DNA贝尔金路由器设置

贝尔金路由器设置  时间:2021-05-22  阅读:()
ChiralSumFrequencyGenerationSpectroscopyforCharacterizingProteinSecondaryStructuresatInterfacesLiFu,JianLiu,andElsaC.
Y.
Yan*DepartmentofChemistry,YaleUniversity,225ProspectStreet,NewHaven,Connecticut06520,UnitedStatesbSSupportingInformationABSTRACT:Insituandreal-timecharacterizationofproteinsecondarystructuresatinterfacesisimportantinbiologicalandbioengineeringsciences,yetremainstechni-callychallenging.
Inthisstudy,weusedchiralsumfrequencygeneration(SFG)spectroscopytoestablishasetofvibra-tionalopticalmarkersforcharacterizingproteinsecondarystructuresatinterfaces.
WediscoveredthattheNHstretchesalongthepeptidebackbonesofR-helicescanbedetectedinchiralSFGspectra.
WefurtherobservedthatthechiralvibrationalsignaturesoftheNHstretchtogetherwiththepeptideamideIareuniquetoR-helix,β-sheet,andrandomcoilatinterfaces.
Usingthesechiralvibrationalsignatures,westudiedtheaggregationofhumanisletamyloidpolypeptide(hIAPP),whichisimplicatedintypeIIdiabetes.
WeobservedinsituandinrealtimethemisfoldingofhIAPPfromrandomcoilstoR-helicesandthenβ-sheetsuponinteractionwithalipidwaterinterface.
OurndingsshowthatchiralSFGspectroscopyisapower-fultooltofollowchangesinproteinconformationsatinterfacesandidentifyinterfacialproteinsecondarystruc-turesthateludeconventionaltechniques.
Insituandrealtimecharacterizationofproteinsecondarystructuresatinterfacesisimportantforunderstandingthebiologicalfunctionofproteinsanddevelopingbiomaterialsandbiosensors.
However,thelackofsurface-sensitiveandlabel-freetechniquesthatcanunambiguouslydierentiatesecondarystructuresatinterfacesposeschallenges.
Consequently,pro-blemsthatrequireidenticationofsecondarystructuresattheinterfacesofcomplexproteinsystemshavenotbeenfullyexplored.
Forexample,theaggregationofamyloidproteinsintoβ-sheetstructuresisassociatedwithmanydiseases,suchasParkinson's,Alzheimer's,andpriondiseases.
1Althoughrecentndingsrevealtheimportanceoflipidmembranesincatalyzingtheaggregationprocess,2,3theaggregationpathwayofamyloidproteinsonmembranesurfacesisnotfullyunderstood.
Here,weintroducedaconceptofusingsecond-orderchiralvibrationalopticalmarkers,providedbysumfrequencygenera-tion(SFG)spectroscopy,todistinguishproteinsecondarystructuresatinterfaces.
WestudiedchiralvibrationalstructuresofpeptidebackbonesandobservedcharacteristicNHstretchandamideIsignaturesthatareuniquetorandomcoils,R-helices,andβ-sheetsatinterfaces.
Usingthesesignatures,wemonitoredtheaggregationofhumanamyloidpolypeptide(hIAPP)atalipidwaterinterfaceandobservedtheconversionofhIAPPfromarandomcoiltoanR-helixandthentoaβ-sheetinrealtime.
Wefoundthattheopticalmarkersarefreefrombackgroundofsolventsandachiralsolutesattheinterfaces.
TheyareinthespectralregionsoftheamideIandNHstretchwidelyseparatedat16001700cm1and31003350cm1,respectively.
Hence,theSFGvibrationalmarkersarerelativelyopticallycleanandbackground-free.
Thus,theyareusefulforcharacterizinginterfacialproteinsecondarystructuresthathavebeendiculttoresolveusingconventionaltechniques.
Conventionaltechniquesforcharacterizingproteinsecondarystructuresatinterfaceshavelimitations.
Althoughcirculardichro-ism(CD)isoftenusedtocharacterizesecondarystructures,4itlackssurfacesensitivity.
Surfaceplasmonresonancecandetectadsorptionofproteinsonsurfaces,5butitisnotsensitivetosecondarystructures.
TheX-rayscatteringmethodcanbeusedtoprobetheorderedproteinstructures,butitisnotsuitedforkineticstudiesinsitu.
Ramanandinfrared(IR)spectroscopycanprovideinformationaboutsecondarystructurebyprobingamideIvibrationalbands.
69However,amideIvibrationalbandsoverlapwiththebendingmodesofwater.
Thus,deuteratedwatermustbeused.
Moreover,theamideIbandsofvarioussecondarystructuresareclusteredinthespectralregionof16201680cm1andtheamideIbandsofR-helicesandrandomcoilsarebothapproximatelyat1650cm1,whichmakescharacterizationofcomplexproteinsystemsextremelydicult.
BothRamanandIRspectroscopylacksurfaceselectivityandoftenrequiremetalsubstratestoenhancesurfacesignal5,10orreectiongeometrytosuppressbulksignals.
11Two-dimensionalIRspectroscopyhasbeenusedtoidentifysecondarystructures.
1215However,itcanonlybeappliedtoproteinsinbulksolution,notatinterfaces.
Sincethelate1980s,SFGspectroscopyhasbeendevelopedintoapowerfulsurface-selectivetechniquetoobtainstructuralanddynamicinformationinphysicalandmaterialsciences,1620suchasprobingchemicalphysicsofsmallmoleculesatinter-faces.
2125Itisasecond-ordercoherentopticaltechnique,requiringspatialandtemporaloverlapofanIRbeamandavisiblebeamattheinterface,toproducevibrationalopticalsignals.
SFGissurface-selectiveduetotheintrinsicasymmetryoftheinterfacesuchthatsecond-orderpolarizationinducedatinterfacialmol-eculescanaddupcoherentlytoproducesurfaceselectivesignals.
16Simpsonetal.
derivedachiralSFGtheorytoshowthatsignalscanbegeneratedevenfromachiralmoleculesthatarearrangedinmacromolecularchiralarchitectures.
26SuchsignalsReceived:February19,2011ThisisanopenaccessarticlepublishedunderanACSAuthorChoiceLicense,whichpermitscopyingandredistributionofthearticleoranyadaptationsfornon-commercialpurposes.
havebeenobservedexperimentallyusingbiomolecules,includ-ingtheCHstretchesofDNAandtheamideIofproteins.
2730InspiredbythechiralSFGtheoryanddetectionofthechiralamideIsignalfromβ-sheets,28,30werealizedthattheNHgroupsalongchiralpeptidebackbonesofvarioussecondarystructurescouldalsobechiral-SFGactive.
Totestthisidea,weprobedboththeNHstretchandamideIregionsofmodelpeptidesandproteins.
WeobservedthatchiralNHstretchandamideIarehighlyuniquetotheR-helixandtheβ-sheet.
Weproposeusingthesesignalsasopticalmarkerstocharacterizeproteinsecondarystructuresatinterfaces,similartotheuseofCDsignalstoidentifyproteinsecondarystructuresinbulksolution.
Toestablishthechiralvibrationalopticalmarkers,weobtainedtheSFGspectraofmodelpeptidesandproteins(Figure1A).
Forβ-sheets,weusedhIAPP,a37-aminoacidpeptidehormonesecretedbyhumanpancreaticβ-cells.
Thispeptideformsparallelβ-sheetsattheairwaterinterfaceinthepresenceofnegativelychargedlipids.
31ForR-helices,wechosethreemodelsystems:(1)LKR14,a14-aminoacidpeptidewiththesequence(LKKLLKL)2;32(2)pH-lowinsertionpeptide(pHLIP),a36-aminoacidpeptidederivedfromhelix3ofbacteriorhodopsin;33and(3)bovinerhodopsin,a7-R-helicaltransmembraneGprotein-coupledreceptor.
34Acombinationoftechniques,includingCDspectros-copy,IRspectroscopy,andX-rayphotoelectronspectroscopy,hasshownthatLKR14andpHLIPcanformR-helicesinamphiphilicenvironments.
32,33,35,36RhodopsincanformastablemonolayerattheairwaterinterfacewhensurfacepressureiscarefullycontrolledinaLangmuirtrough.
37,38Asacontrol,weusedratisletamyloidpolypeptide(rIAPP),whichdiersfromhIAPPbysixaminoacids.
39Itisrelativelyunstructuredinsolutionanddoesnotformβ-sheetstructureseveninthepresenceoflipids.
3ToobtaintheSFGspectra,wedissolvedthepeptidesinaqueoussolutionandprobedthemattheairwaterinterface(SupportingInformation).
ForthehIAPPexperiments,wead-dedlipidmoleculestoinducetheformationofamyloidattheairwaterinterface.
Fortherhodopsinexperiments,weexpres-sedandpuriedrecombinantbovinerhodopsin40andmadeamonolayerofrhodopsinattheairwaterinterface,asdescribedbyLavoieetal.
38Weusedourbroad-bandwidthSFGspectro-meter41toobtainthechiralandachiralSFGspectrumofeachpeptideandproteininboththeNHstretchandamideIreg-ions.
Weusedpsp(p-polarizedSFG,s-polarizedvisible,andp-polarizedinfrared)polarizationfortheacquisitionofchiralSFGspectra(Figure1)andssppolarizationfortheacquisitionofachiralspectra(FigureS1).
Inthepresenceofthenegativelychargedlipiddipalmitoylpho-sphoglycerol(DPPG),hIAPPaggregatesintoaparallelβ-sheetstructureattheairwaterinterface.
ThehIAPPaggregateshowsapeakat1622cm1andashoulderat1660cm1intheamideIchiralspectrum,correspondingtotheantisymmetricandsymmetricamideImodes,respectively(Figure1),30,42butitdoesnotshowasignalinthechiralNHspectrum.
Incontrast,R-helicalrhodopsinandpHLIPshowchiralNHsignalsatabout3280cm1andLKR14showsachiralNHsignalatabout3300cm1.
However,allaresilentintheamideIchiralspectra(Figure1).
Conversely,theachiralSFGspectrumofeverypeptideorprotein,obtainedusingssppolarization(FigureS1),showsbothamideIandNHstretchsignalsregardlessoftheirsecondarystructures.
Similartoconven-tionalIRandRamanspectroscopy,achiralSFGspectroscopydoesnotallowdirectidenticationofsecondarystructures.
Moreover,therIAPPcontrolshowsanachiralsignalintheamideIspectrum(FigureS1),indicatingthatrIAPPadsorbsattheinterface.
How-ever,wecouldnotdetectachiralNHstretchoramideIsignal(Figure1),suggestingthatnoteveryproteinorpeptideatinterfacescangenerateachiralNHoramideIsignalunderourexperimentalconditions.
ItislikelythatrIAPPadoptsalargelydisorderedstruc-tureorapartiallyfoldedstructure43,whichdoesnotgeneratedetectablechiralsignals.
Ourresultsindicatethatparallelβ-sheetsexhibitchiralamideIsignalsbutaresilentinthechiralNHstretchspectrum,whereasR-helicesdisplaychiralNHstretchsignalsbutaresilentinthechiralamideIspectrum.
Becauserandomcoilsdonothaveachiralpeptidebackbone,theyshouldnotshowachiralNHoramideIsignalattheinterface.
Takentogether,theseresultsidentifyasetofchiralvibrationalSFGopticalmarkersthatcanbeusedtocharacterizeproteinsecondarystructuresatinterfaces.
Todemonstratetheuseoftheseopticalmarkers,westudiedhIAPPasamodelsystem,whichaggregatesintoβ-sheet-richstructures44,45depositedontopancreaticβ-cellsandcausestypeIIdiabetes.
46TheaggregationofhIAPPiscatalyzedbyinterac-tionswithnegativelychargedlipids2,3andisthoughttoundergoanR-helicalintermediatebeforeaggregatingintoβ-sheetstructures,Figure1.
ChiralSFGspectraofthemodelpeptidesandprotein.
(A)SchematicsofsecondarystructuresofthehIAPPaggregate,LKR14,rhodopsin,pHLIP,andrIAPP.
ThechiralSFGspectraattheairwaterinterfaceinthe(B)amideIregionand(C)NHstretchregion.
basedonextensivebiophysicalstudiesusingacombinationoftechniques,includingCD,uorescence,andIRreectionab-sorptionspectroscopy.
31,47FollowingadditionofDPPG,wemonitoredchiralSFGspectraofhIAPPintheNHstretchandamideIspectralregionsattheairwaterinterface(Figure2A).
ThesignaloftheNHstretchgraduallyincreasestoitsmaximumin3handdisappearsby10haftertheadditionofDPPG.
Incontrast,theamideIsignalappearsapproximately4hafteradditionofDPPGandreachesitsmaximumin10h.
Becausethekineticsofamyloidformationisdiculttoreproduceduetovariationsinfactorssuchasnucleationandagitation,48werepeatedeachmeasurementthreetimesandplottedtheNHstretchandamideIintensityasafunctionoftime(Figure2B).
OurndingsshowthattheNHstretchsignalconsistentlydisappearedpriortoaccumulationoftheamideIsignal.
Ascontrolexperiments,westudiedhIAPPintheabsenceofDPPG(FigureS2AB)andrIAPPinthepresenceofDPPG(FigureS2CD)becauseneitherpeptideaggregatesintoaβ-sheetundertheseconditionsinthetimescaleofhours.
1,30Inbothexperiments,weobservedtheachiralamideIsignals,suggestingbothpeptidesadsorbattheinterface.
30However,monitoringtheNHandamideIchiralspectraforapproximately10h,wecouldnotdetectanychiralsignal(FigureS2).
OurresultsindicatethatneitherhIAPPnorrIAPPformsaβ-sheetandthatneitherhIAPPnorrIAPPfoldsintoanR-helicalstructurethatcanbedetectedinourexperiments.
OnthebasisoftheNHsignalat3285cm1,whichcorres-pondstoanR-helix,andtheamideIsignalat1620cm1,whichcorrespondstoaparallelβ-sheet,theresultspresentedinFigure2showatransientR-helicalintermediateandanalparallel-β-sheetproductintheamyloidaggregationprocess.
TheinitialabsenceofanamideIsignalcouldmeanthathIAPPbeginsineitheranR-helicalorarandom-coilstructure.
However,theinitialabsenceoftheNHstretchsignalrevealsthathIAPPisarandomcoil.
DuetospectraloverlapintheamideIregion,itisdiculttodistinguishrandomcoilsandR-helicesusingIRandRamanspectroscopy.
WeconcludethathIAPPadsorbsatthelipidwaterinterfaceasarandomcoilandbeginsfoldingintoanR-helixwithin11.
5h.
ItconvertsfullytoanR-helixatapproxi-mately3handfoldsintoparallelβ-sheetsatapproximately9h.
Giventhesendings,wecanusetheSFGopticalmarkerstoexplicitlyidentifytheR-helicalintermediateandfollowthekineticsofchangesinthesecondarystructureofhIAPPatthelipidwaterinterface.
Interestingly,theamideIandNHstretchbehavedierentlyinthechiralSFGspectra.
Atpresent,aquantitativedescriptionofthechiralNHandamideIsignalsfromR-helicesandβ-sheetsisbeingdeveloped.
OurobservedchiralamideIresponseisinqualitativeagreementwiththetheorydevelopedbyPerryetal.
,49whichpredictsalargercontributionofthechiralamideIresponsefromβ-sheetsandasmallercontributionfromR-helices.
TheobserveddierencesinthechiralSFGsignalsmaybeoriginatedfromthesymmetryofthevibrationalmodesandthecouplingofthevibrationalmodesinthepeptidebackbones.
ItisknownthatindividualNHstretchesarehighlylocalized,50whileindividualamideImodesarestronglycoupledinthepeptidebackbones.
9WespeculatethatthevibrationalcouplingcanplayaroleintheSFGchiral-opticalresponse.
Moreover,wearguethatthechiralSFGsignalsthatweobservedoriginatefromtheinterfacesduetothechiralmacro-moleculararrangementofthepeptidebackbones.
26AlthoughtheSFGchiral-opticalresponsecouldbeobservedfromthebulkofchiralliquid,51thisbulkchiralsignalisduetotheasymmetryoftheRamantensor,whichisveryweakandneedsthevisiblebeamtobeinresonancewiththeelectronictransitionofthemolecules.
Inaddition,thisbulkchiralsignalwasdetectedbythetransmissionopticalgeometryfromthebulkofpurechiralliquidasreportedpreviously.
51Incontrast,thechiralSFGsignalobservedinourexperimentiscomparabletotheachiralsignals,andtheserelativelystrongchiralsignalsweredetectedatlowconcentration(15μM)usingreectivegeometrywithoutelectronicresonance.
Hence,itisnotlikelythatourobservedchiralSFGsignalsarefromthebulk.
Overall,ourresultsshowtheadvantagesofusingchiralSFGtoprobeinterfacialproteinstructures.
First,thechiralSFGvibra-tionalsignaturesareopticallyclean.
TheamideIsignalfromaβ-sheetandtheNHsignalfromanR-helixdonotinterferewitheachother.
ThechiralSFGsignalisalsoinsensitivetothepresenceofachiralsolventsandachiralsolutesatinterfaces.
Hence,theSFGmarkersareopticallycleanandrelativelybackground-free.
Second,kineticinformationcanbereadilyobtainedbymonitoringtheSFGopticalsignals,whichenableskineticstudiesofproteinfoldingandmisfoldingatinterfacesandFigure2.
AggregationofhIAPP.
(A)Thetime-dependentchiralSFGspectrainthevibrationalregionsofNHstretch(left)andamideI(right)afteradditionofDPPG.
(B)TheintensityoftheNHstretchandamideIsignalsasafunctionoftime.
Resultsoftriplicateexperimentsareshown.
(C)TheaggregationmodelofhIAPPonamembranesurfaceasobservedintheSFGexperiments:adsorptionasarandomcoilleadstoformationofR-helicalintermediates,whichareconvertedtoβ-sheetaggregates.
surfacecharacterizationsofbiomaterialsandbiosensors,withouttheuseofspectroscopiclabels.
BecauseSFGissurface-selective,onlyamonolayerofproteinintheamountofmicrogramsisneededtoobtainSFGspectra.
Thissmallsamplesizeallowsthestudyofmostproteinsthatcanbepuriedfromnaturalsourcesorrecombinantexpressionsystems,includingmembranepro-teins,whicharediculttoobtain.
Moreover,SFGcanbeusedtomeasuretheorientationofsecondarystructuresatinterfaces,52andthuscanbeusedtostudybiologicalprocesses,whichofteninvolvesubtleconformationalchangesinproteins.
Furthermore,SFGcanbeusedtoprobedistinctvibrationalstructuresofindividualsidechainsandotherbiomolecules,allowingstudiesofhighlyspecicproteininteractionsatinterfaces.
Finally,asSFGusesultrafastlasers,whichprovidenanosecondtofemto-secondtimeresolution,itenablesstudiesofultrafastvibrationaldynamicsofproteins.
Forallthesereasons,chiralSFGspectros-copyisexpectedtobeusefulforsolvingavarietyofproblemsrelatedtostructures,functions,anddynamicsofproteinsatinterfacesthatconventionaltechniquescannotadequatelyaddress.
'ASSOCIATEDCONTENTbSSupportingInformation.
Materials,SFGSetup,Experi-mentalProcedureandDataAcquisition,FiguresS1andS2.
ThismaterialisavailablefreeofchargeviatheInternetathttp://pubs.
acs.
org.
'AUTHORINFORMATIONCorrespondingAuthorelsa.
yan@yale.
edu'ACKNOWLEDGMENTTheauthorsthankDr.
R.
Tykcoforprovidingthestructureoftheparallelβ-sheetaggregatesofhIAPP.
E.
Y.
istherecipientoftheStarterGrantAward,SpectroscopySocietyofPittsburgh.
J.
L.
isanAndersonPostdoctoralfellow.
TheauthorsthankDr.
S.
G.
Rayforhelpfuldiscussions.
'REFERENCES(1)Chiti,F.
;Dobson,C.
M.
Annu.
Rev.
Biochem.
2006,75,333–366.
(2)Jayasinghe,S.
A.
;Langen,R.
Biochemistry2005,44,12113–12119.
(3)Knight,J.
D.
;Hebda,J.
A.
;Miranker,A.
D.
Biochemistry2006,45,9496–9508.
(4)Garnier,J.
;Osguthorpe,D.
J.
;Robson,B.
J.
Mol.
Biol.
1978,120,97–120.
(5)Niemeyer,C.
M.
Angew.
Chem.
,Int.
Ed.
2001,40,4128–4158.
(6)Xu,Y.
;Oyola,R.
;Gai,F.
J.
Am.
Chem.
Soc.
2003,125,15388–15394.
(7)Tamm,L.
K.
;Tatulian,S.
A.
Q.
Rev.
Biophys.
1997,30,365–429.
(8)Byler,D.
M.
;Susi,H.
Biopolymers1986,25,469–487.
(9)Barth,A.
;Zscherp,C.
Q.
Rev.
Biophys.
2002,35,369–430.
(10)Zaitseva,E.
;Saavedra,M.
;Banerjee,S.
;Sakmar,T.
P.
;Vogel,R.
Biophys.
J.
2010,99,2327–2335.
(11)Mendelsohn,R.
;Brauner,J.
W.
;Gericke,A.
Annu.
Rev.
Phys.
Chem.
1995,46,305–334.
(12)Shim,S.
H.
;Strasfeld,D.
B.
;Ling,Y.
L.
;Zanni,M.
T.
Proc.
Natl.
Acad.
Sci.
U.
S.
A.
2007,104,14197–14202.
(13)Ganim,Z.
;Chung,H.
S.
;Smith,A.
W.
;Deores,L.
P.
;Jones,K.
C.
;Tokmako,A.
Acc.
Chem.
Res.
2008,41,432–441.
(14)Maekawa,H.
;Formaggio,F.
;Toniolo,C.
;Ge,N.
-H.
J.
Am.
Chem.
Soc.
2008,130,6556–6566.
(15)Woys,A.
M.
;Lin,Y.
S.
;Reddy,A.
S.
;Xiong,W.
;dePablo,J.
J.
;Skinner,J.
L.
;Zanni,M.
T.
J.
Am.
Chem.
Soc.
2010,132,2832–2838.
(16)Shen,Y.
R.
Nature1989,337,519–525.
(17)Eisenthal,K.
B.
Chem.
Rev.
1996,96,1343–1360.
(18)Richmond,G.
L.
Chem.
Rev.
2002,102,2693–2724.
(19)Chen,Z.
;Shen,Y.
R.
;Somorjai,G.
A.
Annu.
Rev.
Phys.
Chem.
2002,53,437–465.
(20)Wang,H.
-F.
;Gan,W.
;Lu,R.
;Rao,Y.
;Wu,B.
-H.
Int.
Rev.
Phys.
Chem.
2005,24,191–256.
(21)Shultz,M.
J.
;Schnitzer,C.
;Simonelli,D.
;Baldelli,S.
Int.
Rev.
Phys.
Chem.
2000,19,123–153.
(22)Benderskii,A.
V.
;Henzie,J.
;Basu,S.
;Shang,X.
M.
;Eisenthal,K.
B.
J.
Phys.
Chem.
B2004,108,14017–14024.
(23)Su,X.
C.
;Cremer,P.
S.
;Shen,Y.
R.
;Somorjai,G.
A.
J.
Am.
Chem.
Soc.
1997,119,3994–4000.
(24)Lu,G.
Q.
;Lagutchev,A.
;Dlott,D.
D.
;Wieckowski,A.
Surf.
Sci.
2005,585,3–16.
(25)Liu,J.
;Conboy,J.
C.
J.
Am.
Chem.
Soc.
2004,126,8376–8377.
(26)Haupert,L.
M.
;Simpson,G.
J.
Annu.
Rev.
Phys.
Chem.
2009,60,345–365.
(27)Walter,S.
R.
;Geiger,F.
M.
J.
Phys.
Chem.
Lett.
2009,1,9–15.
(28)Wang,J.
;Chen,X.
Y.
;Clarke,M.
L.
;Chen,Z.
Proc.
Natl.
Acad.
Sci.
U.
S.
A.
2005,102,4978–4983.
(29)Nagahara,T.
;Kisoda,K.
;Harima,H.
;Aida,M.
;Ishibashi,T.
J.
Phys.
Chem.
B2009,113,5098–5103.
(30)Fu,L.
;Ma,G.
;Yan,E.
C.
Y.
J.
Am.
Chem.
Soc.
2010,132,5405–5412.
(31)Lopes,D.
H.
J.
;Meister,A.
;Gohlke,A.
;Hauser,A.
;Blume,A.
;Winter,R.
Biophys.
J.
2007,93,3132–3141.
(32)DeGrado,W.
F.
;Lear,J.
D.
J.
Am.
Chem.
Soc.
1985,107,7684–7689.
(33)Andreev,O.
A.
;Karabadzhak,A.
G.
;Weerakkody,D.
;Andreev,G.
O.
;Engelman,D.
M.
;Reshetnyak,Y.
K.
Proc.
Natl.
Acad.
Sci.
U.
S.
A.
2010,107,4081–4086.
(34)Palczewski,K.
;Kumasaka,T.
;Hori,T.
;Behnke,C.
A.
;Motoshima,H.
;Fox,B.
A.
;LeTrong,I.
;Teller,D.
C.
;Okada,T.
;Stenkamp,R.
E.
;Yamamoto,M.
;Miyano,M.
Science2000,289,739–745.
(35)Mermut,O.
;Phillips,D.
C.
;York,R.
L.
;McCrea,K.
R.
;Ward,R.
S.
;Somorjai,G.
A.
J.
Am.
Chem.
Soc.
2006,128,3598–3607.
(36)Weidner,T.
;Apte,J.
S.
;Gamble,L.
J.
;Castner,D.
G.
Langmuir2009,26,3433–3440.
(37)Korenbrot,J.
I.
;Jones,O.
J.
Membr.
Biol.
1979,46,239–254.
(38)Lavoie,H.
;Desbat,B.
;Vaknin,D.
;Salesse,C.
Biochemistry2002,41,13424–13434.
(39)Westermark,P.
;Engstrom,U.
;Johnson,K.
H.
;Westermark,G.
T.
;Betsholtz,C.
Proc.
Natl.
Acad.
Sci.
U.
S.
A.
1990,87,5036–5040.
(40)Liu,J.
;Liu,M.
Y.
;Nguyen,J.
B.
;Bhagat,A.
;Mooney,V.
;Yan,E.
C.
Y.
J.
Am.
Chem.
Soc.
2009,131,8750–8751.
(41)Ma,G.
;Liu,J.
;Fu,L.
;Yan,E.
C.
Y.
Appl.
Spectrosc.
2009,63,528–537.
(42)Chirgadze,Y.
N.
;Nevskaya,N.
A.
Biopolymers1976,15,627–636.
(43)Reddy,A.
S.
;Wang,L.
;Lin,Y.
-S.
;Ling,Y.
;Chopra,M.
;Zanni,M.
T.
;Skinner,J.
L.
;DePablo,J.
J.
Biophys.
J.
2010,98,443–451.
(44)Shim,S.
H.
;Gupta,R.
;Ling,Y.
L.
;Strasfeld,D.
B.
;Raleigh,D.
P.
;Zanni,M.
T.
Proc.
Natl.
Acad.
Sci.
U.
S.
A.
2009,106,6614–6619.
(45)Luca,S.
;Yau,W.
-M.
;Leapman,R.
;Tycko,R.
Biochemistry2007,46,13505–13522.
(46)Hoppener,J.
W.
M.
;Ahren,B.
;Lips,C.
J.
M.
NewEngl.
J.
Med.
2000,343,411–419.
(47)Hebda,J.
A.
;Miranker,A.
D.
Annu.
Rev.
Biophys.
2009,38,125–152.
(48)Petkova,A.
T.
;Leapman,R.
D.
;Guo,Z.
;Yau,W.
-M.
;Mattson,M.
P.
;Tycko,R.
Science2005,307,262–265.
(49)Perry,J.
M.
;Moad,A.
J.
;Begue,N.
J.
;Wampler,R.
D.
;Simpson,G.
J.
J.
Phys.
Chem.
B2005,109,20009–20026.
(50)Wang,J.
P.
Chem.
Phys.
Lett.
2009,467,375–380.
(51)Belkin,M.
A.
;Shen,Y.
R.
Int.
Rev.
Phys.
Chem.
2005,24,257–299.
(52)Nguyen,K.
T.
;King,J.
T.
;Chen,Z.
J.
Phys.
Chem.
B2010,114,8291–8300.

轻云互联22元/月,美国硅谷、圣何塞CN2GIA云服务器,香港沙田cn2建站vps仅25元/月

轻云互联怎么样?轻云互联,广州轻云网络科技有限公司旗下品牌,2018年5月成立以来,轻云互联以性价比的价格一直为提供个人,中大小型企业/团队云上解决方案。本次轻云互联送上的是美国圣何塞cn2 vps(免费50G集群防御)及香港沙田cn2 vps(免费10G集群防御)促销活动,促销产品均为cn2直连中国大陆线路、采用kvm虚拟技术架构及静态内存。目前,轻云互联推出美国硅谷、圣何塞CN2GIA云服务器...

VirMach(8元/月)KVM VPS,北美、欧洲

VirMach,成立于2014年的美国IDC商家,知名的低价便宜VPS销售商,支持支付宝、微信、PayPal等方式付款购买,主打美国、欧洲暑假中心产品,拥有包括洛杉矶、西雅图、圣何塞、凤凰城在内的11个数据中心可以选择,可以自由搭配1Gbps、2Gbps、10Gbps带宽端口,有Voxility DDoS高防IP可以选择(500Gbps以上的防御能力),并且支持在控制面板付费切换机房和更换IP(带...

ProfitServer$34.56/年,5折限时促销/可选西班牙vps、荷兰vps、德国vps/不限制流量/支持自定义ISO

ProfitServer怎么样?ProfitServer好不好。ProfitServer是一家成立于2003的主机商家,是ITC控股的一个部门,主要经营的产品域名、SSL证书、虚拟主机、VPS和独立服务器,机房有俄罗斯、新加坡、荷兰、美国、保加利亚,VPS采用的是KVM虚拟架构,硬盘采用纯SSD,而且最大的优势是不限制流量,大公司运营,机器比较稳定,数据中心众多。此次ProfitServer正在对...

贝尔金路由器设置为你推荐
桂林飞宇科技股份有限公司V1.2x-router设置路由器是我的上网设置是x怎么弄win7如何关闭445端口如何关闭445端口,禁用smb协议css选择器css有哪些选择器android5.1安卓系统5.1好吗ios6.1.3完美越狱6.1.3怎么完美越狱搜狗拼音输入法4.3搜狗拼音输入法怎样快速输入特殊邮箱号?div居中DIV怎么居中安卓4.4.4Android版本4.4.4应用里怎么还没微信?开关fusioncharts
山东虚拟主机 花生壳域名 买域名 广州服务器租用 双线主机租用 网通vps 免费域名申请 漂亮qq空间 大硬盘 荷兰服务器 hawkhost优惠码 siteground nerd gateone 主机屋免费空间 创宇云 linux空间 卡巴斯基官方免费版 softbank邮箱 已备案删除域名 更多