Interferon批处理for
批处理for 时间:2021-04-18 阅读:(
)
Viruses2014,6,4880-4901;doi:10.
3390/v6124880virusesISSN1999-4915www.
mdpi.
com/journal/virusesCommentaryImmunologyofBatsandTheirViruses:ChallengesandOpportunitiesTonySchountzArthropod-borneandInfectiousDiseasesLaboratory,DepartmentofMicrobiology,ImmunologyandPathology,CollegeofVeterinaryMedicine,ColoradoStateUniversity,FortCollins,CO80524,USA;E-Mail:tony.
schountz@colostate.
edu;Tel.
:+1-970-491-7350;Fax:+1-970-491-8326ExternalEditor:PatrickC.
Y.
WooReceived:6October2014;inrevisedform:21November2014/Accepted:28November2014/Published:8December2014Abstract:Batsarereservoirhostsofseveralhigh-impactvirusesthatcausesignificanthumandiseases,includingNipahvirus,Marburgvirusandrabiesvirus.
Theyalsoharbormanyothervirusesthatarethoughttohavecauseddiseaseinhumansafterspilloverintointermediatehosts,includingSARSandMERScoronaviruses.
Asisusualwithreservoirhosts,thesevirusesapparentlycauselittleornopathologyinbats.
Despitetheimportanceofbatsasreservoirhostsofzoonoticandpotentiallyzoonoticagents,virtuallynothingisknownaboutthehost/virusrelationships;principallybecausefewcoloniesofbatsareavailableforexperimentalinfections,alackofreagents,methodsandexpertiseforstudyingbatantiviralresponsesandimmunology,andthedifficultyofconductingmeaningfulfieldwork.
Thesechallengescanbeaddressed,inpart,withnewtechnologiesthatarespecies-independentthatcanprovideinsightintotheinteractionsofbatsandviruses,whichshouldclarifyhowthevirusespersistinnature,andwhatriskfactorsmightfacilitatetransmissiontohumansandlivestock.
Keywords:chiroptera;reservoirhost;virusecology;zoonosis;emerginginfectiousdisease;RNA-seq;metabolomicsOPENACCESSViruses2014,648811.
IntroductionBatsbelongtoChiroptera,thesecond-mostspecies-richorderofmammalswithmorethan1100species[1].
Genomicevidencesuggeststhatbatssharemostfeaturesofothermammals[2–4];however,theyhaveotheranatomicandbehavioralfeaturesthatappeartobeuniqueandsomeofthosemaybeessentialforhostinginfectiousagents.
Inparticular,thesizesofcolonies(sometimesinthemillions),torporofsomespecies,theirmutualgroominghabits,gregarioussocialbehavior,andpopulationdensitieslikelyfacilitatetherapidspreadofinfectiousagentsamongbats[1,5–8].
Infectionofanyorganismhasaninherentcosttothehostandinfectiousagent,andabalanceofhostresponseandvirusreplicationisessentialforestablishmentofareservoirhost/virusrelationship.
Thus,itislikelythatbatsandtheirviruseshaveco-adaptedinarelationshipthatlimitsdisease,butalsoimpairsantiviralresponses.
Batsalsoaresusceptibletoinfectiousdiseasesthatcanhavedramaticimpactsontheirhealthandecology.
Whitenosesyndrome,causedbythefungusPseudogymnoascusdestructans,haskilledmillionsofbatsineasternNorthAmerica,threateningsomespecieswithextinction[9–11].
Bartonellaspecieshavebeenisolatedfrommanybatspecies[12–16],althoughtheimpactofthesebacteriaonhumanorveterinaryhealthisunclear.
Severalotherviral,bacterial,protozoal,nematodeandtrematodespecieshavebeenassociatedwithdiseaseanddeathsofbats.
Herpesviruses,Pasteurellaspp.
,Salmonellaspp.
,Yersiniapseudotuberculosis,Burkholderiaspp.
,CedeceadavisaeandClostridiumsordelliihavebeenisolatedfromordetectedindeadbats[17–19].
ArtibeusbatsarenaturallysusceptibletoHistoplasmacapsulatum.
ExperimentalinfectionofA.
literatuswithH.
capsulatumresultedinfatalhistoplasmosisinsomebatsbutchronicsystemicinfectioninothers,suggestingthisspeciescanactasareservoirbutalsodevelopdisease[20],similartowhatisobservedinrabiesvirusinfectionsofbats.
Twoimportantfeaturesofbatsthatareuniqueamongmammalsarepoweredflight,whichpermitslargehomeranges,includingoverlargebodiesofwaterthatcanbetransitedinrelativelyshortamountsoftime,andnocturnalactivity[21].
Thesefeaturespresentdifficultiesforstudyingbatsandtheirinfectiousagentsunderfieldconditions.
Ideally,closedlaboratorycoloniesofbatsshouldbedevelopedtofacilitatemodeldevelopment,butsuchcoloniesaredifficulttoestablishbecauseofthelogisticsofcapturing,quarantiningandtransportingbats(oftentootherhemispheres),theexpenseofadequatefacilitiesforbreeding,theknowledgeandexpertiseofveterinarycarestaff,andthelowfecundityofbats.
Together,thesefeaturesmakequalitybatinfectiousdiseaseresearchdifficultandexpensive.
Becauseoftheselimitations,moststudiesontherelationshipsofbatsandtheirvirusesrelyuponvirologicalandserologicaltestingofnaturalpopulationsofbats.
Thispresentsseveraldifficultiesininterpretingdatabecauseitisfrequentlyimpossibletoknowwhenagivenbatwasinfected,ifitwasinfectedwithotheragentsthatmightconfoundinterpretationofdata,orifhormonesorenvironmentalstressorswereinfluencingimmuneresponses.
Althoughmorethanahundredviruseshavebeendetectedin,orisolatedfrom,bats[1,22–29],onlyafewbatspecieshavebeenidentifiedthatarereservoirsorsuspectedreservoirsofinfectiousagentsthathavehighimpactonhumanhealth(Table1).
Nonetheless,thelargepopulationsizesofbats,huntingofbatsasfoodsources,agriculturalandlivestockpractices,andencroachmentofhumansuponbathabitatwilllikelyleadtocontinuedspillovereventsandoutbreaksofdisease[30,31].
Viruses2014,64882Table1.
Highimpactvirusesandtheir(suspected)batreservoirhosts.
VirusDiseaseReservoirHostRabiesvirusandotherlyssaviruses[1,32]RabiesManybatspecies,world-widedistributionMarburgvirus[33]MarburgvirusdiseaseEgyptianfruitbat(Rousettusaegyptiacus)Ebolaviruses[34]EbolavirusdiseaseHammer-headedbat(Hypsignathusmonstrosus),Franquet'sepaulettedfruitbat(Epomopsfranqueti),littlecollaredfruitbat(Myonycteristorquata)1SARS-CoV[26]SevereacuterespiratorysyndromeChinesehorseshoebat(Rhinolophusspp.
)2MERS-CoV[35]MiddleEastrespiratorysyndromeEgyptiantombbat(Taphozousperforatus)2NipahandHendraviruses[36,37]EncephalitisCertainflyingfoxes(Pteropusspp.
)Sosugavirus[38]SevereAcuteFebrileDiseaseRousettusspp.
11Suspectedreservoirs;2NucleotidesequencesfoundwithhighsimilaritytoSARSorMERScoronaviruses.
Asisusualwithreservoir/virusrelationships,virusesmust:(a)infectandpersistintheirbathostswithoutcausingsubstantialdisease;(b)betransmittedtoothersusceptiblehostsbeforetheimmuneresponseeliminatestheinfection;or(c)thehostdiesfromtheinfection[1].
Forthesereasons,manymicrobialagents,particularlyviruses,haveevolvedimmune-evasionstrategiesthatmanipulatethehostresponseinamannerfavorabletothevirus[39–42].
Theseimmuneevasionmolecules,mostofwhicharevirally-encodedaccessoryproteins,alsoaffectotherspecies,suchashumans,afterspilloverevents.
However,becausethemoleculesareevolutionarily-optimizedforthereservoirhosts,theylikelybehavedifferentlyinthenonreservoirhostsandmaycontributetopathogenesis.
Nearlyalllaboratoryworkexaminingimmune-modulatingproteinsfrombatvirusesisperformedwithimmortalizedrodent,humanornon-humanprimatecelllines.
Thedifficultyininterpretingthesedataisthatnocomparisonshavebeenmadetothereservoirhostcells.
NipahvirusP,VandWproteinstargettheSTAT1pathwaysinhumancells[43],buttheseviralproteinshavenotbeenexaminedincellsfromPteropusgiganteus,anaturalreservoirofNipahvirus.
Iftheybehaveidenticallyinhumansandbats,theirrolesinpathogenesisofhumandiseaseissuspect.
Experimentalexpressionofviralproteinsinmammaliancellsoftenusesviralgenesclonedintomammalianexpressionvectorsthatproduceabundantviralproteinthatisprobablynotreflectiveofthelevelsfoundincellsinfectedwithvirus[42–45].
Thispresentsanotherinterpretationdifficultybecausehostresponsesofreservoirscanbefine-tunedbyevolutionandsubtlequantitativechangesingeneexpressioncandramaticallyimpactinfectiousoutcomes[46].
Itmaybethatactivitiesoftheseviralproteinsarequantitativelydifferentincellsfromreservoirhoststhanwhatoccursinhumancells,andthesedifferencesmayexplainwhyhumansdevelopdiseasewhereasthereservoirdoesnot.
Experimentsexaminingthefunctionsoftheseproteinsshouldusevectorsthathavecontrollablepromotors,suchasthosemediatedbytetracycline,sothatquantitativeeffectscanbemeasuredandcomparedbetweenprimarybatcellsandcellsfromhumanstoidentifydifferencesincellularresponsesthatmightaccountforpathology.
Viruses2014,648832.
ViralDiseasesofBatsPathogenisarelativeterm.
Allzoonoticvirusesare,bydefinition,pathogenictohumans;however,theyareusuallynon-orminimally-pathogenicinthereservoirhosts.
HendraandNipahvirusesdonotcauseclinicaldiseaseinflyingfoxes[47],andMarburgvirussimilarlycausesonlysubclinicaldiseaseinEgyptianfruitbats[48,49].
Severalrecentpublicationshavesuggestedthatbatsarereservoirhostsofzoonoticvirusesbecausetheyaresomehowspecialrelativetoothermammalianspeciesinthattheyaresusceptibletoinfectionbutwithoutdevelopingdisease[50–52].
Butthereareseveralinfectiousdiseasesofbats,someofwhicharediscussedbelow,anditislikelythatmanymoreas-yetundiscoveredinfectiousdiseasesaffectbats.
Moreover,rodentreservoirsofzoonoticvirusesremainpersistentlyinfected,oftenforlife,withoutsignsofdisease,includingthosethathosthantavirusesandarenaviruses[53–56].
Ofthosethathavebeencloselyexamined,aroleforregulatoryTcellsmaycontributetopersistentinfectionwithoutdiseasetotheseotherwiseinnocuousviruses[57,58].
Whethersimilarimmunemechanismsoccurinreservoirbatsthatmayaccountforpersistencewithoutdiseaseisunknown.
2.
1.
RabiesItisbeyondthescopeofthisworktoadequatelydiscussrabiesvirusinfectionsofbats;however,manyexcellentreviewsofrabiesvirusandotherlyssavirusinfectionsofbatshavebeenpublished[59–61].
Fewstudieshavethoroughlyexaminedthehostresponseofbatsinfectedrabiesvirus.
Turmelleetal.
[62]experimentallyinfectedbigbrownbats(Eptesicusfuscus)withrabiesvirusandfoundthatmostsurvivedfortheseveralmonthsofthestudy.
Moreover,thedatasuggestedthatabortiveinfectiondidnotprovidedurableimmunityinbatsandthatrepeatedinfectionscouldcontributetoresistancetodisease.
Consideringthehighdensitiesofwildbatcolonies,repeatedinfectionsprobablyoccurfrequentlyandmayprovideamechanismforresistancetorabiesinbats.
Persistenceofvirusinthisworkmayhavebeenlinkedtolowvirusreplicationthatfailedtostimulatedangersignalstotheimmuneresponse,permittinglong-terminfectionwithoutsignsofdisease.
Davisetal.
[63]experimentallyinfectedlittlebrownbats(Myotislucifugus)withrabiesvirusesandfoundthatintramuscularinfectionledtorapidclinicalprogressionofrabies,whereassubcutaneousinfectionledtodelayedclinicalprogression.
Notably,batsthatdevelopedrabiesaftersubcutaneousinfectionweremorelikelytoshedvirusinsalivaryglands.
Together,thedatasuggestedthatrouteofinfectionofrabiesvirusesamongbatscaninfluenceclinicaloutcomeandpotentialtransmissionamongbats.
2.
2.
TacaribeVirusTacaribearenavirus(TCRV)wasfirstidentifiedintwospeciesofartibeusbatsinTrinidadandTobagointhemid-1950s[64].
WilburDowns,whowasdirectoroftheTrinidadRegionalVirusLaboratory(TRVL),foundanear-deadgreatfruit-eatingbat(Artibeusliteratus)onthefrontporchofhishomethathadbeencapturedbyhispetcat[65].
ThebatexhibitedsignsofrabiesbutsubsequenttestingexcludedrabiesbecauseofthelackofNegribodies.
Tissuehomogenatesoftheunidentifiedagentwereinoculatedintosucklingmiceandcauseddisease.
Duringthenext3years,19isolatesofTCRVweremadefrom6A.
literatusand5A.
jamaicensisdiseasedbatscollectedontheislandofViruses2014,64884Trinidad;however,onlyonestrain,theoriginalTRVL-11573,remains.
DownsproposedthatartibeusbatswerereservoirhostsofTCRV.
However,experimentalinfectionofA.
jamaicensiswithTRVL-11573resultedintwodistinctoutcomes;fataldiseasewithsimilaritiestotheSouthAmericanhemorrhagicfeverswithinthreeweeks,ornosignsofdiseaseandwithoutsubstantialviralburdenorantibodyresponses[66].
ThisworkarguesagainstartibeusbatsasreservoirhostsofTCRV.
Abrahametal.
showedthatasingleaminoacidchangeinhumantransferrinreceptorconferredsusceptibilityofhumancellstoTacaribevirus[67].
TacaribevirusiscloselyrelatedtoJunínvirusandMachupovirus[68],theetiologicagentsofArgentineandBolivianhemorrhagicfevers,respectively.
ArtibeusbatsarefoundthroughoutthetropicalAmericas[69]anditisthoughtthatclimatechangeisexpandingtheirdistribution.
ThebatsarecurrentlyendemictotheFloridaKeysandareexpectedtoexpandtheirrangetomainlandFlorida,wherehighhumanpopulationdensityandagriculturalpractices(fruitorchards)mayprovideanopportunityforspilloverandemergenceintohumans.
AtleastonelaboratoryinfectionofTCRVhasoccurred,resultinginflu-likesymptomsandfeverfollowedbyseroconversionwithintwoweeks[70].
Thus,TCRVhasatleastsomeemergingzoonoticdiseasepotential.
2.
3.
LloviuVirusIntheearly2000s,alargenumberofSchreiber'sbent-wingedbats(Miniopterusschreibersii)werefounddeadincavesintheIberianPeninsula,theborderregionofSpain,PortugalandFrance.
Genesequencesofanovelfilovirus,Lloviuvirus,weredetectedinall5Schreiber'sbatscollected(throatandrectalswabs,brain,liver,lung)inacavenearCantabria,Spain,butinnoneof9deadMyotismyotisbatscollectedatthesite[71].
Theauthorsspeculatedthedie-offwasaresultofLloviuvirusinfection;however,withoutacolonyofSchreiber'sbatsithasnotbeenpossibletofulfillKoch'spostulates.
3.
BatsasReservoirHostsofImportantHumanPathogensThemostnotableexamplesofhumanpathogenicviruseshostedbybatreservoirsarerabiesvirusandotherlyssaviruses,filoviruses,henipavirusesandcoronaviruses.
Virusesfromthesegroupshavehaddramaticimpactsforthediseasestheycause;however,manymorevirusesalsooccurinbatsandtheseposethreatsasfutureemerginginfectiousdiseases[22,27,28,72,73].
Ineachofthesebat/virusrelationships,thevirusescauselittleornoharmtothehost,orcantakemonthstoyearstomanifestdisease[1].
Thesegroupsofhigh-impactagentsareRNAvirusesand,presumably,thehighererrorrateofRNApolymerasesfacilitatesvirusadaptationtonewhosts.
Forexample,rabiesvirusgenotypesarefrequentlyconstrainedwithintaxonomicgroupsofvertebratehosts(e.
g.
,batgenotypes,foxgenotypes),suggestinghostbiologyand/orimmunologyinfluencesviralevolution[63,74,75].
Hypothesesastowhybatsharborsomanyinfectiousagentsbutwithoutdiseasehavebeenproposed.
Onesuchhypothesisisthatelevatedmetabolicbodytemperaturesfromflight,mimicsthefeverresponse[51].
IncreasedbodytemperaturefromexertionisaresultofconsumptionofATPthatincreasesmitochondrialactivitiesthatmayfacilitatehostdefenses[76]andcontributetoreservoirstatusofbats[52].
However,thefeverresponsethatoccursduringinfectionispartoftheimmunologicalcascadeinitiatedbyinfectionorinflammation,inwhichinflammatorycytokines,suchasinterleukin-1,stimulatetheproductionofprostaglandinsthatactuponthehypothalamustoincreasebodytemperature[77,78].
Bythetimefeverfromaninfectionoccurs,theimmuneresponsehasalreadybeguninearnest.
Viruses2014,648854.
BatImmuneResponsestoVirusesVirtuallynothingisknownaboutbatimmuneresponsestoviruses.
Muchoftheexperimentalefforthasbeenconductedwiththeblackflyingfox(Pteropusalecto),areservoirofHendravirus,intheBaker,WynneandWanglaboratoriesatCSIRO[2,4,79–86]andrecentlyreviewedingreatdetailalongwithotherworkonbatimmunology[87].
Asnon-modelorganisms,manyobstaclesinhibitanunderstandingofbatimmuneresponsestoviruses.
Althoughlittleexperimentalworkhasbeenperformed,substantialgeneticandbiochemicalevidencesuggestsbatsaresimilar,butnotidentical,toothermammalsintermsoftheimmunologicalgenesandnoncodingRNAstheypossess[2–4,88],inferringimmuneresponsesthataresimilartoothermammals.
4.
1.
PatternRecognitionReceptorsNucleatedcellshavemanydefensivesystemsforcontainmentofinfectiousagents,andmanyinfectiousagentsencodeproteinstocircumventthesesystems[89,90].
Thiscoevolutionaryarmsraceislargelyresponsibleforshapinghostresponsesandlikelyhasbeenineffectsincetheemergenceofthefirstpathogens.
Infectiousagentsoftensharecommonbiochemicalmotifs,termedpathogen-associatedmolecularpatterns(PAMP),suchaslipopolysaccharides(LPS),lipoteichoicacid,flagellin,ordouble-strandedRNAthatarenotpresentinvertebrates[91].
Consequently,proteinsthatcounteractthesePAMPsarehighlyconservedinvertebrates.
ThepresenceofviralPAMPsincellsandtissuesisaninnatecuethattriggersanumberofcellulardefensemechanisms[92].
Allorganismshaveproteins,termedpatternrecognitionreceptors(PRR),thatsensethepresenceofcertainPAMPsandinduceamplifyingcascadesofhostcelldefensesystems,leadingtophysiologicalterationofthecellandexpressionofavarietyofantiviralgenes.
FourbroadgroupsofPRRshavebeenidentifiedinmammals;Toll-likereceptors(TLRs),retinoicacidinduciblegene-I-likereceptors(RLHs),nucleotide-bindingoligomerizationdomain-likereceptors(NLRs),andtheinterferon-inducibleabsentinmelanoma2(Aim2)[91,93,94].
ManyPRRshavebeenidentified,mostthroughscansofgenomeortranscriptomedatathatarecommonlyfoundinother,well-studiedmammals(e.
g.
,humans,laboratoryhousemice)andsuggestbatsusethesesamesystemsforsurveillanceofinfectiousthreats.
TLRgeneshavebeenclonedfromtwobatspecies,theblackflyingfox(Pteropusalecto)[95]andLeschenault'srousettebat(Rousettusleschenaultii)[96],andarefoundingenomedatafromthelittlebrownbat(Myotislucifugus)andtranscriptomedatafromtheJamaicanfruitbat(Artibeusjamaicensis)[3].
However,therearenoreportsofactivityoftheseproteinsinbatsorbatcellsinfectedwithviruses.
ThreeRLHgenes,Ddx58(RIG-I),Ifih1(MDA5),Dhx58(LGP2),havealsobeenclonedfromtheblackflyingfox[80],butnofunctionalstudieshavebeenperformedwithvirally-infectedbatcells.
ThreeNLRmembers(Ciita,Nod1,Nod2)arefoundinsomeofthebatgeneticdatabases.
However,inthetwobatspeciescloselyexamined,P.
alectoandMyotisdavidii,thePHYINlocus,whichcontainstheAim2andIfit16genesinothermammals,isabsent[4],andorthologousAim2sequencesarenotfoundinatranscriptomeofA.
jamaicensis[3].
Viruses2014,648864.
2.
Interferons4.
2.
1.
TypeIIFNMultipletypeIinterferon-α(IFNα)genesexistinmammaliangenomesthatarosethroughtandemduplications[97].
Ifnbhasonlyasinglecopyinspeciesthathavebeenexamined.
TheseIFNproteinsareexpressedasdownstreameventsofviralinfectionandthePRRcascade.
TypeIinterferonshavebeenfoundinseveralbatspeciesandinfectionofbatcellswithvirusesinducesthetypeIIFNpathway.
Virtueetal.
[82]infectedacelllinefromP.
alectowithhenipavirusesandfoundtheyantagonizedthetypeIIFNresponse.
Biesoldetal.
[98]generatedcelllinesfromtheembryonicandadulttissuesofseveralbatspeciesandimmortalizedthemwithSV40largeTantigengene.
CellswereinfectedwithRiftValleyfevervirusstrain13,whichisdefectiveinitstypeIIFNrepression,andfoundthatbatcellsexpressedIfnb30-foldhigher.
SupernatantsfromthesecellsexhibitedantiviralactivitiesinaVSVreportersystem,demonstratingbiologicalactivityofbatIFNβ.
Ifnwlociarealsopresentinbatgenomesandappeartohavemanytandemcopiesinspeciesexamined,unlikemostothermammals[87].
FunctionalactivitiesofbatIFNωhavenotbeendescribed.
4.
2.
2.
TypeIIIFNInterferon-γ(IFNγ)sequenceshavebeenidentifiedintwopteropid(Pteropusalecto,P.
vampyrus)andoneNewWorld(Myotislucifugus)species[81,87].
Ifngr1andIfngr2arefoundinA.
jamaicensissuggestingthey,too,possessanIfnggene[3].
Aswithotherphylogeneticstudiesofbatgenes,theyhavesomesimilaritytoIFNγofungulates.
IFNγfromP.
alectoimpairsviralreplicationinbatcells,reducingHendravirusreplicationinP.
alectocellsandalsoinhibitsSendaivirusreplicationinaBrazilianfree-tailbat(Tadaridabrasiliensis)lungcellline,indicatingbroadspeciescrossreactivity[81].
4.
2.
3.
TypeIIIIFNThetypeIIIinterferons(IFNλ)arealsoinvolvedinantiviralresponses[99].
Zhouetal.
[100]producedrecombinantP.
alectoIFNλandexamineditsabilitytoinduceIfit1(Isg56)andDdx58(RIG-I),andtointerferewithTiomanvirus-mediatedcelllysis.
Ifit1recognizes5'triphosphate-RNAproducedbysingle-strandedRNAviruses.
TheyfoundelevatedIFNλexpressioninP.
alectosplenocytesinfectedwithTiomanvirus.
IFNλalsoinhibitedPulauvirusreplicationanddramaticallyincreasedexpressionofIfit1and,toalesserextent,Ddx58inaP.
alectocellline.
IFNβandIFNλinducedexpressionofP.
alectoMx1,aGTPasethatmaytargetviralnucleoproteins,andOas1,whichactivatesRNaseLanddegradationofviralRNA,butnotPkr[86],andthatP.
alectosplenocytesarehighlysensitivetoIFNλstimulation[100].
ItislikelythatbattypeIandtypeIIIIFNsinduceexpressionofmanyotherantiviralgenesand,consideringtheirproperties,thatvirusesnaturallyhostedbybatshavecountermeasuresthattargetproteinsoftheIFNpathways.
Viruses2014,648874.
3.
ResponsesofInnateImmuneCellsandLymphocytesSpecializedimmunecellsplayessentialrolesinthehostresponsetoinfection.
Severaldendriticcellsubsets,macrophages,neutrophilsandNKcellsareresponsibleforearlycontainmentofinfectiousthreats.
Whilemorphologicaldescriptionsofsomeofthesecellsandgenomic/transcriptomicevidenceoftheirexistenceinbatshavebeenmade,noworkhasbeenperformedtoexamineresponsesofthesebatcellstoviruses.
BatsalsohaveTandBcellsasevidencedbycellularpurification,theproductionofhightiteredIgG[101–104](whichrequiresTcellhelp)andsequencesinthevariousbatgenomeandtranscriptomedatasets.
However,onlyantibodyresponseshavebeenexaminedbyserologicalassays.
Noinvitroorexvivoworkonantigen-specificTcellsorBcellshavebeenreported.
Asignificantlimitationofconductingresearchintobatlymphocyteresponsestovirusesisthelackofclosedcoloniesforexperimentalinfectionwork,suitablegrowthfactorsforexpansionofantigen-specificlymphocytes(e.
g.
,IL-2,IL-4,GM-CSF,Flt3L,etc.
),andthemethodologiesforbatlymphocyteculture.
IgGisotypesandcopynumbervarybetweenbatspeciesbutexhibitevidenceofsubstantialdiversity[79,105].
OnlyasingleIgGisotypehasbeendetectedinCarolliaperspicillata,whereasEptesicusfuscusappearstohavetwoIgGisotypes,andMyotislucifugushasfiveIgGisotypes[106].
AnotherunusualfeatureofM.
lucifugusisthatithasaveryhighdiversityofVDJHlocusbutlittleevidenceofsomatichypermutation.
Thismayrepresentanevolutionaryalternativeforgenerationofantibodydiversity.
Itisunknownifthesedifferenceshaveimmunologicalsignificance.
5.
ApproachesforStudyingBatImmuneResponsesManysignificantchallengesforunderstandingimmuneresponsesofbatsexist.
Alackofclosedcolonies,thegeneticdiversityofbats(betweenandwithinspecies),fewimmunological,molecularorbiochemicalreagentsandcelllines,thelargenumberofbatspeciesandtheirviruses,andthedifficultyofworkingwithbatsallcontributetothesechallenges.
However,noveltechnologiesandinstrumentationthataresubstantiallyspecies-independentarenowavailable,particularlyRNA-Seqandmetabolomics,thatcanfacilitatetherapiddiscoveryofbat-virusinteractions.
Proteomicstoolsaresubstantiallylimitedbecausemanyoftheserequireligand-specificantibodiestotargetproteinsthatarelargelyunavailableforbats;however,combineduseoftranscritomeandliquidchromatography/massspectrometryanalysismayhelpcircumventthislimitation[84,107].
Someantibodiesarecrossreactivewithbatproteins,butmostappeartobetowardshighlyconservedintracellularproteinssuchasthoseinvolvedintheantiviralresponse.
Fujiietal.
showedthatantibodiestoSTAT1andpSTAT1Y701arecrossreactivewithRousettusaegyptiacusSTAT1[108],andtheseantibodiesmaybeusefulforexamininghowMarburgvirusVP40interfereswithEgyptianfruitbatSTAT1activities[109].
ConsideringSTAT1'sconservation,itislikelytheseantibodiesarealsocross-reactivewithSTAT1fromotherbatspecies.
5.
1.
HusbandryFewbreedingcoloniesareavailableforuseinbatresearch,principallybecauseofalackofsourcesforobtainingbats,expertiseinveterinarycare,adequatefacilitiesandthecostofmaintainingcolonies.
Mostzoosandzoologicalorganizationsareunwillingtoprovidebatsforbiomedicalresearchpurposes,Viruses2014,64888andthispolicyhassignificantlystymiedresearchintobatimmunologyandimpairsunderstandingofinfectiousdiseasesthatkillbats,includingwhitenosesyndrome.
Theestablishmentofclosedbreedingcoloniesforresearchpurposesisanessentialcomponentfordevelopingcontrolled,hypothesis-drivenresearch(Figure1).
Figure1.
Bathusbandryandmanipulations.
Establishmentofbatcoloniesforexperimentalresearchrequiresenrichmentforsuccessfulmaintenanceandreproduction.
(A)Landscapefabricattachedtowallsprovidesroostingsubstrate;(B)Hangingoffruitonskewerscanprovideenrichmentforfrugivorousbatsbystimulatingforagingbehavior.
Awingband(green)ispresentwithauniqueidentificationnumber;(C,D)Hangingofinvertedwickerormetalbasketsprovideadditionalroostingsubstrates;(E)AfemaleSeba'sfruit-eatingbat(Carolliaperspicillata)withoffspring;(F)Bloodcollectionfromabatwing;(G)Oralswabforviruscollection.
PhotosarebytheauthorandareofthecolonyattheUniversityofNorthernColorado[3,66,106].
Viruses2014,64889Free-flightroomsarehighlydesirableforwelfareand,perhapsrequired,forsuccessfulbreedingcoloniesofmostbatspecies.
Theabilitytoflyinanenclosureisprobablynecessaryforthesocialhealthofthebatsandwilllikelyimprovereproductivesuccess.
Thedecisionofwhichbatspeciestouseisdrivenbythevirus-of-interest,andhusbandryrequirementsarefrequentlyspecialized.
Ingeneral,fruitbatsareeasiertocolonizethanareinsectivorousbats,whichmustlearntoeatnon-flyinginsects.
Enrichmentisalsonecessaryforthewelfareofcolonizedbats,includingartificialroosts,hangingoffruitfromwallsorceilingstostimulateforagingbehavior,andplacestohide,suchaslandscapefabrichangingfromawall.
Forexperimentalinfections,batsmayrequirehousingincagesthatmaypreventflight.
ManyofthevirusesofinteresthostedbybatsrequireBSL-3orBSL-4containment,whichlimitsthenumberofinstitutionswheresuchworkcanbeperformed.
Despitethesedifficulties,managingcoloniesofcertainspeciesofbatsforresearchpurposesisreadilyattainable.
5.
2.
RNA-SeqDeepsequencingapproaches[110]forexaminationoftranscriptionalprofilesofbatsandbatcellsinfectedwithvirusescanshedlightonbiochemicalpathwaysthatareactivatedorrepressed,thusinformaboutthehostresponseandpotentialcellulartargetsofviralevasion.
ThecostsofRNAsequencing(RNA-Seq)havebecomeconsiderablylessinthelastseveralyears.
Improvementsininstrumentationhaveincreaseddepthofcoverage,makingthepricepergigabaseevenlessexpensive.
ThecostofcDNAlibraryconstructionhasnotsubstantiallyimproved,butcanbedoneforaboutUS$100persample.
Moreover,preparationofRNAandlibrariesfornucleargenetranscripts,noncodingRNAs(e.
g.
,miRNA)andvirusesrequireddifferentmethodologies.
Transcriptsofsomegenesthatencodepotentproteins,suchascytokines,areoftenexpressedatverylowlevelsandhaveshorthalf-lives[111]thatcanmaketheirdetectiondifficultorimpossible,evenwithdeepercoveragethatismoreexpensive.
Forthesegenes,real-timePCRisnecessarytoidentifydifferencesingeneexpression.
Nonetheless,RNA-Seqoffersinvestigatorsapowerfultooltogeneratelargeamountsofdata,regardlessofthebatspeciesofinterest.
AsignificantcomplicatingfactorofRNA-Seqistherequirementforsubstantialcomputationalresourcesandexpertise.
AssemblyofreadsfromvertebrateRNA-Seqdatarequiresmultiprocessor/multicorecomputers,hundredsofgigabytesofRAM,terabytesofharddrivecapacityandfamiliaritywithLinuxoperatingsystems.
Whilemanyinstitutionshavesuchcomputationalresources,othersdonot.
Fortunately,twosuchresourcesthatuseTrinity(describedbelow)arepubliclyavailable;thePittsburgSupercomputerCenter(https://www.
psc.
edu)andtheDataIntensiveAcademicGrid(http://www.
diagcomputing.
org/).
Thus,thelackofcomputationalresourcesbyresearchgroupsisnotasignificantobstaclesolongasinternetaccessisavailablefordatatransferandawillingnesstowaitforsampleprocessingbecausequeuetimescanbelong.
Ingeneral,whenworkingwithaspeciesthatdoesnothaveanannotatedgenomeavailableitisnecessarytogeneratedenovoassembliesofalltheRNA-Seqsampledatafromanexperiment.
Bydoingso,oneensuresthateverytranscriptandisoformisrepresentedintheassembleddataset.
SeveralRNA-Seqassemblyprogramsareavailableinthepublicdomain,includingTrinity[112]andOases[113].
TheseprogramsaredesignedforRNAassembly;otherapplicationsareavailableforDNAassembly.
Eachprogramhasadvantagesanddisadvantages,soitisessentialtocarefullyexaminepackagestodetermineViruses2014,64890whichismostsuitedforagivendataset.
Oncethedenovoassemblyiscompleted,othersoftwaretoolsareemployedtocountreadsfromeachsampleforuseinstatisticalanalysisoftranscriptandisoformabundances.
Severalabundanceestimationpackagesarefreelyavailable,includingtheBioconductorpackage(composedofedgeRandDESeq)[114,115],andRSEM[116]andeXpressannotation[117]thatprovidequantitativeandqualitativestatisticalanalysisofdifferentially-expressedgenes.
Figure2.
Reactomemappingofdifferentially-expressedgenes.
Abundanceofdifferentially-expressedIFNγpathwaytranscriptsinPiritalarenavirus-infectedhamsterliversrelativetouninfectedgroupwereestimatedbyRSEMandstatisticallyanalyzedwithDESeq.
ThesymbolsfortheelevatedgeneswereimportedintotheReactomepluginofCytoscapeforpathwayanalysis.
Genesinpurpleboxeswereelevatedininfectedanimals(author'sunpublisheddata)andsuggeststhispathwayisimportantinthehostresponsetothevirus.
Itisnotuncommonformorethanathousandgenestobedifferentiallyexpressedinanexperimentandidentificationofthosetranscriptsisrequiredforsubsequentanalysis.
BatchBLASTisusedtoidentifytranscriptsusingtheRefSeq_RNA,mir-BaseandIgProtdatabases,andmanyBLASTtoolsareavailable,includingweb-based,commandlineandGUIprogramsthatarefreeorcommercial.
MosttranscriptswillbeidentifiedbyBLAST,includingsomenoncodingRNAs;however,manyotherswillViruses2014,64891havenohitsinthedatabasesandthesetranscriptscanbedifficulttointerpret.
Determiningtherolesofdifferentially-expressedgenescanbereadilyidentifiedusingDAVID[118]andReactome[119](remotelyorfromwithinCytoscapesoftware[120]).
Theseapplicationsprovidepathwayinformationaboutproteins,includingotherproteinsinthosepathways(Figure2).
Thesepackagesareessentialforrapidlyidentifyingpotentialviraltargetsduringinfectionandcansuggestwhichpathwaysshouldbefurtherscrutinized.
5.
3.
Real-TimePCRAlthoughRNA-Seqcanprovidebroadinformationaboutexpressionofgenesandpathwaysthatmaybeimportantinhostresponsestoviruses,itislimitedinitsabilitytoidentifygenesexpressedinverylowabundances.
Real-timePCRisamaturetechnologythatcanbemoresensitivethanRNA-Seqandisrapidlydeployableformultiplexexaminationofgeneexpression[46,121].
However,becausefewbatgenomeandtranscriptomedatasetsareavailable,obtainingsequencesofgenesofinterestcanbechallenging.
Someimmunegenesarehighlyconserved(e.
g.
,Tnf)whereasothersarelessso(e.
g.
,Ifng).
BecauseRNA-Seqoftenmissesthesetranscripts(becausetheirabundancesaretooloworwerenotexpressedinthetissuefromwhichtheRNAwasextracted)itmaynotbesuitableforobtainingsequencedatafordevelopingprimersetsforgenesofinterest.
Thereareotherapproachesforobtainingsequencesofunknowngenes,principallydegeneratePCRusingprimersdesignedfromorthologoussequences;however,thisapproachoftenfailstoamplifyspecificproducts.
Sequencingofgenomesisoneapproachtomitigatingthisproblemanditscosthasalsodecreasedsubstantially.
Theprincipaladvantageofgenomesequencingisthatallgeneticinformationisessentiallypresentindatasets,unlikeRNA-Seqwheremanygenesarenotdetected.
Newtoolsarenowavailablethatcanrapidlymineunannotatedgenome(andtranscriptome)datathatperformsinsilicoassemblyofcDNAsequencesforautomatedprimerdesign[121].
Withsufficientgenomesequencingcoverage,thisapproachidentifiesnearlyallgenes,manyofwhichmaybeabsentfromRNA-Seqdata.
5.
4.
MetabolomicsMetabolomicsisarecently-emergingfieldthatcanprovideinsightintobiochemicalactivitiesduringinfectionsandimmuneresponses,andisbaseduponthedetectionofspecificmetabolites[122–124].
Forbatresearch,thiscanprovidevaluableinformationbecausemanymetabolitesareidenticalorsimilar,regardlessofspecies.
Becausethebiochemicalpathwaysforproducingthesemetabolitesareoftenconservedamongspecies,profilingprovidesinformationonhostmetabolicresponsestoviralinfections.
Somevirusesremodelthemetabolismofinfectedcellsfortheproductionofprogenythatmaycontributetopathogenesis.
Forexample,hepatitisCvirusaltersphospholipidandsphingomyelinabundanceandleadstoelevatedceramides,whicharetoxictohepatocytes[125].
Theselipidsarereadilydetectedbymetabolicprofilingandsuchapproachesmaybeappliedtostudiesofbatsandtheirviruses.
5.
5.
ImmuneCellCultureSubstantialinformationaboutimmuneresponsescanbegarneredfromstudiesofantigen-specificTandBcells.
However,severalobstaclesimpedesuchresearch,includingthelackofrecombinantbatViruses2014,64892cytokinesforthegrowthandpropagationofimmunecellsandthelackofMHC-matched,syngeneicanimalsandcelllinesforTcellwork.
Itmaybethatcommercially-availablereagentsforspeciesthatarephylogeneticallyclosertobats,suchasthoseforhorseandcattle,maybeusedforestablishinglong-termantigen-specificculturesofbatTandBcells.
Inparticular,helperTcelllinesrequireperiodicrestimulationwithantigenspresentedonsyngeneicMHCclassIIproteinsfoundonantigenpresentingcells(APC),andarequirementofIL-2.
Withoutinbredbats,itisdifficulttoconductsuchwork.
OnesolutiontothisproblemmaybetheuseofautologousAPC,andbonemarrowisarichsourceofprogenitorcellsfortheirgeneration.
Granulocyte-macrophagecolonystimulatingfactor(GM-CSF)isroutinelyusedforgeneratingcommondendriticcells(cDC)thatareefficientAPCforhelperTcells[126,127].
HorseGM-CSFiscommerciallyavailableandsharessubstantialsimilaritytoorthologousGM-CSFinseveralbatspecies,includingthereceptor-bindingdomain(Figure3),andmaybeusefulforpropagationofcDCfrombatbonemarrow.
Figure3.
AminoacidalignmentofmatureGM-CSFfromhorse,P.
alectoandM.
lucifugus.
Identicalaminoacidsindarkgray,similaraminoacidsinlightgray,anddissimilaraminoacidsinwhite,consensusbelow.
TheredboxistheputativehelixAinvolvedinbindingtotheGM-CSFreceptor.
AlignmentperformedwithMacVectorusingthedefaultCLUSTAWsettings[128].
Thehumerusandradiusbonesofbatsarerichsourcesofbonemarrowandareeasilypreparedforbonemarrowretrieval(author'sunpublishedobservation).
Thesmallsizesofmanybatspeciespresentsachallengeforobtaininglargeamountsofbonemarrow;however,manybatspeciesofinterestforzoonoticdiseases(e.
g.
,pteropid,rousette)weighmorethanahundredgramsanditshouldbepossibleViruses2014,64893toobtainlargenumbersofbonemarrowcellsthatcanbealiquotedandstoredfrozenforlong-termuseforTcellantigenrecallexperiments.
6.
ConclusionsAlthoughmanydifficultiesandobstaclesexistforconductinghypothesis-driven,experimentalinfectionresearchofbatsandtheirviruses,newtechnologicaladvancementscanpermitrapiddiscoveryoftheirrelationships.
However,beforesubstantialprogresscanbemade,closedcoloniesofspecificpathogen-freebatsneedtobeestablished.
Fieldstudiesareoflimitedvalueforexaminationofthefinegranularityofreservoirhostresponsestoviruses,andthecaptureofwildbatsforexperimentalinfectionexperimentshasariskofinfectiousandenvironmentalfactorsthatcancomplicateinterpretationofdata.
Susceptiblebatcelllinesandantibodiesforusewithbatproteinsmustbeidentifiedorgeneratedforcloserscrutinyofhowthesevirusesinteractwiththeirhostcellmachinery,andhowtheymightmanipulatethehostresponseinamannerthatisfavorableforboththevirusandthehost.
Untilthen,itwillbenearlyimpossibletoanswerthequestion:ArebatsspecialAcknowledgmentsTheauthorthanksCharlesH.
Calisher,AnnCogswell-Hawkinson,SethFrietze,TimothyI.
ShawandRushikaPereraforhelpfuldiscussionsonvarioustopicsofbatsandtheirviruses.
ConflictsofInterestTheauthordeclaresnoconflictofinterest.
References1.
Calisher,C.
H.
;Childs,J.
E.
;Field,H.
E.
;Holmes,K.
V.
;Schountz,T.
Bats:Importantreservoirhostsofemergingviruses.
Clin.
Microbiol.
Rev.
2006,19,531–545.
2.
Papenfuss,A.
T.
;Baker,M.
L.
;Feng,Z.
P.
;Tachedjian,M.
;Crameri,G.
;Cowled,C.
;Ng,J.
;Janardhana,V.
;Field,H.
E.
;Wang,L.
F.
Theimmunegenerepertoireofanimportantviralreservoir,theAustralianblackflyingfox.
BMCGenomics2012,13,e261.
3.
Shaw,T.
I.
;Srivastava,A.
;Chou,W.
C.
;Liu,L.
;Hawkinson,A.
;Glenn,T.
C.
;Adams,R.
;Schountz,T.
TranscriptomesequencingandannotationfortheJamaicanfruitbat(Artibeusjamaicensis).
PLOSONE2012,7,e48472.
4.
Zhang,G.
;Cowled,C.
;Shi,Z.
;Huang,Z.
;Bishop-Lilly,K.
A.
;Fang,X.
;Wynne,J.
W.
;Xiong,Z.
;Baker,M.
L.
;Zhao,W.
;etal.
Comparativeanalysisofbatgenomesprovidesinsightintotheevolutionofflightandimmunity.
Science2013,339,456–460.
5.
Calisher,C.
H.
;Holmes,K.
V.
;Dominguez,S.
R.
;Schountz,T.
;Cryan,P.
Batsprovetoberichreservoirsforemergingviruses.
Microbe2008,3,521–528.
6.
Omatsu,T.
;Watanabe,S.
;Akashi,H.
;Yoshikawa,Y.
Biologicalcharactersofbatsinrelationtonaturalreservoirofemergingviruses.
Comp.
Immunol.
Microbiol.
Infect.
Dis.
2007,30,357–374.
7.
Wang,L.
-F.
BatsandViruses:Abriefreview.
VirologicaSinica2009,24,93–99.
Viruses2014,648948.
Wibbelt,G.
;Moore,M.
S.
;Schountz,T.
;Voigt,C.
C.
Emergingdiseasesinchiroptera:WhybatsBiol.
Lett.
2010,6,438–440.
9.
Blehert,D.
S.
;Hicks,A.
C.
;Behr,M.
;Meteyer,C.
U.
;Berlowski-Zier,B.
M.
;Buckles,E.
L.
;Coleman,J.
T.
;Darling,S.
R.
;Gargas,A.
;Niver,R.
;etal.
Batwhite-nosesyndrome:AnemergingfungalpathogenScience2009,323,227.
10.
Frick,W.
F.
;Pollock,J.
F.
;Hicks,A.
C.
;Langwig,K.
E.
;Reynolds,D.
S.
;Turner,G.
G.
;Butchkoski,C.
M.
;Kunz,T.
H.
AnemergingdiseasecausesregionalpopulationcollapseofacommonNorthAmericanbatspecies.
Science2010,329,679–682.
11.
Gargas,A.
;Trest,M.
T.
;Christensen,M.
;Volk,T.
J.
;Blehert,D.
S.
Geomycesdestructanssp.
nov.
associatedwithbatwhite-nosesyndrome.
Mycotaxon.
2009,108,147–154.
12.
Bai,Y.
;Kosoy,M.
;Recuenco,S.
;Alvarez,D.
;Moran,D.
;Turmelle,A.
;Ellison,J.
;Garcia,D.
L.
;Estevez,A.
;Lindblade,K.
;etal.
Bartonellaspp.
inbats,Guatemala.
Emerg.
Infect.
Dis.
2011,17,1269–1272.
13.
Billeter,S.
A.
;Hayman,D.
T.
;Peel,A.
J.
;Baker,K.
;Wood,J.
L.
;Cunningham,A.
;Suu-Ire,R.
;Dittmar,K.
;Kosoy,M.
Y.
Bartonellaspeciesinbatflies(Diptera:Nycteribiidae)fromwesternAfrica.
Parasitology2012,139,324–329.
14.
Kosoy,M.
;Bai,Y.
;Lynch,T.
;Kuzmin,I.
V.
;Niezgoda,M.
;Franka,R.
;Agwanda,B.
;Breiman,R.
F.
;Rupprecht,C.
E.
Bartonellaspp.
inbats,Kenya.
Emerg.
Infect.
Dis.
2010,16,1875–1881.
15.
Morse,S.
F.
;Olival,K.
J.
;Kosoy,M.
;Billeter,S.
;Patterson,B.
D.
;Dick,C.
W.
;Dittmar,K.
GlobaldistributionandgeneticdiversityofBartonellainbatflies(Hippoboscoidea,Streblidae,Nycteribiidae).
Infect.
Genet.
Evol.
J.
Mol.
Epidemiol.
Evol.
Genet.
Infect.
Dis.
2012,12,1717–1723.
16.
Reeves,W.
K.
;Streicker,D.
G.
;Loftis,A.
D.
;Dasch,G.
A.
SerologicsurveyofEptesicusfuscusfromGeorgia,U.
S.
A.
forRickettsiaandBorreliaandlaboratorytransmissionofaRickettsiabybatticks.
J.
VectorEcol.
2006,31,386–389.
17.
Muhldorfer,K.
;Speck,S.
;Kurth,A.
;Lesnik,R.
;Freuling,C.
;Muller,T.
;Kramer-Schadt,S.
;Wibbelt,G.
DiseasesandcausesofdeathinEuropeanbats:Dynamicsindiseasesusceptibilityandinfectionrates.
PLOSONE2011,6,e29773.
18.
Muhldorfer,K.
;Speck,S.
;Wibbelt,G.
Diseasesinfree-rangingbatsfromGermany.
BMCVet.
Res.
2011,7,e61.
19.
Muhldorfer,K.
;Wibbelt,G.
;Haensel,J.
;Riehm,J.
;Speck,S.
Yersiniaspeciesisolatedfrombats,Germany.
Emerg.
Infect.
Dis.
2010,16,578–580.
20.
Greer,D.
L.
;McMurray,D.
N.
Pathogenesisofexperimentalhistoplasmosisinthebat,Artibeuslituratus.
Am.
J.
Trop.
Med.
Hyg.
1981,30,653–659.
21.
Breed,A.
C.
;Field,H.
E.
;Smith,C.
S.
;Edmonston,J.
;Meers,J.
BatsWithoutBorders:Long-distancemovementsandimplicationsfordiseaseriskmanagement.
EcoHealth2010,7,204–212.
22.
Barr,J.
;Smith,C.
;Smith,I.
;deJong,C.
;Todd,S.
;Melville,D.
;Broos,A.
;Crameri,S.
;Haining,J.
;Marsh,G.
;etal.
Isolationofmultiplenovelparamyxovirusesfrompteropidbaturine.
J.
Gener.
Virol.
2014,doi:10.
1099/vir.
0.
068106-0.
Viruses2014,6489523.
Carrington,C.
V.
;Foster,J.
E.
;Zhu,H.
C.
;Zhang,J.
X.
;Smith,G.
J.
;Thompson,N.
;Auguste,A.
J.
;Ramkissoon,V.
;Adesiyun,A.
A.
;Guan,Y.
Detectionandphylogeneticanalysisofgroup1coronavirusesinSouthAmericanbats.
Emerg.
Infect.
Dis.
2008,14,1890–1893.
24.
Chu,D.
K.
;Poon,L.
L.
;Guan,Y.
;Peiris,J.
S.
Novelastrovirusesininsectivorousbats.
J.
Virol.
2008,82,9107–9114.
25.
Dominguez,S.
R.
;O'Shea,T.
J.
;Oko,L.
M.
;Holmes,K.
V.
Detectionofgroup1coronavirusesinbatsinNorthAmerica.
Emerg.
Infect.
Dis.
2007,13,1295–1300.
26.
Lau,S.
K.
;Woo,P.
C.
;Li,K.
S.
;Huang,Y.
;Tsoi,H.
W.
;Wong,B.
H.
;Wong,S.
S.
;Leung,S.
Y.
;Chan,K.
H.
;Yuen,K.
Y.
Severeacuterespiratorysyndromecoronavirus-likevirusinChinesehorseshoebats.
Proc.
Natl.
Acad.
Sci.
USA2005,102,14040–14045.
27.
Quan,P.
L.
;Firth,C.
;Conte,J.
M.
;Williams,S.
H.
;Zambrana-Torrelio,C.
M.
;Anthony,S.
J.
;Ellison,J.
A.
;Gilbert,A.
T.
;Kuzmin,I.
V.
;Niezgoda,M.
;etal.
Batsareamajornaturalreservoirforhepacivirusesandpegiviruses.
Proc.
Natl.
Acad.
Sci.
USA2013,110,8194–8199.
28.
Yuan,L.
;Li,M.
;Li,L.
;Monagin,C.
;Chmura,A.
A.
;Schneider,B.
S.
;Epstein,J.
H.
;Mei,X.
;Shi,Z.
;Daszak,P.
;etal.
EvidenceforretrovirusandparamyxovirusinfectionofmultiplebatspeciesinChina.
Viruses2014,6,2138–2154.
29.
Yanagihara,R.
;Gu,S.
H.
;Arai,S.
;Kang,H.
J.
;Song,J.
W.
Hantaviruses:Rediscoveryandnewbeginnings.
VirusRes.
2014,187,6–14.
30.
Pulliam,J.
R.
;Epstein,J.
H.
;Dushoff,J.
;Rahman,S.
A.
;Bunning,M.
;Jamaluddin,A.
A.
;Hyatt,A.
D.
;Field,H.
E.
;Dobson,A.
P.
;Daszak,P.
Agriculturalintensification,primingforpersistenceandtheemergenceofNipahvirus:Alethalbat-bornezoonosis.
J.
R.
Soc.
Interface/R.
Soc.
2012,9,89–101.
31.
Wood,J.
L.
;Leach,M.
;Waldman,L.
;Macgregor,H.
;Fooks,A.
R.
;Jones,K.
E.
;Restif,O.
;Dechmann,D.
;Hayman,D.
T.
;Baker,K.
S.
;etal.
Aframeworkforthestudyofzoonoticdiseaseemergenceanditsdrivers:Spilloverofbatpathogensasacasestudy.
Philos.
Trans.
R.
Soc.
Lond.
Ser.
BBiol.
Sci.
2012,367,2881–2892.
32.
Rupprecht,C.
E.
;Smith,J.
S.
;Fekadu,M.
;Childs,J.
E.
Theascensionofwildliferabies:AcauseforpublichealthconcernorinterventionEmerg.
Infect.
Dis.
1995,1,107–114.
33.
Towner,J.
S.
;Pourrut,X.
;Albarino,C.
G.
;Nkogue,C.
N.
;Bird,B.
H.
;Grard,G.
;Ksiazek,T.
G.
;Gonzalez,J.
P.
;Nichol,S.
T.
;Leroy,E.
M.
MarburgvirusinfectiondetectedinacommonAfricanbat.
PLOSONE2007,2,e764.
34.
Leroy,E.
M.
;Kumulungui,B.
;Pourrut,X.
;Rouquet,P.
;Hassanin,A.
;Yaba,P.
;Delicat,A.
;Paweska,J.
T.
;Gonzalez,J.
P.
;Swanepoel,R.
FruitbatsasreservoirsofEbolavirus.
Nature2005,438,575–576.
35.
Memish,Z.
A.
;Mishra,N.
;Olival,K.
J.
;Fagbo,S.
F.
;Kapoor,V.
;Epstein,J.
H.
;Alhakeem,R.
;Durosinloun,A.
;AlAsmari,M.
;Islam,A.
;etal.
MiddleEastrespiratorysyndromecoronavirusinbats,SaudiArabia.
Emerg.
Infect.
Dis.
2013,19,1819–1823.
36.
Chua,K.
B.
;Koh,C.
L.
;Hooi,P.
S.
;Wee,K.
F.
;Khong,J.
H.
;Chua,B.
H.
;Chan,Y.
P.
;Lim,M.
E.
;Lam,S.
K.
IsolationofNipahvirusfromMalaysianIslandflying-foxes.
MicrobesInfect.
2002,4,145–151.
37.
Halpin,K.
;Young,P.
L.
;Field,H.
E.
;Mackenzie,J.
S.
IsolationofHendravirusfrompteropidbats:AnaturalreservoirofHendravirus.
J.
Gener.
Virol.
2000,81,1927–1932.
Viruses2014,6489638.
Albarino,C.
G.
;Foltzer,M.
;Towner,J.
S.
;Rowe,L.
A.
;Campbell,S.
;Jaramillo,C.
M.
;Bird,B.
H.
;Reeder,D.
M.
;Vodzak,M.
E.
;Rota,P.
;etal.
Novelparamyxovirusassociatedwithsevereacutefebriledisease,SouthSudanandUganda,2012.
Emerg.
Infect.
Dis.
2014,20,211–216.
39.
Alcami,A.
;Koszinowski,U.
H.
Viralmechanismsofimmuneevasion.
TrendsinMicrobiology2000,8,410–418.
40.
Grandvaux,N.
;tenOever,B.
R.
;Servant,M.
J.
;Hiscott,J.
Theinterferonantiviralresponse:Fromviralinvasiontoevasion.
Curr.
Opin.
Infect.
Dis.
2002,15,259–267.
41.
Rodriguez,J.
J.
;Horvath,C.
M.
Hostevasionbyemergingparamyxoviruses:HendravirusandNipahvirusVproteinsinhibitinterferonsignaling.
ViralImmunol.
2004,17,210–219.
42.
Shaw,M.
L.
HenipavirusesEmployaMultifacetedapproachtoevadetheantiviralinterferonresponse.
Viruses2009,1,1190–1203.
43.
Rodriguez,J.
J.
;Cruz,C.
D.
;Horvath,C.
M.
IdentificationofthenuclearexportsignalandSTAT-bindingdomainsoftheNipahvirusVproteinrevealsmechanismsunderlyinginterferonevasion.
J.
Virol.
2004,78,5358–5367.
44.
Rodriguez,J.
J.
;Parisien,J.
P.
;Horvath,C.
M.
NipahvirusVproteinevadesalphaandgammainterferonsbypreventingSTAT1andSTAT2activationandnuclearaccumulation.
J.
Virol.
2002,76,11476–11483.
45.
Shaw,M.
L.
;Garcia-Sastre,A.
;Palese,P.
;Basler,C.
F.
NipahvirusVandWproteinshaveacommonSTAT1-bindingdomainyetinhibitSTAT1activationfromthecytoplasmicandnuclearcompartments,respectively.
J.
Virol.
2004,78,5633–5641.
46.
Schountz,T.
;Quackenbush,S.
;Rovnak,J.
;Haddock,E.
;Black,W.
C.
,IV;Feldmann,H.
;Prescott,J.
DifferentiallymphocyteandantibodyresponsesindeermiceinfectedwithSinNombrehantavirusorAndeshantavirus.
J.
Virol.
2014,88,8319–8331.
47.
Halpin,K.
;Hyatt,A.
D.
;Fogarty,R.
;Middleton,D.
;Bingham,J.
;Epstein,J.
H.
;Rahman,S.
A.
;Hughes,T.
;Smith,C.
;Field,H.
E.
;etal.
Pteropidbatsareconfirmedasthereservoirhostsofhenipaviruses:Acomprehensiveexperimentalstudyofvirustransmission.
Am.
J.
Trop.
Med.
Hyg.
2011,85,946–951.
48.
Amman,B.
R.
;Jones,M.
E.
;Sealy,T.
K.
;Uebelhoer,L.
S.
;Schuh,A.
J.
;Bird,B.
H.
;Coleman-McCray,J.
D.
;Martin,B.
E.
;Nichol,S.
T.
;Towner,J.
S.
OralsheddingofMarburgvirusinexperimentallyinfectedEgyptianfruitbats(RousettusAegyptiacus).
J.
Wildl.
Dis.
2014,doi:10.
7589/2014-08-198.
49.
Paweska,J.
T.
;JansenvanVuren,P.
;Masumu,J.
;Leman,P.
A.
;Grobbelaar,A.
A.
;Birkhead,M.
;Clift,S.
;Swanepoel,R.
;Kemp,A.
VirologicalandserologicalfindingsinRousettusaegyptiacusexperimentallyinoculatedwithverocells-adaptedhoganstrainofMarburgvirus.
PLOSONE2012,7,e45479.
50.
Luis,A.
D.
;Hayman,D.
T.
;O'Shea,T.
J.
;Cryan,P.
M.
;Gilbert,A.
T.
;Pulliam,J.
R.
;Mills,J.
N.
;Timonin,M.
E.
;Willis,C.
K.
;Cunningham,A.
A.
;etal.
Acomparisonofbatsandrodentsasreservoirsofzoonoticviruses:ArebatsspecialProc.
Biol.
Sci.
/R.
Soc.
2013,280,e20122753.
51.
O'Shea,T.
J.
;Cryan,P.
M.
;Cunningham,A.
A.
;Fooks,A.
R.
;Hayman,D.
T.
;Luis,A.
D.
;Peel,A.
J.
;Plowright,R.
K.
;Wood,J.
L.
Batflightandzoonoticviruses.
Emerg.
Infect.
Dis.
2014,20,741–745.
Viruses2014,6489752.
Wang,L.
F.
;Walker,P.
J.
;Poon,L.
L.
Massextinctions,biodiversityandmitochondrialfunction:Arebats'special'asreservoirsforemergingvirusesCurr.
Opin.
Virol.
2011,1,649–657.
53.
Botten,J.
;Mirowsky,K.
;Kusewitt,D.
;Bharadwaj,M.
;Yee,J.
;Ricci,R.
;Feddersen,R.
M.
;Hjelle,B.
ExperimentalinfectionmodelforSinNombrehantavirusinthedeermouse(Peromyscusmaniculatus).
Proc.
Natl.
Acad.
Sci.
USA2000,97,10578–10583.
54.
Botten,J.
;Mirowsky,K.
;Kusewitt,D.
;Ye,C.
;Gottlieb,K.
;Prescott,J.
;Hjelle,B.
PersistentSinNombrevirusinfectioninthedeermouse(Peromyscusmaniculatus)model:Sitesofreplicationandstrand-specificexpression.
J.
Virol.
2003,77,1540–1550.
55.
Fulhorst,C.
F.
;Ksiazek,T.
G.
;Peters,C.
J.
;Tesh,R.
B.
ExperimentalinfectionofthecanemouseZygodontomysbrevicauda(familyMuridae)withGuanaritovirus(Arenaviridae),theetiologicagentofVenezuelanhemorrhagicfever.
J.
Infect.
Dis.
1999,180,966–969.
56.
Yanagihara,R.
;Amyx,H.
L.
;Gajdusek,D.
C.
ExperimentalinfectionwithPuumalavirus,theetiologicagentofnephropathiaepidemica,inbankvoles(Clethrionomysglareolus).
J.
Virol.
1985,55,34–38.
57.
Easterbrook,J.
D.
;Zink,M.
C.
;Klein,S.
L.
RegulatoryTcellsenhancepersistenceofthezoonoticpathogenSeoulvirusinitsreservoirhost.
Proc.
Natl.
Acad.
Sci.
USA2007,104,15502–15507.
58.
Schountz,T.
;Prescott,J.
;Cogswell,A.
C.
;Oko,L.
;Mirowsky-Garcia,K.
;Galvez,A.
P.
;Hjelle,B.
RegulatoryTcell-likeresponsesindeermicepersistentlyinfectedwithSinNombrevirus.
Proc.
Natl.
Acad.
Sci.
USA2007,104,15496–15501.
59.
Calisher,C.
H.
;Ellison,J.
A.
Theotherrabiesviruses:Theemergenceandimportanceoflyssavirusesfrombatsandothervertebrates.
TravelMed.
Infect.
Dis.
2012,10,69–79.
60.
Kuzmin,I.
V.
;Bozick,B.
;Guagliardo,S.
A.
;Kunkel,R.
;Shak,J.
R.
;Tong,S.
;Rupprecht,C.
E.
Bats,emerginginfectiousdiseases,andtherabiesparadigmrevisited.
Emerg.
HealthThreatsJ.
2011,4,e7159.
61.
Rupprecht,C.
E.
;Turmelle,A.
;Kuzmin,I.
V.
Aperspectiveonlyssavirusemergenceandperpetuation.
Curr.
Opin.
Virol.
2011,1,662–670.
62.
Turmelle,A.
S.
;Jackson,F.
R.
;Green,D.
;McCracken,G.
F.
;Rupprecht,C.
E.
Hostimmunitytorepeatedrabiesvirusinfectioninbigbrownbats.
J.
Gener.
Virol.
2010,91,2360–2366.
63.
Davis,A.
D.
;Jarvis,J.
A.
;Pouliott,C.
E.
;Morgan,S.
M.
;Rudd,R.
J.
Susceptibilityandpathogenesisoflittlebrownbats(Myotislucifugus)toheterologousandhomologousrabiesviruses.
J.
Virol.
2013,87,9008–9015.
64.
Downs,W.
G.
;Anderson,C.
R.
;Spence,L.
;Aitken,T.
H.
G.
;Greenhall,A.
H.
Tacaribevirus,anewagentisolatedfromArtibeusbatsandmosquitosinTrinidad,WestIndies.
AmericanJ.
Trop.
Med.
Hyg.
1963,12,640–646.
65.
Tikasingh,E.
CaribbeanEpidemiologyCentre,PortofSpain,TrinidadandTobago.
Personalcommunication,2011.
66.
Cogswell-Hawkinson,A.
;Bowen,R.
;James,S.
;Gardiner,D.
;Calisher,C.
H.
;Adams,R.
;Schountz,T.
Tacaribeviruscausesfatalinfectionofanostensiblereservoirhost,theJamaicanfruitbat.
J.
Virol.
2012,86,5791–5799.
67.
Abraham,J.
;Corbett,K.
D.
;Farzan,M.
;Choe,H.
;Harrison,S.
C.
StructuralbasisforreceptorrecognitionbyNewWorldhemorrhagicfeverarenaviruses.
Nat.
Struct.
Mol.
Biol.
2010,17,438–444.
Viruses2014,6489868.
Charrel,R.
N.
;Feldmann,H.
;Fulhorst,C.
F.
;Khelifa,R.
;deChesse,R.
;deLamballerie,X.
PhylogenyofNewWorldarenavirusesbasedonthecompletecodingsequencesofthesmallgenomicsegmentidentifiedanevolutionarylineageproducedbyintrasegmentalrecombination.
Biochem.
Biophys.
Res.
Commun.
2002,296,1118–1124.
69.
Ortega,J.
;Castro-Arellano,I.
MammalianSpecies:Artibeusjamaicensis.
Am.
Soc.
Mammal.
2001,662,1–9.
70.
Gard,G.
AustralianAnimalHealthLaboratory,EastGeelong,Victoria,Australia.
Personalcommunication,2009.
71.
Negredo,A.
;Palacios,G.
;Vazquez-Moron,S.
;Gonzalez,F.
;Dopazo,H.
;Molero,F.
;Juste,J.
;Quetglas,J.
;Savji,N.
;delaCruzMartinez,M.
;etal.
Discoveryofanebolavirus-likefilovirusineurope.
PLOSPathogens2011,7,e1002304.
72.
Thompson,N.
N.
;Auguste,A.
J.
;TravassosdaRosa,A.
P.
;Carrington,C.
V.
;Blitvich,B.
J.
;Chadee,D.
D.
;Tesh,R.
B.
;Weaver,S.
C.
;Adesiyun,A.
A.
SeroepidemiologyofselectedalphavirusesandflavivirusesinbatsinTrinidad.
ZoonosesPublicHealth2014.
73.
Xiao,J.
;Li,J.
;Hu,G.
;Chen,Z.
;Wu,Y.
;Chen,Y.
;Chen,Z.
;Liao,Y.
;Zhou,J.
;Ke,X.
;etal.
IsolationandphylogeneticcharacterizationofbatastrovirusesinsouthernChina.
Arch.
Virol.
2011,156,1415–1423.
74.
Badrane,H.
;Tordo,N.
HostswitchinginlyssavirushistoryfromtheChiropteratotheCarnivoraorders.
J.
Virol.
2001,75,8096–8104.
75.
Holmes,E.
C.
;Woelk,C.
H.
;Kassis,R.
;Bourhy,H.
Geneticconstraintsandtheadaptiveevolutionofrabiesvirusinnature.
Virology2002,292,247–257.
76.
Krysko,D.
V.
;Agostinis,P.
;Krysko,O.
;Garg,A.
D.
;Bachert,C.
;Lambrecht,B.
N.
;Vandenabeele,P.
Emergingroleofdamage-associatedmolecularpatternsderivedfrommitochondriaininflammation.
TrendsImmunol.
2011,32,157–164.
77.
Ching,S.
;Zhang,H.
;Belevych,N.
;He,L.
;Lai,W.
;Pu,X.
A.
;Jaeger,L.
B.
;Chen,Q.
;Quan,N.
Endothelial-specificknockdownofinterleukin-1(IL-1)type1receptordifferentiallyaltersCNSresponsestoIL-1dependingonitsrouteofadministration.
J.
Neurosci.
:Off.
J.
Soc.
Neurosci.
2007,27,10476–10486.
78.
Wilhelms,D.
B.
;Kirilov,M.
;Mirrasekhian,E.
;Eskilsson,A.
;Kugelberg,U.
O.
;Klar,C.
;Ridder,D.
A.
;Herschman,H.
R.
;Schwaninger,M.
;Blomqvist,A.
;etal.
Deletionofprostaglandine2synthesizingenzymesinbrainendothelialcellsattenuatesinflammatoryFever.
J.
Neurosci.
:Off.
J.
Soc.
Neurosci.
2014,34,11684–11690.
79.
Baker,M.
L.
;Tachedjian,M.
;Wang,L.
F.
ImmunoglobulinheavychaindiversityinPteropidbats:Evidenceforadiverseandhighlyspecificantigenbindingrepertoire.
Immunogenetics2010,62,173–184.
80.
Cowled,C.
;Baker,M.
L.
;Zhou,P.
;Tachedjian,M.
;Wang,L.
F.
MolecularcharacterisationofRIG-I-likehelicasesintheblackflyingfox,Pteropusalecto.
Dev.
Compar.
Immunol.
2012,36,657–664.
81.
Janardhana,V.
;Tachedjian,M.
;Crameri,G.
;Cowled,C.
;Wang,L.
F.
;Baker,M.
L.
Cloning,expressionandantiviralactivityofIFNgammafromtheAustralianfruitbat,Pteropusalecto.
Dev.
Compar.
Immunol.
2012,36,610–618.
Viruses2014,6489982.
Virtue,E.
R.
;Marsh,G.
A.
;Baker,M.
L.
;Wang,L.
F.
Interferonproductionandsignalingpathwaysareantagonizedduringhenipavirusinfectionoffruitbatcelllines.
PLOSONE2011,6,e22488.
83.
Wynne,J.
W.
;diRubbo,A.
;Shiell,B.
J.
;Beddome,G.
;Cowled,C.
;Peck,G.
R.
;Huang,J.
;Grimley,S.
L.
;Baker,M.
L.
;Michalski,W.
P.
PurificationandcharacterisationofimmunoglobulinsfromtheAustralianblackflyingfox(Pteropusalecto)usinganti-fabaffinitychromatographyrevealsthelowabundanceofIgA.
PLOSONE2013,8,e52930.
84.
Wynne,J.
W.
;Shiell,B.
J.
;Marsh,G.
A.
;Boyd,V.
;Harper,J.
A.
;Heesom,K.
;Monaghan,P.
;Zhou,P.
;Payne,J.
;Klein,R.
;etal.
ProteomicsinformedbytranscriptomicsrevealsHendravirussensitizesbatcellstoTRAILmediatedapoptosis.
GenomeBiol.
2014,15,e532.
85.
Zhou,P.
;Cowled,C.
;Marsh,G.
A.
;Shi,Z.
;Wang,L.
F.
;Baker,M.
L.
TypeIIIIFNreceptorexpressionandfunctionalcharacterisationinthepteropidbat,Pteropusalecto.
PLOSONE2011,6,e25385.
86.
Zhou,P.
;Cowled,C.
;Wang,L.
F.
;Baker,M.
L.
BatMx1andOas1,butnotPkrarehighlyinducedbybatinterferonandviralinfection.
Dev.
Compar.
Immunol.
2013,3-4,240–247.
87.
Baker,M.
L.
;Schountz,T.
;Wang,L.
F.
Antiviralimmuneresponsesofbats:Areview.
ZoonosesPublicHealth2013,60,104–116.
88.
Cowled,C.
;Stewart,C.
R.
;Likic,V.
A.
;Friedlander,M.
R.
;Tachedjian,M.
;Jenkins,K.
A.
;Tizard,M.
L.
;Cottee,P.
;Marsh,G.
A.
;Zhou,P.
;etal.
CharacterisationofnovelmicroRNAsintheBlackflyingfox(Pteropusalecto)bydeepsequencing.
BMCGenomics2014,15,e682.
89.
Dennehy,J.
J.
Whatecologistscantellvirologists.
Annu.
Rev.
Microbial.
2014,68,117–135.
90.
Weitzman,M.
D.
;Weitzman,J.
B.
What'sthedamageTheimpactofpathogensonpathwaysthatmaintainhostgenomeintegrity.
CellHostMicrobe2014,15,283–294.
91.
Takeda,K.
;Kaisho,T.
;Akira,S.
Toll-likereceptors.
Annu.
Rev.
Immunol.
2003,21,335–376.
92.
Medzhitov,R.
;Janeway,C.
A.
,Jr.
Innateimmunity:Thevirtuesofanonclonalsystemofrecognition.
Cell1997,91,295–298.
93.
Barbalat,R.
;Ewald,S.
E.
;Mouchess,M.
L.
;Barton,G.
M.
Nucleicacidrecognitionbytheinnateimmunesystem.
Annu.
Rev.
Immunol.
2011,29,185–214.
94.
Chen,G.
;Shaw,M.
H.
;Kim,Y.
G.
;Nunez,G.
NOD-likereceptors:Roleininnateimmunityandinflammatorydisease.
Annu.
Rev.
Pathol.
2009,4,365–398.
95.
Cowled,C.
;Baker,M.
;Tachedjian,M.
;Zhou,P.
;Bulach,D.
;Wang,L.
F.
MolecularcharacterisationofToll-likereceptorsintheblackflyingfoxPteropusalecto.
Dev.
Compar.
Immunol.
2011,35,7–18.
96.
Iha,K.
;Omatsu,T.
;Watanabe,S.
;Ueda,N.
;Taniguchi,S.
;Fujii,H.
;Ishii,Y.
;Kyuwa,S.
;Akashi,H.
;Yoshikawa,Y.
Molecularcloningandexpressionanalysisofbattoll-likereceptors3,7and9.
J.
Vet.
Med.
Sci.
/Jpn.
Soc.
Vet.
Sci.
2010,72,217–220.
97.
Diaz,M.
O.
;Pomykala,H.
M.
;Bohlander,S.
K.
;Maltepe,E.
;Malik,K.
;Brownstein,B.
;Olopade,O.
I.
Structureofthehumantype-IinterferongeneclusterdeterminedfromaYACclonecontig.
Genomics1994,22,540–552.
98.
Biesold,S.
E.
;Ritz,D.
;Gloza-Rausch,F.
;Wollny,R.
;Drexler,J.
F.
;Corman,V.
M.
;Kalko,E.
K.
;Oppong,S.
;Drosten,C.
;Muller,M.
A.
TypeIinterferonreactiontoviralinfectionininterferon-competent,immortalizedcelllinesfromtheAfricanfruitbatEidolonhelvum.
PLOSONE2011,6,e28131.
Viruses2014,6490099.
Sheppard,P.
;Kindsvogel,W.
;Xu,W.
;Henderson,K.
;Schlutsmeyer,S.
;Whitmore,T.
E.
;Kuestner,R.
;Garrigues,U.
;Birks,C.
;Roraback,J.
;etal.
IL-28,IL-29andtheirclassIIcytokinereceptorIL-28R.
Nat.
Immunol.
2003,4,63–68.
100.
Zhou,P.
;Cowled,C.
;Todd,S.
;Crameri,G.
;Virtue,E.
R.
;Marsh,G.
A.
;Klein,R.
;Shi,Z.
;Wang,L.
F.
;Baker,M.
L.
TypeIIIIFNsinpteropidbats:Differentialexpressionpatternsprovideevidencefordistinctrolesinantiviralimmunity.
J.
Immunol.
2011,186,3138–3147.
101.
Chakraborty,A.
K.
;Chakravarty,A.
K.
PlaqueformingcellassayforantibodysecretingcellsinthebatPteropusgiganteus.
IndianJ.
Exp.
Biol.
1983,21,5–7.
102.
Chakravarty,A.
K.
;Sarkar,S.
K.
ImmunofluorescenceanalysisofimmunoglobulinbearinglymphocytesintheIndianfruitbat:Pteropusgiganteus.
Lymphology1994,27,97–104.
103.
Paul,B.
N.
;Chakravarty,A.
K.
Invitroanalysisofdelayedimmuneresponseinabat,Pteropusgiganteus:Processofcon-Amediatedactivation.
Dev.
Compar.
Immunol.
1986,10,55–67.
104.
Sarkar,S.
K.
;Chakravarty,A.
K.
Analysisofimmunocompetentcellsinthebat,Pteropusgiganteus:Isolationandscanningelectronmicroscopiccharacterization.
Dev.
Compar.
Immunol.
1991,15,423–430.
105.
Bratsch,S.
;Wertz,N.
;Chaloner,K.
;Kunz,T.
H.
;Butler,J.
E.
Thelittlebrownbat,M.
lucifugus,displaysahighlydiverseVH,DHandJHrepertoirebutlittleevidenceofsomatichypermutation.
Dev.
Compar.
Immunol.
2011,35,421–430.
106.
Butler,J.
E.
;Wertz,N.
;Zhao,Y.
;Zhang,S.
;Bao,Y.
;Bratsch,S.
;Kunz,T.
H.
;Whitaker,J.
O.
,Jr.
;Schountz,T.
Thetwosubordersofchiropteranshavethecanonicalheavy-chainimmunoglobulin(Ig)generepertoireofeutherianmammals.
Dev.
Compar.
Immunol.
2011,35,273–284.
107.
Evans,V.
C.
;Barker,G.
;Heesom,K.
J.
;Fan,J.
;Bessant,C.
;Matthews,D.
A.
Denovoderivationofproteomesfromtranscriptomesfortranscriptandproteinidentification.
Nat.
Methods2012,9,1207–1211.
108.
Fujii,H.
;Watanabe,S.
;Yamane,D.
;Ueda,N.
;Iha,K.
;Taniguchi,S.
;Kato,K.
;Tohya,Y.
;Kyuwa,S.
;Yoshikawa,Y.
;etal.
FunctionalanalysisofRousettusaegyptiacus"signaltransducerandactivatoroftranscription1"(STAT1).
Dev.
Compar.
Immunol.
2010,34,598–602.
109.
Valmas,C.
;Grosch,M.
N.
;Schumann,M.
;Olejnik,J.
;Martinez,O.
;Best,S.
M.
;Krahling,V.
;Basler,C.
F.
;Muhlberger,E.
Marburgvirusevadesinterferonresponsesbyamechanismdistinctfromebolavirus.
PLOSPathogens2010,6,e1000721.
110.
Glenn,T.
C.
Fieldguidetonext-generationDNAsequencers.
Mol.
Ecol.
Resour.
2011,11,759–769.
111.
Griseri,P.
;Pages,G.
Controlofpro-angiogeniccytokinemRNAhalf-lifeincancer:TheroleofAU-richelementsandassociatedproteins.
J.
InterferonCytokineRes.
:Off.
J.
Int.
Soc.
InterferonCytokineRes.
2014,34,242–254.
112.
Haas,B.
J.
;Papanicolaou,A.
;Yassour,M.
;Grabherr,M.
;Blood,P.
D.
;Bowden,J.
;Couger,M.
B.
;Eccles,D.
;Li,B.
;Lieber,M.
;etal.
DenovotranscriptsequencereconstructionfromRNA-sequsingtheTrinityplatformforreferencegenerationandanalysis.
Nat.
Protoc.
2013,8,1494–1512.
113.
Schulz,M.
H.
;Zerbino,D.
R.
;Vingron,M.
;Birney,E.
Oases:RobustdenovoRNA-seqassemblyacrossthedynamicrangeofexpressionlevels.
Bioinformatics2012,28,1086–1092.
114.
Anders,S.
;Huber,W.
Differentialexpressionanalysisforsequencecountdata.
GenomeBiol.
2010,11,eR106.
Viruses2014,64901115.
Anders,S.
;McCarthy,D.
J.
;Chen,Y.
;Okoniewski,M.
;Smyth,G.
K.
;Huber,W.
;Robinson,M.
D.
Count-baseddifferentialexpressionanalysisofRNAsequencingdatausingRandBioconductor.
Nat.
Protocols2013,8,1765–1786.
116.
Li,B.
;Dewey,C.
N.
RSEM:AccuratetranscriptquantificationfromRNA-Seqdatawithorwithoutareferencegenome.
BMCBioinform.
2011,12,e323.
117.
Forster,S.
C.
;Finkel,A.
M.
;Gould,J.
A.
;Hertzog,P.
J.
RNA-eXpressannotatesnoveltranscriptfeaturesinRNA-seqdata.
Bioinformatics2013,29,810–812.
118.
Dennis,G.
,Jr.
;Sherman,B.
T.
;Hosack,D.
A.
;Yang,J.
;Gao,W.
;Lane,H.
C.
;Lempicki,R.
A.
DAVID:DatabaseforAnnotation,Visualization,andIntegratedDiscovery.
GenomeBiol.
2003,4,eP3.
119.
Vastrik,I.
;D'Eustachio,P.
;Schmidt,E.
;Gopinath,G.
;Croft,D.
;deBono,B.
;Gillespie,M.
;Jassal,B.
;Lewis,S.
;Matthews,L.
;etal.
Reactome:Aknowledgebaseofbiologicpathwaysandprocesses.
GenomeBiol.
2007,8,eR39.
120.
Ligtenberg,W.
P.
;Bosnacki,D.
;Hilbers,P.
A.
Reconn:Acytoscapeplug-inforexploringandvisualizingreactome.
J.
Bioinform.
Comput.
Biol.
2013,11,e1350004.
121.
Schountz,T.
;Shaw,T.
I.
;Glenn,T.
C.
;Feldmann,H.
;Prescott,J.
ExpressionprofilingoflymphnodecellsfromdeermiceinfectedwithAndesvirus.
BMCImmunol.
2013,14,e18.
122.
Chukkapalli,V.
;Heaton,N.
S.
;Randall,G.
Lipidsattheinterfaceofvirus-hostinteractions.
Curr.
Opin.
Microbiol.
2012,15,512–518.
123.
Heaton,N.
S.
;Randall,G.
Multifacetedrolesforlipidsinviralinfection.
TrendsMicrobiol.
2011,19,368–375.
124.
Pearce,E.
L.
;Pearce,E.
J.
Metabolicpathwaysinimmunecellactivationandquiescence.
Immunity2013,38,633–643.
125.
Diamond,D.
L.
;Syder,A.
J.
;Jacobs,J.
M.
;Sorensen,C.
M.
;Walters,K.
A.
;Proll,S.
C.
;McDermott,J.
E.
;Gritsenko,M.
A.
;Zhang,Q.
;Zhao,R.
;etal.
TemporalproteomeandlipidomeprofilesrevealhepatitisCvirus-associatedreprogrammingofhepatocellularmetabolismandbioenergetics.
PLOSPathogens2010,6,e1000719.
126.
Lutz,M.
B.
;Kukutsch,N.
;Ogilvie,A.
L.
;Rossner,S.
;Koch,F.
;Romani,N.
;Schuler,G.
Anadvancedculturemethodforgeneratinglargequantitiesofhighlypuredendriticcellsfrommousebonemarrow.
J.
Immunol.
Methods1999,223,77–92.
127.
Davenport,B.
J.
;Willis,D.
G.
;Prescott,J.
;Farrell,R.
M.
;Coons,T.
A.
;Schountz,T.
Generationofcompetentbonemarrow-derivedantigenpresentingcellsfromthedeermouse(Peromyscusmaniculatus).
BMCImmunol.
2004,5,e23.
128.
Higgins,D.
G.
;Sharp,P.
M.
CLUSTAL:Apackageforperformingmultiplesequencealignmentonamicrocomputer.
Gene1988,73,237–244.
2014bytheauthors;licenseeMDPI,Basel,Switzerland.
ThisarticleisanopenaccessarticledistributedunderthetermsandconditionsoftheCreativeCommonsAttributionlicense(http://creativecommons.
org/licenses/by/4.
0/).
rfchost怎么样?rfchost是一家开办了近六年的国人主机商,一般能挺过三年的国人商家,还是值得入手的,商家主要销售VPS,机房有美国洛杉矶/堪萨斯、中国香港,三年前本站分享过他家堪萨斯机房的套餐。目前rfchost商家的洛杉矶机房还是非常不错的,采用CN2优化线路,电信双程CN2 GIA,联通去程CN2 GIA,回程AS4837,移动走自己的直连线路,目前季付套餐还是比较划算的,有需要的可...
ThomasHost域名注册自2012年,部落最早分享始于2016年,还算成立了有几年了,商家提供基于KVM架构的VPS,数据中心包括美国、法国、英国、加拿大和爱尔兰等6个地区机房,VPS主机套餐最低2GB内存起步,支持Windows或者Linux操作系统,1Gbps端口不限制流量。最近商家提供了一个5折优惠码,优惠后最低套餐月付5美元起。下面列出部分套餐配置信息。CPU:1core内存:2GB硬...
IncogNet LLC是个由3个人运作的美国公司,主要特色是隐私保护,号称绝对保护用户的隐私安全。业务涵盖虚拟主机、VPS等,支持多种数字加密货币、PayPal付款。注册账号也很简单,输入一个姓名、一个邮箱、国家随便选,填写一个邮箱就搞定了,基本上不管资料的真假。当前促销的vps位于芬兰机房,全部都是AMD Ryzen系列的CPU,性能不会差的!5折优惠码:CRYPTOMONTH,支持:BTC,...
批处理for为你推荐
操作http操作http支付宝蜻蜓发布刷脸支付加盟,支付宝蜻蜓刷脸设备出后,微信也出了青蛙刷脸设备,感觉很有前景,大伙觉得呢?企业建网站企业为什么要建网站支付宝注册网站在哪里注册支付宝账号邮件eset温州商标注册温州注册商标需要注册公司吗电子商务世界电子商务都有什么内容艾泰科技艾泰路由器设置!!!谷歌新漏洞谷歌浏览器真的有沙箱吗?真的不中毒?
猫咪av永久最新域名 云南服务器租用 linuxapache虚拟主机 免备案空间 60g硬盘 12u机柜尺寸 北京主机 个人空间申请 东莞服务器 linode支付宝 可外链的相册 阿里dns 网站加速 accountsuspended ncp是什么 WHMCS bwg ddos攻击教程 隐士ddos 免费免备案cdn 更多