AnIntroductiontoTheTwinPrimeConjectureAllisonBerkeDecember12,2006AbstractTwinprimesareprimesoftheform(p,p+2).
Therearemanyproofsfortheinnitudeofprimenumbers,butitisverydiculttoprovewhetherthereareaninnitenumberofpairsoftwinprimes.
Mostmathematiciansagreethattheevidencepointstowardthisconclusion,butnumerousattemptsataproofhavebeenfalsiedbysubsequentreview.
Theproblemitself,oneofthemostfamousopenproblemsinmathematics,hasyieldedanumberofrelatedresults,includingBrun'sconjecture,Mertens'theorems,andtheHardy-LittlewoodConjecture.
Alongwiththeseconjectures,thereareanumberofresultswhichareeasiertoarriveat,butneverthelesshelpmathematiciansthinkabouttheinnitudeofprimes,andthespecialpropertiesoftwinprimes.
Thispaperwillintroducetheaforementionedconjecturesassociatedwiththetwinprimeconjecture,andworkthroughsomeexercisesthatilluminatethedicultiesandintricaciesofthetwinprimeconjecture.
1Introduction:TheOriginalConjectureandFailedProofsThetermtwinprimewascoinedbyPaulStackelinthelatenineteenthcentury.
Sincethattime,mathematicianshavebeeninterestedinthepropertiesofrelatedprimes,bothinrelationtonumbertheoryasawhole,andasspecic,well-denedproblems.
Oneoftherstresultsoflookingattwinprimeswasthediscoverythat,asidefrom(3,5),alltwinprimesareoftheform6n±1.
Thiscomesfromnoticingthatanyprimegreaterthan3mustbeoftheform6n±1.
Toshowthis,notethatanyintegercanbewrittenas6x+y,wherexisanyinteger,andyis0,1,2,3,4or5.
Nowconsidereachyvalueindividually.
Wheny=0,6x+y=6xandisdivisibleby6.
Wheny=1therearenoimmediatelyrecognizablefactors,sothisisacandidateforprimacy.
Wheny=2,6x+2=2(3x+1),andsoisnotprime.
Forthecasewhen·y=3:6x+3=3(2x+1)andisnotprime.
Wheny=4:6x+4=2(3x+2)··andisnotprime.
Wheny=5,6x+5hasnoimmediatelyrecognizablefactors,andisthesecondcandidateforprimacy.
Thenallprimescanberepresentedaseither6n+1or6n1,andtwinprimes,sincetheyareseparatedbytwo,willhavetobe6n1and6n+1.
1TwinPrimeConjecture2Furtherresearchintotheconjecturehasbeenconcernedwithndingexpressionsforaformoftheprimecountingfunctionπ(x)thatdependonthetwinprimeconstant.
Theprimecountingfunctionisdenedasπ(x)={N(p)|px}whereN(p)denotesthenumberofprimes,p.
Onemotivationfordeningtheprimecountingfunctionisthatitcanbeusedtodetermineaformulaforthesizeoftheintervalsbetweenprimes,aswellasgivingusanindicationoftherateofdecaybywhichprimesthinoutinhighernumbers.
Ithasbeenshownalgebraicallythattheprimecountingfunctionincreasesasymptoticallywiththelogarithmicintegral[12].
Inthefollowingexpression,π2(x)referstothenumberofprimesoftheformpandp+2greaterthanx,andisthetwin2primeconstant,whichisdenedbytheexpression(19p11)2)overprimesp2.
ThetermO(x),meaning"ontheorderofx,"isdenedasfollows:iff(x)andg(x)aretwofunctionsdenedonthesameset,thenf(x)isO(g(x))asxgoestoinnityifandonlyifthereexistssomex0andsomeMsuchthat|f(x)|M|g(x)|forxgreaterthanx0.
Thisexpressionforthetwinprimecountingfunctionisπ2(x)cΠ2x[1+O(ln(ln(x)))](1)(ln(x))2ln(x)whichisthebestthathasbeenproventhusfar.
Theconstantcin(1)hasbeenreducedto6.
8325,downfrompreviousvaluesashighas9[12].
TheformationofthisinequalityinvolvestwoofMerten'stheoremswhichwillbediscussedinthefollowingsection.
HardyandLittlewood[3]haveconjecturedthatc=2,andusingthisassumptionhaveformulatedwhatisnowcalledtheStrongTwinPrimeConjecture.
Inthefollowingexpression,abmeansthataapproaches1batthelimitsoftheexpressionsaandb.
Inthiscase,thelimitisasxapproachesinnity.
xdxπ2(x)2Π2(ln(x))2.
(2)2Anecessaryconditionforthestrongconjecture(2)isthattheprimegapsconstant,Δ≡limsupn→∞pn+1pnbeequaltozero.
ThemostrecentattemptedpnproofofthetwinprimeconjecturewasthatofArenstorf,in2004[1],butanerrorwasfoundshortlyafteritspublication,anditwaswithdrawn,leavingtheconjectureopentothisday.
2Mertens'TheoremsAnumberofimportantresultsaboutthespacingofprimenumberswerederivedbyFranzMertens,aGermanmathematicianofthelatenineteenthandearlytwentiethcentury.
ThefollowingproofsofMertens'conjecturesleaduptotheresultthatthesumofthereciprocalsofprimesdiverges,whichwillcontrast3TwinPrimeConjecturewithBrun'sconjecture,thatthesumofthereciprocalsoftwinprimesconverges.
First,weshouldbrieyshowthattheprimesareinnite,forotherwisetheimplicationsofMertens'theoremsarenotobvious.
Euclid'sproofofthispostulate,hissecondtheorem,isasfollows.
Let2,3,5,.
.
.
,pbeanenumerationofallprimenumbersuptop,andletq=(235·.
.
.
p)+1.
Thenqisnotdivisiblebyanyoftheprimesup···toandincludingp.
Therefore,itiseitherprimeordivisiblebyaprimebetweenpandq.
Intherstcase,qisaprimegreaterthanp.
Inthesecondcase,thedivisorofqbetweenpandqisaprimegreaterthanp.
Thenforanyprimep,thisconstructiongivesusaprimegreaterthanp.
Thus,thenumberofprimesmustbeinnite[4].
NowwecanresumewithMertens'theorems.
MertensTheorem1:Foranyrealnumberx≥1,x0≤ln(n)0suchthat11p=ln(ln(x))+b1+O(ln(x)),x≥2.
(6)p≤x6TwinPrimeConjectureProof:Wecanwrite1=ln(p)1=u(n)f(n)ppln(p)p≤xp≤xn≤xwhereu(n)=ln(pp)ifn=p,and0otherwise,andf(t)=ln(1t).
WedenenewfunctionsU(t)andg(t)asfollowsln(p)U(t)=u(n)==ln(t)+g(t)pn≤tp≤tThenU(t)=0fort3TheformulationoftheHardy-LittlewoodconjecturebuildsuponsomeofthetechniquesusedtoproveBrun'sconjecture,namelytheBrunsievetechniques.
TheBrunsievecanbeconstructedasfollows:LetXbeanonempty,nitesetofNobjects,andletP1,PrberdierentpropertiesthattheelementsofthesetXmighthave.
LetN0denotethenumberofelementsofXthathavenoneoftheseproperties.
ForanysubsetI={i1,ik}of{1,2,r},letN(1)=N(i1,ik)denotethenumberofelementsofXthathaveeachofthepropertiesPi1,Pi2Pik.
LetN()=|X|=N.
Ifmisanonnegativeeveninteger,thenmN0≤(1)kN(I).
(9)k=0|I|=kIfmisanonnegativeoddinteger,thenmN0≥(1)kN(I).
[8](10)k=0|I|=kTheproofgiveninNathanson[8]isasfollows.
LetxbeanelementofthesetX,andsupposethatxhasexactlylpropertiesPi.
Ifl=0,thenxiscountedonceinN0andonceinN(),butisnotcountedinN(I)ifIisnonempty.
Ifl≥1,thenxisnotcountedinN0.
Byrenumberingtheproperties,wecanassumethatxhasthepropertiesP1,P2,Pl.
LetI{1,2,l,r}.
Ifi∈Iforsomei>l,thenxisnotcountedinN(I).
IfI{1,2,l}thenxcontributes1toN(I).
Foreachk=0,1,l,thereareexactlyklsuchsubsetswith|I|=k.
Ifm≥l,thentheelementxcontributesll(1)k=0kk=0TwinPrimeConjecture9totherightsidesoftheinequalities.
Ifm2cln(ln(x)),then·rrcln(ln(x)))k1xy(·m≤x2k2cln(ln(x)).
Ifweletc=max{2c,(ln(2)1)},andlet·ln(y)1x=e(3c·ln(ln(y)))=y3c·ln(ln(y))m=2[cln(ln(y))]·Thensinceln(y)ln(x)=3c·ln(ln(y))yy(ln(ln(y)))22c·ln(ln(y))2,y4y4y4y2m<22c·ln(ln(y))=(ln(y))2c·ln(2)≤(ln(y))2Thenm2cln(ln(y))2c·ln(ln(y)ln(y))32x≤x·=exp(ln(ln(y)))=y3c·Finally,x(ln(ln(x)))2π2(x)<<.
(ln(x))2TwinPrimeConjecture126ConclusionThetwinprimeconjecturemayneverbeproven,butstudyingthepropertiesoftwinprimesiscertainlyarewardingexercise.
RecentworkonthetwinprimeconjecturebyDanGoldstonandCemYilidrimhasfocusedoncreatingexpressionsforthegapsizebetweenprimes,andinparticularfocusingontheexpressionΔ=liminfpn+1pn=1n→∞ln(pn)ResearchintobetterexpressionsfortheintervalbetweenconsecutiveprimesiscurrentlybeingconductedatStanford,sponsoredbytheAmericanInstituteofMathematics[12].
Thoughnumbertheoryhasbeenthefoundationofmanydierentbranchesofhighermathematics,itsfundamentalproblemsremaininterestingandfruitfulforresearchersinterestedinthepropertiesofprimenumbers.
References[1]Arenstorf,R.
F.
"ThereAreInnitelyManyPrimeTwins.
"26May2004.
http://arxiv.
org/abs/math.
NT/0405509.
[2]Guy,R.
K.
"GapsbetweenPrimes.
TwinPrimes.
"A8inUnsolvedProblemsinNumberTheory,2nded.
NewYork:Springer-Verlag,pp.
19-23,1994.
[3]Hardy,G.
H.
andLittlewood,J.
E.
"SomeProblemsof'PartitioNumerorum.
'III.
OntheExpressionofaNumberasaSumofPrimes.
"ActaMath.
44,1-70,1923.
[4]Hardy,G.
H.
andWright,E.
M.
AnIntroductiontotheTheoryofNumbers,5thed.
Oxford,England:ClarendonPress,1979.
[5]Havil,J.
Gamma:ExploringEuler'sConstant.
Princeton,NJ:PrincetonUniversityPress,pp.
30-31,2003.
[6]Miller,S.
J.
andTakloo-Bighash,R.
AnInvitationtoNumberTheory.
Princeton,NJ:PrincetonUniversityPress,pp.
326-328,2006.
[7]Narkiewicz,W.
TheDevelopmentofPrimeNumberTheory.
Berlin,Germany:SpringerPress,2000.
[8]Nathanson,M.
B.
AdditiveNumberTheory.
NewYork,NewYork:SpringerPress,1996.
[9]Ribenboim,P.
TheNewBookofPrimeNumberRecords.
NewYork:Springer-Verlag,pp.
261-265,1996.
[10]Shanks,D.
SolvedandUnsolvedProblemsinNumberTheory,4thed.
NewYork:Chelsea,p.
30,1993.
13TwinPrimeConjecture[11]Tenenbaum,G.
"ReArenstorf'spaperontheTwinPrimeConjecture.
"8Jun2004.
[12]Weisstein,EricW.
"TwinPrimeConjecture"http://mathworld.
wolfram.
com/TwinPrimeConjecture.
html,2006.
[13]Young,R.
M.
ExcursionsinCalculus.
TheMathematicalAssociationofAmerica,1992.
digital-vm,这家注册在罗马尼亚的公司在国内应该有不少人比较熟悉了,主要提供VPS业务,最高10Gbps带宽,还不限制流量,而且还有日本、新加坡、美国洛杉矶、英国、西班牙、荷兰、挪威、丹麦这些可选数据中心。2020年,digital-vm新增了“独立服务器”业务,暂时只限“日本”、“新加坡”机房,最高也是支持10Gbps带宽... 官方网站:https://digital-vm.co...
tmhhost放出了2021年的端午佳节+618年中大促的优惠活动:日本软银、洛杉矶200G高防cn2 gia、洛杉矶三网cn2 gia、香港200M直连BGP、韩国cn2,全都是高端优化线路,所有这些VPS直接8折,部分已经做了季付8折然后再在此基础上继续8折(也就是6.4折)。 官方网站:https://www.tmhhost.com 香港BGP线路VPS ,200M带宽 200M带...
Tudcloud是一家新开的主机商,提供VPS和独立服务器租用,数据中心在中国香港(VPS和独立服务器)和美国洛杉矶(独立服务器),商家VPS基于KVM架构,开设在香港机房,可以选择限制流量大带宽或者限制带宽不限流量套餐。目前提供8折优惠码,优惠后最低每月7.2美元起。虽然主机商网站为英文界面,但是支付方式仅支付宝和Stripe,可能是国人商家。下面列出部分VPS主机套餐配置信息。CPU:1cor...
let美人双胞胎姐妹为你推荐
网站虚拟主机做网站必须要有虚拟主机吗?海外主机租用哪有国外(欧洲)虚拟主机出租企业虚拟主机购买虚拟主机要注意些什么?企业网站有什么好的虚拟主机推荐吗?vps试用免费vps申请哪里有,免费vps试用的也可以?ip代理地址代理ip地址是怎么来的?域名备案买域名要备案吗asp网站空间ASP空间是什么?国外网站空间怎么查看一个网站的空间是在国内还是在国外啊?网站空间免备案哪有不用备案的网站空间?网站空间免备案哪里能找到免费、免备案的空间?
快速域名备案 过期已备案域名 老鹰主机 wavecom 炎黄盛世 免费吧 美国在线代理服务器 傲盾官网 多线空间 免费邮件服务器 云服务器比较 实惠 腾讯数据库 云服务是什么意思 深圳主机托管 mteam 贵州电信 蓝队云 服务器机柜 远程登录 更多