licityqq百科

qq百科  时间:2021-04-19  阅读:()
Qinetal.
BMCGenomics2010,11:247http://www.
biomedcentral.
com/1471-2164/11/247OpenAccessRESEARCHARTICLEBioMedCentral2010Qinetal;licenseeBioMedCentralLtd.
ThisisanOpenAccessarticledistributedunderthetermsoftheCreativeCommonsAt-tributionLicense(http://creativecommons.
org/licenses/by/2.
0),whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedtheoriginalworkisproperlycited.
ResearcharticleThecompletegenomeofZunongwangiaprofundaSM-A87revealsitsadaptationtothedeep-seaenvironmentandecologicalroleinsedimentaryorganicnitrogendegradationQi-LongQin1,Xi-YingZhang1,Xu-MinWang2,Gui-MingLiu2,Xiu-LanChen1,Bin-BinXie1,Hong-YueDang3,Bai-ChengZhou1,JunYu2andYu-ZhongZhang*1AbstractBackground:ZunongwangiaprofundaSM-A87,whichwasisolatedfromdeep-seasediment,isanaerobic,gram-negativebacteriumthatrepresentsanewgenusofFlavobacteriaceae.
Thisisthefirstsequencedgenomeofadeep-seabacteriumfromthephylumBacteroidetes.
Results:TheZ.
profundaSM-A87genomehasasingle5128187-bpcircularchromosomewithnoextrachromosomalelementsandharbors4653predictedprotein-codinggenes.
SM-A87producesalargeamountofcapsularpolysaccharidesandpossessestwopolysaccharidebiosynthesisgeneclusters.
Ithasatotalof130peptidases,61ofwhichhavesignalpeptides.
Inadditiontoextracellularpeptidases,SM-A87alsohasvariousextracellularenzymesforcarbohydrate,lipidandDNAdegradation.
Theseextracellularenzymessuggestthatthebacteriumisabletohydrolyzeorganicmaterialsinthesediment,especiallycarbohydratesandproteinaceousorganicnitrogen.
Therearetwoclusteredregularlyinterspacedshortpalindromicrepeatsinthegenome,buttheirspacersdonotmatchanysequencesinthepublicsequencedatabases.
SM-A87isamoderatehalophile.
Ourproteinisoelectricpointanalysisindicatesthatextracellularproteinshavelowerpredictedisoelectricpointsthanintracellularproteins.
SM-A87accumulatesorganicosmolytesinthecell,soitsextracelluarproteinsaremorehalophilicthanitsintracellularproteins.
Conclusion:Here,wepresentthefirstcompletegenomeofadeep-seasedimentarybacteriumfromthephylumBacteroidetes.
ThegenomeanalysisshowsthatSM-A87hassomecommonfeaturesofdeep-seabacteria,aswellasanimportantcapacitytohydrolyzesedimentaryorganicnitrogen.
BackgroundTheaveragedepthoftheoceansisabout3800m,andalmost60%oftheearth'ssurfaceisdeep-seafloor(waterdepthgreaterthan2000m)[1].
Althoughmostofthedeep-seafloorenvironmentischaracterizedbydarkness,highhydrostaticpressureandlowtemperatures,morethanhalfoftheworld'sprokaryotesliveinsub-seafloorsediments[2-4],whichplayamajorroleinmarinebio-geochemicalcycling[5].
Everyyear,massiveamountsofparticulateorganicmatter(POM)aretransportedtothedeeplayersoftheoceanfloor,formingalargepoolofcar-bonandnitrogen[6].
However,howthisorganicmaterialisdegraded,aswellasthetypesofbacteriainvolvedandtheenzymesused,arestillunclear,especiallyforthedeg-radationofsedimentaryorganicnitrogen(SON)[7].
Todate,numerouseffortshavebeenmadetoclarifythemechanismofSONdegradation,includinginvestigationsofthediversityofbacteriaandproteasesinvolvedinSONdegradation[8,9].
ResearchershavealsocharacterizedsomeextracellularproteasesfromsedimentarybacteriaandelucidatedtheirecologicalroleinSONdegradation[10-13].
However,theroleofdeep-seabacteriainSONdegradationandcyclinghasneverbeenanalyzedatagenomiclevel.
Genomeanalysesofdeep-seahet-*Correspondence:zhangyz@sdu.
edu.
cn1StateKeyLabofMicrobialTechnology,MarineBiotechnologyResearchCenter,ShandongUniversity,Jinan250100,PRChinaContributedequallyFulllistofauthorinformationisavailableattheendofthearticleQinetal.
BMCGenomics2010,11:247http://www.
biomedcentral.
com/1471-2164/11/247Page2of10erotrophicbacteriawouldprovideabetterunderstandingofthedeep-seanitrogencycle,andrevealtowhatextentbacteriaaffectthedeep-seaenvironment[14].
Bacteroidetes(formerlyCytophaga-Flavobacterium-Bacteroides(CFB))areawidespreadanddiversegroupofbacteriathatcanbefoundthroughoutthesea,fromsur-facewatertodeep-seasediment.
Studiesofbothculti-vatedanduncultivatedmarineBacteroideteshaveshownthatBacteroidetesareabletoefficientlyconsumebiopoly-merssuchasproteinandchitin[15,16],whichmakeupasignificantfractionofthehigh-molecular-weightdis-solvedorganicmatter(HMWDOM)poolintheocean[17].
Biopolymerdegradationisconsideredtobetherate-limitingstepinDOMmineralizationbymarinemicroor-ganisms,andBacteroidetesarehypothesizedtoplayakeyroleinthisprocessintheoceans[7].
GenomesequencedatahavebeenextremelyhelpfulinthedevelopmentofdetailedhypothesesontheroleofspecificBacteroidetesmembersinmarinebiogeochemicalcycling.
AnanalysisofthegenomeofBacteroidetes'Gramellaforsetii'KT0803,abacterioplanktonisolatedfromNorthSeasur-facewatersduringaphytoplanktonbloom,indicatedthatitisefficientatdegradingbiopolymers,especiallypro-teins[18,19].
MetagenomicstudieshavealsoreportedthedistributionandfunctionalanalysisofspecificCytophaga-likehydrolasesintheSargassoSeaandwest-ernArcticOceananddescribedhydrolase-containinggenomefragmentsofAntarcticmarineBacteroidetes[20,21].
However,whileBacteroideteshavebeenfre-quentlyencounteredintheanalysisofsedimentarybacte-rialdiversity,nocompletegenomeanalysisofadeep-seasedimentaryBacteroideteshasyetbeenpublished[15,16].
Thistypeofanalysiscouldbeusedtoaddresshowtheorganisms'geneticinventoriesreflectboththeirSONremineralizationcapabilitiesandtheiradaptationtothedeep-seaenvironment.
WangiaprofundaSM-A87(hereaftercalledSM-A87),isolatedatadepthof1245mfromdeep-seasedimentinthesouthernOkinawaTroughwithinsitutemperatureof4.
7°C,isanewlydescribedspeciesofBacteroidetesandrepresentsanewgenusofFlavobacteriaceae[22].
ItwasrenamedZunongwangiaprofundaintheInternationalJournalofSystematicandEvolutionaryMicrobiology(IJSEM)ValidationListno.
116.
Inthisstudy,wereportitscompletegenomesequence,whichrepresentsthefirstgenomeofadeep-seabacteriumofthephylumBacteroi-detes.
Inaddition,weperformedagenomiccomparisonwithtwobacteriaofthefamilyofFlavobacteriaceaefromsurfaceseawater,andtwobacteriafromacolddeep-seaenvironment.
OurgenomicanalysisofstrainSM-A87indicatesthatitiscapableofdegradingbiopolymersourcesandshedslightonitsadaptationtothedeep-seaenvironment.
ResultsanddiscussionGeneralgenomefeaturesGeneralfeaturesoftheZ.
profundaSM-A87genomearesummarizedinTable1.
Thegenomehasasingle5.
1-Mbpcircularchromosomewithnoextrachromosomalele-ments.
TheG+Ccontentofthegenomeis36.
2%,whichisslightlyhigherthantheexperimentallydetermined35.
8%[22].
Thegenomeharbors4653predictedopenreadingframes(ORFs),ofwhich69.
4%areannotatedwithknownorpredictedfunctions.
About50%ofSM-A87ORFshavethehighestsimilaritytothoseinthepublishedgenomeofG.
forsetiiKT0803.
SM-A87has47tRNAgenesandthree16S-23S-5Soperons.
Figure1showstheproportionsofproteinsbelongingtoclustersoforthologousgroups(COGs)inSM-A87andseveralotherbacterialgroups.
Thedeep-seabacteria(SM-A87,PhotobacteriumprofundumSS9andShe-wanellapiezotoleransWP3)haveanaverageof2.
35%moreproteinsbelongingtoCOGK(transcription),and2.
11%moreproteinsbelongingtoCOGT(signaltrans-ductionmechanisms)thantheshallow-waterbacteria(FlavobacteriumpsychrophilumandGramellaforsetiiKT0803).
Thesedifferencesarestatisticallysignificant(p<0.
05).
GeneralmetabolismSM-A87hasafullsetofgenesforglycolysis,thepentosephosphatepathwayandthetricarboxylic/citricacidcycle.
Thestrainhasfivepredictedlactatedehydrogenases,twoL-andthreeD-,andalsocontainspredictedethanol-pro-ducingenzymesincludingaldehydedehydrogenase(ZPR_1384,ZPR_3649)andalcoholdehydrogenase(ZPR_4362).
Theseenzymesmayhelpthebacteriumtosurviveinthelow-oxygenenvironmentofthedeepsea.
SM-A87containspredictedcytochromebdubiquinoloxidasesubunitsI(ZPR_1985)andII(ZPR_1985).
Thisoxidaseisrelatedtoadaptationtomicroaerobiccondi-tionsinthedeepsea[23].
AccordingtotheKyotoEncy-clopediaofGenesandGenomes(KEGG)pathwaymapofTable1:GeneralfeaturesoftheZ.
profundaSM-A87genome.
Size(bp)5128187G+Ccontent36.
2%NumberofpredictedORFs4653AverageORFlength(bp)960Codingdensity87.
4%tRNAs47rRNAoperons3Conservedhypotheticalproteins%17.
1%Hypotheticalproteins%13.
5%Qinetal.
BMCGenomics2010,11:247http://www.
biomedcentral.
com/1471-2164/11/247Page3of10SM-A87,fructoseandmannosecanbeconvertedtofruc-tose-6p,andgalactosecanbeconvertedtoglucose-1p;bothfructose-6pandglucose-1parethendegradedthroughglycolysis.
SM-A87harborsapredictedketo-deoxy-phosphogluconatealdolase(ZPR_2957),whichisthekeyenzymeoftheEntner-Doudoroffmetabolicpath-way.
Thisstrainalsocontainstheenzymesthatutilizemostaminoacids.
AllthesefeaturesconferametabolicversatilitytoSM-A87thatallowsittoutilizesparseandsporadicnutrientsinthedeep-seaenvironment.
SM-A87hasallthegenesrequiredforfattyacidoxida-tion.
However,3R-hydroxymyristoylACPdehydrase,acomponentofthefattyacidbiosynthesispathway,wasnotfoundbygenomeannotation.
Thisabsencemaybeduetothelowsimilarityofthisgenetothoseinthedata-basesortoconvergentevolutionfromotherfunctionallysimilarenzymeswithdivergentsequences.
Phosphati-dylethanolamineistheonlyphospholipidthathasbeenexperimentallyidentifiedinZunongwangiaprofunda[22].
Thegenomeanalysissuggeststhatphosphatidyleth-anolamineisderivedfromphosphatidylserine,whichissynthesizedfromglycerate.
SM-A87hasallofthecomponentsoftheoxidativephosphorylationpathwaybutdoesnotcontainanyrho-dopsinorretinalgenes,consistentwiththedarkdeep-seaenvironmentinwhichthestrainthrives.
SensingsystemMostnutrientsarriveinthedeepseainanannualpulse,andthebacteriainthedeepseacansensethisfoodpulseandrespondaccordingly[24].
Awidespreadsensingsys-temusedbybacteriaisthetwo-componentsignaltrans-ductionsystem,whichconsistsofasignalsensorhistidinekinaseandaresponseregulator[25,26].
SM-A87harbors47predictedsensorhistidinekinases,themostofanyofthecomparedstrains(Table2),whichindi-catesitsstrongabilitytosenseenvironmentsignals.
SM-A87hasninepredictedtwo-componentoperons,eachofwhichiscomposedofahistidinekinaseandaresponseregulatorthatmayformaone-to-onephosphotransferpair.
SM-A87hasthreerRNAoperons,suggestingthatitcanrespondtonutrientenrichmentrapidlyandgrowquickly[27].
SM-A87canformcoloniesof1-3mmindiameteronarichmediumafter48hofcultivationat28°C[22].
Figure1COGcategorypercentageofZ.
profundaSM-A87andothercomparedbacteria.
Qinetal.
BMCGenomics2010,11:247http://www.
biomedcentral.
com/1471-2164/11/247Page4of10SM-A87contains22genesencodingRagB/SusDfamilyproteinsinitsgenome,whiletheothercomparedgenomeshavefewerornone(Table2).
RagBisaproteininvolvedinsignalingandSusDisanoutermembraneproteininvolvedinnutrientbinding[28,29].
NineteenoftheRagB/SusDfamilyproteingenesareeachadjacenttoaTonB-dependentreceptorgene,forming19predictedoperons.
Ofthe19predictedoperons,12areadjacenttopredictedglycosylhydrolasesorpeptidases[seeAddi-tionalfile1].
SpecificallyforthegenesfromZPR_1020toZPR_1033,therearetwoglycosidasegenes,twoesterasegenes,onexylanasegeneandsevenglycosylhydrolasegenesnexttotheoperon,implyingthatSM-A87cansenseandrespondtosugarsources.
Thegenomealsocontains27putativeoutermembraneproteingenes,whichareprobablyinvolvedinnutrientbinding.
AllthesefeaturesimplythatSM-A87hastheabilitytosenseextra-cellularnutrientssuchassugarsandproteins.
PolysaccharidesynthesisManydeep-seabacteriaproduceexopolysaccharidesthathelpthemsurviveintheextremedeep-seaenvironment[30].
Reportssuggestthatthesepolysaccharideshelpthebacteriaconcentrateorganicmatter,absorbmetalions,andformbiofilmsinthemarineenvironment[31,32].
Differentglycosyltransferasescancontributetothebio-synthesisofdisaccharides,oligosaccharides,andpolysac-charides[33].
OurexperimentalresultsshowthatstrainSM-A87canproducelargequantitiesofcapsularpolysac-charide(datanotshown).
ThegenomeanalysisshowsthatSM-A87contains46predictedglycosyltransferases,ofwhich13belongtofamilytwoand10belongtofamilyone.
SM-A87containstwoglycosyltransferases(ZPR_0565andZPR_1126)thataresimilartoWbaPfromSalmonellaenterica.
WbaPisresponsiblefortheinitia-tionofpolysaccharidesynthesis,transferringthefirstsugartoundecaprenylphosphate(Und-P)[34].
SimilartoWbaP,ZPR_1126has462aminoacidresiduesandfivepredictedtransmembraneregions.
Thetopologicalorga-nizationofthetransmembraneregionsofthesetwoenzymesissimilar:therearefourtransmembraneregionsattheN-terminusandonetransmembranedomainwithsugar-phosphatetransferaseactivityattheC-terminus.
ZPR_0565consistsof339aminoacidresiduesandhasonlyonetransmembranedomain.
Amultiplesequencealignment[seeAdditionalfile2]showsthatZPR_0565correspondstotheC-terminusofWbaPandotherinitialglycosyltransferases;inaddition,theyallcontainthehighlyconservedaminoacidmotifsKFRSM,DELPQ,andPGITG[35].
ThisimpliesthatZPR_0565containsonlyTable2:ComparisonofthenumbersofselectedproteinsbetweenSM-A87andotherfourmarinebacteria.
SM-A87P.
profundumSS9S.
piezotoleransWP3G.
forsetiiKT0803F.
psychrophilumSensingcomponentsHistidinekinase4720463713RagB/susDfamilyprotein2200140EnzymesfordegradationPeptidase1130(60)74(18)129(50)94(47)59(42)Glucosidase110550Xylanase60000Xylosidase30010Beta-galactosidase53240Amylase32430Chitinase23200Otherglycosidase5046212Lipase1411793Esterase462032227TransportorsABC-typetransporter40155642840TonB-dependentreceptor4003340221Inparenthesesisthenumberofproteinswithsignalpeptides.
Qinetal.
BMCGenomics2010,11:247http://www.
biomedcentral.
com/1471-2164/11/247Page5of10theglycosyltransferasecatalyticdomain.
Genesencodingotherglycosyltransferasesandpolysaccharideexportpro-teinsarefoundclosetoZPR_0565andZPR_1126;together,thesegenesformtwogeneclustersforpolysac-charidesynthesisandexport[seeAdditionalfile3].
ZPR_1123,whichisupstreamofZPR_1126,ispredictedtoencodeanO-antigenpolymerase,implyingthatpoly-saccharidesaresynthesizedthroughtheWzy-dependentpathwayinSM-A87[36].
SM-A87harborstwopredictedcapsularpolysaccharidebiosynthesisproteinsthatareprobablyinvolvedinthesynthesisofcapsularpolysaccha-rides.
TheproductionofcapsularpolysaccharideisadvantageousforSM-A87tothriveinthemarineenvi-ronment.
HydrolysisabilitySignalpeptideanalysissuggeststhatSM-A87cansecretealargenumberofhydrolysisenzymes,andithasmoreexportedpeptidasesthantheothercomparedstrains(Table2),reflectingitsunusualabilitytodegradeorganicnitrogen.
SM-A87contains130predictedpeptidases,61ofwhichhavesignalpeptides.
Thepeptidaseswithsignalpeptideshavemoreasparticacidsandahigherratioofacidicresiduestobasicresidues.
Additionally,theyhavealowerpredictedisoelectricpoint(pI)thanthepeptidaseswithoutsignalpeptides(Table3),adifferencethatissta-tisticallysignificant(p<0.
05).
Thus,theextracellularpeptidasesaremorehalophilicthantheintracellularpep-tidases,ashighnumbersofacidicresiduesandlowpIsarekeyfeaturesofhalophilicproteins[37].
Thehalophi-licityoftheextracellularpeptidaseshelpsthemfunctioninsalineenvironmentsanddecomposeextracellularorganicnitrogenmatterinthemarinesaltycondition.
Fifty-twooftheSM-A87peptidaseswithsignalpep-tidescanbeassignedtodifferentfamiliesintheMEROPSpeptidasedatabase[38].
AsshowninFigure2,thepepti-dasesmainlybelongtofamiliesofmetallopeptidasesandserinepeptidases,consistentwithourpreviousstudythattheextracellularpeptidasesofmarinesedimentarybacte-riaaremainlyserineproteasesandmetalloproteases[9].
ComparedtoG.
forsetiiKT0803,deep-seabacteriaSM-A87andS.
piezotoleransWP3havemorepeptidasesinfamiliesS09andS41,butfewerinfamilyM14(Figure2).
ThevarietyofextracellularpeptidasessuggeststhatSM-A87hasthecapacitytodecomposediversepeptidesandproteinsfromitssurroundings.
Forinstance,SM-A87hassixexportedfamilyM01peptidases,whichareamino-peptidases.
Ithasbeenreportedthatwhenmarinebacte-riagrowonHMWdissolvedorganicnitrogen(DON)asthesolenitrogensource,aminopeptidaseactivityisgreatlyenhanced[39].
Aminopeptidaseactivityinthedeep-seasedimentishigherthanthatinthesurfacesea-water;however,thisisnotthecaseforotherhydrolysisenzymes[40].
ThelargenumberofaminopeptidasessecretedbySM-A87maycontributetothehighamino-peptidaseactivityinthedeep-seasediment,andsuggeststhatSM-A87maybeabletorespondtoHMWDONanddecomposeit.
SM-A87secretessevenS09peptidases,whichareprolyloligopeptidasesthatcannotdegradepeptidesofmorethan30residuesinlength[41].
There-fore,theS09peptidasesspecificallyhydrolyzeoligopep-tides.
Notably,therearesixexportedpeptidasesthatcontainaPDZdomain,whichisknowntobeinvolvedinpeptidebinding[42].
ThelargenumberofPDZdomain-containingpeptidasessecretedbySM-A87suggestsastrategyforbindinganddegradingproteins,similartothePKDdomainsofexportedproteinsinG.
forsetiiKT0803[19].
Inthedeep-seasedimentarynitrogencycle,thepro-cessbywhichparticulateorganicnitrogenisconvertedtoNH4+isknowntobedominatedbybacteriabutispoorlycharacterized[1,14].
ThesecretedpeptidasesofSM-A87mayplayanimportantroleinthisprocess.
Amongthecomparedstrains,SM-A87hasthelargestproportionofproteinsbelongingtocarbohydratetrans-portandmetabolismCOGs(Figure1).
Accordingly,ithasmanygenesencodingenzymesthatdegradeoligo-andpolysaccharides(Table2)[Additionalfile4].
SM-A87hasTable3:Propertiesofpeptidaseswithandwithoutsignalpeptides.
WithsignalpeptidesWithoutsignalpeptidesNumber6169G+Ccontent(%)37.
536.
8Asp(percentage)6.
66.
0Glu(percentage)7.
27.
2Lys(percentage)8.
08.
1Arg(percentage)3.
63.
5(Asp+Glu)/(Lys+Arg)1.
21.
1pI16.
0±1.
76.
7±2.
01pI,predictedisoelectricpoint.
Thedataareaverageswithstandarddeviation.
Qinetal.
BMCGenomics2010,11:247http://www.
biomedcentral.
com/1471-2164/11/247Page6of1050annotatedglycosidases,17ofwhichhavesignalpep-tides,suggestingthatSM-A87canhydrolyzeextracellularcarbohydrates.
Itdoesnotcontainanypredictedcellu-lases,agreeingwiththeexperimentalresultthatitcannothydrolyzecellulose.
AlthoughSM-A87hasageneforexportedchitinase(ZPR_1703),experimentssuggestthatitdoesnotdegradechitin.
SM-A87harborssixxylanasegenesandthreexylosidasegenes,ofwhichthreexyla-nasesandtwoxylosidaseshavesignalpeptides,indicatingthatthestrainshouldhavetheabilitytodegradexylan.
Thegenomealsohasfourgenesencodingexportedbeta-galactosidases;correspondingly,beta-galactosidaseactiv-ityhasbeendetectedinthisstrain[22].
SM-A87contains11predictedglucosidases,ofwhichsevenhavesignalpeptides.
Glucosidaseproductioncanbeinducedbydissolvedpolymericglucose[43].
ThelargenumberofglucosidasesinSM-A87indicatesthatitisabletodecomposetheeasilyusedpolymericsugarintheenvi-ronment.
Thecarbohydrate-hydrolyzingenzymesmen-tionedaboveimplythatSM-A87isabletouseavarietyofcarbohydratesintheenvironmentascarbonandenergysources.
SM-A87harborssevengenesencodingextracellularlipases,includingonephospholipaseA1(ZPR_0295)andtwoGDSLfamilylipases.
Thestraincontains20genesencodingesteraseswithsignalpeptides,ofwhichfivearecarboxylesterasesandsixarephosphoesterases.
TheseenzymesmayallowSM-A87todegradevariousphospho-lipidsandcarboxylestersintheenvironmentascarbonandphosphorussources.
DNAisabundantinthedeep-seasediment,andmostofitisextracellular.
Morethanhalfofthetotalextracellu-larDNAcanberapidlydegradedbyenzymes[44].
DNAcanbeutilizedbybacteriaasasourceofcarbon,nitrogen,andphosphorous,contributingtophosphaterecycling[44].
SM-A87harborstwopredictedextracellularendo-nucleases(ZPR_0199,ZPR_1186),implyingthatitcanobtainnutrientelementsbydegradingextracellularDNA.
Ithasbeenreportedthatsedimentarycarbohydrateishydrolyzedmoreeasilywhenitistreatedwithfourenzymes,α-amylase,β-glucosidase,proteaseandlipase,thanwhenitistreatedwithonlyoneenzyme[45].
SM-A87containsthesefourkindsofextracellularenzymes,implyingthatthestraincanhydrolyzesedimentarycar-bohydrateseasily.
ThevarietyofexportedpeptidasesandotherhydrolysisenzymesintheSM-A87genomewouldallowthebacteriumtodegradesedimentarybiopoly-mericmaterialsintosmallmoleculesthatcanbeabsorbedbythecell.
ApreviousgenomeanalysisrevealedthatG.
forsetiiKT0803fromsurfaceseawaterisgoodatdegradingpolymericorganicmaterials[19].
OuranalysisoftheSM-A87genomeindicatesthatthisdeep-seasedi-mentBacteroidetesspeciesalsohastheunusualabilitytodecomposepolymericorganicmaterials,whichcouldcontributeconsiderablytodeep-seasedimentarybiogeo-chemistrycycles.
NitrogenandsulfurmetabolismAccordingtotheKEGGpathwaymap,nitritereductasecancatalyzetheconversionofnitritetoammonia[46].
Twonitritereductases(ZPR_3631,ZPR_4195)couldberesponsiblefortheconversionofnitritetoammoniainSM-A87.
Oneformate/nitritetransporter(ZPR_2292)andthreeputativenitrate/nitriteDNA-bindingresponseregulatorsinthegenomeindicatethatSM-A87canabsorbnitritefromtheenvironment.
Alloftheaboveevi-dencesuggeststhatthestraincanuseinorganicnitrogen.
TheSM-A87genomeencodesonesulfatetransporter(ZPR_0777)andtwosodium:sulfatesymporters(ZPR_0364,ZPR_4168)thatcantransportsulfateionsintothecell.
Italsohascorrespondingenzymestoutilizesulfate.
TherearethreeadjacentORFsthatencodeadeny-lylsulfatekinase(ZPR_0539)andtwosubunitsofsulfateadenylyltransferase(ZPR_0540,ZPR_0541),whichcon-vertsulfatetoadenylylsulfate(APS)andsubsequentlyto3'-phosphoadenylylsulfate(PAPS).
Phosphoadenosinephosphosulfatereductase(ZPR_3632)canconvertPAPSintosulfite,andthenhydrogensulfide(H2S)couldbeproducedfromsulfitebythesulfitereductases(ZPR_0424,ZPR_4048).
However,ourpreviousexperi-mentsshowedthatSM-A87doesnotsecreteH2S(22).
Thus,H2Sisprobablyusedtoproduceacetateviacysteinesynthase(ZPR_2076),whichconverts3-O-acetyl-L-serine(fromserine)andH2Stoacetate.
SubstratetransportsystemsSinceSM-A87hasmanyextracellularhydrolyticenzymes,theremustberelatedsystemstotransportthenutrientproductsintothecell.
TheATP-bindingcassetteFigure2TheMEROPScategoryoftheextracellularpeptidasesfromZ.
profundaSM-A87,G.
forsetiiKT0803andS.
piezotoleransWP3.
Qinetal.
BMCGenomics2010,11:247http://www.
biomedcentral.
com/1471-2164/11/247Page7of10(ABC)transporters,whicharewidespreadamongbacte-ria,cancoupleATPhydrolysistothetransportofavari-etyofsubstratesintoandoutofthecell[47].
AnexaminationofSM-A87genomeidentifiedmanygenesencodingpossibleABCtransporters(Table2),whichisconsistentwiththereportthatthereisanenrichmentofABCtransportergenesinthegenomesofdeep-seamicroorganisms[48].
SM-A87hasthreepredictedaminoacidpermeasesandthreeaminoacidtransporters,whichmakeitpossibleforthestraintoabsorbaminoacidsandoligopeptides.
AccordingtotheKEGGpathwaymap,thestrainmaybeabletotransportmolybdate,ironcom-plexes,lipopolysaccharidesandlipoproteins.
Inaddition,thepresenceofgenesencodingxylosepermease(ZPR_0446),fucosepermease(ZPR_4359)andglucose/galactosetransporter(ZPR_0518)maycorrespondtothecarbohydratetransportabilityofSM-A87.
TheTonB-dependenttransportsystemcantakeuplargesubstratemolecules,suchassiderophoresandvita-mins,intothecellfromtheenvironment[49].
Thegenomeanalysisshowedthat40TonB-dependentrecep-torgenesand5TonBproteingenesarepresentinSM-A87.
Consistentwithpreviousreports,therearefewerTonBproteinsthanTonBreceptors[50].
ThepredictedTonB-dependentsiderophorereceptors(ZPR_0148,ZPR_2532)arelikelytobeinvolvedintheenrichmentandtransportofironintothecell.
MobileelementsSM-A87ispredictedtocarrymanytransposases,sup-portingtheideathattransposasesareabundantinthedeep-seaenvironment[5,48].
TwopredictedputativetransposonswereidentifiedintheSM-A87genome.
OneiscomposedofZPR_3981,ZPR_3982andZPR_3983,ofwhichZPR_3981andZPR_3983belongtotheIS66fam-ilyoftransposases.
Surprisingly,ZPR_3982ispredictedtobeanRNA-directedDNApolymerase(reversetran-scriptase),implyingthattheDNAsegmentofZPR_3982mayhavecomefromanRNAvirus.
Thesecondtranspo-soniscomposedofZPR_1509,ZPR_1511andZPR_1512,ofwhichZPR_1509isanIS3familytransposaseandZPR_1512isaIS116/IS110/IS902familytransposase.
ZPR_1511encodesaglyoxalasefamilyproteinwiththehighestaminoacidsimilarity(63%)toaglyoxalasefromMyxococcusxanthus.
CRISPRClusteredregularlyinterspacedshortpalindromicrepeat(CRISPR)elementsarecommoninbacteriaandarchaea.
ACRISPRischaracterizedbydirectrepeats(DR)thatareseparatedbysimilarlysizednon-repetitivespacers.
TherearealsoCRISPR-associated(CAS)genesandaleadersequencebeforetherepeatarea.
CRISPRelementscanbedescribedasfollows:CASgenes-leader-DR1-spacer1-DR2-spacer2.
.
.
DRn-1-spacern-1-DRn,wherenisthenum-berofrepeats[51,52].
AsingleCRISPRlocushasbeendetectedinmanybacterialgenomes[52].
However,therearetwopredictedCRISPRlociintheSM-A87genome.
Thefirstlocusis5594bpinlength(bp1642261tobp1647855).
Inthefirstlocus,theDRsequenceis37bpinlengthwith76spacers.
SixCASgenesofthecas1,cas2,cas3andcas5familiesweredetectedupstreamofthefirstlocus.
Thesecondlocusis2114bpinlength(bp4768893tobp4771007),witha47-bpDRsequenceand26spacers.
ThereareonlytwoCASgenesupstreamofthesecondlocus,onebelongingtothecas1familyandonetothecas2family.
ThetwoCASsystemsareclassifiedasdifferenttypesaccordingtothefamilyandarrangementoftheCASgenes.
CRISPRisthoughttofunctionasananti-phagedefensesystemviaanRNA-silencing-likemechanism,andthespacersareoftenfoundtosharehighsequencesimilari-tieswithphagesequences[52].
However,ourBLASTsearchesresultedinnohitsinthepublicdatabases,prob-ablybecauseonlyasmallfractionofphagesequencesaredepositedinthedatabases.
Intheocean,thequantityofphagesisabout5-10timesmorethanthatofbacteria[53].
SM-A87'sCRISPRsmayhelpdefendagainstinfec-tionbyunknownphagesinthedeepsea.
AdaptationtosaltandcoldHalophileshavetwodifferentwaystomaintaintheircel-lularosmoticbalanceinsaltyenvironments:byaccumu-latingorganiccompatiblesolutesorbymaintainingahighconcentrationofionssuchaspotassiuminthecell[54,55].
SM-A87isamoderatehalophileandcantolerate0-12%NaCl[22].
ToanalyzethemechanismofSM-A87'sadaptationtothemarinesaltyenvironment,wepredictedandcomparedthepIsofintracellularandextracellularproteinsfromSM-A87,G.
forsetiiKT0803,hyperhalo-philicbacteriumSalinibacterruber,nonhalophilicbacte-riumEscherichiacoliandBacteroidetessoilbacteriumCytophagahutchinsonii(Table4).
HalophilicproteinscontainmoreacidicresiduesandhavelowerpIsthannonhalophilicproteins[55].
E.
coliisnothalophilic,andthereisnostatisticallysignificantdifferencebetweenthepIsofitsintracellularandextracellularproteins.
S.
ruberisahyperhalophilicbacteriumthathasahighintracellu-larpotassiumconcentrationtomaintainitscellularosmoticbalance[55];thus,theionconcentrationsinsideandoutsideofthecellarebothhigh.
ThepIsofboththeintracellularandextracellularproteinsofS.
ruberaremuchlowerthanthoseofE.
coliandC.
hutchinsonii(Table4),suggestingthattheS.
ruberproteinsareallhalophilic.
ForthemarinebacteriaSM-A87andG.
forsetiiKT0803,theintracellularproteinpIsarehigherthanthoseoftheextracellularproteins,withastatisticallysignificantdifference(p<0.
01forallproteins,p<0.
05forQinetal.
BMCGenomics2010,11:247http://www.
biomedcentral.
com/1471-2164/11/247Page8of10peptidases).
ThisindicatesthattheintracellularproteinsofSM-A87havepoorsalt-tolerance,anditisthereforeimpossibleforSM-A87tomaintainhighionconcentra-tionsinthecellforosmoticbalance.
Instead,SM-A87hasaglycinebetainetransporter(ZPR_3842).
Glycinebetaineisawell-knownosmoregulator,implyingthatSM-A87mayuseorganiccompatiblesolutesratherthanionstomaintainitscellularosmoticbalance.
Thus,theintracellularproteinsofSM-A87arenothalophilicandhavehigherpIs.
Incontrast,theextracellularproteinsofSM-A87mustfacethemoderatelyhighionconcentration(~3%)ofthesea,sotheseproteinsarehalophilicandhavelowpIs.
ThisisalsothecaseforG.
forsetiiKT0803,whichalsocontainsglycinebetainetransporter.
Thesalt-toler-anceoftheextracellularproteinsofSM-A87andtheirlowerpIsareindicativeoftheiradaptationtothesaltymarineenvironment.
Unsaturatedfattyacidscanincreasethefluidityofthemembrane,whichisacommonstrategyusedbybacteriatoadapttoacoldenvironment.
Themembranesofdeep-seabacteriacontainahighproportionofmonounsatu-ratedfattyacids,whichareveryimportantformaintain-ingbacterialmembranefluidity[56].
SM-A87hasfivefattyaciddesaturasegenes,whichmaycontributetohighmembranefluidity,andthuscoldadaptation.
InadditiontothechaperonesGroELandDnaJ,SM-A87hasfourcoldshockproteingenesandoneheatshockproteingene,whichmayhelpthestrainsurviveinthecolddeep-seaenvironment.
SM-A87alsohasgenesencodingthepyruvatedehydrogenasecomplexandtrehalosephos-phatesynthase(ZPR_2459),whicharebothassociatedwithcoldadaptation[57].
ConclusionThisworkpresentsthefirstcompletedeep-seabacterialgenomeofamemberofthephylumBacteroidetes.
SM-A87hassomefeaturesthatarecommonindeep-seabac-teria,suchasnumeroustransposasesandABC-typetransporters.
Ourgenomesurveyalsorevealsitsmeta-bolicversatilityandextensivehydrolyticcapabilities.
Additionally,basedonthecontentsofitsgenome,SM-A87cansensenutrientpulses,synthesizeexopolysaccha-ridestoabsorbnutrients,exportavarietyofenzymestodegradematerials,transportsubstratesintothecelleffi-cientlyandutilizeresourcesviaversatilemetabolicpath-ways.
Withthesefeatures,SM-A87canthriveinthedeep-seaenvironment.
MethodsStrainSM-A87,originallyisolatedfromdeep-seasedi-mentinthesouthernOkinawaTrough,wasculturedaspreviouslydescribed[22].
Thecellswereharvestedbycentrifugationat12000gat10°Cfor30min.
GenomicDNAwaspreparedbyusingagenomicDNAextractionkit(BioTeke,China)accordingtothemanufacturer'sinstructions.
ThegenomesequenceofstrainSM-A87wasdeter-minedusingacombinedstrategyofSangersequencingand454pyrosequencing.
About100megabasesofdatawereobtainedfromone454(GS-FLX)sequencingrun.
Thesequenceswereassembledinto144largecontigsthatwereorientedbySangersequencingreadsfrompairedendsofplasmidandfosmidlibrarieswithinsertsizesvaryingfrom3kband5kbto40kb.
ThegapswereclosedbyprimerwalkingandPCRsegmentsequencing.
Thephred-phrap-consedpackagewasusedfortheassemblyandfinishing[58],andthefinishedgenomewasvalidatedfurtherby10-kblongPCR.
ThetRNAgeneswerepredictedbytRNAscan-SE[59].
TherRNAgeneswereidentifiedbyBLASTsearchagainstRfam[60].
Theopenreadingframes(ORFs)werefoundbyusingGLIMMER3.
0[61].
ThepredictedORFswereannotatedbysimilaritysearchesagainstdatabasesofnonredundantproteinsequencesfromNCBI,SWIS-SPROT,Pfam[62],COG[63],KEGGandInterPro[64].
TheannotationofORFswasmanuallycuratedwithArtemis[65].
TransmembraneregionsofthepredictedproteinswerepredictedwithTMHMM2.
0http://www.
cbs.
dtu.
dk/services/TMHMM/.
Signalpeptidepre-dictionwasdonewithSignalP3.
0[66].
Clusteredregu-larlyinterspacedshortpalindromicrepeats(CRISPR)werefoundwithCRISPR-finderhttp://crispr.
u-psud.
fr/Server/CRISPRfinder.
php.
ThesequencealignmentwasdonewithClustalX[67].
Table4:PredictedisoelectricpointsoftheproteinsofSM-A87andcomparedstrains1.
SM-A87G.
forsetiiKT0803E.
coliC.
hutchinsoniiS.
rubberWithsignalpeptidesWithoutsignalpeptidesWithsignalpeptidesWithoutsignalpeptidesWithsignalpeptidesWithoutsignalpeptidesWithsignalpeptidesWithoutsignalpeptidesWithsignalpeptidesWithoutsignalpeptidesAllproteins6.
29±2.
087.
28±2.
215.
73±1.
907.
07±2.
207.
22±2.
177.
20±2.
117.
45±1.
506.
47±1.
426.
58±2.
525.
79±2.
15Peptidases5.
96±1.
656.
65±2.
025.
29±1.
435.
93±1.
667.
54±2.
387.
33±2.
137.
65±1.
957.
35±1.
935.
76±1.
905.
91±2.
171Thedataareaverageswithstandarddeviation.
Qinetal.
BMCGenomics2010,11:247http://www.
biomedcentral.
com/1471-2164/11/247Page9of10ThecomparedgenomesequenceswereobtainedfromtheNCBIdatabaseFTPsite:ftp://ftp.
ncbi.
nih.
gov/genomes/Bacteria/.
AminoacidcompositionandproteinisoelectricpointswerepredictedbytheEMBOSSPep-statsprogram.
Thecomparedproteinnumberswerecountedbysearchingthegenomeannotationfileusingtheproteinnamewithnofurtherrefinementoftheanno-tation.
COGfunctionalcategorieswereassignedbyusingablastpprogramtosearchtheCOGdatabasewithallSM-A87proteins,andthefinalresultswerecompiledusingcustom-madePerlscripts.
ThecompletegenomesequenceofstrainSM-A87wasdepositedinGenBankundertheaccessionno.
CP001650.
AdditionalmaterialAuthors'contributionsXZcoordinatedthestudy.
YZ,BZandJYdesignedtheproject;HDproviedthestrain;QQpreparedtheDNA;XWandGLcarriedoutthesequencingandassembly;QQandXZfinishedthegenome;QQ,GL,BXandXZanalyzedthedata;QQwrotethepaper;YZandXCcriticallyreviewedthepaper.
Allauthorsapprovedthefinalmanuscript.
AcknowledgementsWethankHaiboSunforhishelpinsequenceassembly.
Theworkwassup-portedbyNationalNaturalScienceFoundationofChina(30770040,40706001),Hi-TechResearchandDevelopmentprogramofChina(2007AA091903,2007AA021306),andCOMRAProgram(DYXM-115-02-2-6).
AuthorDetails1StateKeyLabofMicrobialTechnology,MarineBiotechnologyResearchCenter,ShandongUniversity,Jinan250100,PRChina,2CASKeyLaboratoryofGenomeSciencesandInformation,BeijingInstituteofGenomics,ChineseAcademyofSciences,Beijing,100029,PRChinaand3CentreforBioengineeringandBiotechnology,ChinaUniversityofPetroleum(EastChina),Qingdao266555,PRChinaReferences1.
BrunnegardaJ,GrandelS,StahlH,TengbergA,HallPOJ:Nitrogencyclingindeep-seasedimentsofthePorcupineAbyssalPlain,NEAtlantic.
ProgressinOceanography2004,63:159-181.
2.
KarlDM:Microbialoceanography:paradigms,processesandpromise.
NatRevMicrobiol2007,5:759-69.
3.
SchippersA,NeretinLN,KallmeyerJ,FerdelmanTG,CraggBA,ParkesRJ,JorgensenBB:Prokaryoticcellsofthedeepsub-seafloorbiosphereidentifiedaslivingbacteria.
Nature2005,433:861-4.
4.
WhitmanWB,ColemanDC,WiebeWJ:Prokaryotes:Theunseenmajority.
ProcNatlAcadSciUSA1998,95:6578-6583.
5.
WordenAZ,CuvelierML,BartlettDH:In-depthanalysesofmarinemicrobialcommunitygenomics.
TrendsMicrobiol2006,14(8):331-6.
6.
DelongEF,KarlDM:Genomicperspectiveinmicrobialoceanography.
Nature2005,437:336-42.
7.
JorgensenBB,BoetiusA:Feastandfamine-microbiallifeinthedeep-seabed.
NatRevMicrobiol2007,5:770-81.
8.
OliveraNL,SequeirosC,NievasML:Diversityandenzymepropertiesofprotease-producingbacteriaisolatedfromsub-AntarcticsedimentsofIsladeLosEstados,Argentina.
Extremophiles2007,11:517-526.
9.
ZhouMY,ChenXL,ZhaoHL,DangHY,LuanWX,ZhangXY,HeHL,ZhouBC,ZhangYZ:Diversityofboththecultivableprotease-producingbacteriaandtheirextracellularproteasesinthesedimentsoftheSouthChinaSea.
MicrobEcol2009,58:582-590.
10.
ChenXL,XieBB,BianF,ZhaoGY,ZhaoHL,HeHL,ZhouBC,ZhangYZ:Ecologicalfunctionofmyroilysin,anovelbacterialM12metalloproteasewithelastinolyticactivityandasynergisticroleincollagenhydrolysis,inbiodegradationofdeep-seahigh-molecular-weightorganicnitrogen.
ApplEnvironMicrobiol2009,75:1838-1844.
11.
ChenXL,ZhangYZ,GaoPJ,LuanXW:Twodifferentproteasesproducedbyadeep-seapsychrotrophicbacterialstrainPseudoalteromonassp.
SM9913.
MarineBiology2003,143:989-993.
12.
ZengR,ZhangR,ZhaoJ,LinN:Cold-activeserinealkalineproteasefromthepsychrophilicbacteriumPseudomonasstrainDY-A:enzymepurificationandcharacterization.
Extremophiles2003,7:335-337.
13.
ZhaoGY,ChenXL,ZhaoHL,XieBB,ZhouBC,ZhangYZ:HydrolysisofinsolublecollagenbydeseasinMCP-01fromdeep-seaPseudoalteromonassp.
SM9913:Collagenolyticcharacters,collagen-bindingabilityofC-terminalPKDdomainandImplicationforitsnovelroleindeep-seasedimentaryparticulateorganicnitrogendegradation.
JBiolChem2008,283:36100-36107.
14.
ZehrJP,WardBB:Nitrogencyclingintheocean:newperspectivesonprocessesandparadigms.
ApplEnvironMicrobiol2002,68:1015-24.
15.
CottrellMT,KirchmanDL:NaturalassemblagesofmarineproteobacteriaandmembersoftheCytophaga-Flavobacterclusterconsuminglow-andhigh-molecular-weightdissolvedorganicmatter.
ApplEnvironMicrobiol2000,66(4):1692-7.
16.
KirchmanDL:Theecologyofcytophaga-flavobacteriainaquaticenvironments.
FEMSMicrobiologyEcology2002,39:91-100.
17.
BennerR:Molecularindicatorsofthebioavailabilityofdissolvedorganicmatter.
InAquaticEcosystems:InteractivityofDissolvedOrganicMatterEditedby:FindlaySEG,SinsabaughRL.
SanDiego,CA,AcademicPress;2003:121-138.
18.
EilersH,PernthalerJ,PepliesJ,GlocknerFO,GerdtsG,AmannR:IsolationofnovelpelagicbacteriafromtheGermanbightandtheirseasonalcontributionstosurfacepicoplankton.
ApplEnvironMicrobiol2001,67:5134-5142.
19.
BauerM,KubeM,TeelingH,RichterM,LombardotT,AllersE,WurdemannCA,QuastC,KuhlH,KnaustF,WoebkenD,BischofK,MussmannM,ChoudhuriJV,MeyerF,ReinhardtR,AmannRI,GlocknerFO:WholegenomeanalysisofthemarineBacteroidetes'Gramellaforsetii'revealsadaptationstodegradationofpolymericorganicmatter.
EnvironMicrobiol2006,8(12):2201-13.
20.
CottrellMT,YuL,KirchmanDL:SequenceandexpressionanalysesofCytophaga-likehydrolasesinaWesternarcticmetagenomiclibraryandtheSargassoSea.
ApplEnvironMicrobiol2005,71:8506-13.
21.
GrzymskiJJ,CarterBJ,DeLongEF,FeldmanRA,GhadiriA,MurrayAE:ComparativegenomicsofDNAfragmentsfromsixAntarcticmarineplanktonicbacteria.
ApplEnvironMicrobiol2006,72:1532-41.
22.
QinQL,ZhaoDL,WangJ,ChenXL,DangHY,LiTG,ZhangYZ,GaoPJ:Wangiaprofundagen.
nov.
,sp.
nov.
,anovelmarinebacteriumofthefamilyFlavobacteriaceaeisolatedfromsouthernOkinawaTroughdeep-seasediment.
FEMSMicrobiolLett2007,271:53-8.
23.
Ivars-MartinezE,Martin-CuadradoAB,D'AuriaG,MiraA,FerrieraS,JohnsonJ,FriedmanR,Rodriguez-ValeraF:ComparativegenomicsoftwoecotypesofthemarineplanktoniccopiotrophAlteromonasmacleodiisuggestsalternativelifestylesassociatedwithdifferentkindsofparticulateorganicmatter.
ISMEJ2008,2:1194-1212.
24.
WitteU,WenzhoferF,SommerS,BoetiusA,HeinzP,AberleN,SandM,CremerA,AbrahamWR,JorgensenBB,PfannkucheO:Insituexperimentalevidenceofthefateofaphytodetrituspulseattheabyssalseafloor.
Nature2003,424:763-6.
Additionalfile1OperonsofTonB-dependentreceptorandSusD/RagBfamilyprotein.
PredictedoperonsofTonB-dependentreceptorandSusD/RagBfamilyproteinaswellasadjacentproteinsinZ.
profundaSM-A87genome.
Additionalfile2SequencealignmentofZPR_0565andZPR_1126withotherinitialglycosyltransferases.
CpsE(CAC18355),EpsE(AAC44012),EpsT(EF362569),ExoY(Q02731),GumD(AAA86372),RfbP(P26406),WbaP(AAD21565),WchA(AAK20699).
Theboxedsequencesareconservedaminoacidmotifofinitialglycosyltransferase.
Additionalfile3Polysaccharidebiosynthesisclusters.
TwopredictedpolysaccharidebiosynthesisclustersinZ.
profundaSM-A87genome.
Additionalfile4Summaryofthecarbohydrate-degradingenzymesfromZ.
profundaSM-A87.
1Y,withsignalpeptide.
2aa,aminoacids.
Received:26September2009Accepted:17April2010Published:17April2010Thisarticleisavailablefrom:http://www.
biomedcentral.
com/1471-2164/11/2472010Qinetal;licenseeBioMedCentralLtd.
ThisisanOpenAccessarticledistributedunderthetermsoftheCreativeCommonsAttributionLicense(http://creativecommons.
org/licenses/by/2.
0),whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedtheoriginalworkisproperlycited.
BMCGenomics2010,11:247Qinetal.
BMCGenomics2010,11:247http://www.
biomedcentral.
com/1471-2164/11/247Page10of1025.
FabretC,FeherVA,HochJA:Two-ComponentSignalTransductioninBacillussubtilis:HowOneOrganismSeesItsWorld.
JBacteriol1999,181:1975-83.
26.
SzurmantH,WhiteRA,HochJA:Sensorcomplexesregulatingtwo-componentsignaltransduction.
CurrOpinStructBiol2007,17:706-715.
27.
KlappenbachJA,DunbarJM,SchmidtTM:rRNAoperoncopynumberreflectsecologicalstrategiesofbacteria.
ApplEnvironMicrobiol2000,66:1328-33.
28.
SchurmannA,BrauersA,MassmannS,BeckerW,JoostHG:CloningofanovelfamilyofmammalianGTP-bindingproteins(RagA,RagBs,RagB1)withremotesimilaritytotheRas-relatedGTPases.
JBiolChem1995,270:28982-28988.
29.
ChoKH,SalyersAA:BiochemicalanalysisofinteractionsbetweenoutermembraneproteinsthatcontributetostarchutilizationbyBacteroidesthetaiotaomicron.
JBacteriol2001,183:7224-7230.
30.
NicholsCA,GuezennecJ,BowmanJP:Bacterialexopolysaccharidesfromextrememarineenvironmentswithspecialconsiderationofthesouthernocean,seaice,anddeep-seahydrothermalvents:areview.
MarBiotechnol2005,7:253-71.
31.
HouS,SawJH,LeeKS,FreitasTA,BelisleC,KawarabayasiY,DonachieSP,PikinaA,GalperinMY,KooninEV,MakarovaKS,OmelchenkoMV,SorokinA,WolfYI,LiQX,KeumYS,CampbellS,DeneryJ,AizawaS,ShibataS,MalahoffA,AlamM:Genomesequenceofthedeep-seagamma-proteobacteriumIdiomarinaloihiensisrevealsaminoacidfermentationasasourceofcarbonandenergy.
ProcNatlAcadSciUSA2004,101:18036-41.
32.
QinGK,ZhuL,ChenXL,WangPG,ZhangYZ:Structuralcharacterizationandecologicalrolesofanovelexopolysaccharidefromthedeep-seapsychrotolerantbacteriumPseudoalteromonassp.
SM9913.
Microbiology2007,153:1566-1572.
33.
CantarelBL,CoutinhoPM,RancurelC,BernardT,LombardV,HenrissatB:TheCarbohydrate-ActiveEnZymesdatabase(CAZy):anexpertresourceforGlycogenomics.
NucleicAcidsRes2009,37:233-8.
34.
SaldíasMS,PatelK,MaroldaCL,BittnerM,ContrerasI,ValvanoMA:DistinctfunctionaldomainsoftheSalmonellaentericaWbaPtransferasethatisinvolvedintheinitiationreactionforsynthesisoftheOantigensubunit.
Microbiology2008,154:440-453.
35.
SteinerK,NovotnyR,PatelK,VinogradovE,WhitfieldC,ValvanoMA,MessnerP,SchafferC:FunctionalcharacterizationoftheinitiationenzymeofS-layerglycoproteinglycanbiosynthesisinGeobacillusstearothermophilusNRS2004/3a.
JBacteriol2007,189:2590-8.
36.
ValvanoMA:ExportofO-specificlipopolysaccharide.
FrontBiosci2003,8:452-71.
37.
BolhuisA,KwanD,ThomasJR:Halophilicadaptationsofproteins.
InProteinadaptationinextremophilesEditedby:SiddiquiKS,ThomasT.
NewYork,NovaSciencePublishers,Inc;2008:71-104.
38.
RawlingsND,MortonFR,KokCY,KongJ,BarrettAJ:MEROPS:thepeptidasedatabase.
NucleicAcidsRes2008,36:320-325.
39.
BergGM,RepetaDJ,LaRocheJ:TheroleofthepicoeukaryoteAureococcusanophagefferensincyclingofmarinehigh-molecularweightdissolvedorganicnitrogen.
LimnolOceanogr2003,48:1825-1830.
40.
BoetiusA:Microbialhydrolyticenzymeactivitiesindeep-seasediments.
HelgolandMarineResearch1995,49:177-187.
41.
PolgarL:Theprolyloligopeptidasefamily.
CellMolLifeSci2002,59:349-62.
42.
BeebeKD,ShinJ,PengJ,ChaudhuryC,KheraJ,PeiD:SubstrateRecognitionthroughaPDZDomaininTail-SpecificProtease.
Biochemistry2000,39:3149-55.
43.
RathJ,HerndlGJ:Characteristicsanddiversityofbeta-d-glucosidase(EC3.
2.
1.
21)activityinmarinesnow.
ApplEnvironMicrobiol1994,60:807-813.
44.
Dell'AnnoA,DanovaroR:ExtracellularDNAplaysakeyroleindeep-seaecosystemfunctioning.
Science2005,309:2179.
45.
Dell'AnnoA,FabianoM,MeiML,DanovaroR:Enzymaticallyhydrolysedproteinandcarbohydratepoolsindeep-seasediments:estimatesofthepotentiallybioavailablefractionandmethodologicalconsiderations.
MarEcolProgrSer2000,196:15-23.
46.
KanehisaM,GotoS,KawashimaS,OkunoY,HattoriM:TheKEGGresourcefordecipheringthegenome.
NucleicAcidsRes2004,32:277-80.
47.
DavidsonAL,ChenJ:ATP-bindingcassettetransportersinbacteria.
AnnuRevBiochem2004,73:241-68.
48.
DeLongEF,PrestonCM,MincerT,RichV,HallamSJ,FrigaardNU,MartinezA,SullivanMB,EdwardsR,BritoBR,ChisholmSW,KarlDM:Communitygenomicsamongstratifiedmicrobialassemblagesintheocean'sinterior.
Science2006,311:496-503.
49.
GiovannoniS,StinglU:Theimportanceofculturingbacterioplanktoninthe'omics'age.
NatRevMicrobiol2007,5:820-6.
50.
KadnerRJ,HellerKJ:MutualinhibitionofcobalaminandsiderophoreuptakesystemssuggeststheircompetitionforTonBfunction.
JBacteriol1995,177:4829-4835.
51.
McShanWM,FerrettiJJ,KarasawaT,SuvorovAN,LinS,QinB,JiaH,KentonS,NajarF,WuH,ScottJ,RoeBA,SavicDJ:GenomesequenceofanephritogenicandhighlytransformableM49strainofStreptococcuspyogenes.
JBacteriol2008,190:7773-85.
52.
SorekR,KuninV,HugenholtzP:CRISPR--awidespreadsystemthatprovidesacquiredresistanceagainstphagesinbacteriaandarchaea.
NatRevMicrobiol2008,6:181-6.
53.
WommackKE,ColwellRR:Virioplankton:virusesinaquaticecosystems.
MicrobiolMolBiolRev2000,64:69-114.
54.
BurgMB,FerrarisJD:Intracellularorganicosmolytes:functionandregulation.
JBiolChem2008,283:7309-7313.
55.
MongodinEF,NelsonKE,DaughertyS,DeBoyRT,WisterJ,KhouriH,WeidmanJ,WalshDA,PapkeRT,PerezGS,SharmaAK,NesboCL,MacLeodD,BaptesteE,DoolittleWF,CharleboisRL,LegaultB,Rodriguez-ValeraF:ThegenomeofSalinibacterruber:Convergenceandgeneexchangeamonghyperhalophilicbacteriaandarchaea.
ProcNatlAcadSciUSA2005,102:18147-18152.
56.
SimonatoF,CampanaroS,LauroFM,VezziA,D'AngeloM,VituloN,ValleG,BartlettDH:Piezophilicadaptation:agenomicpointofview.
JBiotechnol2006,126:11-25.
57.
RodriguesDF,TiedjeJM:Copingwithourcoldplanet.
ApplEnvironMicrobiol2008,74:1677-86.
58.
GordonD,AbajianC,GreenP:Consed:agraphicaltoolforsequencefinishing.
GenomeRes1998,8:195-202.
59.
LoweTM,EddySR:tRNAscan-SE:aprogramforimproveddetectionoftransferRNAgenesingenomicsequence.
NucleicAcidsRes1997,25:955-64.
60.
Griffiths-JonesS,BatemanA,MarshallM,KhannaA,EddySR:Rfam:anRNAfamilydatabase.
NucleicAcidsRes2003,31:439-441.
61.
DelcherAL,HarmonD,KasifS,WhiteO,SalzbergSL:ImprovedmicrobialgeneidentificationwithGLIMMER.
NucleicAcidsRes1999,27:4636-4641.
62.
BatemanA,BirneyE,CerrutiL,DurbinR,EtwillerL,EddySR,Griffiths-JonesS,HoweKL,MarshallM,SonnhammerE:ThePfamProteinFamiliesDatabase.
NucleicAcidsRes2002,30:276-280.
63.
TatusovaRL,NataleDA,GarkavtsevIV,TatusovaTA,ShankavaramUT,RaoBS,KiryutinB,GalperinMY,FedorovaND,KooninEV:TheCOGdatabase:newdevelopmentsinphylogeneticclassificationofproteinsfromcompletegenomes.
NucleicAcidsRes2001,9:222-28.
64.
ApweilerR,AttwoodTK,BairochA,BatemanA,BirneyE,BiswasM,BucherP,CeruttiL,CorpetF,CroningMDR,DurbinR,FalquetL,FleischmannW,GouzyJ,HermjakobH,HuloN,JonassenI,KahnD,KanapinA,KaravidopoulouY,LopezR,MarxB,MulderNJ,OinnTM,PagniM,ServantF,SigristCJA,ZdobnovEM:TheInterProdatabase,anintegrateddocumentationresourceforproteinfamilies,domainsandfunctionalsites.
NucleicAcidsRes2001,29:37-40.
65.
RutherfordK,ParkhillJ,CrookJ,HorsnellT,RiceP,RajandreamMA,BarrellB:Artemis:sequencevisualizationandannotation.
Bioinformatics2000,16:944-5.
66.
BendtsenJD,NielsenH,HeijneGV,BrunakS:Improvedpredictionofsignalpeptides:SignalP3.
0.
JMolBiol2004,340:783-95.
67.
JeanmouginaF,ThompsonJD,GouyM,HigginsDG,GibsonTJ:MultiplesequencealignmentwithClustalX.
TrendsinBiochemicalSciences1998,23:403-405.
doi:10.
1186/1471-2164-11-247Citethisarticleas:Qinetal.
,ThecompletegenomeofZunongwangiapro-fundaSM-A87revealsitsadaptationtothedeep-seaenvironmentandeco-logicalroleinsedimentaryorganicnitrogendegradationBMCGenomics2010,11:247

亚洲云-浙江高防BGP.提供自助防火墙高防各种offer高防BGP!

 亚洲云Asiayun怎么样?亚洲云Asiayun好不好?亚洲云成立于2021年,隶属于上海玥悠悠云计算有限公司(Yyyisp),是一家新国人IDC商家,且正规持证IDC/ISP/CDN,商家主要提供数据中心基础服务、互联网业务解决方案,及专属服务器租用、云服务器、云虚拟主机、专属服务器托管、带宽租用等产品和服务。Asiayun提供源自大陆、香港、韩国和美国等地骨干级机房优质资源,包括B...

【IT狗】在线ping,在线tcping,路由追踪

IT狗为用户提供 在线ping、在线tcping、在线路由追踪、域名被墙检测、域名被污染检测 等实用工具。【工具地址】https://www.itdog.cn/【工具特色】1、目前同类网站中,在线ping 仅支持1次或少量次数的测试,无法客观的展现目标服务器一段时间的网络状况,IT狗Ping工具可持续的进行一段时间的ping测试,并生成更为直观的网络质量柱状图,让用户更容易掌握服务器在各地区、各线...

JUSTG提供俄罗斯和南非CN2 GIA主机年$49.99美元JUSTGgia南非cn2南非CN2justG

JUSTG,这个主机商第二个接触到,之前是有介绍到有提供俄罗斯CN2 GIA VPS主机活动的,商家成立时间不久看信息是2020年,公司隶属于一家叫AFRICA CLOUD LIMITED的公司,提供的产品为基于KVM架构VPS主机,数据中心在非洲(南非)、俄罗斯(莫斯科),国内访问双向CN2,线路质量不错。有很多服务商实际上都是国人背景的,有的用英文、繁体搭建的冒充老外,这个服务商不清楚是不是真...

qq百科为你推荐
experiencedtofacilitarphpservererrorunknow server error什么意思 怎么解决accessdenied网页打开显示Access Denied,怎么解决企业建网站我想建立一个企业网站,需要多少钱??建企业网站建立一个企业网站要多少钱internetexplorer无法打开电脑的Internet Explorer打不开?yixingjia合家欢是一种什么东西?泉州商标注册泉州本地商标注册要怎么注册?具体流程是什么?厦门三五互联科技股份有限公司厦门三五互联科技股份有限公司广州分公司 待遇怎么样啊,电话营销的
三级域名网站 中文域名交易中心 亚洲大于500m 美国主机论坛 外国域名 qq数据库 网站挂马检测工具 合肥鹏博士 天互数据 jsp空间 免费申请个人网站 吉林铁通 腾讯总部在哪 starry 114dns 卡巴斯基官网下载 发证机构 机柜尺寸 ping值 cloudflare 更多