点阵.net空间
.net空间 时间:2021-05-05 阅读:(
)
1994-2009ChinaAcademicJournalElectronicPublishingHouse.
Allrightsreserved.
http://www.
cnki.
net第24卷第4期大学化学2009年8月自学之友晶体学14种空间点阵型式的对称性分析与导出齐兴义(北京航空航天大学化学与环境学院北京100191)摘要依据7个晶系的特征对称元素和正当点阵单位的划分规则,分析了各晶系空间点阵型式的生成过程,从而确定晶体学14种空间点阵型式(简立方(cP)、体心立方(cI)、面心立方(cF)、简六方(hP)、简四方(tP)、体心四方(tI)、R心六方(hR)、简正交(oP)、C心正交(oC)、体心正交(oI)、面心正交(oF)、简单斜(mP)、C心单斜(mC)和简三斜(aP))是合理的逻辑演绎结果.
晶体是由微观粒子(原子、离子或分子)在三维空间周期性地重复排列而形成的固体物质,与晶体结构周期性对应的一个重要数学概念为点阵.
依据特征对称元素,晶体分为7个晶系(立方、六方、四方、三方、正交、单斜和三斜),依据特征对称元素和正当点阵单位的划分规则,晶体的点阵分为14种空间点阵型式(简立方(cP)、体心立方(cI)、面心立方(cF)、简六方(hP)、简四方(tP)、体心四方(tI)、R心六方(hR)、简正交(oP)、C心正交(oC)、体心正交(oI)、面心正交(oF)、简单斜(mP)、C心单斜(mC)和简三斜(aP)).
法国科学家Bravias于1866年推导出上述14种空间点阵型式,故14种空间点阵型式又称为Bravias点阵型式.
然而,14种空间点阵型式的严格数学推导过程繁杂冗长,致使国内外许多有关晶体学、固体化学和结构化学的教材只是列举14种空间点阵型式,而对其来龙去脉或是只做部分说明,或无任何解释[125].
正当点阵单位的划分规则共有4条,分别是:①选择最高轴次的对称轴方向为晶轴矢量(正当点阵单位的棱边矢量)方向;②正当点阵单位应能反映点阵的点对称性;③尽可能使晶轴矢量相互交成直角;④在满足以上3个规则的前题下,正当点阵单位的平行六面体单元所含的点阵点应为最少或平行六面体单元的体积为最小.
本文以7个晶系的特征对称元素和正当点阵单位的划分规则为逻辑分析的基础,全面阐述各晶系的合理空间点阵型式.
作为教学总结,作者希望本文对国内同仁的相关化学教学能有启发与帮助.
1立方晶系立方晶系的特征对称元素为4*3,空间点阵型式有简立方(cP)、体心立方(cI)和面心立方(cF),所属点群为Oh.
以cP为例,4*3在三维空间的配置如图1所示.
由图1可见,4*3分别贯穿cP的顶角点阵点,如图1所示的特征对称元素配置同样适用于cI和cF.
与正交晶系相比,立方晶系无C心格子,原因是立方晶系的4*3所产生的特征对称性不允许出现C心立方,即立方晶系的特征对称性不允许在cP的上下两个底的几何中心再各加951994-2009ChinaAcademicJournalElectronicPublishingHouse.
Allrightsreserved.
http://www.
cnki.
net图1立方晶系的cP和4*3上一个点阵点.
需指出的是若加C心于cP,得到的无限点集合———"C心立方(cC)"亦为一点阵.
如图2所示,"cC"的特征对称元素不是4*3,而是1*4,所属点群为D4h.
显然,在4对称性不降低的条件下,依据正当点阵单位的划分规则④,可将"cC"(含2个点阵点)经图2所示的划分转变成简四方(tP(含1个点阵点)).
"cC"和"C心四方(tC)"有相同的对称性,"tC"的划分见本文第3部分(四方晶系).
图2"C心立方(cC)"和简四方(tP)2六方晶系六方晶系的特征对称元素为1*6,空间点阵型式只有简六方(hP),所属点群为D6h.
6和hP在三维空间的配置如图3所示.
因受6特征对称性的限制,六方晶系无任何加心(C心、I心和F心)空间点阵型式.
以加C心为例,与cP加C心相同,hP经加C心得到的"C心六方(hC)"虽为一点阵,但已无6.
如图4所示,因C心的加入,"hC"沿晶轴矢量c方向的对称轴是2,所属点群为D2h,划分出的正当点阵单位为简正交(oP).
作为一般规律,可以证明由加C心、I心或F心于7个晶系的素格子而得到的无限点集合仍为一点阵,经加A2B心、A2C心或B2C得到的无限点集合则不是点阵(A2B心格子的加心方式是在素格子的平行六面体的前后面和左右面的几何中心同时加点,而不在上下两个底的几何中心加点的一种加点方式).
图3六方晶系的hP和1*6因此,加I心和F心于hP而得到的无限点集合"体心六方(hI)"和"F心立方(hF)"均为061994-2009ChinaAcademicJournalElectronicPublishingHouse.
Allrightsreserved.
http://www.
cnki.
net图4"C心六方(hC)"和简正交(oP)点阵,所属点群为D2h(图5和图6).
经图5和图6所示的划分,"hI"和"hF"分别转变成面心正交(oF)和体心正交(oI).
图5"体心六方(hI)"和面心正交(oF)图6"面心六方(hF)"和体心正交(oI)3四方晶系四方晶系的特征对称元素为1*4,空间点阵型式有简四方(tP)和体心四方(tI),所属点群为D4h.
4和tP的几何关系如图7所示.
与cP和hP加C心不同,四方晶系的4特征对称性允许加C心或F心于tP,加心后的点阵所属点群仍为D4h.
众所周知,四方晶系的合理空间点阵型式无"C心四方(tC)"和"面心四方(tF)".
如图8和图9所示,"tC"和"tF"所含点阵点数分别为2和4.
在4对称性不变的条件下,依据正当点阵单位划分规则④,可将"tC"和"tF"分别划分为tP(含1个点阵点)和tI(含2个点阵点).
4三方晶系三方晶系的特征对称元素虽为1*3,但空间点阵型式却有简六方(hP)和R心六方(hR),所属点群分别为D6h和D3d.
由三方晶系产生的hP不构成新的空间点阵型式,其加心结果已在本文第2部分(六方晶系)做了讨论.
hR为含有3个点阵点的复单位,沿晶轴矢量c方向有161994-2009ChinaAcademicJournalElectronicPublishingHouse.
Allrightsreserved.
http://www.
cnki.
net图7四方晶系的hP和1*4图8"C心四方(tC)"和简四方(tP)图9"面心四方(tF)"和体心四方(tI)1*3轴.
如图10所示,hR可凭借正六棱柱划分出只含有1个点阵点的菱面体素单位(RhombohedralP).
因此,hR的加心即转化为RhombohedralP的加心.
图10R心六方和菱面体素单位261994-2009ChinaAcademicJournalElectronicPublishingHouse.
Allrightsreserved.
http://www.
cnki.
net对于RhombohedralP,三方晶系的3轴向不是平行于构成菱面体的边棱矢量,而是平行于3个边棱矢量的合矢量方向.
如图11所示,3平行于RhombohedralP沿竖直方向上的两个点阵点连线.
因RhombohedralP有对称元素关系:3=3+i,故3为一3重反轴(3),构成RhombohedralP的8个点阵点沿3轴向呈乙烷的交叉式构象.
三方晶系的3不允许加C心于RhombohedralP;若加C心,则得到的"C心菱面体(rC)"已无3和其他轴对称性,所属点群为Ci.
如图12所示,"rC"实为简三斜(aP).
图11菱面体素单位和点阵点的交叉式构象图12"C心菱面体(rC)"和简三斜(aP)三方晶系的3允许加I心或F心于RhombohedralP,加心后得到的"体心菱面体(rI)"和"面心菱面体(rF)"所含的点阵点分别为2和4,所属点群为D3d.
由"rI"划分出RhombohedralP所凭借的几何图形较为复杂,首先需在毗邻"rI"的前、上和右3个方向同时添加3个"rI"平行六面体单元,之后沿3轴向确定且保留呈乙烷的交叉式构象的8个点阵点,去除其他点阵点,即得RhombohedralP(图13).
"rF"沿3轴向的顶角点阵点和6个面心点阵点呈乙烷的交叉式构象,故可直接从"rF"划分出RhombohedralP(图14).
最后,经"rI"和"rF"得到的RhombohedralP可再凭借相应的正六棱柱分别转化为hR,其结果是hR点阵结构———RhombohedralP的加心不会产生新的空间点阵型式.
5正交晶系正交晶系的特征对称元素为3*2或2*m.
在所有7个晶系中,正交晶系空间点阵型的种类最为丰富,有简正交(oP)、C心正交(oC)、体心正交(oI)和面心正交(oF),4空间点阵型式属点群为D2h.
与"cC"、"hC"、"tC"和"rC"不同,由于受限于正当点阵单位划分规则②和③,oC不可经类似的划分而转变成oP或其他对称性较低的素格子[223].
6单斜晶系单斜晶系的特征对称元素为1*2或1*m,空间点阵型式有简单斜(mP)和C心单斜(mC),所属点群为C2h.
在晶体定向以后,若选定mC为一种独立的空间点阵型式,则单斜晶361994-2009ChinaAcademicJournalElectronicPublishingHouse.
Allrightsreserved.
http://www.
cnki.
net图13"体心菱面体(rI)"和菱面体素单位图14"面心菱面体(rF)"和菱面体素单位系的特征对称元素只能是2平行于y轴,m垂直于y轴(图15仅示出2).
图15单斜晶系的mC和1*2单斜晶系的2允许加I心或F心于mP,加心后得到的"体心单斜(mI)"和"面心单斜(mF)"所含的点阵点分别为2和4,所属点群为C2h.
与四方晶系和三方晶系相同,因对称性不变,"mI"和"mF"必为单斜晶系两种空间点阵型式之一,或是mP或是mC.
如图16和图17461994-2009ChinaAcademicJournalElectronicPublishingHouse.
Allrightsreserved.
http://www.
cnki.
net所示,"mI"和"mF"可转变成单斜晶系的同一种空间点型式———mC.
需说明的是:为了能从"mI"划分出满足晶体学规定的C心单斜,在选定的平行六面单元中,需按图16中的mC所示,重新配置坐标系;"mF"划分为mC可由两步实现,先将"mF"划分为"mI"(图17),再将"mI"经图16所示的划分转变成mC.
图16"体心单斜(mI)"和C心单斜(mC)图17"面心单斜(mF)"和"体心单斜(mI)"7三斜晶系三斜面晶系无轴对称性,特征对称元素为对称中心(i),空间点阵型式只有简三斜(aP),所属点群为Ci.
因无轴对称性的限制,三斜晶系的3种复格子(C心、I心和F心)均可拆分成只含有一个点阵点的素格子———aP.
综上所述,满足点阵定义、晶系特征对称性和正当点阵单位划分规则的晶体学空间点阵型式只有14种.
关于以各晶系的素格子为基础,加A心或B心及任意加点的分析与讨论不在此赘述.
本文得到北京航空航天大学首届研究生精品课程(固体化学)建设项目资助,特此致谢.
参考文献[1]AtkinsPW.
PhysicalChemistry.
Oxford:OxfordUniversityPress,1978[2]俞文海.
晶体结构的对称群.
合肥:中国科学技术大学出版社,1991[3]崔秀山.
固体化学.
北京:北京理工大学出版社,1991[4]郭用猷.
物质结构基本原理.
北京:高等教育出版社,1988[5]周公度,段连运.
结构化学基础.
第3版.
北京:北京大学出版社,200256
ZJI发布了9月份促销信息,针对香港华为云线路物理服务器华为一型提供立减300元优惠码,优惠后香港华为一型月付仅450元起。ZJI是原来Wordpress圈知名主机商家:维翔主机,成立于2011年,2018年9月更名为ZJI,提供中国香港、台湾、日本、美国独立服务器(自营/数据中心直营)租用及VDS、虚拟主机空间、域名注册等业务,商家所选数据中心均为国内访问质量高的机房和线路,比如香港阿里云、华为...
georgedatacenter这次其实是两个促销,一是促销一款特价洛杉矶E3-1220 V5独服,性价比其实最高;另外还促销三款特价vps,georgedatacenter是一家成立于2019年的美国VPS商家,主营美国洛杉矶、芝加哥、达拉斯、新泽西、西雅图机房的VPS、邮件服务器和托管独立服务器业务。georgedatacenter的VPS采用KVM和VMware虚拟化,可以选择windows...
百纵科技怎么样?百纵科技国人商家,ISP ICP 电信增值许可证的正规公司,近期上线美国C3机房洛杉矶独立服务器,大带宽/高配置多ip站群服务器。百纵科技拥有专业技术售后团队,机器支持自动化,自助安装系统 重启,开机交付时间 30分钟内交付!美国洛杉矶高防服务器配置特点: 硬件配置高 线路稳定 洛杉矶C3机房等级T4 平价销售,支持免费测试,美国独服适合做站,满意付款。点击进入:百纵科技官方网站地...
.net空间为你推荐
iprouteip route 0.0.0.0 0.0.0.0 s0/0/0 中s0/0/0 指的是本地的还是??linux防火墙设置如何使用iptables命令为Linux系统配置防火墙sqlserver数据库电脑如何找到sql server数据库ipad代理想买个ipad买几代性价比比较高平阴县教育和体育局下属锦东小学教学设备采购项目竞争性磋商文件文档下载如何 下载 文库文件zhuo爱作文:温暖的( )即时通平台寻找娱乐高科技产品引擎收录怎么使自己的网站被搜索引擎收录呢?邮件管理系统哪个邮件管理软件好?
域名空间购买 花生壳免费域名 草根过期域名 idc测评网 免备案空间 godaddy域名优惠码 2017年黑色星期五 台湾谷歌网址 卡巴斯基永久免费版 天互数据 百兆独享 jsp空间 股票老左 泉州移动 美国堪萨斯 hdd t云 支持外链的相册 万网空间购买 跟踪路由命令 更多