connectivity网易轻博客

网易轻博客  时间:2021-01-13  阅读:()
1ElectronicSupplementaryMaterialGeneticAssessmentofEnvironmentalFeaturesthatInfluenceDeerDispersal:ImplicationsforPrion-InfectedPopulationsAmyC.
Kelly,NohraE.
Mateus-Pinilla,WilliamBrown,MarilynO.
Ruiz,MarlisR.
Douglas,MichaelE.
Douglas,PaulShelton,TomBeissel,JanNovakofskiMicrosatelliteMarkersThefollowingmicrosatelliteswereemployedinthisstudy:BM1225,BM4107,CSN3,(Bishopetal.
1994),IGF-1(Kirkpatrick1992),OBCAM(Friesetal.
1993),OarFcb304(Buchananetal.
1993),RT20,RT23,RT27(Wilsonetal.
1997)andSrcrsp-10(Bhebheetal.
1994).
Welabeledforwardprimerswithfluorescentdyes(NED,HEX,FAM)andseparatedmicrosatellitefragmentsonanABI3730XLcapillarysequencer(AppliedBiosystems,FosterCity,CA).
WevisualizedmicrosatellitegenotypeswithGeneMapper(v.
4.
0;AppliedBiosystems,FosterCity,CA).
WeusedMicro-checker(v.
2.
2.
3;VanOosterhoutetal.
2004)toevaluategenotypingerrorsusingexpectedallelefrequenciesderivedunderHardy-Weinbergequilibrium(HWE).
FSTSurfaceProjectionWeusedtheSingleSpeciesGeneticDivergenceoptionwithintheGeneticLandscapesGIS(GeographicInformationSystem)ToolboxtoprojectasurfacefrompairwiseFSTvaluescalculatedbetweenall31studysites.
TheprogramfirstassociatedpairwiseFST2valueswithmidpointsbetweenallstudysitesandanetworkofnearestneighbors.
Spatialinterpolationwasthenperformedusinganinversedistanceweightedinterpolationalgorithmtoestimategeneticdistancesalongagridoverlaidonthestudyarea.
GeneticdistancesforallpointsacrossthegridwereinterpolatedsuchthatmidpointFSTvaluesthatwerespatiallycloserinfluencedtheestimatemoresothanthosethatweredistant.
Moredetailsontheinterpolationprocedurearedescribedinhttp://www.
werc.
usgs.
gov/productdetails.
aspxid=4017.
FRAGSTATSmetricsTheConnectanceIndex(CONNECT)measuresfunctionalconnectivity,meaningthatgridcellsinthedatathatdepictthetargetvariablearenotliterallyadjacent,buttheyareconsideredadjacent(orconnected)withinagiventhresholddistance.
Inthiscase,adjacencywasdefinedascellswithin100mofeachother.
Theuser-defined100mthresholdwasusedtoaccountforpotentialimprecisionofdataclassificationsatfinespatialresolutionsandtoprovideamorerealistic(i.
e.
,functional)depictionofhowdeermightinteractwiththelandscape.
Themetricitselfisapercentage,witharangeof0to100.
Morespecifically,itmeasuresthepercentageoftargetvariableadjacencies(connectionsorjoins)relativetoallpossibleadjacencies.
FormoreinformationontheConnectanceIndexsee:http://www.
umass.
edu/landeco/research/fragstats/documents/Metrics/Connectivity%20Metrics/Metrics/C122%20-%20CONNECT.
htm3ThePatchCohesionIndex(COHESION)isasecondmeasureofconnectivityofalandscapevariable.
Thismetrictakesintoaccountphysicaladjacency(withoutathreshold)incombinationwiththesizeandshapeofthepatches.
Takingforestasanexample,ahigherCOHESIONvaluewouldoccurinalandscapewithlargerandcompactpatchescomparedtoonewithsmallorconvolutedpatches.
FormoreinformationonthePatchCohesionIndexsee:http://www.
umass.
edu/landeco/research/fragstats/documents/Metrics/Connectivity%20Metrics/Metrics/C121%20-%20COHESION.
htmTheClumpinessIndex(CLUMPY)isametricindicatinghowcontiguousordispersedaretheadjacentpatchesofalandscapevariable.
AhighervalueofCLUMPYwouldoccurifseveralpatcheswerelocatedclosetogetherratherthanbeingmoreuniformlydistributed.
FormoreinformationontheClumpinessIndex(CLUMPY)seehttp://www.
umass.
edu/landeco/research/fragstats/documents/Metrics/Contagion%20-%20Interspersion%20Metrics/Metrics/C115%20-%20CLUMPY.
htmThePerimeter-AreaFractalDimension(PAFRAC)isashapemetricdeterminedacrossarangeofspatialscales.
PARFRACislowforpatcheswithsimpleperimetersandincreasesforpatchshapeswithhighlyconvolutedperimeters.
FormoreinformationonthePerimeter-AreaFractalDimensionIndex(PAFRAC),seehttp://www.
umass.
edu/landeco/research/fragstats/documents/Metrics/Shape%20Metrics/Metrics/C23%20-%20PAFRAC.
htm.
Multivariatelinearregressionanalysis4DescriptionandsourceoflandscapevariablesincludedinmultivariateregressionanalysisarelistedinTableS1.
Topreventoverlyinfluentialobservationsfrombiasingourmodels,weusedleveragescores,Cook'sDvalues,andstandardizedinfluencevaluestoidentifyoutliers(Kieetal.
2002;ChatterjeeandHadi2009;Anlaufetal.
2011).
Leveragescoresidentifyobservationsthatresultinlargechangesinregressionlinefitupontheirdeletion.
Wecalculatedleverage(pi)accordingtoChatterjeeandHadi(1986)andconsideredobservationsoverlyinfluentialwhenpi>2p/N(p=numberofindependentvariablesinthemodel;N=numberofobservations).
Cook'sDvalueswerecalculatedaccordingtoCook(1977)andcomparedtoanFdistributionwithα=0.
05and(N-p)degreesoffreedom.
AllCook'sDvalues>thecriticalFvaluewereconsideredoverlyinfluentialandremovedfromthemodel(Cook1977).
LeveragescoresandCook'sDallowedustodeterminetheeffectsofoutliersontheoverallmodel,butstandardizedinfluencevalues(DFFITS)allowedustoexaminetheinfluenceofeachobservationonitspredictedvalue.
WecalculatedDFFITSaccordingtoChatterjeeandHadi(1986)andeliminatedobservationsyieldingvalues>2)/(Np(ChatterjeeandHadi1986).
Usingthesethreecriteria,weidentifiedthirteenobservationsoutof465(2.
8%)thatwereoutliersandafterstringentlyevaluatingtheirbasis(Motulsky2010),weomittedthemduringfurtheranalyses.
Themajorityoftheoutliersremoved(7/13)involvedstudysitesthathadrelativelylowsamplesizes.
Threeofthirteenoutliersinvolvedpairwisecomparisonswithstudysite27,thoughtheremainingtenoutliersappearedtoinvolvestudysitesthatwererandomlydistributedgeographically.
AsingleoutlierhadthehighestFSTvalueobserved,thoughtheremainingoutliersdidnotexhibitunusuallyhighorlowFSTvaluesascomparedtotherestofthe5dataset.
WecomparedvaluesofdependentvariablesofoutlierstovaluesfortherestofthedatabyexaminingboxplotsandplottingdependentvariablesagainstFSTvalues(datanotshown).
Trendsinthedistributionofvaluesfordependentvariablewerenotapparentinoutliersascomparedtotherestofthedata.
Whentwoormorelandscapevariableswerehighlycorrelated(Pearson'srP>0.
7),thepredictorwiththelowestpartialcorrelationinthefullmodelwasremoved.
RemovinglandscapevariableswithrP>0.
7(n=7)resultedinagenerallackofcollinearityamongpredictorsasdeterminedbyvarianceinflationfactors.
CorrelatedpredictorsthatwereremovedfromthemodelarelistedinTableS2.
Weusedvarianceinflationfactors(VIF)toevaluatetheincreaseinvarianceforestimatedregressioncoefficientsresultingfromcollinearpredictors,withVIF>10indicativeofhighmulticollinearity(Kutneretal.
2004).
Afterremovinghighlycorrelatedvariables,wecalculatedvarianceinflationfactorsforindependentvariablesandfoundthatthevarianceofestimatedregressioncoefficientswasnotsubstantiallyincreasedbycollinearpredictorsasVIFvaluesforallpredictorswere0.
7thatweresubsequentlyremovedfromthemodel.
VariableCorrelateDirectionofCorrelationVariableRemoved*%GrasslandSlope+%GrasslandForestCONNECTDevelopedCONNECT+ForestCONNECT%GrasslandGrasslandCONNECT-%GrasslandForestCONNECTGrasslandCONNECT+ForestCONNECTForestCONNECTWaterCONNECT+ForestCONNECTAgricultureCLUMPY%Agriculture-AgricultureCLUMPY%RiparianSlope+Slope%GrasslandForestCLUMPY-%GrasslandForestCONNECTDistance-ForestCONNECTSlopeGrasslandCOHESION+SlopeDevelopedCONNECTGrasslandCONNECT+DevelopedCONNECTGrasslandPAFRACSlope+SlopeDevelopedCONNECTWaterCONNECT+DevelopedCONNECT%GrasslandAgricultureCLUMPY-%Grassland%GrasslandAgriculturePAFRAC+%GrasslandDistanceDevelopedCONNECT-DevelopedCONNECTForestCONNECTWaterCONNECT+ForestCONNECT%AgricultureAgricultureCOHESION+AgricultureCOHESIONWaterCOHESIONWaterCLUMPY+WaterCLUMPY*thepredictorwiththelowestpartialcorrelationinthefullmodelwasremoved.
10TableS3.
Percentsignificant(P<0.
05)localr,rangeoflocalr,andmeanlocalrforfive,15and25nearestneighborsingroupsofwhite-taileddeerinnorthernIllinois(NIL),DuPageCounty(DuP),andWisconsin(WI).
GroupNumberofNearestNeighbors51525%P<0.
051MaxrMeanr%P<0.
051MaxrMeanr%P<0.
051MaxrMeanrAdultMales5.
70.
160.
134.
40.
110.
087.
90.
080.
06MaleYearlings7.
00.
280.
1711.
60.
180.
0914.
10.
120.
06MaleFawns9.
30.
190.
1511.
30.
090.
078.
20.
060.
05AdultMalesandFemaleYearlings6.
40.
270.
147.
60.
120.
088.
10.
090.
06AdultFemales14.
70.
320.
1618.
80.
240.
0920.
50.
150.
07FemaleYearlings5.
70.
160.
124.
80.
110.
074.
80.
070.
05FemaleFawns17.
10.
240.
1415.
20.
130.
0919.
50.
090.
06AdultFemalesandFawns16.
00.
310.
1622.
80.
230.
1024.
50.
190.
081NumberofautocorrelationcoefficientsthatweresignificantatP<0.
05dividedbythetotalnumberautocorrelationcoefficientscalculatedforeachgroup*100.
Includingonlysignificantlocalrvalues.

CloudCone中国新年特别套餐,洛杉矶1G内存VPS年付13.5美元起

CloudCone针对中国农历新年推出了几款特别套餐, 其中2019年前注册的用户可以以13.5美元/年的价格购买一款1G内存特价套餐,以及另外提供了两款不限制注册时间的用户可购买年付套餐。CloudCone是Quadcone旗下成立于2017年的子品牌,提供VPS及独立服务器租用,也是较早提供按小时计费VPS的商家之一,支持使用PayPal或者支付宝等付款方式。下面列出几款特别套餐配置信息。CP...

易探云美国云服务器评测,主机低至33元/月,336元/年

美国服务器哪家平台好?美国服务器无需备案,即开即用,上线快。美国服务器多数带防御,且有时候项目运营的时候,防御能力是用户考虑的重点,特别是网站容易受到攻击的行业。现在有那么多美国一年服务器,哪家的美国云服务器好呢?美国服务器用哪家好?这里推荐易探云,有美国BGP、美国CN2、美国高防、美国GIA等云服务器,线路优化的不错。易探云刚好就是做香港及美国云服务器的主要商家之一,我们来看一下易探云美国云服...

MineServer:洛杉矶CN2 GIA VPS/512MB内存/20GB NVME/800GB流量/200Mbps/KVM,58元/季

mineserver怎么样?mineserver是一家国人商家,主要提供香港CN2 KVM VPS、香港CMI KVM VPS、日本CN2 KVM VPS、洛杉矶cn2 gia端口转发等服务,之前介绍过几次,最近比较活跃。这家新推出了洛杉矶CN2 GIA VPS,512MB内存/20GB NVME/800GB流量/200Mbps/KVM,58元/季,并且进行了带宽升级,同时IP更改为美国IP。点击...

网易轻博客为你推荐
美国vps服务器美国VPS和美国服务器速度快吗美国vps服务器打听下,国外V P S服务器哪个好?企业虚拟主机一个企业网站是什么比较划算,买服务器还是买虚拟主机呢注册国际域名哪里的国际域名注册便宜?海外服务器租用国外服务器租用与国内服务器租用有哪些区别me域名.me域名和com的价值对比,懂的告诉我呀虚拟主机申请个人虚拟主机怎么申请?网站空间域名什么是网站域名和网站空间海外域名怎样注册国外域名?网站空间购买哪里买网站空间好?
187邮箱 hkbn cpanel 网络星期一 godaddy优惠券 天猫双十一秒杀 网盘申请 网站cdn加速 linux服务器维护 中国电信宽带测速网 购买国外空间 linux使用教程 网购分享 中国联通宽带测试 cdn服务 重庆联通服务器托管 酷锐 带宽测速 阿里云宕机故障 ssd 更多