connectivity网易轻博客
网易轻博客 时间:2021-01-13 阅读:(
)
1ElectronicSupplementaryMaterialGeneticAssessmentofEnvironmentalFeaturesthatInfluenceDeerDispersal:ImplicationsforPrion-InfectedPopulationsAmyC.
Kelly,NohraE.
Mateus-Pinilla,WilliamBrown,MarilynO.
Ruiz,MarlisR.
Douglas,MichaelE.
Douglas,PaulShelton,TomBeissel,JanNovakofskiMicrosatelliteMarkersThefollowingmicrosatelliteswereemployedinthisstudy:BM1225,BM4107,CSN3,(Bishopetal.
1994),IGF-1(Kirkpatrick1992),OBCAM(Friesetal.
1993),OarFcb304(Buchananetal.
1993),RT20,RT23,RT27(Wilsonetal.
1997)andSrcrsp-10(Bhebheetal.
1994).
Welabeledforwardprimerswithfluorescentdyes(NED,HEX,FAM)andseparatedmicrosatellitefragmentsonanABI3730XLcapillarysequencer(AppliedBiosystems,FosterCity,CA).
WevisualizedmicrosatellitegenotypeswithGeneMapper(v.
4.
0;AppliedBiosystems,FosterCity,CA).
WeusedMicro-checker(v.
2.
2.
3;VanOosterhoutetal.
2004)toevaluategenotypingerrorsusingexpectedallelefrequenciesderivedunderHardy-Weinbergequilibrium(HWE).
FSTSurfaceProjectionWeusedtheSingleSpeciesGeneticDivergenceoptionwithintheGeneticLandscapesGIS(GeographicInformationSystem)ToolboxtoprojectasurfacefrompairwiseFSTvaluescalculatedbetweenall31studysites.
TheprogramfirstassociatedpairwiseFST2valueswithmidpointsbetweenallstudysitesandanetworkofnearestneighbors.
Spatialinterpolationwasthenperformedusinganinversedistanceweightedinterpolationalgorithmtoestimategeneticdistancesalongagridoverlaidonthestudyarea.
GeneticdistancesforallpointsacrossthegridwereinterpolatedsuchthatmidpointFSTvaluesthatwerespatiallycloserinfluencedtheestimatemoresothanthosethatweredistant.
Moredetailsontheinterpolationprocedurearedescribedinhttp://www.
werc.
usgs.
gov/productdetails.
aspxid=4017.
FRAGSTATSmetricsTheConnectanceIndex(CONNECT)measuresfunctionalconnectivity,meaningthatgridcellsinthedatathatdepictthetargetvariablearenotliterallyadjacent,buttheyareconsideredadjacent(orconnected)withinagiventhresholddistance.
Inthiscase,adjacencywasdefinedascellswithin100mofeachother.
Theuser-defined100mthresholdwasusedtoaccountforpotentialimprecisionofdataclassificationsatfinespatialresolutionsandtoprovideamorerealistic(i.
e.
,functional)depictionofhowdeermightinteractwiththelandscape.
Themetricitselfisapercentage,witharangeof0to100.
Morespecifically,itmeasuresthepercentageoftargetvariableadjacencies(connectionsorjoins)relativetoallpossibleadjacencies.
FormoreinformationontheConnectanceIndexsee:http://www.
umass.
edu/landeco/research/fragstats/documents/Metrics/Connectivity%20Metrics/Metrics/C122%20-%20CONNECT.
htm3ThePatchCohesionIndex(COHESION)isasecondmeasureofconnectivityofalandscapevariable.
Thismetrictakesintoaccountphysicaladjacency(withoutathreshold)incombinationwiththesizeandshapeofthepatches.
Takingforestasanexample,ahigherCOHESIONvaluewouldoccurinalandscapewithlargerandcompactpatchescomparedtoonewithsmallorconvolutedpatches.
FormoreinformationonthePatchCohesionIndexsee:http://www.
umass.
edu/landeco/research/fragstats/documents/Metrics/Connectivity%20Metrics/Metrics/C121%20-%20COHESION.
htmTheClumpinessIndex(CLUMPY)isametricindicatinghowcontiguousordispersedaretheadjacentpatchesofalandscapevariable.
AhighervalueofCLUMPYwouldoccurifseveralpatcheswerelocatedclosetogetherratherthanbeingmoreuniformlydistributed.
FormoreinformationontheClumpinessIndex(CLUMPY)seehttp://www.
umass.
edu/landeco/research/fragstats/documents/Metrics/Contagion%20-%20Interspersion%20Metrics/Metrics/C115%20-%20CLUMPY.
htmThePerimeter-AreaFractalDimension(PAFRAC)isashapemetricdeterminedacrossarangeofspatialscales.
PARFRACislowforpatcheswithsimpleperimetersandincreasesforpatchshapeswithhighlyconvolutedperimeters.
FormoreinformationonthePerimeter-AreaFractalDimensionIndex(PAFRAC),seehttp://www.
umass.
edu/landeco/research/fragstats/documents/Metrics/Shape%20Metrics/Metrics/C23%20-%20PAFRAC.
htm.
Multivariatelinearregressionanalysis4DescriptionandsourceoflandscapevariablesincludedinmultivariateregressionanalysisarelistedinTableS1.
Topreventoverlyinfluentialobservationsfrombiasingourmodels,weusedleveragescores,Cook'sDvalues,andstandardizedinfluencevaluestoidentifyoutliers(Kieetal.
2002;ChatterjeeandHadi2009;Anlaufetal.
2011).
Leveragescoresidentifyobservationsthatresultinlargechangesinregressionlinefitupontheirdeletion.
Wecalculatedleverage(pi)accordingtoChatterjeeandHadi(1986)andconsideredobservationsoverlyinfluentialwhenpi>2p/N(p=numberofindependentvariablesinthemodel;N=numberofobservations).
Cook'sDvalueswerecalculatedaccordingtoCook(1977)andcomparedtoanFdistributionwithα=0.
05and(N-p)degreesoffreedom.
AllCook'sDvalues>thecriticalFvaluewereconsideredoverlyinfluentialandremovedfromthemodel(Cook1977).
LeveragescoresandCook'sDallowedustodeterminetheeffectsofoutliersontheoverallmodel,butstandardizedinfluencevalues(DFFITS)allowedustoexaminetheinfluenceofeachobservationonitspredictedvalue.
WecalculatedDFFITSaccordingtoChatterjeeandHadi(1986)andeliminatedobservationsyieldingvalues>2)/(Np(ChatterjeeandHadi1986).
Usingthesethreecriteria,weidentifiedthirteenobservationsoutof465(2.
8%)thatwereoutliersandafterstringentlyevaluatingtheirbasis(Motulsky2010),weomittedthemduringfurtheranalyses.
Themajorityoftheoutliersremoved(7/13)involvedstudysitesthathadrelativelylowsamplesizes.
Threeofthirteenoutliersinvolvedpairwisecomparisonswithstudysite27,thoughtheremainingtenoutliersappearedtoinvolvestudysitesthatwererandomlydistributedgeographically.
AsingleoutlierhadthehighestFSTvalueobserved,thoughtheremainingoutliersdidnotexhibitunusuallyhighorlowFSTvaluesascomparedtotherestofthe5dataset.
WecomparedvaluesofdependentvariablesofoutlierstovaluesfortherestofthedatabyexaminingboxplotsandplottingdependentvariablesagainstFSTvalues(datanotshown).
Trendsinthedistributionofvaluesfordependentvariablewerenotapparentinoutliersascomparedtotherestofthedata.
Whentwoormorelandscapevariableswerehighlycorrelated(Pearson'srP>0.
7),thepredictorwiththelowestpartialcorrelationinthefullmodelwasremoved.
RemovinglandscapevariableswithrP>0.
7(n=7)resultedinagenerallackofcollinearityamongpredictorsasdeterminedbyvarianceinflationfactors.
CorrelatedpredictorsthatwereremovedfromthemodelarelistedinTableS2.
Weusedvarianceinflationfactors(VIF)toevaluatetheincreaseinvarianceforestimatedregressioncoefficientsresultingfromcollinearpredictors,withVIF>10indicativeofhighmulticollinearity(Kutneretal.
2004).
Afterremovinghighlycorrelatedvariables,wecalculatedvarianceinflationfactorsforindependentvariablesandfoundthatthevarianceofestimatedregressioncoefficientswasnotsubstantiallyincreasedbycollinearpredictorsasVIFvaluesforallpredictorswere0.
7thatweresubsequentlyremovedfromthemodel.
VariableCorrelateDirectionofCorrelationVariableRemoved*%GrasslandSlope+%GrasslandForestCONNECTDevelopedCONNECT+ForestCONNECT%GrasslandGrasslandCONNECT-%GrasslandForestCONNECTGrasslandCONNECT+ForestCONNECTForestCONNECTWaterCONNECT+ForestCONNECTAgricultureCLUMPY%Agriculture-AgricultureCLUMPY%RiparianSlope+Slope%GrasslandForestCLUMPY-%GrasslandForestCONNECTDistance-ForestCONNECTSlopeGrasslandCOHESION+SlopeDevelopedCONNECTGrasslandCONNECT+DevelopedCONNECTGrasslandPAFRACSlope+SlopeDevelopedCONNECTWaterCONNECT+DevelopedCONNECT%GrasslandAgricultureCLUMPY-%Grassland%GrasslandAgriculturePAFRAC+%GrasslandDistanceDevelopedCONNECT-DevelopedCONNECTForestCONNECTWaterCONNECT+ForestCONNECT%AgricultureAgricultureCOHESION+AgricultureCOHESIONWaterCOHESIONWaterCLUMPY+WaterCLUMPY*thepredictorwiththelowestpartialcorrelationinthefullmodelwasremoved.
10TableS3.
Percentsignificant(P<0.
05)localr,rangeoflocalr,andmeanlocalrforfive,15and25nearestneighborsingroupsofwhite-taileddeerinnorthernIllinois(NIL),DuPageCounty(DuP),andWisconsin(WI).
GroupNumberofNearestNeighbors51525%P<0.
051MaxrMeanr%P<0.
051MaxrMeanr%P<0.
051MaxrMeanrAdultMales5.
70.
160.
134.
40.
110.
087.
90.
080.
06MaleYearlings7.
00.
280.
1711.
60.
180.
0914.
10.
120.
06MaleFawns9.
30.
190.
1511.
30.
090.
078.
20.
060.
05AdultMalesandFemaleYearlings6.
40.
270.
147.
60.
120.
088.
10.
090.
06AdultFemales14.
70.
320.
1618.
80.
240.
0920.
50.
150.
07FemaleYearlings5.
70.
160.
124.
80.
110.
074.
80.
070.
05FemaleFawns17.
10.
240.
1415.
20.
130.
0919.
50.
090.
06AdultFemalesandFawns16.
00.
310.
1622.
80.
230.
1024.
50.
190.
081NumberofautocorrelationcoefficientsthatweresignificantatP<0.
05dividedbythetotalnumberautocorrelationcoefficientscalculatedforeachgroup*100.
Includingonlysignificantlocalrvalues.
提速啦(www.tisula.com)是赣州王成璟网络科技有限公司旗下云服务器品牌,目前拥有在籍员工40人左右,社保在籍员工30人+,是正规的国内拥有IDC ICP ISP CDN 云牌照资质商家,2018-2021年连续4年获得CTG机房顶级金牌代理商荣誉 2021年赣州市于都县创业大赛三等奖,2020年于都电子商务示范企业,2021年于都县电子商务融合推广大使。资源优势介绍:Ceranetwo...
ThomasHost域名注册自2012年,部落最早分享始于2016年,还算成立了有几年了,商家提供基于KVM架构的VPS,数据中心包括美国、法国、英国、加拿大和爱尔兰等6个地区机房,VPS主机套餐最低2GB内存起步,支持Windows或者Linux操作系统,1Gbps端口不限制流量。最近商家提供了一个5折优惠码,优惠后最低套餐月付5美元起。下面列出部分套餐配置信息。CPU:1core内存:2GB硬...
HostNamaste是一家成立于2016年3月的印度IDC商家,目前有美国洛杉矶、达拉斯、杰克逊维尔、法国鲁贝、俄罗斯莫斯科、印度孟买、加拿大魁北克机房。其中洛杉矶是Quadranet也就是我们常说的QN机房(也有CC机房,可发工单让客服改机房);达拉斯是ColoCrossing也就是我们常说的CC机房;杰克逊维尔和法国鲁贝是OVH的高防机房。采用主流的OpenVZ和KVM架构,支持ipv6,免...
网易轻博客为你推荐
域名注册商中国十大域名注册商中国互联网域名注册中国互联网域名注册怎么操作免费虚拟主机申请免费域名和免费虚拟主机申请以及绑定求详解vps试用求永久免费vps服务器(要永久的)查询ip怎样查别人的ip地址?域名备案买域名要备案吗网站空间价格我想自己弄个小网站,但我不会懂域名和买空间价格,便宜一点的一共要多少钱?虚拟主机服务商哪个虚拟主机的服务商比较好?成都虚拟主机一个虚拟主机最多支持几个子目录呢?一个百度推广账户是不是只能推广一个主域名下的网站?新加坡虚拟主机香港云主机和虚拟主机相比较那个好?
linux虚拟主机 太原域名注册 双线服务器租用 云南服务器租用 域名抢注工具 仿牌空间 webhostingpad cdn服务器 外国空间 抢票工具 国外php空间 韩国网名大全 小米数据库 免费网站申请 全站静态化 183是联通还是移动 双线主机 hktv 卡巴斯基破解版 google台湾 更多