connectivity网易轻博客
网易轻博客 时间:2021-01-13 阅读:(
)
1ElectronicSupplementaryMaterialGeneticAssessmentofEnvironmentalFeaturesthatInfluenceDeerDispersal:ImplicationsforPrion-InfectedPopulationsAmyC.
Kelly,NohraE.
Mateus-Pinilla,WilliamBrown,MarilynO.
Ruiz,MarlisR.
Douglas,MichaelE.
Douglas,PaulShelton,TomBeissel,JanNovakofskiMicrosatelliteMarkersThefollowingmicrosatelliteswereemployedinthisstudy:BM1225,BM4107,CSN3,(Bishopetal.
1994),IGF-1(Kirkpatrick1992),OBCAM(Friesetal.
1993),OarFcb304(Buchananetal.
1993),RT20,RT23,RT27(Wilsonetal.
1997)andSrcrsp-10(Bhebheetal.
1994).
Welabeledforwardprimerswithfluorescentdyes(NED,HEX,FAM)andseparatedmicrosatellitefragmentsonanABI3730XLcapillarysequencer(AppliedBiosystems,FosterCity,CA).
WevisualizedmicrosatellitegenotypeswithGeneMapper(v.
4.
0;AppliedBiosystems,FosterCity,CA).
WeusedMicro-checker(v.
2.
2.
3;VanOosterhoutetal.
2004)toevaluategenotypingerrorsusingexpectedallelefrequenciesderivedunderHardy-Weinbergequilibrium(HWE).
FSTSurfaceProjectionWeusedtheSingleSpeciesGeneticDivergenceoptionwithintheGeneticLandscapesGIS(GeographicInformationSystem)ToolboxtoprojectasurfacefrompairwiseFSTvaluescalculatedbetweenall31studysites.
TheprogramfirstassociatedpairwiseFST2valueswithmidpointsbetweenallstudysitesandanetworkofnearestneighbors.
Spatialinterpolationwasthenperformedusinganinversedistanceweightedinterpolationalgorithmtoestimategeneticdistancesalongagridoverlaidonthestudyarea.
GeneticdistancesforallpointsacrossthegridwereinterpolatedsuchthatmidpointFSTvaluesthatwerespatiallycloserinfluencedtheestimatemoresothanthosethatweredistant.
Moredetailsontheinterpolationprocedurearedescribedinhttp://www.
werc.
usgs.
gov/productdetails.
aspxid=4017.
FRAGSTATSmetricsTheConnectanceIndex(CONNECT)measuresfunctionalconnectivity,meaningthatgridcellsinthedatathatdepictthetargetvariablearenotliterallyadjacent,buttheyareconsideredadjacent(orconnected)withinagiventhresholddistance.
Inthiscase,adjacencywasdefinedascellswithin100mofeachother.
Theuser-defined100mthresholdwasusedtoaccountforpotentialimprecisionofdataclassificationsatfinespatialresolutionsandtoprovideamorerealistic(i.
e.
,functional)depictionofhowdeermightinteractwiththelandscape.
Themetricitselfisapercentage,witharangeof0to100.
Morespecifically,itmeasuresthepercentageoftargetvariableadjacencies(connectionsorjoins)relativetoallpossibleadjacencies.
FormoreinformationontheConnectanceIndexsee:http://www.
umass.
edu/landeco/research/fragstats/documents/Metrics/Connectivity%20Metrics/Metrics/C122%20-%20CONNECT.
htm3ThePatchCohesionIndex(COHESION)isasecondmeasureofconnectivityofalandscapevariable.
Thismetrictakesintoaccountphysicaladjacency(withoutathreshold)incombinationwiththesizeandshapeofthepatches.
Takingforestasanexample,ahigherCOHESIONvaluewouldoccurinalandscapewithlargerandcompactpatchescomparedtoonewithsmallorconvolutedpatches.
FormoreinformationonthePatchCohesionIndexsee:http://www.
umass.
edu/landeco/research/fragstats/documents/Metrics/Connectivity%20Metrics/Metrics/C121%20-%20COHESION.
htmTheClumpinessIndex(CLUMPY)isametricindicatinghowcontiguousordispersedaretheadjacentpatchesofalandscapevariable.
AhighervalueofCLUMPYwouldoccurifseveralpatcheswerelocatedclosetogetherratherthanbeingmoreuniformlydistributed.
FormoreinformationontheClumpinessIndex(CLUMPY)seehttp://www.
umass.
edu/landeco/research/fragstats/documents/Metrics/Contagion%20-%20Interspersion%20Metrics/Metrics/C115%20-%20CLUMPY.
htmThePerimeter-AreaFractalDimension(PAFRAC)isashapemetricdeterminedacrossarangeofspatialscales.
PARFRACislowforpatcheswithsimpleperimetersandincreasesforpatchshapeswithhighlyconvolutedperimeters.
FormoreinformationonthePerimeter-AreaFractalDimensionIndex(PAFRAC),seehttp://www.
umass.
edu/landeco/research/fragstats/documents/Metrics/Shape%20Metrics/Metrics/C23%20-%20PAFRAC.
htm.
Multivariatelinearregressionanalysis4DescriptionandsourceoflandscapevariablesincludedinmultivariateregressionanalysisarelistedinTableS1.
Topreventoverlyinfluentialobservationsfrombiasingourmodels,weusedleveragescores,Cook'sDvalues,andstandardizedinfluencevaluestoidentifyoutliers(Kieetal.
2002;ChatterjeeandHadi2009;Anlaufetal.
2011).
Leveragescoresidentifyobservationsthatresultinlargechangesinregressionlinefitupontheirdeletion.
Wecalculatedleverage(pi)accordingtoChatterjeeandHadi(1986)andconsideredobservationsoverlyinfluentialwhenpi>2p/N(p=numberofindependentvariablesinthemodel;N=numberofobservations).
Cook'sDvalueswerecalculatedaccordingtoCook(1977)andcomparedtoanFdistributionwithα=0.
05and(N-p)degreesoffreedom.
AllCook'sDvalues>thecriticalFvaluewereconsideredoverlyinfluentialandremovedfromthemodel(Cook1977).
LeveragescoresandCook'sDallowedustodeterminetheeffectsofoutliersontheoverallmodel,butstandardizedinfluencevalues(DFFITS)allowedustoexaminetheinfluenceofeachobservationonitspredictedvalue.
WecalculatedDFFITSaccordingtoChatterjeeandHadi(1986)andeliminatedobservationsyieldingvalues>2)/(Np(ChatterjeeandHadi1986).
Usingthesethreecriteria,weidentifiedthirteenobservationsoutof465(2.
8%)thatwereoutliersandafterstringentlyevaluatingtheirbasis(Motulsky2010),weomittedthemduringfurtheranalyses.
Themajorityoftheoutliersremoved(7/13)involvedstudysitesthathadrelativelylowsamplesizes.
Threeofthirteenoutliersinvolvedpairwisecomparisonswithstudysite27,thoughtheremainingtenoutliersappearedtoinvolvestudysitesthatwererandomlydistributedgeographically.
AsingleoutlierhadthehighestFSTvalueobserved,thoughtheremainingoutliersdidnotexhibitunusuallyhighorlowFSTvaluesascomparedtotherestofthe5dataset.
WecomparedvaluesofdependentvariablesofoutlierstovaluesfortherestofthedatabyexaminingboxplotsandplottingdependentvariablesagainstFSTvalues(datanotshown).
Trendsinthedistributionofvaluesfordependentvariablewerenotapparentinoutliersascomparedtotherestofthedata.
Whentwoormorelandscapevariableswerehighlycorrelated(Pearson'srP>0.
7),thepredictorwiththelowestpartialcorrelationinthefullmodelwasremoved.
RemovinglandscapevariableswithrP>0.
7(n=7)resultedinagenerallackofcollinearityamongpredictorsasdeterminedbyvarianceinflationfactors.
CorrelatedpredictorsthatwereremovedfromthemodelarelistedinTableS2.
Weusedvarianceinflationfactors(VIF)toevaluatetheincreaseinvarianceforestimatedregressioncoefficientsresultingfromcollinearpredictors,withVIF>10indicativeofhighmulticollinearity(Kutneretal.
2004).
Afterremovinghighlycorrelatedvariables,wecalculatedvarianceinflationfactorsforindependentvariablesandfoundthatthevarianceofestimatedregressioncoefficientswasnotsubstantiallyincreasedbycollinearpredictorsasVIFvaluesforallpredictorswere0.
7thatweresubsequentlyremovedfromthemodel.
VariableCorrelateDirectionofCorrelationVariableRemoved*%GrasslandSlope+%GrasslandForestCONNECTDevelopedCONNECT+ForestCONNECT%GrasslandGrasslandCONNECT-%GrasslandForestCONNECTGrasslandCONNECT+ForestCONNECTForestCONNECTWaterCONNECT+ForestCONNECTAgricultureCLUMPY%Agriculture-AgricultureCLUMPY%RiparianSlope+Slope%GrasslandForestCLUMPY-%GrasslandForestCONNECTDistance-ForestCONNECTSlopeGrasslandCOHESION+SlopeDevelopedCONNECTGrasslandCONNECT+DevelopedCONNECTGrasslandPAFRACSlope+SlopeDevelopedCONNECTWaterCONNECT+DevelopedCONNECT%GrasslandAgricultureCLUMPY-%Grassland%GrasslandAgriculturePAFRAC+%GrasslandDistanceDevelopedCONNECT-DevelopedCONNECTForestCONNECTWaterCONNECT+ForestCONNECT%AgricultureAgricultureCOHESION+AgricultureCOHESIONWaterCOHESIONWaterCLUMPY+WaterCLUMPY*thepredictorwiththelowestpartialcorrelationinthefullmodelwasremoved.
10TableS3.
Percentsignificant(P<0.
05)localr,rangeoflocalr,andmeanlocalrforfive,15and25nearestneighborsingroupsofwhite-taileddeerinnorthernIllinois(NIL),DuPageCounty(DuP),andWisconsin(WI).
GroupNumberofNearestNeighbors51525%P<0.
051MaxrMeanr%P<0.
051MaxrMeanr%P<0.
051MaxrMeanrAdultMales5.
70.
160.
134.
40.
110.
087.
90.
080.
06MaleYearlings7.
00.
280.
1711.
60.
180.
0914.
10.
120.
06MaleFawns9.
30.
190.
1511.
30.
090.
078.
20.
060.
05AdultMalesandFemaleYearlings6.
40.
270.
147.
60.
120.
088.
10.
090.
06AdultFemales14.
70.
320.
1618.
80.
240.
0920.
50.
150.
07FemaleYearlings5.
70.
160.
124.
80.
110.
074.
80.
070.
05FemaleFawns17.
10.
240.
1415.
20.
130.
0919.
50.
090.
06AdultFemalesandFawns16.
00.
310.
1622.
80.
230.
1024.
50.
190.
081NumberofautocorrelationcoefficientsthatweresignificantatP<0.
05dividedbythetotalnumberautocorrelationcoefficientscalculatedforeachgroup*100.
Includingonlysignificantlocalrvalues.
触摸云国内IDC/ISP资质齐全商家,与香港公司联合运营, 已超8年运营 。本次为大家带来的是双12特惠活动,美国高防|美国大宽带买就可申请配置升档一级[CPU内存宽带流量选一]升档方式:CPU内存宽带流量任选其一,工单申请免费升级一档珠海触摸云科技有限公司官方网站:https://cmzi.com/可新购免费升档配置套餐:地区CPU内存带宽数据盘价格购买地址美国高防 1核 1G10M20G 26...
随着自媒体和短视频的发展,确实对于传统的PC独立网站影响比较大的。我们可以看到云服务器商家的各种促销折扣活动,我们也看到传统域名商的轮番新注册和转入的促销,到现在这个状态已经不能说这些商家的为用户考虑,而是在不断的抢夺同行的客户。我们看到Namecheap商家新注册域名和转入活动一个接一个。如果我们有需要新注册.COM域名的,只需要5.98美元。优惠码:NEWCOM598。同时有赠送2个月免费域名...
VPSMS最近在做两周年活动,加上双十一也不久了,商家针对美国洛杉矶CN2 GIA线路VPS主机提供月付6.8折,季付6.2折优惠码,同时活动期间充值800元送150元。这是一家由港人和国人合资开办的VPS主机商,提供基于KVM架构的VPS主机,美国洛杉矶安畅的机器,线路方面电信联通CN2 GIA,移动直连,国内访问速度不错。下面分享几款VPS主机配置信息。CPU:1core内存:512MB硬盘:...
网易轻博客为你推荐
虚拟空间租赁虚拟主机租用价格多少钱一年虚拟主机价格谁知道租虚拟主机多少钱?域名服务域名服务有何作用?如何设置?免备案虚拟空间想买个免备案的虚拟主机,不知道哪里的好点成都虚拟空间成都市规划信息技术中心如何?手机网站空间QQ空间技巧的手机网站啊?国内最好的虚拟主机国内安全性最好的虚拟主机空间商有哪些?虚拟主机评测麻烦看一下这些虚拟主机商那个好?重庆虚拟主机重庆市邮政速递物流公司渝北分公司双龙揽投部客服电话青岛虚拟主机虚拟主机在什么地方买好?又便宜?
cm域名注册 俄罗斯vps 工信部域名备案系统 virpus directadmin 域名和空间 linux服务器维护 百度云1t 德讯 申请免费空间 主机返佣 789电视剧网 双11促销 塔式服务器 alexa世界排名 删除域名 一句话木马 云主机 天翼云主机 戴尔主机 更多