值为一个零向量,则式(5)可以表达成: (6) 补充说明: 1、协方差矩阵中的每一个元素是表示的随机向量X的不同分量之间的协方差,而不是不同样本之间的协方差,如元素Cij就是反映的随机变量Xi, Xj的协方差。

2、协方差是反映的变量之间的二阶统计特性,如果随机向量的不同分量之间的相关性很小,则所得的协方差矩阵几乎是一个对角矩阵。

对于一些特殊的应用场合,为了使随机向量的长度较小,可以采用主成分分析的方法,使变换之后的变量的协方差矩阵完全是一个对角矩阵,之后就可以舍弃一些能量较小的分量了(对角线上的元素反映的是方差,也就是交流能量)。

特别是在模式识别领域,当模式向量的维数过高时会影响识别系统的泛化性能,经常需要做这样的处理。

3、必须注意的是,这里所得到的式(5)和式(6)给出的只是随机向量协方差矩阵真实值的一个估计(即由所测的样本的值来表示的,随着样本取值的不同会发生变化),故而所得的协方差矩阵是依赖于采样样本的,并且样本的数目越多,样本在总体中的覆盖面越广,则所得的协方差矩阵越可靠。

4、如同协方差和相关系数的关系一样,我们有时为了能够更直观地知道随机向量的不同分量之间的相关性究竟有多大,还会引入相关系数矩阵。

求助一下,怎么证明这个协方差矩阵的性质

这个其实,基本上,就是从协方差矩阵的定义来的。

协方差矩阵,基本上,就是向量 (X - μ) 与其转置相乘,然后求期望,而期望就是个加权平均而已。

这样的东西,从线性代数上讲,基本上全是半正定的。

为了看清楚,我们一步一步来,见下图(一定要点击放大哦): 下图中,所谓的数学期望的线性性质,就是指 E(X+Y) = E(X) + E(Y) 与 X、Y 是否独立无关。

协方差矩阵、矩阵求逆的实际意义

1、协方差矩阵中的每一个元素是表示的随机向量X的不同分量之间的协方差,而不是不同样本之间的协方差,如元素Cij就是反映的随机变量Xi,Xj的协方差。

2、协方差是反映的变量之间的二阶统计特性,如果随机向量的不同分量之间的相关性很小,则所得的协方差矩阵几乎是一个对角矩阵。

对于一些特殊的应用场合,为了使随机向量的长度较小,可以采用主成分分析的方法,使变换之后的变量的协方差矩阵完全是一个对角矩阵,之后就可以舍弃一些能量较小的分量了(对角线上的元素反映的是方差,也就是交流能量)。

特别是在模式识别领域,当模式向量的维数过高时会影响识别系统的泛化性能,经常需要做这样的处理。

3、必须注意的是,这里所得到的式(5)和式(6)给出的只是随机向量协方差矩阵真实值的一个估计(即由所测的样本的值来表示的,随着样本取值的不同会发生变化),故而所得的协方差矩阵是依赖于采样样本的,并且样本的数目越多,样本在总体中的覆盖面越广,则所得的协方差矩阵越可靠。

4、如同协方差和相关系数的关系一样,我们有时为了能够更直观地知道随机向量的不同分量之间的相关性究竟有多大,还会引入相关系数矩阵。

在概率论和统计学中,相关或称相关系数或关联系数,显示两个随机变量之间线性关系的强度和方向。

在统计学中,相关的意义是用来衡量两个变量相对于其相互独立的距离。

在这个广义的定义下,有许多根据数据特点而定义的用来衡量数据相关的系数。

对于不同数据特点,可以使用不同的系数。

最常用的是皮尔逊积差相关系数。

其定义是两个变量协方差除以两个变量的标准差(方差)。

皮尔逊积差系数 数学特征 其中,E是数学期望,cov表示协方差。

因为μX=E(X),σX2=E(X2) E2(X),同样地,对于Y,可以写成 当两个变量的标准差都不为零,相关系数才有定义。

从柯西—施瓦茨不等式可知,相关系数不超过1.当两个变量的线性关系增强时,相关系数趋于1或-1。

当一个变量增加而另一变量也增加时,相关系数大于0。

当一个变量的增加而另一变量减少时,相关系数小于0。

当两个变量独立时,相关系数为0.但反之并不成立。

这是因为相关系数仅仅反映了两个变量之间是否线性相关。

比如说,X是区间[-1,1]上的一个均匀分布的随机变量。

Y=X2.那么Y是完全由X确定。

因此Y和X是不独立的。

但是相关系数为0。

或者说他们是不相关的。

当Y和X服从联合正态分布时,其相互独立和不相关是等价的。

当一个或两个变量带有测量误差时,他们的相关性就受到削弱,这时,“反衰减”性(disattenuation)是一个更准确的系数。

如何计算两个两个方差矩阵的协方差矩阵

原式=d/dx∫百(0→cosx)cos(π度t?)dt-d/dx∫(0→内sinx)cos(πt?)dt =d/dcosx∫(0→cosx)cos(πt?)dt·dcosx/dx-d/dsinx∫(0→sinx)cos(πt?)dt·dsinx/dx =cos(πcos?x)(-sinx)-cos(πsin?x)cosx =-sinx·cos(πcos?x)-cosx·cos(πsin?x) 注:∫(a→b)f(t)dt表示f(t)的以a为下限、b为上限的定积容分。

协方差矩阵有什么意义

在统计学与概率论中,协方差矩阵的每个元素是各个向量元素之间的协方差。

是从标量随机变量到高维度随机向量的自然推广。

尽管协方差矩阵很简单,可它却是很多领域里的非常有力的工具。

它能导出一个变换矩阵,这个矩阵能使数据完全去相关(decorrelation)。

从不同的角度来看,也就是说能够找出一组最佳的基以紧凑的方式来表达数据。

协方差就是这样一种用来度量两个随机变量关系的统计量,但协方差也只能处理二维问题,那维数多了自然就需要计算多个协方差,比如n维的数据集就需要计算个协方差,那自然而然我们会想到使用协方差矩阵来组织这些数据。

CloudCone 新增洛杉矶优化线路 年付17.99美元且简单线路测试

CloudCone 商家在以前的篇幅中也有多次介绍到,这个商家也蛮有意思的。以前一直只有洛杉矶MC机房,而且在功能上和Linode、DO、Vultr一样可以随时删除采用按时计费模式。但是,他们没有学到人家的精华部分,要这样的小时计费,一定要机房多才有优势,否则压根没有多大用途。这不最近CloudCone商家有点小变化,有新人洛杉矶优化线路,具体是什么优化的等会我测试看看线路。内存CPU硬盘流量价格...

快云科技,美国VPS 2H5G独享20M 仅售19.8/月  年付仅需148

快云科技已稳步运行进两年了 期间没出现过线路不稳 客户不满意等一系列问题 本司资质齐全 持有IDC ICP ISP等正规手续 有独特的网站设计理念 在前几天刚是参加过魔方系统举行的设计大赛拿获最佳设计奖第一名 本公司主营产品 香港弹性云服务器,美国vps和日本vps,香港物理机,国内高防物理机以及美国日本高防物理机 2020年的国庆推出过一款香港的回馈用户特惠机 已作为传家宝 稳定运行 马上又到了...

HostWebis:美国/法国便宜服务器,100Mbps不限流量,高配置大硬盘,$44/月起

hostwebis怎么样?hostwebis昨天在webhosting发布了几款美国高配置大硬盘机器,但报价需要联系客服。看了下该商家的其它产品,发现几款美国服务器、法国服务器还比较实惠,100Mbps不限流量,高配置大硬盘,$44/月起,有兴趣的可以关注一下。HostWebis是一家国外主机品牌,官网宣称1998年就成立了,根据目标市场的不同,以不同品牌名称提供网络托管服务。2003年,通过与W...

协方差矩阵为你推荐
bean是什么意思在jdbc的DAO是什么意思?还有bean?dnf装备代码dnf超级装备 ,极品代码是什么意思?求教!动画分镜头脚本请问什么是动画分镜头脚本,什么是电影分镜头脚本以及什么是广告分镜头脚本?在线沟通有效沟通的六个要点idataparameterinvalid parameter是什么意思aviconverter谁有好得AVI转换器?可以全部转换得!西安娱乐西安最高端会所是哪一家网页背景音乐代码网页背景音乐代码,我要哪怕转换网页都不间断的那种driversbackup我的电脑d盘里有个Backup文件夹 怎么能让他显示出来asp论坛源码ASP论坛源代码为什么上传到ASP空间后打不开
域名出售 免费cn域名注册 俄罗斯vps 北京vps greengeeks 国外永久服务器 5折 老鹰主机 外国服务器 bash漏洞 ixwebhosting ubuntu更新源 美国php空间 中国特价网 微信收钱 服务器监测 web服务器安全 东莞服务器 华为云盘 中国电信测速网站 更多