decaylet美人双胞胎姐妹

let美人双胞胎姐妹  时间:2021-01-15  阅读:()
AnIntroductiontoTheTwinPrimeConjectureAllisonBerkeDecember12,2006AbstractTwinprimesareprimesoftheform(p,p+2).
Therearemanyproofsfortheinnitudeofprimenumbers,butitisverydiculttoprovewhetherthereareaninnitenumberofpairsoftwinprimes.
Mostmathematiciansagreethattheevidencepointstowardthisconclusion,butnumerousattemptsataproofhavebeenfalsiedbysubsequentreview.
Theproblemitself,oneofthemostfamousopenproblemsinmathematics,hasyieldedanumberofrelatedresults,includingBrun'sconjecture,Mertens'theorems,andtheHardy-LittlewoodConjecture.
Alongwiththeseconjectures,thereareanumberofresultswhichareeasiertoarriveat,butneverthelesshelpmathematiciansthinkabouttheinnitudeofprimes,andthespecialpropertiesoftwinprimes.
Thispaperwillintroducetheaforementionedconjecturesassociatedwiththetwinprimeconjecture,andworkthroughsomeexercisesthatilluminatethedicultiesandintricaciesofthetwinprimeconjecture.
1Introduction:TheOriginalConjectureandFailedProofsThetermtwinprimewascoinedbyPaulStackelinthelatenineteenthcentury.
Sincethattime,mathematicianshavebeeninterestedinthepropertiesofrelatedprimes,bothinrelationtonumbertheoryasawhole,andasspecic,well-denedproblems.
Oneoftherstresultsoflookingattwinprimeswasthediscoverythat,asidefrom(3,5),alltwinprimesareoftheform6n±1.
Thiscomesfromnoticingthatanyprimegreaterthan3mustbeoftheform6n±1.
Toshowthis,notethatanyintegercanbewrittenas6x+y,wherexisanyinteger,andyis0,1,2,3,4or5.
Nowconsidereachyvalueindividually.
Wheny=0,6x+y=6xandisdivisibleby6.
Wheny=1therearenoimmediatelyrecognizablefactors,sothisisacandidateforprimacy.
Wheny=2,6x+2=2(3x+1),andsoisnotprime.
Forthecasewhen·y=3:6x+3=3(2x+1)andisnotprime.
Wheny=4:6x+4=2(3x+2)··andisnotprime.
Wheny=5,6x+5hasnoimmediatelyrecognizablefactors,andisthesecondcandidateforprimacy.
Thenallprimescanberepresentedaseither6n+1or6n1,andtwinprimes,sincetheyareseparatedbytwo,willhavetobe6n1and6n+1.
1TwinPrimeConjecture2Furtherresearchintotheconjecturehasbeenconcernedwithndingexpressionsforaformoftheprimecountingfunctionπ(x)thatdependonthetwinprimeconstant.
Theprimecountingfunctionisdenedasπ(x)={N(p)|px}whereN(p)denotesthenumberofprimes,p.
Onemotivationfordeningtheprimecountingfunctionisthatitcanbeusedtodetermineaformulaforthesizeoftheintervalsbetweenprimes,aswellasgivingusanindicationoftherateofdecaybywhichprimesthinoutinhighernumbers.
Ithasbeenshownalgebraicallythattheprimecountingfunctionincreasesasymptoticallywiththelogarithmicintegral[12].
Inthefollowingexpression,π2(x)referstothenumberofprimesoftheformpandp+2greaterthanx,andisthetwin2primeconstant,whichisdenedbytheexpression(19p11)2)overprimesp2.
ThetermO(x),meaning"ontheorderofx,"isdenedasfollows:iff(x)andg(x)aretwofunctionsdenedonthesameset,thenf(x)isO(g(x))asxgoestoinnityifandonlyifthereexistssomex0andsomeMsuchthat|f(x)|M|g(x)|forxgreaterthanx0.
Thisexpressionforthetwinprimecountingfunctionisπ2(x)cΠ2x[1+O(ln(ln(x)))](1)(ln(x))2ln(x)whichisthebestthathasbeenproventhusfar.
Theconstantcin(1)hasbeenreducedto6.
8325,downfrompreviousvaluesashighas9[12].
TheformationofthisinequalityinvolvestwoofMerten'stheoremswhichwillbediscussedinthefollowingsection.
HardyandLittlewood[3]haveconjecturedthatc=2,andusingthisassumptionhaveformulatedwhatisnowcalledtheStrongTwinPrimeConjecture.
Inthefollowingexpression,abmeansthataapproaches1batthelimitsoftheexpressionsaandb.
Inthiscase,thelimitisasxapproachesinnity.
xdxπ2(x)2Π2(ln(x))2.
(2)2Anecessaryconditionforthestrongconjecture(2)isthattheprimegapsconstant,Δ≡limsupn→∞pn+1pnbeequaltozero.
ThemostrecentattemptedpnproofofthetwinprimeconjecturewasthatofArenstorf,in2004[1],butanerrorwasfoundshortlyafteritspublication,anditwaswithdrawn,leavingtheconjectureopentothisday.
2Mertens'TheoremsAnumberofimportantresultsaboutthespacingofprimenumberswerederivedbyFranzMertens,aGermanmathematicianofthelatenineteenthandearlytwentiethcentury.
ThefollowingproofsofMertens'conjecturesleaduptotheresultthatthesumofthereciprocalsofprimesdiverges,whichwillcontrast3TwinPrimeConjecturewithBrun'sconjecture,thatthesumofthereciprocalsoftwinprimesconverges.
First,weshouldbrieyshowthattheprimesareinnite,forotherwisetheimplicationsofMertens'theoremsarenotobvious.
Euclid'sproofofthispostulate,hissecondtheorem,isasfollows.
Let2,3,5,.
.
.
,pbeanenumerationofallprimenumbersuptop,andletq=(235·.
.
.
p)+1.
Thenqisnotdivisiblebyanyoftheprimesup···toandincludingp.
Therefore,itiseitherprimeordivisiblebyaprimebetweenpandq.
Intherstcase,qisaprimegreaterthanp.
Inthesecondcase,thedivisorofqbetweenpandqisaprimegreaterthanp.
Thenforanyprimep,thisconstructiongivesusaprimegreaterthanp.
Thus,thenumberofprimesmustbeinnite[4].
NowwecanresumewithMertens'theorems.
MertensTheorem1:Foranyrealnumberx≥1,x0≤ln(n)0suchthat11p=ln(ln(x))+b1+O(ln(x)),x≥2.
(6)p≤x6TwinPrimeConjectureProof:Wecanwrite1=ln(p)1=u(n)f(n)ppln(p)p≤xp≤xn≤xwhereu(n)=ln(pp)ifn=p,and0otherwise,andf(t)=ln(1t).
WedenenewfunctionsU(t)andg(t)asfollowsln(p)U(t)=u(n)==ln(t)+g(t)pn≤tp≤tThenU(t)=0fort3TheformulationoftheHardy-LittlewoodconjecturebuildsuponsomeofthetechniquesusedtoproveBrun'sconjecture,namelytheBrunsievetechniques.
TheBrunsievecanbeconstructedasfollows:LetXbeanonempty,nitesetofNobjects,andletP1,PrberdierentpropertiesthattheelementsofthesetXmighthave.
LetN0denotethenumberofelementsofXthathavenoneoftheseproperties.
ForanysubsetI={i1,ik}of{1,2,r},letN(1)=N(i1,ik)denotethenumberofelementsofXthathaveeachofthepropertiesPi1,Pi2Pik.
LetN()=|X|=N.
Ifmisanonnegativeeveninteger,thenmN0≤(1)kN(I).
(9)k=0|I|=kIfmisanonnegativeoddinteger,thenmN0≥(1)kN(I).
[8](10)k=0|I|=kTheproofgiveninNathanson[8]isasfollows.
LetxbeanelementofthesetX,andsupposethatxhasexactlylpropertiesPi.
Ifl=0,thenxiscountedonceinN0andonceinN(),butisnotcountedinN(I)ifIisnonempty.
Ifl≥1,thenxisnotcountedinN0.
Byrenumberingtheproperties,wecanassumethatxhasthepropertiesP1,P2,Pl.
LetI{1,2,l,r}.
Ifi∈Iforsomei>l,thenxisnotcountedinN(I).
IfI{1,2,l}thenxcontributes1toN(I).
Foreachk=0,1,l,thereareexactlyklsuchsubsetswith|I|=k.
Ifm≥l,thentheelementxcontributesll(1)k=0kk=0TwinPrimeConjecture9totherightsidesoftheinequalities.
Ifm2cln(ln(x)),then·rrcln(ln(x)))k1xy(·m≤x2k2cln(ln(x)).
Ifweletc=max{2c,(ln(2)1)},andlet·ln(y)1x=e(3c·ln(ln(y)))=y3c·ln(ln(y))m=2[cln(ln(y))]·Thensinceln(y)ln(x)=3c·ln(ln(y))yy(ln(ln(y)))22c·ln(ln(y))2,y4y4y4y2m<22c·ln(ln(y))=(ln(y))2c·ln(2)≤(ln(y))2Thenm2cln(ln(y))2c·ln(ln(y)ln(y))32x≤x·=exp(ln(ln(y)))=y3c·Finally,x(ln(ln(x)))2π2(x)<<.
(ln(x))2TwinPrimeConjecture126ConclusionThetwinprimeconjecturemayneverbeproven,butstudyingthepropertiesoftwinprimesiscertainlyarewardingexercise.
RecentworkonthetwinprimeconjecturebyDanGoldstonandCemYilidrimhasfocusedoncreatingexpressionsforthegapsizebetweenprimes,andinparticularfocusingontheexpressionΔ=liminfpn+1pn=1n→∞ln(pn)ResearchintobetterexpressionsfortheintervalbetweenconsecutiveprimesiscurrentlybeingconductedatStanford,sponsoredbytheAmericanInstituteofMathematics[12].
Thoughnumbertheoryhasbeenthefoundationofmanydierentbranchesofhighermathematics,itsfundamentalproblemsremaininterestingandfruitfulforresearchersinterestedinthepropertiesofprimenumbers.
References[1]Arenstorf,R.
F.
"ThereAreInnitelyManyPrimeTwins.
"26May2004.
http://arxiv.
org/abs/math.
NT/0405509.
[2]Guy,R.
K.
"GapsbetweenPrimes.
TwinPrimes.
"A8inUnsolvedProblemsinNumberTheory,2nded.
NewYork:Springer-Verlag,pp.
19-23,1994.
[3]Hardy,G.
H.
andLittlewood,J.
E.
"SomeProblemsof'PartitioNumerorum.
'III.
OntheExpressionofaNumberasaSumofPrimes.
"ActaMath.
44,1-70,1923.
[4]Hardy,G.
H.
andWright,E.
M.
AnIntroductiontotheTheoryofNumbers,5thed.
Oxford,England:ClarendonPress,1979.
[5]Havil,J.
Gamma:ExploringEuler'sConstant.
Princeton,NJ:PrincetonUniversityPress,pp.
30-31,2003.
[6]Miller,S.
J.
andTakloo-Bighash,R.
AnInvitationtoNumberTheory.
Princeton,NJ:PrincetonUniversityPress,pp.
326-328,2006.
[7]Narkiewicz,W.
TheDevelopmentofPrimeNumberTheory.
Berlin,Germany:SpringerPress,2000.
[8]Nathanson,M.
B.
AdditiveNumberTheory.
NewYork,NewYork:SpringerPress,1996.
[9]Ribenboim,P.
TheNewBookofPrimeNumberRecords.
NewYork:Springer-Verlag,pp.
261-265,1996.
[10]Shanks,D.
SolvedandUnsolvedProblemsinNumberTheory,4thed.
NewYork:Chelsea,p.
30,1993.
13TwinPrimeConjecture[11]Tenenbaum,G.
"ReArenstorf'spaperontheTwinPrimeConjecture.
"8Jun2004.
[12]Weisstein,EricW.
"TwinPrimeConjecture"http://mathworld.
wolfram.
com/TwinPrimeConjecture.
html,2006.
[13]Young,R.
M.
ExcursionsinCalculus.
TheMathematicalAssociationofAmerica,1992.

青云互联:香港安畅CN2弹性云限时首月五折,15元/月起,可选Windows/可自定义配置

青云互联怎么样?青云互联是一家成立于2020年的主机服务商,致力于为用户提供高性价比稳定快速的主机托管服务,目前提供有美国免费主机、香港主机、韩国服务器、香港服务器、美国云服务器,香港安畅cn2弹性云限时首月五折,15元/月起;可选Windows/可自定义配置,让您的网站高速、稳定运行。点击进入:青云互联官方网站地址青云互联优惠码:八折优惠码:ltY8sHMh (续费同价)青云互联香港云服务器活动...

百纵科技(1399元/月)香港CN2站群232IP

湖南百纵科技有限公司是一家具有ISP ICP 电信增值许可证的正规公司,多年不断转型探索现已颇具规模,公司成立于2009年 通过多年经营积累目前已独具一格,公司主要经营有国内高防服务器,香港服务器,美国服务器,站群服务器,东南亚服务器租用,国内香港美国云服务器,以及全球专线业务!活动方案:主营:1、美国CN2云服务器,美国VPS,美国高防云主机,美国独立服务器,美国站群服务器,美国母机。2、香港C...

香港站群多ip服务器多少钱?零途云香港站群云服务器怎么样?

香港站群多ip服务器多少钱?想做好站群的SEO优化,最好给每个网站都分配一个独立IP,这样每个网站之间才不会受到影响。对做站群的站长来说,租用一家性价比高且提供多IP的香港多ip站群服务器很有必要。零途云推出的香港多ip站群云服务器多达256个IP,可以满足站群的优化需求,而且性价比非常高。那么,香港多ip站群云服务器价格多少钱一个月?选择什么样的香港多IP站群云服务器比较好呢?今天,小编带大家一...

let美人双胞胎姐妹为你推荐
美国虚拟主机美国虚拟主机用着怎么样?虚拟主机价格虚拟主机及域名价格?已备案域名查询如何查询已备案域名是不是万网/阿里云接入的备案com域名注册com域名是永久注册的吗ip代理地址代理ip地址是怎么来的?网站空间商网站备案为什么是空间商备案?求解1g虚拟主机1G虚拟空间大约多少钱?沈阳虚拟主机为什么修改了虚拟机Vmware的TCP/IP配置以后就上不了网双线虚拟主机G型双线虚拟主机是什么意思申请域名如何申请自己的域名?
备案未注册域名 服务器评测 韩国俄罗斯 视频存储服务器 lighttpd jsp空间 中国联通宽带测速 广东主机托管 windowsserver2008r2 什么是dns web是什么意思 ipower 发证机构 西部主机 瓦工招聘 电脑主机 灵动鬼影实录剧情 创梦天地 淘宝秒杀预告 英国伦敦天气 更多