decaylet美人双胞胎姐妹

let美人双胞胎姐妹  时间:2021-01-15  阅读:()
AnIntroductiontoTheTwinPrimeConjectureAllisonBerkeDecember12,2006AbstractTwinprimesareprimesoftheform(p,p+2).
Therearemanyproofsfortheinnitudeofprimenumbers,butitisverydiculttoprovewhetherthereareaninnitenumberofpairsoftwinprimes.
Mostmathematiciansagreethattheevidencepointstowardthisconclusion,butnumerousattemptsataproofhavebeenfalsiedbysubsequentreview.
Theproblemitself,oneofthemostfamousopenproblemsinmathematics,hasyieldedanumberofrelatedresults,includingBrun'sconjecture,Mertens'theorems,andtheHardy-LittlewoodConjecture.
Alongwiththeseconjectures,thereareanumberofresultswhichareeasiertoarriveat,butneverthelesshelpmathematiciansthinkabouttheinnitudeofprimes,andthespecialpropertiesoftwinprimes.
Thispaperwillintroducetheaforementionedconjecturesassociatedwiththetwinprimeconjecture,andworkthroughsomeexercisesthatilluminatethedicultiesandintricaciesofthetwinprimeconjecture.
1Introduction:TheOriginalConjectureandFailedProofsThetermtwinprimewascoinedbyPaulStackelinthelatenineteenthcentury.
Sincethattime,mathematicianshavebeeninterestedinthepropertiesofrelatedprimes,bothinrelationtonumbertheoryasawhole,andasspecic,well-denedproblems.
Oneoftherstresultsoflookingattwinprimeswasthediscoverythat,asidefrom(3,5),alltwinprimesareoftheform6n±1.
Thiscomesfromnoticingthatanyprimegreaterthan3mustbeoftheform6n±1.
Toshowthis,notethatanyintegercanbewrittenas6x+y,wherexisanyinteger,andyis0,1,2,3,4or5.
Nowconsidereachyvalueindividually.
Wheny=0,6x+y=6xandisdivisibleby6.
Wheny=1therearenoimmediatelyrecognizablefactors,sothisisacandidateforprimacy.
Wheny=2,6x+2=2(3x+1),andsoisnotprime.
Forthecasewhen·y=3:6x+3=3(2x+1)andisnotprime.
Wheny=4:6x+4=2(3x+2)··andisnotprime.
Wheny=5,6x+5hasnoimmediatelyrecognizablefactors,andisthesecondcandidateforprimacy.
Thenallprimescanberepresentedaseither6n+1or6n1,andtwinprimes,sincetheyareseparatedbytwo,willhavetobe6n1and6n+1.
1TwinPrimeConjecture2Furtherresearchintotheconjecturehasbeenconcernedwithndingexpressionsforaformoftheprimecountingfunctionπ(x)thatdependonthetwinprimeconstant.
Theprimecountingfunctionisdenedasπ(x)={N(p)|px}whereN(p)denotesthenumberofprimes,p.
Onemotivationfordeningtheprimecountingfunctionisthatitcanbeusedtodetermineaformulaforthesizeoftheintervalsbetweenprimes,aswellasgivingusanindicationoftherateofdecaybywhichprimesthinoutinhighernumbers.
Ithasbeenshownalgebraicallythattheprimecountingfunctionincreasesasymptoticallywiththelogarithmicintegral[12].
Inthefollowingexpression,π2(x)referstothenumberofprimesoftheformpandp+2greaterthanx,andisthetwin2primeconstant,whichisdenedbytheexpression(19p11)2)overprimesp2.
ThetermO(x),meaning"ontheorderofx,"isdenedasfollows:iff(x)andg(x)aretwofunctionsdenedonthesameset,thenf(x)isO(g(x))asxgoestoinnityifandonlyifthereexistssomex0andsomeMsuchthat|f(x)|M|g(x)|forxgreaterthanx0.
Thisexpressionforthetwinprimecountingfunctionisπ2(x)cΠ2x[1+O(ln(ln(x)))](1)(ln(x))2ln(x)whichisthebestthathasbeenproventhusfar.
Theconstantcin(1)hasbeenreducedto6.
8325,downfrompreviousvaluesashighas9[12].
TheformationofthisinequalityinvolvestwoofMerten'stheoremswhichwillbediscussedinthefollowingsection.
HardyandLittlewood[3]haveconjecturedthatc=2,andusingthisassumptionhaveformulatedwhatisnowcalledtheStrongTwinPrimeConjecture.
Inthefollowingexpression,abmeansthataapproaches1batthelimitsoftheexpressionsaandb.
Inthiscase,thelimitisasxapproachesinnity.
xdxπ2(x)2Π2(ln(x))2.
(2)2Anecessaryconditionforthestrongconjecture(2)isthattheprimegapsconstant,Δ≡limsupn→∞pn+1pnbeequaltozero.
ThemostrecentattemptedpnproofofthetwinprimeconjecturewasthatofArenstorf,in2004[1],butanerrorwasfoundshortlyafteritspublication,anditwaswithdrawn,leavingtheconjectureopentothisday.
2Mertens'TheoremsAnumberofimportantresultsaboutthespacingofprimenumberswerederivedbyFranzMertens,aGermanmathematicianofthelatenineteenthandearlytwentiethcentury.
ThefollowingproofsofMertens'conjecturesleaduptotheresultthatthesumofthereciprocalsofprimesdiverges,whichwillcontrast3TwinPrimeConjecturewithBrun'sconjecture,thatthesumofthereciprocalsoftwinprimesconverges.
First,weshouldbrieyshowthattheprimesareinnite,forotherwisetheimplicationsofMertens'theoremsarenotobvious.
Euclid'sproofofthispostulate,hissecondtheorem,isasfollows.
Let2,3,5,.
.
.
,pbeanenumerationofallprimenumbersuptop,andletq=(235·.
.
.
p)+1.
Thenqisnotdivisiblebyanyoftheprimesup···toandincludingp.
Therefore,itiseitherprimeordivisiblebyaprimebetweenpandq.
Intherstcase,qisaprimegreaterthanp.
Inthesecondcase,thedivisorofqbetweenpandqisaprimegreaterthanp.
Thenforanyprimep,thisconstructiongivesusaprimegreaterthanp.
Thus,thenumberofprimesmustbeinnite[4].
NowwecanresumewithMertens'theorems.
MertensTheorem1:Foranyrealnumberx≥1,x0≤ln(n)0suchthat11p=ln(ln(x))+b1+O(ln(x)),x≥2.
(6)p≤x6TwinPrimeConjectureProof:Wecanwrite1=ln(p)1=u(n)f(n)ppln(p)p≤xp≤xn≤xwhereu(n)=ln(pp)ifn=p,and0otherwise,andf(t)=ln(1t).
WedenenewfunctionsU(t)andg(t)asfollowsln(p)U(t)=u(n)==ln(t)+g(t)pn≤tp≤tThenU(t)=0fort3TheformulationoftheHardy-LittlewoodconjecturebuildsuponsomeofthetechniquesusedtoproveBrun'sconjecture,namelytheBrunsievetechniques.
TheBrunsievecanbeconstructedasfollows:LetXbeanonempty,nitesetofNobjects,andletP1,PrberdierentpropertiesthattheelementsofthesetXmighthave.
LetN0denotethenumberofelementsofXthathavenoneoftheseproperties.
ForanysubsetI={i1,ik}of{1,2,r},letN(1)=N(i1,ik)denotethenumberofelementsofXthathaveeachofthepropertiesPi1,Pi2Pik.
LetN()=|X|=N.
Ifmisanonnegativeeveninteger,thenmN0≤(1)kN(I).
(9)k=0|I|=kIfmisanonnegativeoddinteger,thenmN0≥(1)kN(I).
[8](10)k=0|I|=kTheproofgiveninNathanson[8]isasfollows.
LetxbeanelementofthesetX,andsupposethatxhasexactlylpropertiesPi.
Ifl=0,thenxiscountedonceinN0andonceinN(),butisnotcountedinN(I)ifIisnonempty.
Ifl≥1,thenxisnotcountedinN0.
Byrenumberingtheproperties,wecanassumethatxhasthepropertiesP1,P2,Pl.
LetI{1,2,l,r}.
Ifi∈Iforsomei>l,thenxisnotcountedinN(I).
IfI{1,2,l}thenxcontributes1toN(I).
Foreachk=0,1,l,thereareexactlyklsuchsubsetswith|I|=k.
Ifm≥l,thentheelementxcontributesll(1)k=0kk=0TwinPrimeConjecture9totherightsidesoftheinequalities.
Ifm2cln(ln(x)),then·rrcln(ln(x)))k1xy(·m≤x2k2cln(ln(x)).
Ifweletc=max{2c,(ln(2)1)},andlet·ln(y)1x=e(3c·ln(ln(y)))=y3c·ln(ln(y))m=2[cln(ln(y))]·Thensinceln(y)ln(x)=3c·ln(ln(y))yy(ln(ln(y)))22c·ln(ln(y))2,y4y4y4y2m<22c·ln(ln(y))=(ln(y))2c·ln(2)≤(ln(y))2Thenm2cln(ln(y))2c·ln(ln(y)ln(y))32x≤x·=exp(ln(ln(y)))=y3c·Finally,x(ln(ln(x)))2π2(x)<<.
(ln(x))2TwinPrimeConjecture126ConclusionThetwinprimeconjecturemayneverbeproven,butstudyingthepropertiesoftwinprimesiscertainlyarewardingexercise.
RecentworkonthetwinprimeconjecturebyDanGoldstonandCemYilidrimhasfocusedoncreatingexpressionsforthegapsizebetweenprimes,andinparticularfocusingontheexpressionΔ=liminfpn+1pn=1n→∞ln(pn)ResearchintobetterexpressionsfortheintervalbetweenconsecutiveprimesiscurrentlybeingconductedatStanford,sponsoredbytheAmericanInstituteofMathematics[12].
Thoughnumbertheoryhasbeenthefoundationofmanydierentbranchesofhighermathematics,itsfundamentalproblemsremaininterestingandfruitfulforresearchersinterestedinthepropertiesofprimenumbers.
References[1]Arenstorf,R.
F.
"ThereAreInnitelyManyPrimeTwins.
"26May2004.
http://arxiv.
org/abs/math.
NT/0405509.
[2]Guy,R.
K.
"GapsbetweenPrimes.
TwinPrimes.
"A8inUnsolvedProblemsinNumberTheory,2nded.
NewYork:Springer-Verlag,pp.
19-23,1994.
[3]Hardy,G.
H.
andLittlewood,J.
E.
"SomeProblemsof'PartitioNumerorum.
'III.
OntheExpressionofaNumberasaSumofPrimes.
"ActaMath.
44,1-70,1923.
[4]Hardy,G.
H.
andWright,E.
M.
AnIntroductiontotheTheoryofNumbers,5thed.
Oxford,England:ClarendonPress,1979.
[5]Havil,J.
Gamma:ExploringEuler'sConstant.
Princeton,NJ:PrincetonUniversityPress,pp.
30-31,2003.
[6]Miller,S.
J.
andTakloo-Bighash,R.
AnInvitationtoNumberTheory.
Princeton,NJ:PrincetonUniversityPress,pp.
326-328,2006.
[7]Narkiewicz,W.
TheDevelopmentofPrimeNumberTheory.
Berlin,Germany:SpringerPress,2000.
[8]Nathanson,M.
B.
AdditiveNumberTheory.
NewYork,NewYork:SpringerPress,1996.
[9]Ribenboim,P.
TheNewBookofPrimeNumberRecords.
NewYork:Springer-Verlag,pp.
261-265,1996.
[10]Shanks,D.
SolvedandUnsolvedProblemsinNumberTheory,4thed.
NewYork:Chelsea,p.
30,1993.
13TwinPrimeConjecture[11]Tenenbaum,G.
"ReArenstorf'spaperontheTwinPrimeConjecture.
"8Jun2004.
[12]Weisstein,EricW.
"TwinPrimeConjecture"http://mathworld.
wolfram.
com/TwinPrimeConjecture.
html,2006.
[13]Young,R.
M.
ExcursionsinCalculus.
TheMathematicalAssociationofAmerica,1992.

腾讯云爆款秒杀:1C2G5M服务器38元/年,CDN流量包6元起

农历春节将至,腾讯云开启了热门爆款云产品首单特惠秒杀活动,上海/北京/广州1核2G云服务器首年仅38元起,上架了新的首单优惠活动,每天三场秒杀,长期有效,其中轻量应用服务器2G内存5M带宽仅需年费38元起,其他产品比如CDN流量包、短信包、MySQL、直播流量包、标准存储等等产品也参与活动,腾讯云官网已注册且完成实名认证的国内站用户均可参与。活动页面:https://cloud.tencent.c...

A400互联(49元/月)洛杉矶CN2 GIA+BGP、1Gbps带宽,全场独服永久5折优惠

a400互联是一家成立于2020年商家,主营美国机房的产品,包括BGP线路、CN2 GIA线路的云服务器、独立服务器、高防服务器,接入线路优质,延迟低,稳定性高,额外也还有香港云服务器业务。当前,全场服务器5折,香港VPS7折,洛杉矶VPS5折,限时促销!A400互联官网:https://a400.net/优惠活动全场独服永久5折优惠(续费同价):0722香港VPS七折优惠:0711洛杉矶VPS五...

Raksmart VPS主机如何设置取消自动续费

今天有看到Raksmart账户中有一台VPS主机即将到期,这台机器之前是用来测试评测使用的。这里有不打算续费,这不面对万一导致被自动续费忘记,所以我还是取消自动续费设置。如果我们也有类似的问题,这里就演示截图设置Raksmart取消自动续费。这里我们可以看到上图,在对应VPS主机的【其余操作】中可以看到默认已经是不自动续费,所以我们也不要担心被自动续费的。当然,如果有被自动续费,我们确实不想续费的...

let美人双胞胎姐妹为你推荐
美国主机租用在哪里可以租用美国服务器?中国互联网域名注册负责我国境内internet用户域名注册是什么机构linux主机【windows主机换Linux主机该怎么弄啊?需要注意些什么呢?】域名注册查询怎么查看域名是否注册美国服务器托管美国网站服务器去哪里租?php虚拟空间虚拟空间怎么修改php.ini配置100m虚拟主机虚拟主机 100M 和200M 的区别?那个速度快?为什么?天津虚拟主机在天津做个网站需要多少钱美国虚拟主机购买美国虚拟主机在国内那家卖的便宜,稳定,功能全??西安虚拟主机西安互联是个什么公司?
yaokan永久域名经常更换 独享100m linode日本 香港加速器 fdcservers simcentric 2014年感恩节 美国php空间 圣诞节促销 商务主机 softbank邮箱 南通服务器 如何注册阿里云邮箱 国外视频网站有哪些 服务器是干什么用的 测试网速命令 阿里云个人邮箱 hdchina 卡巴下载 tracert 更多