connectivity网易轻博客

网易轻博客  时间:2021-01-13  阅读:()
1ElectronicSupplementaryMaterialGeneticAssessmentofEnvironmentalFeaturesthatInfluenceDeerDispersal:ImplicationsforPrion-InfectedPopulationsAmyC.
Kelly,NohraE.
Mateus-Pinilla,WilliamBrown,MarilynO.
Ruiz,MarlisR.
Douglas,MichaelE.
Douglas,PaulShelton,TomBeissel,JanNovakofskiMicrosatelliteMarkersThefollowingmicrosatelliteswereemployedinthisstudy:BM1225,BM4107,CSN3,(Bishopetal.
1994),IGF-1(Kirkpatrick1992),OBCAM(Friesetal.
1993),OarFcb304(Buchananetal.
1993),RT20,RT23,RT27(Wilsonetal.
1997)andSrcrsp-10(Bhebheetal.
1994).
Welabeledforwardprimerswithfluorescentdyes(NED,HEX,FAM)andseparatedmicrosatellitefragmentsonanABI3730XLcapillarysequencer(AppliedBiosystems,FosterCity,CA).
WevisualizedmicrosatellitegenotypeswithGeneMapper(v.
4.
0;AppliedBiosystems,FosterCity,CA).
WeusedMicro-checker(v.
2.
2.
3;VanOosterhoutetal.
2004)toevaluategenotypingerrorsusingexpectedallelefrequenciesderivedunderHardy-Weinbergequilibrium(HWE).
FSTSurfaceProjectionWeusedtheSingleSpeciesGeneticDivergenceoptionwithintheGeneticLandscapesGIS(GeographicInformationSystem)ToolboxtoprojectasurfacefrompairwiseFSTvaluescalculatedbetweenall31studysites.
TheprogramfirstassociatedpairwiseFST2valueswithmidpointsbetweenallstudysitesandanetworkofnearestneighbors.
Spatialinterpolationwasthenperformedusinganinversedistanceweightedinterpolationalgorithmtoestimategeneticdistancesalongagridoverlaidonthestudyarea.
GeneticdistancesforallpointsacrossthegridwereinterpolatedsuchthatmidpointFSTvaluesthatwerespatiallycloserinfluencedtheestimatemoresothanthosethatweredistant.
Moredetailsontheinterpolationprocedurearedescribedinhttp://www.
werc.
usgs.
gov/productdetails.
aspxid=4017.
FRAGSTATSmetricsTheConnectanceIndex(CONNECT)measuresfunctionalconnectivity,meaningthatgridcellsinthedatathatdepictthetargetvariablearenotliterallyadjacent,buttheyareconsideredadjacent(orconnected)withinagiventhresholddistance.
Inthiscase,adjacencywasdefinedascellswithin100mofeachother.
Theuser-defined100mthresholdwasusedtoaccountforpotentialimprecisionofdataclassificationsatfinespatialresolutionsandtoprovideamorerealistic(i.
e.
,functional)depictionofhowdeermightinteractwiththelandscape.
Themetricitselfisapercentage,witharangeof0to100.
Morespecifically,itmeasuresthepercentageoftargetvariableadjacencies(connectionsorjoins)relativetoallpossibleadjacencies.
FormoreinformationontheConnectanceIndexsee:http://www.
umass.
edu/landeco/research/fragstats/documents/Metrics/Connectivity%20Metrics/Metrics/C122%20-%20CONNECT.
htm3ThePatchCohesionIndex(COHESION)isasecondmeasureofconnectivityofalandscapevariable.
Thismetrictakesintoaccountphysicaladjacency(withoutathreshold)incombinationwiththesizeandshapeofthepatches.
Takingforestasanexample,ahigherCOHESIONvaluewouldoccurinalandscapewithlargerandcompactpatchescomparedtoonewithsmallorconvolutedpatches.
FormoreinformationonthePatchCohesionIndexsee:http://www.
umass.
edu/landeco/research/fragstats/documents/Metrics/Connectivity%20Metrics/Metrics/C121%20-%20COHESION.
htmTheClumpinessIndex(CLUMPY)isametricindicatinghowcontiguousordispersedaretheadjacentpatchesofalandscapevariable.
AhighervalueofCLUMPYwouldoccurifseveralpatcheswerelocatedclosetogetherratherthanbeingmoreuniformlydistributed.
FormoreinformationontheClumpinessIndex(CLUMPY)seehttp://www.
umass.
edu/landeco/research/fragstats/documents/Metrics/Contagion%20-%20Interspersion%20Metrics/Metrics/C115%20-%20CLUMPY.
htmThePerimeter-AreaFractalDimension(PAFRAC)isashapemetricdeterminedacrossarangeofspatialscales.
PARFRACislowforpatcheswithsimpleperimetersandincreasesforpatchshapeswithhighlyconvolutedperimeters.
FormoreinformationonthePerimeter-AreaFractalDimensionIndex(PAFRAC),seehttp://www.
umass.
edu/landeco/research/fragstats/documents/Metrics/Shape%20Metrics/Metrics/C23%20-%20PAFRAC.
htm.
Multivariatelinearregressionanalysis4DescriptionandsourceoflandscapevariablesincludedinmultivariateregressionanalysisarelistedinTableS1.
Topreventoverlyinfluentialobservationsfrombiasingourmodels,weusedleveragescores,Cook'sDvalues,andstandardizedinfluencevaluestoidentifyoutliers(Kieetal.
2002;ChatterjeeandHadi2009;Anlaufetal.
2011).
Leveragescoresidentifyobservationsthatresultinlargechangesinregressionlinefitupontheirdeletion.
Wecalculatedleverage(pi)accordingtoChatterjeeandHadi(1986)andconsideredobservationsoverlyinfluentialwhenpi>2p/N(p=numberofindependentvariablesinthemodel;N=numberofobservations).
Cook'sDvalueswerecalculatedaccordingtoCook(1977)andcomparedtoanFdistributionwithα=0.
05and(N-p)degreesoffreedom.
AllCook'sDvalues>thecriticalFvaluewereconsideredoverlyinfluentialandremovedfromthemodel(Cook1977).
LeveragescoresandCook'sDallowedustodeterminetheeffectsofoutliersontheoverallmodel,butstandardizedinfluencevalues(DFFITS)allowedustoexaminetheinfluenceofeachobservationonitspredictedvalue.
WecalculatedDFFITSaccordingtoChatterjeeandHadi(1986)andeliminatedobservationsyieldingvalues>2)/(Np(ChatterjeeandHadi1986).
Usingthesethreecriteria,weidentifiedthirteenobservationsoutof465(2.
8%)thatwereoutliersandafterstringentlyevaluatingtheirbasis(Motulsky2010),weomittedthemduringfurtheranalyses.
Themajorityoftheoutliersremoved(7/13)involvedstudysitesthathadrelativelylowsamplesizes.
Threeofthirteenoutliersinvolvedpairwisecomparisonswithstudysite27,thoughtheremainingtenoutliersappearedtoinvolvestudysitesthatwererandomlydistributedgeographically.
AsingleoutlierhadthehighestFSTvalueobserved,thoughtheremainingoutliersdidnotexhibitunusuallyhighorlowFSTvaluesascomparedtotherestofthe5dataset.
WecomparedvaluesofdependentvariablesofoutlierstovaluesfortherestofthedatabyexaminingboxplotsandplottingdependentvariablesagainstFSTvalues(datanotshown).
Trendsinthedistributionofvaluesfordependentvariablewerenotapparentinoutliersascomparedtotherestofthedata.
Whentwoormorelandscapevariableswerehighlycorrelated(Pearson'srP>0.
7),thepredictorwiththelowestpartialcorrelationinthefullmodelwasremoved.
RemovinglandscapevariableswithrP>0.
7(n=7)resultedinagenerallackofcollinearityamongpredictorsasdeterminedbyvarianceinflationfactors.
CorrelatedpredictorsthatwereremovedfromthemodelarelistedinTableS2.
Weusedvarianceinflationfactors(VIF)toevaluatetheincreaseinvarianceforestimatedregressioncoefficientsresultingfromcollinearpredictors,withVIF>10indicativeofhighmulticollinearity(Kutneretal.
2004).
Afterremovinghighlycorrelatedvariables,wecalculatedvarianceinflationfactorsforindependentvariablesandfoundthatthevarianceofestimatedregressioncoefficientswasnotsubstantiallyincreasedbycollinearpredictorsasVIFvaluesforallpredictorswere0.
7thatweresubsequentlyremovedfromthemodel.
VariableCorrelateDirectionofCorrelationVariableRemoved*%GrasslandSlope+%GrasslandForestCONNECTDevelopedCONNECT+ForestCONNECT%GrasslandGrasslandCONNECT-%GrasslandForestCONNECTGrasslandCONNECT+ForestCONNECTForestCONNECTWaterCONNECT+ForestCONNECTAgricultureCLUMPY%Agriculture-AgricultureCLUMPY%RiparianSlope+Slope%GrasslandForestCLUMPY-%GrasslandForestCONNECTDistance-ForestCONNECTSlopeGrasslandCOHESION+SlopeDevelopedCONNECTGrasslandCONNECT+DevelopedCONNECTGrasslandPAFRACSlope+SlopeDevelopedCONNECTWaterCONNECT+DevelopedCONNECT%GrasslandAgricultureCLUMPY-%Grassland%GrasslandAgriculturePAFRAC+%GrasslandDistanceDevelopedCONNECT-DevelopedCONNECTForestCONNECTWaterCONNECT+ForestCONNECT%AgricultureAgricultureCOHESION+AgricultureCOHESIONWaterCOHESIONWaterCLUMPY+WaterCLUMPY*thepredictorwiththelowestpartialcorrelationinthefullmodelwasremoved.
10TableS3.
Percentsignificant(P<0.
05)localr,rangeoflocalr,andmeanlocalrforfive,15and25nearestneighborsingroupsofwhite-taileddeerinnorthernIllinois(NIL),DuPageCounty(DuP),andWisconsin(WI).
GroupNumberofNearestNeighbors51525%P<0.
051MaxrMeanr%P<0.
051MaxrMeanr%P<0.
051MaxrMeanrAdultMales5.
70.
160.
134.
40.
110.
087.
90.
080.
06MaleYearlings7.
00.
280.
1711.
60.
180.
0914.
10.
120.
06MaleFawns9.
30.
190.
1511.
30.
090.
078.
20.
060.
05AdultMalesandFemaleYearlings6.
40.
270.
147.
60.
120.
088.
10.
090.
06AdultFemales14.
70.
320.
1618.
80.
240.
0920.
50.
150.
07FemaleYearlings5.
70.
160.
124.
80.
110.
074.
80.
070.
05FemaleFawns17.
10.
240.
1415.
20.
130.
0919.
50.
090.
06AdultFemalesandFawns16.
00.
310.
1622.
80.
230.
1024.
50.
190.
081NumberofautocorrelationcoefficientsthatweresignificantatP<0.
05dividedbythetotalnumberautocorrelationcoefficientscalculatedforeachgroup*100.
Includingonlysignificantlocalrvalues.

hostkvm:7折优惠-香港VPS韩国VPS,8折优惠-日本软银、美国CN2 GIA、新加坡直连VPS

hostkvm本月对香港国际线路的VPS、韩国CN2+bgp线路的VPS正在做7折终身优惠,对日本软银线路、美国CN2 GIA线路、新加坡直连线路的VPS进行8折终身优惠促销。所有VPS从4G内存开始支持Windows系统,当然主流Linux发行版是绝对不会缺席的!官方网站:https://hostkvm.com香港国际线路、韩国,7折优惠码:2021summer日本、美国、新加坡,8折优惠码:2...

CloudCone:洛杉矶MC机房KVM月付1.99美元起,支持支付宝/PayPal

CloudCone是一家成立于2017年的国外VPS主机商,提供独立服务器租用和VPS主机,其中VPS基于KVM架构,多个不同系列,譬如常规VPS、大硬盘VPS等等,数据中心在洛杉矶MC机房。商家2021年Flash Sale活动继续,最低每月1.99美元,支持7天退款到账户,支持使用PayPal或者支付宝付款,先充值后下单的方式。下面列出几款VPS主机配置信息。CPU:1core内存:768MB...

vpsdime7美元/月,美国达拉斯Windows VPS,2核4G/50GB SSD/2TB流量/Hyper-V虚拟化

vpsdime怎么样?vpsdime是2013年成立的国外VPS主机商,以大内存闻名业界,主营基于OpenVZ和KVM虚拟化的Linux套餐,大内存、10Gbps大带宽、大硬盘,有美国西雅图、达拉斯、新泽西、英国、荷兰机房可选。在上个月搞了一款达拉斯Linux系统VPS促销,详情查看:vpsdime夏日促销活动,美国达拉斯vps,2G内存/2核/20gSSD/1T流量,$20/年,此次推出一款Wi...

网易轻博客为你推荐
主机空间主机空间和流量的具体意思!美国主机租用租用美国服务器有什么优势?独立ip主机独立IP虚拟主机是什么?有哪些优势?虚拟主机申请域名申请以及虚拟主机美国服务器托管美国网站服务器去哪里租?虚拟空间免费试用哪有免费试用的虚拟主机?重庆虚拟空间重庆顺丰快递运的电脑主机19号中午11点到的第二天物流状态还是在重庆集散中心?今天能不能领导件?网站空间购买在哪里购买网站空间100m网站空间做网站100M的空间够用吗?万网虚拟主机万网,云服务器和与虚拟主机有什么区别?我是完全不知到的那种,谢谢。用前者还是后者合适。怎么做网页。
看国外视频直播vps x3220 分销主机 韩国空间 qq数据库 小米数据库 促正网秒杀 nerds 1g空间 免费智能解析 新世界服务器 域名转入 七十九刀 godaddyssl 优惠服务器 godaddy域名 weblogic部署 阿里云宕机故障 日本小学生 赵荣博客 更多