功能商务邮箱

商务邮箱  时间:2021-05-06  阅读:()
StatisticsandApplication统计学与应用,2020,9(1),90-100PublishedOnlineFebruary2020inHans.
http://www.
hanspub.
org/journal/sahttps://doi.
org/10.
12677/sa.
2020.
91011文章引用:高思琴,李佳豪,关蓉,王会娟.
在线短租App消费端功能需求的Kano模型分析[J].
统计学与应用,2020,9(1):90-100.
DOI:10.
12677/sa.
2020.
91011KanoModelAnalysisofConsumerFunctionRequirementofOnlineShort-TermRentApp—ACaseStudyofAirbnbSiqinGao1,JiahaoLi2,RongGuan1,HuijuanWang11SchoolofStatisticsandMathematics,CenterUniversityofFinanceandEconomics,Beijing2SchoolofManagementScienceandEngineering,CenterUniversityofFinanceandEconomics,BeijingReceived:Jan.
30th,2020;accepted:Feb.
13th,2020;published:Feb.
20th,2020AbstractDuetothenewerathatsharingeconomyandtheInternethaveopened,onlineshort-termrentalhasrecentlyflourishedwithitsdiversifiedaccommodationservicesandinnovativebusinessmodels.
Howtodefinetheuser'sfunctionalrequirementsandsatisfypersonalizedconsumptionisoneofthekeyelementsofonlineshort-termrentaldevelopment.
Specifically,wetakethetypicalrepresentativeairbnbofonlineshort-termrentasanexample.
Fromtheperspectiveofconsumer,theexistingfunctionsandrecommendedfunctionsoftheApparedeterminedthroughliteratureresearchandinterviews.
AttributerecognitionisidentifiedbyKanomodel.
OnthebasisofBet-ter-Worseclassification,thesensitivityisintroducedandtheimprovedelementsarescreenedandsorted.
Theresultsshowthatamongthe21existingand4recommendedfunctions,mostoftheattractivefunctionsareconcentratedontheinterfaceandhousingscreening.
Inaddition,10improvedfactorsaresortedthroughsensitivity,whichprovidesareferenceforthefunctionopti-mizationofairbnbandotheronlineshort-termrentalplatforms.
KeywordsFunctionalRequirements,KanoModel,OnlineShort-TermRent,Airbnb在线短租App消费端功能需求的Kano模型分析——以Airbnb为例高思琴1,李佳豪2,关蓉1,王会娟11中央财经大学统计与数学学院,北京2中央财经大学管理科学与工程学院,北京高思琴等DOI:10.
12677/sa.
2020.
9101191统计学与应用收稿日期:2020年1月30日;录用日期:2020年2月13日;发布日期:2020年2月20日摘要伴随着共享经济与互联网的发展,在线短租以其多元化的住宿服务和创新性的商业模式备受关注.
明确消费端用户的个性化功能需求、满足个性化消费是在线短租发展的关键要素之一.
本文以在线短租的典型代表airbnb为例,从消费端功能出发,通过文献研究及访谈确定其App的已有功能与推荐功能,引入Kano模型进行属性识别,并在Better-Worse分类的基础上引入敏感度并筛选改进要素.
结果显示,在21个已有功能中和4个推荐功能中,魅力因子居多,并主要集中在界面与房源筛选上;同时通过敏感度识别出10个改进要素.
本文通过对功能的因子识别与分析,以期为airbnb及其他在线短租平台的App功能优化提供参考.
关键词功能需求,Kano模型,在线短租,AirbnbCopyright2020byauthor(s)andHansPublishersInc.
ThisworkislicensedundertheCreativeCommonsAttributionInternationalLicense(CCBY).
http://creativecommons.
org/licenses/by/4.
0/1.
引言共享经济是通过将闲置资源的让渡与整合,搭建双边市场,形成市场之间的互补与替代,在其中最备受瞩目的莫过于在线短租[1].
与传统短租相比,在线短租最大的特点在于将房东与房客集中在同一平台中,通过互联网对双方信息进行管理与匹配提高闲置产品的利用率以及降低交易匹配成本.
一般而言,在线短租的主要消费渠道是App.
一方面,与房东相比,共享平台的房客对该类App有更高的个性化需求,除基本的资源属性外,对于附加功能的要求更多[2].
另一方面,在线短租的品牌经营很大程度上取决于App的运营情况,尤其是其消费端的运营情况.
因此,如何识别消费端用户对各项App功能的认知情况、满足消费群体的个性化需求,对于在线短租平台的发展具有重要意义.
本文以在线短租的典型代表airbnb为例,利用Kano模型分析用户的功能需求并探究各项功能的重要度,以期在提高用户满意度和忠诚度方面提供建议.
2.
文献回顾2.
1.
在线短租的研究现状学术界对于在线短租的研究主要关注其安全监管、运营模式和消费者选择等方面.
在安全与监管方面,李立威[3]对airbnb和小猪短租进行案例分析将共享经济的信任机制分为平台、人及产品的信任,并对其信任机制进行了进一步的分析;钱瑾[4]以在线短租为例,对共享经济的监管思路进行了一个探讨,认为现今应加强自律监管的作用与公信平台建设;凌超和张赞[5]则通过对在线短租的发展现状对当今共享经济在中国的落地生根提出相应的建议,认为安全及诚信水平是在线短租行业发展的重点及难点.
在运营模式方面,宋琳[6]基于现今诚信机制不完善的情况下,对C2C、B2C模式下在线短租运营进行博弈分析,并探讨了其未来发展模式;丁茜[7]以旅游行业为视角,对比分析国内外多家短租平台,对国内短OpenAccess高思琴等DOI:10.
12677/sa.
2020.
9101192统计学与应用租平台运营的各细化环节提出建议;董诗瑶[8]在交易成本理论的基础上从其配置资源的能力、技术与制度的创新等方面提取研究参数,探究国内外短租发展差异.
在消费者选择方面,Ert等[9]以airbnb为例探讨了房东照片对客户信任度及决策的影响,认为用户对照片的信任度越高,选择该房源的概率越大;Guttentag[10]通过对在airbnb住宿的800多名游客进行在线调查,认为消费者选择短租的主要原因集中在互动性、新颖性、类家性、共享精神以及本地的体验真实性上,同时也对用户进行分类以此细分市场.
此外,还有部分学者指出价格、住宿设施及居住地所在位置[10]、隐私与住宿的安全性[11]也是影响消费者选择的关键.
尽管国内外对在线短租的研究逐渐成熟,但鲜少有文献对于在线短租App的功能需求展开分析.
在线短租App在一定程度上兼顾了旅游App的路线推荐功能以及酒店App的住宿服务功能.
潘澜等[12]指出感知有用性、信任及满意度是影响智慧旅游App用户持续性意愿的重要因素.
同时,王晓燕和丁鑫[13]在对酒店等住宿行业的App研究中发现,在线评论是用户选择参考时的重要决策信息.
因此,本文在研究在线短租App需求时,也将结合酒店及旅游App的相关需求,并将信任、在线评论等要素纳入功能需求的分析中.
2.
2.
Kano模型及其应用研究Kano模型是NoriakiKano及其合作者受赫茨伯格双因素理论启发而提出,即通过将用户满意度与产品属性引入模型对产品属性进行分类,并将产品属性分为必备因子、期望因子、魅力因子、无差异因子与反向因子,以此找出提高用户满意度的切入点(Kano,1984).
具体来说,必备因子(M)是用户对于产品或服务要素的基本的功能需求;期望因子(O)是用户对产品的满意状况与需求满足程度呈比例关系的功能需求;魅力因子(A)于用户而言,不会过分期望,但一旦满足,满意度会有较大提高的功能需求;无差异因子(I)是满足与否对用户满意情况没有影响的功能需求;反向因子(R)是一旦满足用户反而不满的功能需求.
通过正反两方面的结构型调查问卷收集上述五类需求的信息,分类汇总调查结果后,可建立Kano模型[14].
Kano模型在学术界大多被用于评估平台系统的客户功能需求,近年来也被广泛应用于分析App及其服务上.
涂海丽和唐晓波[15]利用Kano模型对微信的功能需求进行分类,进而挖掘用户的隐性需求.
范哲和刘莉[16]在研究"知乎"的搜索功能时,通过Kano模型归纳其质量属性.
范成文等[17]基于魅力质量理论及Kano模型,对老年人体育服务需求做出了精准识别.
蔡寿松和顾晓敏[18]用Kano模型分析网购的商业模式需求.
2.
3.
小结已有文献从在线短租的发展特点、法律监管、信任机制及消费选择等方面,对在线短租的发展现状与瓶颈进行了多维度的分析.
但是,较少有研究从微观角度对用户、尤其是消费端用户的需求心理及功能设计方面进行探讨.
用户是共享经济的关键环节,因而在线短租品牌的App设计能否切实满足用户的心理需求,对其运营和发展具有重要的现实意义.
本文将以airbnb为例,重点关注消费端用户的需求心理,通过功能分析,为平台的改进优化提供建议.
3.
功能获取及划分在文献回顾的过程中,本文发现:用户对于在线短租平台的需求及影响其住宿选择的要素主要集中在房源所在位置、操作便捷性、住宿设施、价格及安全性等方面.
相对应的,本文将airbnbApp的已有功能进划分为:房源筛选、界面、用户体验、安全性四个方面.
其中,房源筛选中的交通站点、中心距高思琴等DOI:10.
12677/sa.
2020.
9101193统计学与应用离及配套设施等与操作便捷、住宿设施等相对应;安全性方面对应第三平台处理收付款,以及airbnb新推出的芝麻信用绑定等功能.
为了进一步挖掘用户对于各方便功能的需求,本文对9位使用年限不同的airbnb用户展开访谈,访谈内容包括短租出行体验、常用功能类型以及使用过程体验和功能建议,并根据最终的文献研究及访谈结果识别出21项已有功能和受访者建议添加的4项功能(以下称为"推荐功能"),如表1所示.
Table1.
Functionclassificationanddescription表1.
功能分类及说明功能分类具体功能功能说明界面1.
显示搜索建议在搜索框中根据搜索历史及热门景点提供搜索建议2.
定期发布优惠消息在界面中以链接、图片、文字等方式介绍优惠信息3.
个性化推荐房源根据以往的搜索历史及收藏房源在初始界面中展示高性价比、高分好评等房源4.
推荐热门景点通过对热门景点的推荐展示相应房源用户体验5.
出行体验分类分享用户对旅行中的民宿、美食、景点用图片及文字等方式进行分享6.
好评排序*根据以往用户评分对房源进行排序7.
求租*当现有房源无法满足用户需求时,用户可发布个人需求信息,满足条件的房东可及时联系8.
绑定商务邮箱接收消息将商务邮箱与App绑定,同时接收房东与工作消息安全9.
绑定芝麻信用与芝麻信用绑定,评价房东信用等级10.
第三方平台处理收付款第三方平台处理双方收付款,款项不直接汇入房东11.
设置安全验证(更换设备时)在相应网站与App或不常用设备切换登入时,设置安全验证房源筛选12.
日期根据住房日期进行房源筛选13.
建议入住人数根据入住人数进行房源筛选14.
闪订根据是否可以无需房东确认,快速预订的房源进行筛选15是否合租根据是否可以与其他住户或房东同住的房源进行筛选16.
卧室数量根据卧室数量进行筛选17.
床铺数量根据床铺数量进行筛选18.
卫生间数量根据卫生间数量进行筛选19.
旅程类型根据商务出行、家庭出行等主题出行方式进行筛选20.
建筑类型根据建筑类型如民宅、别墅、度假木屋等进行筛选21.
房屋守则根据是否允许吸烟、携带宠物等房屋守则进行筛选22.
交通站点*根据房源周边交通站点分布23.
无障碍需求根据门廊、电梯、扶手等无障碍需求进行筛选24.
便利设施根据洗衣机、空调、熨斗等便利设施进行筛选25.
与中心城区距离筛选*根据中心城区的距离范围进行筛选注:*表示推荐功能.
4.
问卷设计及数据搜集本文的问卷分成两部分.
第一部分是基本信息,包括受访人员的性别、年龄阶段以及职业类型等,以了解用户的基本信息情况.
第二部分是Kano问卷,对表1所示的25项功能进行正反两个方向的提问,高思琴等DOI:10.
12677/sa.
2020.
9101194统计学与应用以识别各项功能的需求情况.
具体来说,Kano问卷的问题分为"我很喜欢""理应如此""无所谓""勉强接受"和"我不喜欢"五项,对同一项功能通过两方面的回答情况进行质量要素划分,以了解用户的对该功能的感受.
具体如表2所示.
Table2.
Kanomodelqualityfactorclassification表2.
Kano模型质量要素分类正向问题反向问题我很喜欢理应如此无所谓勉强接受我不喜欢我很喜欢QAAAO理应如此RIIIM无所谓RIIIM勉强接受RIIIM我不喜欢RRRRQ注:M—必备因子,O—期望因子,A—魅力因子,I—无差异因子,Q—可疑因子,R—反向因子.
本次调查问卷要求填写人员必须使用过airbnb,并且对在线短租平台有一定的了解.
因此,通过微信、QQ对airbnb用户交流群、交流社区等进行有偿问卷扩散.
本次调查共回收499份问卷,剔除填写时间过短及回答可疑的问卷,最终回收300份有效问卷,回收率为60.
1%.
本次调查样本中,男性占比为45%,女性为55%;年龄分布以18~25岁为主,(55%)与26~35岁用户(32%)为主;职业类型中公司职员占比最高(41%),其次是学生(38%).
根据《2019年中国在线民宿预订行业发展研究报告》[19],airbnb的使用人群主要以女性为主,并且集中在公司职员与学生群体上,两者合计占比近八成,并且用户偏年轻化,年龄以80~90年代用户为主.
综上,本次调查的用户基本特征与调查报告的分布相似性较大,说明调查样本具有较高的典型性.
5.
数据分析5.
1.
问卷信效度检验通过SPSS对问卷的正反两向及总体问卷进行信效度检验,得到其结果如表3.
可以看出,本次调查结果的信效度较好,较好地满足分析需求.
Table3.
Reliabilityandvaliditytest表3.
问卷信效度检验Cronbach'sαKMO值Bartlett球形检验(sig)累计解释变量(%)KANO问卷0.
7780.
9050.
000061.
403正向问卷0.
8860.
9080.
000051.
586反向问卷0.
9420.
9530.
000050.
5055.
2.
Kano模型分析在对所有问卷进行筛选及信效度检验后,根据表2的要素分类规则对样本进行频数统计,得出每个功能的要素分类,其结果如表4所示.
在表4中,反向因子与可疑因子相比于其他属性的占比过小.
这很有可能是由于用户没有较好的理解题意或者填写错误等,故而排除了其为反向或可疑因子的可能[20].
因此,不宜直接按照表4来识别高思琴等DOI:10.
12677/sa.
2020.
9101195统计学与应用功能属性,需要做进一步的筛选.
具体而言,根据表4所得的频数统计,按照式(1)和(2)计算每个功能的Better-Worse系数:AOBetterAOMI+=+++#(1)OMWorseAOMI+=+++#(2)为取值方便,本文在以下分析过程中Worse值均取绝对值,再利用各功能的Better、Worse系数进行属性识别:两系数值都在0.
5以上,为期望因子;两系数值都小于0.
5的,为无差异因子;Better值大于0.
5,Worse值小于0.
5,为魅力因子;Better值小于0.
5,Worse值大于0.
5,为必要因子.
表5展示了依此准则的分类结果.
Table4.
Statisticsofqualityelementclassificationfrequencyforallfunctions表4.
所有功能的质量要素分类频数统计功能序号具体功能AROMIQ11.
显示搜索建议9219813967222.
定期发布优惠消息9926682870933.
个性化推荐房源8325763477544.
推荐热门景点8118832690255.
出行体验分类分享8525922672066.
好评排序*6717904181477.
求租*6523763895388.
绑定商务邮箱接收消息54465034112499.
绑定芝麻信用6444611811211010.
第三方平台处理收付款512696448121111.
设置安全验证(更换设备时)1081743765151212.
日期861985268131313.
建议入住人数632171558821414.
闪订732476289451515.
是否合租742475368921616.
卧室数量603087447541717.
床铺数量5123824010311818.
卫生间数量5514713711851919.
旅程类型6421101357812020.
建筑类型661984369502121.
房屋守则4417833511832222.
交通站点*642699416732323.
无障碍需求621576439952424.
便利设施5426101338062525.
与中心城区距离筛选*96216568491注:*为推荐功能.
高思琴等DOI:10.
12677/sa.
2020.
9101196统计学与应用Table5.
Qualityfactorclassificationresultsofexistingfunctions表5.
已有功能的质量要素分类结果功能序号Better系数值Worse系数值类别10.
6200.
430A20.
6300.
362A30.
5890.
407A40.
5860.
389A50.
6440.
429A80.
4160.
336I90.
4900.
310I100.
5400.
515O120.
6150.
399A130.
4840.
455I140.
5500.
384A150.
5440.
405A160.
5530.
492A170.
4820.
442I180.
4480.
384I190.
5940.
489A200.
5340.
427A210.
4540.
421I230.
4930.
425I240.
5780.
500O注:M—必备因子,O—期望因子,A—魅力因子,I—无差异因子,Q—可疑因子.
表5仅展示了已有功能的分类结果.
由于大部分airbnb用户对推荐功能缺乏感知体验,直接根据Better-Worse系数对其进行分类将存在偏差.
关于推荐功能的分类,本文采用范哲和刘莉(2017)提出的方法,只对用户所选的正负两方面的选项进行判别,具体结果如表6所示.
Table6.
Qualityfactorclassificationresultsforrecommendedfunctions表6.
推荐功能的质量要素分类结果功能序号AROMIQ属性623.
33%5.
67%30.
00%13.
67%27.
00%1.
33%O721.
67%7.
67%25.
33%12.
67%31.
67%1.
00%I2221.
33%8.
67%33.
00%13.
67%22.
33%1.
00%O2532.
00%7.
00%21.
67%22.
67%16.
33%0.
33%A由表5和表6可以看出,在21个已有功能要素中,有11个魅力因子、2个期望因子、1个必备因素和7个无差异因子;而在4个推荐功能中,有1个魅力因子、2个期望因子和1个无差异因子.
具体来说,四类因子的功能分布如下:魅力因子包括:显示搜索建议、发布优惠信息、个性化推荐房源和景点、体验分享、以及房源筛选高思琴等DOI:10.
12677/sa.
2020.
9101197统计学与应用中的日期、闪订、是否合租、卧室数量、旅程类型、建筑类型和与推荐的中心城区距离筛选功能.
该部分功能表现不充分或者未改进,不会引起用户的不满;但表现越好,用户的满意度越高,具有较为明显的"惊喜"的特性.
期望因子包括:第三方平台处理收付款、便利设施筛选和推荐功能中的好评排序及交通站点筛选.
该部分功能的表现好坏与用户体验的满意度呈正比关系,改善程度越高,用户满意度越高.
因而,期望因子是提高用户满意度的重点改进方向.
必备因子为设置安全验证,此功能也是App的必备要素.
无差异因素是指对于用户而言其改善与否对于用户的满意度并没有太大的影响,包括推荐功能的求租、绑定商务邮箱、芝麻信用、筛选中的建议入住人数、床铺数量、卫生间数量、房屋守则与无障碍需求.
5.
3.
改进要素筛选分析为了进一步对识别筛选改进要素,本文采用赵平[21]及朱红灿等[20]提出的方法.
首先,在以Better系数和Worse系数确立的直角坐标系上,绘制本文关注的25项功能(如图1所示);然后,以坐标原点为圆心、以0.
707(即圆点到中心点的距离)为半径绘制1/4圆弧,将其称为要素选择线.
所谓灵敏度S,定义为要素选择线右侧的功能点到线的距离.
在要素选择线右侧的功能是需要改进的,而且S值越大,说明对应功能越需要重点改进;在要素选择线左侧的功能可以暂时不予以考虑.
同时,改进筛选是为了量化已有功能的改进优先度,因此,推荐功能并不考虑其中,具体改进要素筛选情况如图1.
Figure1.
Improvedfeaturerecognitionscatterplot图1.
改进要素识别散点图可以看出,大部分的A、M、O类功能均位于要素选择线的右侧,即为需要改进的功能.
将它们按S值做降序排列,结果如表7所示.
高思琴等DOI:10.
12677/sa.
2020.
9101198统计学与应用Table7.
Improvedfunctionalordering表7.
改进功能排序功能序号具体功能类别灵敏度(S)排序55.
出行体验分类分享A0.
06611919.
旅程类型A0.
06222424.
便利设施O0.
057311.
显示搜索建议A0.
04841010.
第三方平台处理收付款O0.
03951616.
卧室数量A0.
03361111.
设置安全验证(更换设备时)M0.
03371212.
日期A0.
026822.
定期发布优惠消息A0.
020933.
个性化推荐房源A0.
00910注:M—必备因子,O—期望因子,A—魅力因子,I—无差异因子,Q—可疑因子,R—反向因子.
在改进要素中,界面方面的搜索建议、优惠信息以及个性化房源推荐,用户体验方面的出行体验分享,安全方面的收付款和安全验证以及房源筛选方面的日期、卧室数量、旅程类型和便利设施都存在较大的改进空间.
其中,出行体验分享、旅程类型与便利设施筛选排名较为靠前,需改善其不足.
6.
结论与建议6.
1.
结论作为共享经济的典型代表,在线短租因其个性化选择、便捷性操作和低廉的市场准入成本等特点获得了较高的市场认可.
本文以在线短租行业的典型代表airbnb为例,通过文献研究、访谈、问卷发放及数据分析,对其App的现有功能进行了属性分类及用户需求探索,同时量化识别出改进功能和推荐功能,最终得出以下结论:在界面方面,所有的功能都属于魅力因子.
显示搜索建议、个性化推荐房源、和热门景点这些功能可以很好的帮助用户在出行目的地选择和房源选择上提高搜索效率,更为快速地找到适合个人需求及习惯的房源.
价格作为影响短租选择的重要因素,优惠信息的合理发布也无疑会使得用户满意度大大提高.
同时,搜索建议、优惠信息和房源推荐三项功能是需要改进的.
通过访谈也了解得知,airbnb的推荐功能缺少一定的针对性.
因此,个性化推荐和优惠信息是今后改进的重点.
在用户体验方面,出行体验分类分享是魅力因子,它以照片、文字等形式分享各地旅游攻略,可以很好地提升用户出行体验.
同时,出行体验分享也应注重实用性、多元性才能更好的提升用户满意度.
推荐功能的好评排序,在分类过程中属于期望因子,该因子的改进程度与客户满意度成正比关系.
已有研究表明,在线评论对用户的选择有着较大的影响,好评排序在一定程度上可以便于用户在较短的时间内对高口碑房源进行筛选.
这也符合国内用户在各大电商平台的使用习惯.
求租与绑定商务邮箱两项功能属于无差异因子,绑定商务邮箱作为无差异因子,很有可能是用户对于该项功能的熟悉度不高;对商务信息的推送需求不高很可能是因为市场上已有较为成熟的信息推送软件,使其成为可有可无的功能.
在安全方面,安全验证为必备功能.
当用户在使用不同设备及更换登陆方式时,需要进行相应的验证以保证账户安全,该项功能无疑能在很大程度上确保用户隐私及信息安全性.
但是,验证也存在一些不足之处,多方式的登陆也会给用户造成一定的困扰.
第三方平台收款为期望因子,其安全性对于用户高思琴等DOI:10.
12677/sa.
2020.
9101199统计学与应用的付款、退款等有着直接的影响.
绑定芝麻信用为新推出的功能,该功能归属于无差异功能的原因很有可能是用户接受度和熟悉度不高.
在房源筛选方面,涉及筛选房源可容纳人数的功能有建议入住人数、卧室数量、床铺数量和卫生间数量,但只有卧室数量对客户的满意度影响较大,其他几项都属于无差异因子.
房屋守则与无障碍需求的筛选也是无差异因子,说明用户在房源筛选时,对其关注度并不大.
日期筛选、闪订、合租旅程类型、建筑类型及推荐的中心距离筛选都为魅力因子,对提升用户满意度有着重要影响.
便利设施的筛选则是期望因子,改进此类功能对满意度有着显著影响.
同时,旅程类型与便利设施的筛选也是急需改进的要素.
结合上述分析可知,用户对airbnb的App个性化推荐、高效率筛选及安全性保障功能表现出强烈的需求,而对于一些新增功能关注度并不高.
6.
2.
建议通过前文的分析,魅力因子与期望因子是提高用户满意度的重点方向,对该部分功能的开发、更新与完善可以有效满足用户诉求.
因此,在线短租软件应从个性化、效率、安全三方面展开考虑.
首先,从个性化角度来说,airbnb的个性化推荐功能都属于魅力因子或期望因子,同时也是敏感度较高的需改进功能.
因此,改进推荐算法的同时需兼顾用户出行特征等行为特点,让推荐更具有针对性是其发展重点.
其次,在效率方面,主要针对的是房源筛选方面,需对用户重点关注的App功能进行有效的开发和维护,如在线评论、旅程主题、房源所在位置等方面,而推荐功能如中心距离筛选,也需酌情考虑添加.
最后,安全性方面一直是在线短租发展的重点,于App而言,退款效率、登陆验证等方面对安全维护十分重要.
尽管芝麻信用在现今归类上属于无差异因子,但据访谈反映,大部分用户对于该项功能鲜少使用,因此部分无差异因子的推广也是今后发展的一个方向.
在线短租App商业模式的新颖性与"互联网+"推动了其规模的壮大.
但是,短时间的发展也使得用户粘性存在着一定的问题.
因此,提高用户满意度,根据功能分类及改进要素的排序有针对性的改进,能在很大程度上有效提升用户满意度与用户忠诚度.
基金项目中央财经大学科研创新团队支持计划资助(011650317002);中央高校基本科研业务费专项资金资助(QL18009);教育部人文社科青年项目(18YJC790162).
参考文献[1]刘奕,夏杰长.
共享经济理论与政策研究动态[J].
经济学动态,2016(4):116-125.
[2]王春英,陈宏民.
共享经济背景下共享平台与传统的专业平台之间的差异分析[J].
管理现代化,2019,39(2):48-50.
[3]李立威.
分享经济中多层信任的构建机制研究——基于Airbnb和小猪短租的案例分析[J].
电子政务,2019(2):96-102.
[4]钱瑾.
"分享经济"的监管思路——以在线短租为视角[J].
金融法苑,2016(1):121-136.
[5]凌超,张赞.
"分享经济"在中国的发展路径研究——以在线短租为例[J].
现代管理科学,2014(10):36-38.
[6]宋琳.
不同运营模式下在线短租经济的博弈行为分析[J].
东岳论丛,2018,39(2):96-104.
[7]丁茜.
房屋在线短租企业商业模式研究[D]:[硕士学位论文].
北京:北京交通大学,2015.
[8]董诗瑶.
基于交易成本理论的共享经济商业模式研究[D]:[硕士学位论文].
武汉:华中师范大学,2017.
[9]Ert,E.
,Fleischer,A.
andMagen,N.
(2016)TrustandReputationintheSharingEconomy:TheRoleofPersonalPho-tosinAirbnb.
TourismManagement,55,62-73.
https://doi.
org/10.
1016/j.
tourman.
2016.
01.
013高思琴等DOI:10.
12677/sa.
2020.
91011100统计学与应用[10]Guttentag,D.
(2015)Airbnb:DisruptiveInnovationandtheRiseofanInformalTourismAccommodationSector.
CurrentIssuesinTourism,18,1192-1217.
https://doi.
org/10.
1080/13683500.
2013.
827159[11]Lutz,C.
,Hoffmann,C.
P.
,Bucher,E.
,etal.
(2017)TheRoleofPrivacyConcernsintheSharingEconomy.
Informa-tion,Communication&Society,21,1472-1492.
https://doi.
org/10.
1080/1369118X.
2017.
1339726[12]潘澜,林璧属,方敏,陈梅.
智慧旅游背景下旅游APP的持续性使用意愿研究[J].
旅游学刊,2016,31(11):65-73.
[13]王晓燕,丁鑫.
酒店预订类APP评论界面优化及顾客关注焦点研究[J].
鄂州大学学报,2018,25(3):43-44+50.
[14]Kano,N.
(1984)AttractiveQualityandMust-BeQuality.
Hinshitsu(Quality,TheJournalofJapaneseSocietyforQualityControl),14,39-48.
[15]涂海丽,唐晓波.
微信功能需求的KANO模型分析[J].
情报杂志,2015,34(5):174-179.
[16]范哲,刘莉.
基于KANO模型的社会化搜索软件功能需求调查与分析——以"知乎"为例[J].
图书馆论坛,2017,37(11):113-120.
[17]范成文,刘晴,金育强,黄晶.
基于魅力质量理论及Kano模型的老年人体育服务需求层次研究[J/OL].
成都体育学院学报,2019(2):55-61.
[18]蔡寿松,顾晓敏.
基于KANO模型的网络购物商业模式满意度测评[J].
统计与决策,2015(18):95-97.
[19]Trustdata.
2019年中国在线民宿预订行业发展研究报告[EB/OL].
http://www.
199it.
com/archives/863989.
html.
[20]朱红灿,李建,胡新,肖诗依.
感知整合和感知过载对公众政务新媒体持续使用意愿的影响研究[J].
现代情报,2019,39(11):137-145.
[21]赵平.
中国顾客满意指数指南[M].
北京:中国标准出版社,2003.

艾云年付125元圣何塞GTT,洛杉矶vps年付85元

艾云怎么样?艾云是一家去年年底成立的国人主机商家,商家主要销售基于KVM虚拟架构的VPS服务,机房目前有美国洛杉矶、圣何塞和英国伦敦,目前商家推出了一些年付特价套餐,性价比非常高,洛杉矶套餐低至85元每年,给500M带宽,可解奈飞,另外圣何塞也有特价机器;1核/1G/20G SSD/3T/2.5Gbps,有需要的朋友以入手。点击进入:艾云官方网站艾云vps促销套餐:KVM虚拟架构,自带20G的防御...

棉花云1折起(49元), 国内BGP 美国 香港 日本

棉花云官网棉花云隶属于江西乐网科技有限公司,前身是2014年就运营的2014IDC,专注海外线路已有7年有余,是国内较早从事海外专线的互联网基础服务提供商。公司专注为用户提供低价高性能云计算产品,致力于云计算应用的易用性开发,并引导云计算在国内普及。目前公司研发以及运营云服务基础设施服务平台(IaaS),面向全球客户提供基于云计算的IT解决方案与客户服务(SaaS),拥有丰富的国内BGP、双线高防...

百纵科技:美国独立服务器租用/高配置;E52670/32G内存/512G SSD/4IP/50M带宽,999元/月

百纵科技怎么样?百纵科技国人商家,ISP ICP 电信增值许可证的正规公司,近期上线美国C3机房洛杉矶独立服务器,大带宽/高配置多ip站群服务器。百纵科技拥有专业技术售后团队,机器支持自动化,自助安装系统 重启,开机交付时间 30分钟内交付!美国洛杉矶高防服务器配置特点: 硬件配置高 线路稳定 洛杉矶C3机房等级T4 平价销售,支持免费测试,美国独服适合做站,满意付款。点击进入:百纵科技官方网站地...

商务邮箱为你推荐
湖北省网易yeah操作http支持ipadphpwindPHPWind 是什么?怎么用?在线代理怎么样设置代理,让别人看我的IP是别的地方,不是我真实的IP?搜狗360360影视大全怎样免费看大片googlepr值如何提高网站的Google页面等级PR值?申请支付宝账户怎样申请支付宝账户?要填写什么信息?台北市cuteftp结点cuteftp
鲁诺vps 如何注册网站域名 如何查询域名备案号 中国域名网 2019年感恩节 t牌 国外php空间 世界测速 爱奇艺vip免费试用7天 服务器干什么用的 服务器监测 电信网络测速器 服务器论坛 美国迈阿密 稳定空间 江苏徐州移动 腾讯网盘 第八届中美互联网论坛 标准机柜 cloudflare 更多