点阵.net空间
.net空间 时间:2021-05-05 阅读:(
)
1994-2009ChinaAcademicJournalElectronicPublishingHouse.
Allrightsreserved.
http://www.
cnki.
net第24卷第4期大学化学2009年8月自学之友晶体学14种空间点阵型式的对称性分析与导出齐兴义(北京航空航天大学化学与环境学院北京100191)摘要依据7个晶系的特征对称元素和正当点阵单位的划分规则,分析了各晶系空间点阵型式的生成过程,从而确定晶体学14种空间点阵型式(简立方(cP)、体心立方(cI)、面心立方(cF)、简六方(hP)、简四方(tP)、体心四方(tI)、R心六方(hR)、简正交(oP)、C心正交(oC)、体心正交(oI)、面心正交(oF)、简单斜(mP)、C心单斜(mC)和简三斜(aP))是合理的逻辑演绎结果.
晶体是由微观粒子(原子、离子或分子)在三维空间周期性地重复排列而形成的固体物质,与晶体结构周期性对应的一个重要数学概念为点阵.
依据特征对称元素,晶体分为7个晶系(立方、六方、四方、三方、正交、单斜和三斜),依据特征对称元素和正当点阵单位的划分规则,晶体的点阵分为14种空间点阵型式(简立方(cP)、体心立方(cI)、面心立方(cF)、简六方(hP)、简四方(tP)、体心四方(tI)、R心六方(hR)、简正交(oP)、C心正交(oC)、体心正交(oI)、面心正交(oF)、简单斜(mP)、C心单斜(mC)和简三斜(aP)).
法国科学家Bravias于1866年推导出上述14种空间点阵型式,故14种空间点阵型式又称为Bravias点阵型式.
然而,14种空间点阵型式的严格数学推导过程繁杂冗长,致使国内外许多有关晶体学、固体化学和结构化学的教材只是列举14种空间点阵型式,而对其来龙去脉或是只做部分说明,或无任何解释[125].
正当点阵单位的划分规则共有4条,分别是:①选择最高轴次的对称轴方向为晶轴矢量(正当点阵单位的棱边矢量)方向;②正当点阵单位应能反映点阵的点对称性;③尽可能使晶轴矢量相互交成直角;④在满足以上3个规则的前题下,正当点阵单位的平行六面体单元所含的点阵点应为最少或平行六面体单元的体积为最小.
本文以7个晶系的特征对称元素和正当点阵单位的划分规则为逻辑分析的基础,全面阐述各晶系的合理空间点阵型式.
作为教学总结,作者希望本文对国内同仁的相关化学教学能有启发与帮助.
1立方晶系立方晶系的特征对称元素为4*3,空间点阵型式有简立方(cP)、体心立方(cI)和面心立方(cF),所属点群为Oh.
以cP为例,4*3在三维空间的配置如图1所示.
由图1可见,4*3分别贯穿cP的顶角点阵点,如图1所示的特征对称元素配置同样适用于cI和cF.
与正交晶系相比,立方晶系无C心格子,原因是立方晶系的4*3所产生的特征对称性不允许出现C心立方,即立方晶系的特征对称性不允许在cP的上下两个底的几何中心再各加951994-2009ChinaAcademicJournalElectronicPublishingHouse.
Allrightsreserved.
http://www.
cnki.
net图1立方晶系的cP和4*3上一个点阵点.
需指出的是若加C心于cP,得到的无限点集合———"C心立方(cC)"亦为一点阵.
如图2所示,"cC"的特征对称元素不是4*3,而是1*4,所属点群为D4h.
显然,在4对称性不降低的条件下,依据正当点阵单位的划分规则④,可将"cC"(含2个点阵点)经图2所示的划分转变成简四方(tP(含1个点阵点)).
"cC"和"C心四方(tC)"有相同的对称性,"tC"的划分见本文第3部分(四方晶系).
图2"C心立方(cC)"和简四方(tP)2六方晶系六方晶系的特征对称元素为1*6,空间点阵型式只有简六方(hP),所属点群为D6h.
6和hP在三维空间的配置如图3所示.
因受6特征对称性的限制,六方晶系无任何加心(C心、I心和F心)空间点阵型式.
以加C心为例,与cP加C心相同,hP经加C心得到的"C心六方(hC)"虽为一点阵,但已无6.
如图4所示,因C心的加入,"hC"沿晶轴矢量c方向的对称轴是2,所属点群为D2h,划分出的正当点阵单位为简正交(oP).
作为一般规律,可以证明由加C心、I心或F心于7个晶系的素格子而得到的无限点集合仍为一点阵,经加A2B心、A2C心或B2C得到的无限点集合则不是点阵(A2B心格子的加心方式是在素格子的平行六面体的前后面和左右面的几何中心同时加点,而不在上下两个底的几何中心加点的一种加点方式).
图3六方晶系的hP和1*6因此,加I心和F心于hP而得到的无限点集合"体心六方(hI)"和"F心立方(hF)"均为061994-2009ChinaAcademicJournalElectronicPublishingHouse.
Allrightsreserved.
http://www.
cnki.
net图4"C心六方(hC)"和简正交(oP)点阵,所属点群为D2h(图5和图6).
经图5和图6所示的划分,"hI"和"hF"分别转变成面心正交(oF)和体心正交(oI).
图5"体心六方(hI)"和面心正交(oF)图6"面心六方(hF)"和体心正交(oI)3四方晶系四方晶系的特征对称元素为1*4,空间点阵型式有简四方(tP)和体心四方(tI),所属点群为D4h.
4和tP的几何关系如图7所示.
与cP和hP加C心不同,四方晶系的4特征对称性允许加C心或F心于tP,加心后的点阵所属点群仍为D4h.
众所周知,四方晶系的合理空间点阵型式无"C心四方(tC)"和"面心四方(tF)".
如图8和图9所示,"tC"和"tF"所含点阵点数分别为2和4.
在4对称性不变的条件下,依据正当点阵单位划分规则④,可将"tC"和"tF"分别划分为tP(含1个点阵点)和tI(含2个点阵点).
4三方晶系三方晶系的特征对称元素虽为1*3,但空间点阵型式却有简六方(hP)和R心六方(hR),所属点群分别为D6h和D3d.
由三方晶系产生的hP不构成新的空间点阵型式,其加心结果已在本文第2部分(六方晶系)做了讨论.
hR为含有3个点阵点的复单位,沿晶轴矢量c方向有161994-2009ChinaAcademicJournalElectronicPublishingHouse.
Allrightsreserved.
http://www.
cnki.
net图7四方晶系的hP和1*4图8"C心四方(tC)"和简四方(tP)图9"面心四方(tF)"和体心四方(tI)1*3轴.
如图10所示,hR可凭借正六棱柱划分出只含有1个点阵点的菱面体素单位(RhombohedralP).
因此,hR的加心即转化为RhombohedralP的加心.
图10R心六方和菱面体素单位261994-2009ChinaAcademicJournalElectronicPublishingHouse.
Allrightsreserved.
http://www.
cnki.
net对于RhombohedralP,三方晶系的3轴向不是平行于构成菱面体的边棱矢量,而是平行于3个边棱矢量的合矢量方向.
如图11所示,3平行于RhombohedralP沿竖直方向上的两个点阵点连线.
因RhombohedralP有对称元素关系:3=3+i,故3为一3重反轴(3),构成RhombohedralP的8个点阵点沿3轴向呈乙烷的交叉式构象.
三方晶系的3不允许加C心于RhombohedralP;若加C心,则得到的"C心菱面体(rC)"已无3和其他轴对称性,所属点群为Ci.
如图12所示,"rC"实为简三斜(aP).
图11菱面体素单位和点阵点的交叉式构象图12"C心菱面体(rC)"和简三斜(aP)三方晶系的3允许加I心或F心于RhombohedralP,加心后得到的"体心菱面体(rI)"和"面心菱面体(rF)"所含的点阵点分别为2和4,所属点群为D3d.
由"rI"划分出RhombohedralP所凭借的几何图形较为复杂,首先需在毗邻"rI"的前、上和右3个方向同时添加3个"rI"平行六面体单元,之后沿3轴向确定且保留呈乙烷的交叉式构象的8个点阵点,去除其他点阵点,即得RhombohedralP(图13).
"rF"沿3轴向的顶角点阵点和6个面心点阵点呈乙烷的交叉式构象,故可直接从"rF"划分出RhombohedralP(图14).
最后,经"rI"和"rF"得到的RhombohedralP可再凭借相应的正六棱柱分别转化为hR,其结果是hR点阵结构———RhombohedralP的加心不会产生新的空间点阵型式.
5正交晶系正交晶系的特征对称元素为3*2或2*m.
在所有7个晶系中,正交晶系空间点阵型的种类最为丰富,有简正交(oP)、C心正交(oC)、体心正交(oI)和面心正交(oF),4空间点阵型式属点群为D2h.
与"cC"、"hC"、"tC"和"rC"不同,由于受限于正当点阵单位划分规则②和③,oC不可经类似的划分而转变成oP或其他对称性较低的素格子[223].
6单斜晶系单斜晶系的特征对称元素为1*2或1*m,空间点阵型式有简单斜(mP)和C心单斜(mC),所属点群为C2h.
在晶体定向以后,若选定mC为一种独立的空间点阵型式,则单斜晶361994-2009ChinaAcademicJournalElectronicPublishingHouse.
Allrightsreserved.
http://www.
cnki.
net图13"体心菱面体(rI)"和菱面体素单位图14"面心菱面体(rF)"和菱面体素单位系的特征对称元素只能是2平行于y轴,m垂直于y轴(图15仅示出2).
图15单斜晶系的mC和1*2单斜晶系的2允许加I心或F心于mP,加心后得到的"体心单斜(mI)"和"面心单斜(mF)"所含的点阵点分别为2和4,所属点群为C2h.
与四方晶系和三方晶系相同,因对称性不变,"mI"和"mF"必为单斜晶系两种空间点阵型式之一,或是mP或是mC.
如图16和图17461994-2009ChinaAcademicJournalElectronicPublishingHouse.
Allrightsreserved.
http://www.
cnki.
net所示,"mI"和"mF"可转变成单斜晶系的同一种空间点型式———mC.
需说明的是:为了能从"mI"划分出满足晶体学规定的C心单斜,在选定的平行六面单元中,需按图16中的mC所示,重新配置坐标系;"mF"划分为mC可由两步实现,先将"mF"划分为"mI"(图17),再将"mI"经图16所示的划分转变成mC.
图16"体心单斜(mI)"和C心单斜(mC)图17"面心单斜(mF)"和"体心单斜(mI)"7三斜晶系三斜面晶系无轴对称性,特征对称元素为对称中心(i),空间点阵型式只有简三斜(aP),所属点群为Ci.
因无轴对称性的限制,三斜晶系的3种复格子(C心、I心和F心)均可拆分成只含有一个点阵点的素格子———aP.
综上所述,满足点阵定义、晶系特征对称性和正当点阵单位划分规则的晶体学空间点阵型式只有14种.
关于以各晶系的素格子为基础,加A心或B心及任意加点的分析与讨论不在此赘述.
本文得到北京航空航天大学首届研究生精品课程(固体化学)建设项目资助,特此致谢.
参考文献[1]AtkinsPW.
PhysicalChemistry.
Oxford:OxfordUniversityPress,1978[2]俞文海.
晶体结构的对称群.
合肥:中国科学技术大学出版社,1991[3]崔秀山.
固体化学.
北京:北京理工大学出版社,1991[4]郭用猷.
物质结构基本原理.
北京:高等教育出版社,1988[5]周公度,段连运.
结构化学基础.
第3版.
北京:北京大学出版社,200256
月神科技是由江西月神科技有限公司运营的一家自营云产品的IDC服务商,提供香港安畅、香港沙田、美国CERA、成都电信等机房资源,月神科技有自己的用户群和拥有创宇认证,并且也有电商企业将业务架设在月神科技的平台上。本次带来的是全场八折促销,续费同价。并且上新了国内成都高防服务器,单机100G集群1.2T真实防御,上层屏蔽UDP,可定制CC策略。非常适合网站用户。官方网站:https://www.ysi...
photonvps怎么样?photonvps现在针对旗下美国vps推出半价促销优惠活动,2.5美元/月起,免费10Gbps DDoS防御,Linux系统,机房可选美国洛杉矶、达拉斯、芝加哥、阿什本。以前觉得老牌商家PhotonVPS贵的朋友可以先入手一个月PhotonVPS美国Linux VPS试试了。PhotonVPS允许合法大人内容,支持支付宝、paypal和信用卡,30天退款保证。Photo...
香港服务器多少钱一个月?香港服务器租用配置价格一个月多少,现在很多中小型企业在建站时都会租用香港服务器,租用香港服务器可以使网站访问更流畅、稳定性更好,安全性会更高等等。香港服务器的租用和其他地区的服务器租用配置元素都是一样的,那么为什么香港服务器那么受欢迎呢,香港云服务器最便宜价格多少钱一个月呢?阿里云轻量应用服务器最便宜的是1核1G峰值带宽30Mbps,24元/月,288元/年。不过我们一般选...
.net空间为你推荐
支持ipadyw372:ComIE主页被修改为http://www.hao372.com/ 桌面上的IE图标还变成了两个支付宝蜻蜓发布支付宝蜻蜓f4,可以让没有支付宝的人刷脸付款?cisco2960配置思科2960G交换机如何将配置百兆改为千兆配置outlookexpress家里电脑老是弹出“outlook express”这个东西,怎么除去啊?重庆电信dnsPSP上网急救!重庆电信的DNS是多少啊?台北市cuteftp泉州商标注册泉州本地商标注册要怎么注册?具体流程是什么?三五互联科技股份有限公司三五互联 网站做的怎么样 公司打算做网站,近来接到电话,不知道网站做的如何,水平怎么样,后期的服务呢billboardchina美国Billboard公告牌年度10大金曲最新华丽合辑
汉邦高科域名申请 主机屋 美国独立服务器 紫田 线路工具 搜狗抢票助手 免费ddos防火墙 彩虹ip 个人免费空间 本网站服务器在美国 40g硬盘 创梦 宁波服务器 国外ip加速器 便宜空间 酸酸乳 杭州电信宽带 重庆联通服务器托管 reboot 带宽测速 更多