probucolboatman
boatman 时间:2021-04-14 阅读:(
)
TranslationaltoxicologyandrescuestrategiesofthehERGchanneldysfunction:biochemicalandmolecularmechanisticaspectsKai-pingZHANG1,2,Bao-fengYANG1,2,Bao-xinLI1,2,*1DepartmentofPharmacology,HarbinMedicalUniversity,Harbin,China;2TheState-ProvinceKeyLaboratoriesofBiomedicine-PharmaceuticsofChina(KeyLaboratoryofCardiovascularResearch,MinistryofEducation),ChinaThehumanether-à-go-gorelatedgene(hERG)potassiumchannelisanobligatoryanti-targetfordrugdevelopmentonaccountofitsessentialroleincardiacrepolarizationanditscloseassociationwitharrhythmia.
DiversedrugshavebeenremovedfromthemarketowingtotheirinhibitoryactivityonthehERGchannelandtheircontributiontoacquiredlongQTsyndrome(LQTS).
Moreover,mutationsthatcausehERGchanneldysfunctionmayinducecongenitalLQTS.
Recently,anincreasingnumberofbiochemicalandmolecularmechanismsunderlyinghERG-associatedLQTShavebeenreported.
Infact,numerouspotentialbiochemicalandmolecularrescuestrategiesarehiddenwithinthebiogenesisandregulatingnetwork.
Sofar,rescuestrategiesofhERGchanneldysfunctionandLQTSmainlyincludeactivators,blockers,andmoleculesthatinterferewithspecificlinksandothermechanisms.
TheaimofthisreviewistodiscusstherescuestrategiesbasedonhERGchanneltoxicologyfromthebiochemicalandmolecularperspectives.
Keywords:potassiumchannel;humanether-à-go-gorelatedgene(hERG);longQTsyndrome(LQTS);activator;blocker;siRNA;biogenesis;proteintraffickingActaPharmacologicaSinica(2014)35:1473–1484;doi:10.
1038/aps.
2014.
101;publishedonline24Nov2014IntroductionThehumanether-à-go-gorelatedgene(hERG)potassiumchannel,alsoknownasKv11.
1,isencodedbytheKCNH2genelocatedonchromosome7q36.
1[1].
ThemainisoformofthehERGproteincontains1159aminoacidscomprising6transmembranesegments,aPer-Arnt-Sim(PAS)domainattheNterminusandacyclic-nucleotide-bindingdomain(cNBD)attheCterminus[1,2].
ThepotassiumcurrentconductedbythehERG(I[Kr])isessentialforrepolarizationofcardiomyo-cytesafteraheartbeat.
ReductionofI[Kr]canleadtolongQTsyndrome(LQTS),whichischaracterizedontheelectrocar-diogrambyprolongedQTintervalsandarrhythmia.
Infact,hERGplaysaroleinvariousphysiologicandpathologicprocessessuchascancer,digestive,secretoryandreproduc-tivesystems,signaling,diseasesofthenervoussystemaswellasdevelopment[3].
However,researchonhERGhasfocusedmainlyoncardiacrepolarizationandLQTS[3].
LQTSmayhaveseveremanifestationsincludingtorsadedepointes(TdP),syncope,andsuddencardiacdeath[4,5].
Type2LQTS(LQT2)refersspecificallytoasubclassofthediseasethatisduetogeneticmutationsinhERGthatunderlieapprox-imately45%ofallcongenitalcases[1,4].
ProlongationoftheQTintervalmayalsoresultfrommedicationsthatinhibithERGchannelsasasideeffectofthetherapeuticaction.
Therefore,theUnitedStatesFoodandDrugAdministration(FDA)hasdesignatedhERGasanobligatoryanti-targetindrugdevelop-ment.
ExistingdrugsmayalsobewithdrawnfromclinicalusebecauseoftheiradverseeffectsonthehERGchannel.
Well-knownexamplesincludeterfenadine,cisapride,andastem-izole.
Fordecades,themajorityofstudiesinhERGtoxicologyhavefocusedontheinhibitoryeffectsofvariouscompoundsonhERGchannelgating.
However,severalpuzzlesremainunsolvedwhenapplyingthechannelblockadetheory.
Forexample,arsenictrioxide,adrugusedtotreatacutepromyelo-cyticleukemia(APL),isfoundtocauseQTintervalprolonga-tionduringAPLtherapy[6].
ArsenictrioxideinhibitshERGchannelexpressionwithoutsignificantchannel-blockingactiv-ity[7].
Inaddition,wepreviouslydiscoveredthatceramidewasnotabletoalterhERGcurrentbyacuteapplication(superfu-sionfor25min)butrathercausedpronouncedhERGcurrentinhibitionafterprolongedincubationfor10h[8].
Anincreas-Review*Towhomcorrespondenceshouldbeaddressed.
E-maillibx64@hotmail.
comReceived2014-05-14Accepted2014-08-201474ingnumberofstudiesareshiftingtheirfocusfromchannelblockadetootheraspectsofchannelregulation.
Toxicologicalmechanismsareoftenfoundtofunctionwithinthebiochemi-calandmolecularaspectsofphysiologicalprocesses.
Indeed,recentyearshavewitnessedtheemergenceofadeeperunder-standingofthebiochemicalandmolecularfactorsunderlyinghERGregulationandthecorrespondingrescuestrategiesforhERGdysfunction.
hERGchannelbiogenesisisamultifacetedprocess.
ThehERGgene(KCNH2)istranscribedintomRNAinthenucleus.
ItisbelievedthatonlythemRNAthatissuccessfullypro-cessedthroughthenonsense-mediatedmRNAdecay(NMD)checkpointcanbetranslatedintheendoplasmicreticulum(ER)[9].
NascenthERGchannelsareformedintheERafterproperproteinfolding,subunitassembly,phosphorylation,andinitialglycosylation.
ThroughtheER-Golgiinterac-tioncomplex(ERGIC),partiallyglycosylatedhERGenterstheGolgiapparatusandundergoescompleteglycosylation.
Finally,thechannelissorted,carriedandinsertedintotheplasmamembrane[10].
Meanwhile,channelsalreadypresentontheplasmamembranearedynamicallyinternalizedandrecycled.
AlmosteveryaspectofhERGchannelbiogenesiscouldbepotentiallyaffectedbygeneticorpharmacologicalfactorsinamannerthatcontributestoLQTS.
Forexample,approximately30%ofheterozygousgenemutationsoftheKCNH2geneareprematurestopcodonsandsubjecttoNMD,whichleadstoa50%functionallossofthehERGchannel[1].
Pointmuta-tionsG601SandT473PresultinhERGtraffickingdeficiency,andT473PeveninducessevereTdPandcardiacarrest[11,12].
hERGproteinfoldingcanbedisturbedbydrugslikearsenictrioxide[7].
hERGmaturationandexportationfromtheERarearrestedbypentamidine,anantiprotozoaldrug[13].
More-over,degradationofthehERGproteincanbeincreasedbyceramide[14].
GiventhecloserelationshipbetweenhERGchanneldys-functionandLQTS,rescuestrategiesforhERGchanneldys-functionarebeingdeveloped.
Forexample,lowtemperature(27°C)iscommonlyappliedasarescuestrategybystabilizingtheconformationofthehERGchannel[15,16].
Inaddition,thehERGchannelblockerE-4031isabletoremovethetrafficking-deficientG601S-hERGchannelfromamicrotubule-dependentqualitycontrolcompartmentandincreaseexportfromtheER[17].
Meanwhile,thehERGchannelactivatorRPR260243canslowdownhERGchanneldeactivation,increaseI[Kr]andreversedofentilide-inducedactionpotentialduration(APD)andprolongation[18–20].
Rescuestrategiesarealsobeingdevel-opedfromthebiologicalregulatingfactorsofthehERGchan-nel.
OverexpressionofHsp90successfullyrescuesexpressionoftheA422T-hERGmutant[21].
ThisarticleprovidesanoverviewofknownmechanismsunderlyinghERGchannelregulation,withanemphasisonbiochemicalandmolecularcomponentsofhERGbiogenesisandpossiblerescuestrategiesforhERGdysfunction.
ChannelbiogenesisandregulatingnetworkThebiologicalregulationofhERGinthenucleusandERissummarizedinFigure1.
Figure1.
BiologicalregulationsofhERGinnucleusandatER.
TranscriptionofthehERGchannel(KCNH2gene)isundertheregulationoftranscriptionfactorSp1andtheNMDmechanism.
Hsc70andHsp70atERareresponsibleforearlyfoldingofhERGwhileHsp90inthecytoplasmisresponsibleforlatefolding.
Hop,DNAJA2,andFKBP38assisthERGreleasefromHsc70.
HopandFKBP38aidhERGtorecruitHsp90foritsmaturation.
Hsp40promotesdegradationofhERGintheproteasome.
1475TranscriptioninnucleusResearchonhERGchanneltranscriptionislimitedandcentersprimarilyontheNMDofprematuremRNA.
NMDpartici-patesmainlyingeneexpressionregulationandmRNAqualitycontrol.
Ithasbeenreportedthat30%ofKCNH2genemuta-tionsinduceNMD,whichisenoughtocausea50%reductionofhERGcurrenttherebydecreasingI[Kr][1].
Ithasalsobeenreportedthatanextensivelyexpressedtranscriptionalfactor,SP1,up-regulateshERGmRNA.
Furthermore,drugsmayalsorescuearsenictrioxide-inducedhERGdeficiencythroughup-regulationofSP1[22].
Thus,NMDandSP1mightbegoodentrypointsthroughwhichinterferenceofhERGdysfunctionmayoccur.
TranslationandtraffickingthroughERandGolgiapparatusTheinitialhERGproteinistranslatedintheER.
Theinitial,immatureproteinundergoesaseriesofcomplexmodificationsbeforebeingtransportedtothecellmembrane.
Generallyspeaking,nativehERGproteinisfoldedandassembledwiththeassistanceofchaperones[1,23].
Properlyfoldedandassem-bledhERGproteiniscoatedintheCOPIIvesicle,transportedforwardtointeractwithERGICandarrivesattheGolgiappa-ratuswhereitundergoesfull-glycosylation[1,11].
ChannelfoldingandassemblingregulationatERhERGchannelfoldingandassemblyareundertheregulationofacomplicatedcyclicchaperonesystem.
Amongthenumer-ouschaperones,Hsp/c70,Hsp90,Hop,FKBP38,Hsp40,DJA,14-3-3proteinandGM130havebeenbestcharacterized.
Heatshockprotein70kDa(Hsp70)anditscognate(Hsc70)participateinthefoldingofnativehERGwhile90kDaheatshockprotein(Hsp90)isinvolvedinthematurationoflate-phasehERG[23,24].
ItisbelievedthatHsp70andHsc70bindwithandregulatethehERGchannelinareciprocalway[25].
DNAJA2andHopassistinhERGreleasefromHsc70[26,27].
HopalsoaidsthehERGproteininrecruitingHsp90[27].
Hsp90effectivelyinhibitsmistakenly-foldedproteinaggregationandpromoteshERGmaturation[23].
FKBP38,a38-kDaFK506-bindingprotein,interactsbothwithHsc70andHsp90andmayalsobeaprerequisiteforhERGexportfromtheER[27].
Specifically,hERGdegradationisthoughttoberegulatedbyHsp40.
DJA1andDJA2,type-IofHsp40,candecreasetheinteractionbetweenhERGandHsc70thuspromotingearlydegradationofhERG[28].
AmorerecentstudydemonstratedthattheN-terminalCapofthehERGchannelisvitalforthestabilityofthePer-Arnt-Sim(PAS)domain,hERGassemblyandhERGtrafficking[29].
Importantly,drugscommonlyinterferewithchannelfold-ingandassembly,bothofwhicharealsotargetedforrescueofchanneldysfunction.
IthasbeenconfirmedthatarsenictrioxideinhibitsthehERGchannelbydisturbingitsinterac-tionswithHsp90andHsp70[7].
WhiletraffickingdeficiencyofA422T-hERGcanbecorrectedbyHsp90overexpression[21].
FKBP38hasalsobeenshowntopartiallyrestoretraffickingofF805C-hERG[25].
Therefore,channelfoldingandassemblyaremostlikelyadditionalpromisingentrypointsforinterferingwithhERGdysfunction.
ForwardtraffickingfromERtoGolgiProperlyfoldedandassembledhERGproteiniscoatedinCOPIIandtraffickedtotheGolgi.
ItisbelievedthatforwardtraffickingintheCOPIIvesicleisregulatedbyGTPaseSar1whilebackwardtraffickingintheCOPIvesicleisundertheregulationofGTPaseARF1[30].
Rab11BisanotherregulatingfactorthatinhibitsforwardtraffickingofthehERGchannel[30].
AttheGolgi,GM130isthecommonlyrecognizedchaperonethatregulateshERGchanneltrafficking.
GM130participatesinorientingthechanneltowardtheGolgibyinteractingwiththeCterminalofthehERGchannel.
However,GM130over-expressioncauseshERGcurrentreduction.
Furthermore,GM130mightactasacheckpointforhERGmaturation[31].
ItiswellknownthatmoststudiesonchanneltraffickingarefocusedontheER.
However,consideringtheimportanceoffullglycosylationofthehERGchannelattheGolgi,adeeperunderstandingofthecharacteristicsofthepatternofregula-tionattheGolgiisessential.
Moreover,hypoxia-induceddecreasedbiogenesisofthehERGchannelisreportedtoresultfromenhancedROSformationatthemitochondria[32].
TheseobservationssuggestthatthephysiologicalandpathologicalfactorstakingplaceintheGolgiandmitochondriaarepoten-tiallyofgreatclinicalsignificance.
QualitycontrolThetraffickingprocessisundertheregulationofastrict-monitoringmechanismcalledqualitycontrol(QC).
QCoccursmainlyintheER.
WhenthehERGproteinisunfoldedormisfolded,QCwillactivatetheunfoldedproteinresponse[UPR,alsocalledendoplasmicreticulumstressresponse(ERS)]topreventabnormalforwardtrafficking.
Specifically,chaperonesareoverexpressedtoassistproteinfolding[17].
Mistakenly-foldedhERGproteinisfatedtobemarkedwiththeC-terminaloftheHsp70-interactingprotein(CHIP)andubiquitin,anddegradedattheproteasomebytheendoplas-micreticulum-associateddegradation(ERAD)mechanism[1].
Forexample,G572R-hERGandE637K-hERGmutantsup-regulatetheactivatingtranscriptionfactor6(ATF6)-oneearlyresponderofUPR.
DownstreamtargetsofATF6,calnexinandcalreticulin,arefurtherincreasedtohelphERGchannelfold-ing[17].
QCisanessentialmechanismthatguaranteesthecorrec-tionandclearanceofabnormalchannels.
Understandingthismechanismwillhelptoclarifymorephysiologicalandpatho-logicalmechanismsandwillaidinthediscoveryofmoreres-cueapproachesforhERGdysfunction.
ThisissummarizedinFigure2.
EndocytosisandrecyclingoncellmembraneThehERGproteinthatsuccessfullyreachestheGolgiisthenfullyglycosylated.
Afterwards,thechannelissorted,sub-locatedandfinallytransportedtothecellmembrane.
There,thehERGchannelisdynamicallyinternalizedintothecyto-plasmandrecycledbacktothemembrane[1,23].
1476Itisknownthatmanytransmembraneproteinslackcyto-plasmicsequencesthatarerequiredforrecruitmentandinter-nalizationintoclathrin-coatedvesicles[33].
Caveolin(Cav),dynaminandArf6arethemostcommonlyreportedmembersofclathrin-independentproteinsthatregulateproteininternal-ization,includinghERGchannelinternalization.
Caveolin-3(cav3)andcaveolin-1(cav1)havebeenreportedtoco-localizewithhERGproteinonthecellmembraneandregulatechannelinternalization[14].
Inaddition,ithasbeenshownthatcaveolarendocytosis,involvingthecaveolin,isdynamin-dependent[33].
OnemostrecentstudydiscoveredthatthemembranalhERGproteinundergoesrapidinternalizationinanArf6-involvinganddynamin-independentmanner[34].
Thisprocessissumma-rizedinFigure3.
OnefateofinternalizedhERGproteinistobeubiquitinatedwiththeassistanceofubiquitinligaseandthendegraded.
Forexample,theWWdomainoftheubiquitinligaseNedd4-2caninteractwiththePYmotifofhERGchannel[35].
Co-localizationofCav3,Nedd4-2andhERGproteinaccelerateshERGubiquitinationanddegradationbycav3andNedd4-2,respectively[36,37].
AnotherfateofinternalizedhERGpro-teinistoberecycledbacktothemembrane.
Rab11isonememberthatassistsinthisrecyclingprocess[37].
However,ithasbeenreportedthatRab4overexpressionreduceshERGchannelexpressionbyreducingdegradationofNedd4-2[38].
Moreover,theserumandglucocorticoid-induciblekinase3(SGK3)andSGK1havebeenshowntonegativelyregulateNedd4-2-mediatedubiquitinationandpositivelyregulateRab11-mediatedrecycling[37].
Thus,themembranalhERGproteinappearstobeunderadynamicbalanceofdegradationandrecycling.
Notably,probucolhasbeenshowntospeeduphERGdeg-radationbyinfluencingcav1[39].
CeramideincreaseshERGdegradationbypromotingubiquitination[14].
Meanwhile,thetraffickingdeficiencyofthecysticfibrosistransmembraneconductanceregulator(F508-CFTR)iscorrectedbyknockingdownNedd4-2.
KnockdownofSGK1completelyblockedthisrescue[40].
Rab9isabletorescueprogesterone-inducedhERGchanneltraffickinginhibition[30].
Therefore,Rab9,SGK,andNedd4-2arepromisingcandidatesthatshouldbeexploitedforrescueofhERGchanneldysfunction.
OtherregulationmechanismsIthasbeenreportedthatprolongedAPDandinhibitedI[Ks]canbenormalizedbyanincreaseinI[Kr],supportingtheexistenceofcomplementaryinteractionsbetweenI[Ks]andI[Kr][41].
I[Kr]andI[Ks]arebothimportantcurrentsthatareresponsibleforcardiacrepolarization.
I[Kr]isconductedbyHERG(αsubunitofI[Kr])andKCNE2(βsubunitofI[Kr])whileI[Ks]isconductedbyKCNE1andKCNQ1[2].
IthasbeenshownthatthecurrentofKCNE2-HERGco-expressionbaresagreatersimilaritytoI[Kr]thansingleHERGexpressionandthatKCNE2isalsorelatedtoLQTS[42].
hERGcaninteractwithKCNQ1-αviatheirCOOHdomains[12]andtrafficking-sufficientKCNQ1canmodulatethehERGchannel[43].
Moreover,KCNE1isreportedtoco-immunoprecipitatewithhERG[44]andKCNE2mayreducehERGexpressionbyacceleratingdegradation[45].
Thus,inter-actionsamonghERG,KCNQ1andKCNEareessentialfortheirexpression[46].
Importantly,thepolymorphismsinthehERG/MiRP1K+-channelhasbeenreportedtopotentiallyFigure2.
QualitycontrolofhERGatER.
NormalhERGiscoatedinCOPII(regulatedbyARF-1)toforwardlytrafficktotheGolgiandinteractwithGM130.
AbnormalhERGiscoatedinCOPI(regulationbySar-1)andbackwardlytraffickedtotheER;accumulationofabnormalhERG(especiallyunfoldedhERG)willactivateUPR;ATF-6willshufflefromtheERtotheGolgi,ATF-6iscuttoformcleaved-ATF-6andtotravelintothenucleusandupregulatecalnexinandcalreticulintoassisthERGfolding;cATF-6can,however,promoteinteractionbetweenhERGandCHIP,thenhERGisrecognizedandmarkedwithubiquitintosignalitsdegradationintheproteasome.
1477increasesusceptibilitytoarrhythmia[47,48].
Clearly,futurestudiesareneededtoclarifytherelationshipsamonghERG,KCNQ1andKCNEproteinsandtheirintrinsicmodulatingmechanisms.
Ions,temperature,age,gender,andoxidativestressareotherfactorsthatregulatethehERGchannel.
Forexample,extracellularK+isaprerequisiteforhERGchannelfunctionandmembranestability[46].
LowextracellularK+willinducechannelmono-ubiquitination,anddegradationinthelyso-some[49].
Furthermore,internalizationanddegradationareacceleratedunderconditionsoflowextracellularK+[46,49].
Inaddition,itisbelievedthatintracellularK+helpstostabilizehERGconformationtherebyfacilitatingexportfromtheER[50].
hERGchannelbiogenesisrateandfunctionarebothdecreasedunderconditionsofanoxiaduetotheformationofROSinthemitochondria[51].
Notably,prolongedAPDofR190Q-KCNQ1canbenormal-izedbyhERGchannelinterventionandtrafficking-sufficientKCNQ1canalsorescuedecreasedG601S-hERG/F805C-hERGchannelexpression[41,43].
UnderstandingtheseregulatorymechanismsmayprovideusefulrescuestrategiesforhERGdysfunction.
hERGchannelandLQTSAtpresent,themostcommondiseaserelatedtohERGchanneldysfunctionisLQTS.
PatientswithaprolongedQTintervalaresusceptibletoarrhythmiaincludingtorsadedepointesandsuddencardiacdeath.
ThehERGabnormalityassociatedwithinductionofLQTSincludesacquiredLQTS(aLQTS)thatismostlycausedbydrugs(asshowninTable1)andcongenitalTable1.
MechanismsofhERGchannelinhibitionbyrepresentativedrugs.
MechanismtypesDrugnameDetailedmechanismsDirectblockDofetilide54HERGcurrent↓;blockatF656Propafenrone56HERGcurrent↓;structurewithnitrogen,hydroxy,rightangleTraffickingdefectAs2O37HERGcurrent↓;ICa2+-APD-QT↑;trafficking↓,Hsp90-herg↓Pentamidine13HERGcurrentandexpression↓;ERretentionDegradationCisapride58HERGcurrentandexpression↓;ubiquitination-degradationProbucol23HERGcurrentandexpression↓;Ikr-APD↑;cavintererenceMulti-pathwayFluoxetine62HERGcurrentandexpression↓;blockS6area;traficking↓Desipramine63HERGcurrentandexpression↓;block;trafficking↓;degrade↑Figure3.
EndocytosisandrecyclingofhERGoncellmembrane.
CaveolinandNedd4-2bothco-localizewithhERGonthecellmembrane.
InstabilityofcaveolinorNedd4-2-dependentubiquitinationincreasesendocytosisofhERG.
Caveolin-relatedendocytosisisArf6-dependentanddynamin-dependent.
Mono-ubiquitinizedandmulti-ubiquitinizedhERGisdegradedinthelysosomeandproteasome,respectively.
Rab11promotesrecylingofhERGbacktocellmembrane.
Rab4andSGK3bothdecreaseNedd4-2-dependentubiqtuinationofhERGandSGK3meanwhilepromotesRab11-dependentreclycingofhERG.
1478LQTS(cLQTS)thatiscausedbygenemutations(asshowninFigure4).
aLQTSofhERGchannelManyfactorsmayinduceaLQTSincludinghypokalemia,anoxiaanddiversedrugs[49,51,52].
Drug-inducedaLQTSisthemostcommontype.
DrugsliketerfenadinehavebeenremovedfromthemarketbecauseoftheadversecardiacsideeffectscausedbyhERGchannelinhibition.
Sofar,approxi-mately136drugs(www.
crediblemeds.
org;www.
QTdrugs.
org)havebeenreportedtoprolongtheQTinterval.
ItissurprisingthatsuchadiversecategoriesofdrugsarecapableofinhibitingthehERGchannelincludingantiarrhythmic,antipsychoticandantidepressantdrugs.
Forexample,berber-ineinhibitsthehERGchannelcausingAPDprolongation[53].
ArsenictrioxideprolongstheQTintervalbyinhibitinghERGchannelexpressionandincreasingthecalciumcurrent[7].
Theantidepressantdrug,desipramine,inducesQTprolongationthroughmultiplepathwaysthataffectthehERGchannel.
Therefore,thehERGchannelisthemostcommoncausefordrug-inducedaLQTS.
ThesedrugsimpactthehERGchannelmainlybydirectblockingandbyinterferingwithpathwaysinvolvedinbiogenesis.
hERGchannelblockinghERGchannelblockingisthenumberonereasonfordrug-inducedhERGchanneldysfunction.
ThehERGchannelcanbeblockedatdifferentsitesbydifferentdrugsmakingitimpor-tanttoanalyzetheblockingprocess.
Fromthepointofviewofdifferentbindingsites,Phe656andThr652arethetwocommonsitesfordrugbinding.
Forexample,dofetilidebindstoPhe656todecreasehERGcur-rent[54].
WhilemostdrugsblockthehERGchannelthroughPhe656andTyr652,othersitesarealsotargets.
TheblockingeffectofE4031anddofetilideonthehERGchannelincludesVal625,Ser624andThr623(nearthepore),Gly648andVal659(ontheS6domain),andS631A(betweendomain5and6)[54,55].
Whenconsideringdifferentblockingcompounds,com-poundswithnitrogen,hydroxyorarightanglecanmoreeas-ilyinhibitthehERGchannel[56].
Inaddition,anaromaticsidechainonTyr652andahydrophobicsidechainonPhe656areneededforcisapride-associatedhERGcurrentblocking[57].
Asdrugsprefertoformπ-πstackinginteractionswithTyr652andPhe656,Tyr652and/orPhe656mutationscouldreducedrug-associatedhERGinhibition[58].
ThehydrophobicityandaromaticcharacteratTyr623,Tyr652andPhe656arethoughttobethemainreasonsforblocking[59].
VanderWaals'forcepresentonthechannelsurfaceisalsonecessaryforblocking[59].
Inconclusion,Tyr652,Phe656,andTyr623arethemostessentialsitesforblocking.
Val625,Ser624,Ser631,Gly648,andVal659arealsocommonsitesforblocking.
TherearemanydifferentopportunitiesforblockingsuchasprotonizednitrogenforminghydrogenbondswiththeoxygenofcarbonylatTyr623,ahalfaromaticringinteractingwithπ–πstackingatFigure4.
SchematicsofLQT2mutations.
Eachgreenballrepresentsanaminoacid.
Eachpurple,orangeandbluepointrepresentsonemutation.
Inaddition,theorangepointsrepresentmutationsshowinghERGchanneltraffickingdeficiencyandthebluepointsrepresentmutationsbeingmonitoredbytheNMDmechanism.
1479Tyr652andthehydrophobicpartcanformingahydrophobicinteractionwiththebenzeneringatPhe656.
Newdrugsthatoff-targetthesebindingsitesmightbeonegoodsolution.
hERGchannelbiogenesisinterferenceBiogenesisdisturbance,especiallytraffickinginhibition,isanemergingreasonfordrug-inducedhERGdysfunction.
Arse-nictrioxidedisturbsthehERG-chaperoneinteractionsoastoimpedechanneltrafficking[7].
HigherlevelsofmiR-133andlowerlevelsofhERGexpressionarealsoassociatedwitharse-nictrioxide-inducedQTintervalprolongation[60].
PentamidinebindswiththehERGchanneltoarrestitsmaturationandinhibitsexportationfromtheER[13].
IthasbeenreportedthatpentamidinewithaphenylringorsubstituentsthatcanattachtothehERGchannelhasthelargestinhibitoryeffectonthehERGchannel[61].
DrugsalsoinfluencethehERGchannelbytheirimpactondegradation.
ProbucolspeedsuphERGchanneldegrada-tionthroughitseffectsonlow-densitylipoprotein(LDL)andcav1[23].
Ceramideincreaseschanneldegradationatthelyso-somebypromotingchannelubiquitination[14].
Infact,manydrugsinterferewiththehERGchannelthroughmultiplepathways.
FluoxetinebothblockshERGcurrentandreduceschanneltrafficking[62].
EvendesipramineinhibitsthehERGchannelbyblocking,traffickinginhibition,promotinginternalizationandacceleratingubiquitination-degradation[63].
AsthemajorityoftheprocessesinvolvedinbiogenesisofthehERGchannelareaffectedbydiversedrugs,rescuestrate-giesofhERGdysfunctionshouldbespecifictotheirtargets.
Forexample,drug-inducedtraffickingdefectscanbemini-mizedifcertainchemicalfeaturesareavoidedorremoved[61].
cLQTSofhERGchannelhERGchannelmutation-inducedcLQT2accountforapproxi-mately45%ofidentifiedLQTS[64].
Itwasreportedin2009that62%ofKCNH2mutationsweremissensemutations,24%wereframe-shiftmutations,and14%werenonsenseanddeletionmutations[65].
Upto90%ofmissensemutationsaffectchannelfunctionbytraffickinginhibition[66].
Mutationsarelocatedthroughouttheentirechannel:intracellulardomains(52%),trans-membranedomains(30%),poreareas(12%),andextra-cellularsegments(6%)[64].
CommonmutationcharacteristicsAsshowninFigure4,mutationsarelocatedthroughoutthehERGchannel.
Mutationsindifferentareashavediffer-entimpactsonthehERGchannel.
Intheporearea,G601SmanifestsasinhibitedtraffickingwhileY611Hmanifestsasincreasedubiquitinationanddegradation[11,67].
Thetrans-membranemutationT473PcausessevereTdPandcardiacarrest[12].
MutationsaroundT473PsuchasD456Y,F463L,N470D,andT474Iallmanifestastraffickinginhibitionwithdominantnegativeeffect[12].
Therefore,ithasbeeninferredthatmutationsbetweenS2andtheS2-S3linkerprobablyhaveseriousmanifestations.
MutationsatthePASdomaindonotfrequentlyinhibittrafficking.
IthasbeenshownthatK28E,F29L,G53R,C66G,L86RcausetraffickingdeficiencywhileN33T,R56Q,H70R,A78Rdonot[68].
N33TandR56QarelikelytodirectlyinfluencethemembranalhERGchannel,whileH70RandA78RprobablyindirectlyaffectthehERGchannelbyinteractingwithsurroundinghydrophobicareas[69].
TheredpointsinFigure4showthelocationsoftrafficking-deficientmutants.
Insummary,mutationsattheporeandtrans-membranedomainsprobablydisturbchanneltraffickingandhavesevereconsequences,whilemutationsatthePASdomainandtheCterminalarelikelytohavemilderconsequences.
RescueofthehERGchanneldysfunctionshouldconsiderthesetypesofcharacteristicsandavoidsuchmutations.
OthermutationcharacteristicsConsideringhERGchanneldysfunctionmechanism,somemutation-associatedhERGinhibitionsareregulatedbyQC.
Forexample,ATF-6,Grp78,Grp94,andcalreticulinareallactivatedtoassistinI593R-hERGfolding[68].
UPRisalsoacti-vatedbytheE637K-hERGandG572R-hERGmutations[17].
Inaddition,somemutationscanalterthekineticsofhERGchan-nel.
R744P-hERGcauseshERGchanneldysfunctionbyreduc-ingactivation[70].
T421M-hERGmanifestsasbothtraffickinginhibitionandchangesinkinetics[71].
Furthermore,mRNAisdecreasedviatheNMDmechanismforbothQ1070X-hERGandY652X-hERG[72,73].
Q725X-hERGandR1014X-hERGalsocauseaCterminalprematuretruncation[74].
Recently,astudydefinedtherequiredsegmentsforsusceptibilitytoNMD-associatedLQTS[75].
Regardingthetypeofmutation,thosethatexcludenon-sensemutationsalsoplayacertainroleincLQTS.
Frame-shiftmutationssuchasP1086fs+32X[76],splicingmutationssuchas2592+1G>A[77],andgenepolymorphismssuchasK897T,R1047LandQ1068RareallreportedtoinducecLQTS[76–78].
Specifically,patientscarryingtheA1116V-hERGmutationwithoutK897TgenepolymorphismmanifestnormalhERGfunction,whilepatientscarryingA1116V-hERGmutationandK897TgenepolymorphismmanifesthERGcurrentinhibi-tion[79].
Therefore,mechanismsthatexcludetraffickinginhibitionandmutationsthatexcludenonsensemutationscannotbeneglected.
Genescanningshouldbebroadenoughtoscreenoutdangerousfactors,especiallythosementionedabove.
CorrelationbetweenaLQTSandcLQTSResearchinvestigatingthecorrelationsbetweenaLQTSandcLQTSislimited.
OnestudydiscoveredDNAvariantsinapatientwhoexperienceddrug-inducedTdP[80].
ProbucolisalsofoundtoaccelerateM124T-hERG-associatedcurrentinhi-bition[81].
Furthermore,hERGgenepolymorphismisalsocor-relatedwithdrug-inducedhERGchannelabnormality[39,82].
Aspatientswhocarryriskygenemutationsaremoresus-ceptibletoLQTSwhentheyaretreatedwithpotentiallydan-gerousdrugs,itisnecessarytofurtherclarifythecorrelationsbetweenaLQTSandcLQTS.
WhenbothaLQTSandcLQTS1480aretakenintoconsideration,cross-linkrescuestrategyseemstoholdgreatpromise.
ExistingandpotentialrescuestrategiesAtpresent,rescuestrategiesforhERGchanneldysfunctionmainlyincludechannelblockers,activators,biogenesisregu-latingfactorsandothermethods.
AllrescuestrategiesaresummarizedinTable2.
Analysisofthemeritsanddemeritsofthesestrategieswillhelptodevelopthemostappropriaterescuestrategiesthatcanbeclinicallyapplied.
hERGchannelactivatorsActivatorsseemtobethemostpromisingstrategyforres-cuehERGchanneldysfunctionaswellasLQTSinvivo.
Sofar,thereareapproximately13reportedhERGactivators:RPR260243,PD118057,PD307243,NS1643,NS3623,ICA-105574,KB130015,A-935142,mallotoxin,matrine,oxymatrine,carbachol,andN-[N-(N-acetyl-L-leucyl)-L-leucyl]-L-norleu-cine(ALLN)[18,83–87].
ActivatorsprefertoregulatethehERGchannelbyalter-ingchannelkinetics[18].
Activatorsaredividedintoseventypesbasedontheirmechanismofactivation:(1)RPR260243mainlyaffectsthehERGchannelbyalteringdeacti-vation[18,88].
(2)PD118057,PD307243,NS1643,NS3623,andICA-105574allinfluencethehERGchannelbyregulatinginactivation[18,19,84,88–90].
(3)KB130015regulatesthehERGchannelbyincreasingactivation[18].
(4)A-935142andmal-lotoxinbothregulatethehERGchannelbychangingmultiplekinetics[20,83].
(5)MatrineandoxymatrineinfluencethehERGchannelbyup-regulatingtranscriptioninsteadofchangingkinetics[22,85].
(6)CarbacholincreasesNedd4-2phosphoryla-tion,slowsdownchanneldegradationandthusincreaseshERGchannelexpression[86].
(7)ALLN,aknowncalpain1/2andproteasomeinhibitor,rescuestheLQTS2phenotypebyrestoringtrafficking[87].
Importantly,manyactivatorsarecapableofshorteningpro-longedAPDandtheQTinterval.
Forexample,RPR260243isabletoreversedofentilide-inducedAPDprolongationbyslowingdownhERGdeactivationtoincreaseI[kr][18–20].
Inaddi-tion,PD118057canreducehERGinactivation,shiftupinac-tivationpotentialandpreventdofetilide-causedQTintervalprolongation[18,84].
However,PD118057failstocorrectthedominant-negativeeffectoftheE637K-hERG[91].
ICA-105574canalsodisablehERGinactivationandshortentheQTintervalincardiomyocytes[18,84].
Moreover,matrineandoxymatrinecanalsorescuearsenictrioxide-inducedhERGdeficiencyandAPDprolongation[22].
ALLNsuccessfullyreducesspontaneousarrhythmogenicepisodesandmarkedlyreducesAPD70/90ofLQTS-specificcardiomyocytesderivedfromhuman-inducedpluripotentstemcells[87].
Inconclusion,thehERGchannelactivatorsarepromis-ingagentstouseintherescueofdrug-inducedLQTSinvivo.
ActivatorssuchasRPR260243,PD118075,ICA-105574,andALLNshowthemostpotential.
MatrineandoxymatrinearealsopromisingfortherescueofothertypesofhERGdysfunc-tionowingtotheirroleinincreasingtranscription.
hERGchannelblockershERGchannelblockersarewidelyusedtorescuehERGdysfunctioninvitro.
E-4031,astemizole,fexofenadineanddofetilidearemostoftenchosen.
Forexample,E-4031isabletoremovetrafficking-deficientG601S-hERGfromthemicrotubule-dependentQCcompartmentandincreaseERexportofthemutanthERGchannel[17].
Inaddition,astemizoleandfexofenadinearebothreportedtorescueexpressiondefi-ciencyofN470D-hERG[15,92].
Dofetilideisreportedtocorrectpentamidine-inducedhERGdefects[61].
Nevertheless,therearequiteafewbarriersduetoblock-ersthatlimittheirapplication.
First,asblockersbindtotheintra-cavityofthehERGchannel,therescuedchannelmightbenon-conducting[1].
Forexample,underconditionsoflowintracellularpotassium,theastemizole-rescuedchannelisTable2.
Representativerescuestrategies.
RescuestrategyNameMechanismActivatorsRPR260243Deactivation↓P118057,PD307243,NS1643,NS3623,ICA-105574Inactivation↓KB-130015Activation↑A-935142,mallotoxinMulti-kineticsinfluenceMatrine,oxymatrineTranscription↑CarbacholDegradation↓ALLNRe-trafficking↑BlockersFexofenadineCompetivebindingE-4031,astemizolePromisingstrategiesFKBP38,Hsp90,Rab9Trafficking↑orrecyclingAMO,siRNA,iPSCSpecific-targetinginterferenceKCNQ1MutualinteractionKM57,KM60GlycosylationmodificationOthermethodsLowtemperatureConformatinstabalizationGlycerol,DMSO,TMO1481non-conducting[50].
Second,rescueconcentrationsofblockersareusuallyhigherthantheirblockingconcentrations,whichrestrictstheirapplication[92].
However,inthecaseoffexof-enadine,therescueconcentrationis350timeslowerthanitsblockingconcentrationonN470D-hERG[92].
Therefore,drugsthatarecapableofrescuinghERGdysfunctionandshowalowaffinityforthehERGchannelarepromising.
Third,therescueeffectsofblockersareoftenrelatedtotheirbindingsiteswithinthehERGchannelandthus,manytypesofLQTSarenotsensitive.
Hypoxia-inducedhERGtraffickingdeficiencyorT473P-hERG-associatedsevereTdPcannotberescuedbyblockers[14].
FexofenadineisalsounabletorescueV822M-hERGfunction[92].
Asaresult,hERGchannelblockersmaynotbethemostpromisinginvivostrategy.
However,fexofenadine'slowerrescuingthanblockingconcentrationmakesitapotentialres-cueofhERGdysfunctionclinically.
PotentialrescuestrategiestargetinghERGchannelNotsurprisingly,thereisgreatpotentialtodeveloprescuestrategiesfromfactorsthatregulatethehERGchannelbiogen-esis.
RegulatingfactorssuchasFKBP38,Rab9/11B,Hsp90,SGK,Nedd4-2,andKCNQarethemostpromising.
FKBP38promoteshERGtraffickingandisabletorescuetraffick-ingdeficiencyofF805C-hERG[27].
Rab9isalsoabletorescueprogesterone-inducedhERGtraffickinginhibition[30].
Fur-thermore,expressionoftrafficking-deficientA422T-hERGcanberescuedbyoverexpressingHsp90[21].
Finally,trafficking-sufficientKCNQ1canrestoreG601S/F805C-hERGchannelexpression[41,43].
Therescuingeffectsofthepreviouslymentionedstrategieslackspecificity.
SiRNAinterferenceandtheAMOstrategy,whichtargetsspecificobjectives,aredesignedtorescuethehERGchanneldefects.
Forinstance,E637K-hERG-targetingsiRNAreducestheexpressionofthemutantchannelwithoutaffectingexpressionofthewildtypechannel[93].
Allele-specificRNAinterference,whichtargetsc.
G1681A-KCNH2mRNA,successfullynormalizeshERGcurrentandAPD[94].
Moreover,pluripotentstemcells(iPSCs)bringgreathopeforrescuingofhERGdysfunction[95].
Althoughmostofthesestudiesareinvitro,becauseoftheirspecificity,regulatingfactorsandgene-targetingstrategiesarequitepromisingforclinicalapplication.
OtherrescuingstrategiesLowtemperature,glycerol,DMSOandTMOarecommonlyusedtorescuehERGdysfunction[15,16,23,69].
Temperature27°Cisoftenchosenforlow-temperatureincubation[15,16].
hERGchannelmutationssuchasK28E,F29L,D456Y,N470D,G601S,F805C,andV822Mandhypoxia-inducedhERGtraf-fickinginhibitionallcanberescuedbylow-temperatureincu-bation[23,69].
Chemicalchaperonessuchasglycerol,DMSOandTMOarebelievedtostabilizehERGchannelconformation[23].
Interestingly,chemicalsthatcanrescueotherabnormalitiesinotherchannelsarecapableofrescuinghERGdysfunctionaswell.
KM57andKM60,chemicalsthatcanrescueexpres-siondeficiencyoftheCFTRchannel,arealsoabletorescuetheG601S-hERGchanneldeficiency.
Specifically,KM57andKM60mightplaytheirrescuingrolebymodifyingglycosyl-ationofthehERGchannel[96].
Thisisespeciallyusefulwhenmorethanonetypeofchannelmutationoccurs.
Inaddition,wepreviouslyfoundthatacidificationmarkedlypotentiateddofetilide-inducedblockadeofthehERGchannelwhileitweakenedquiniding/azimilide-inducedhERGinhibition[97].
ConsiderationofbloodpHshouldhelptoreducedrug-inducedhERGchanneldysfunction.
ConclusionandprospectInsummary,hERGchannelbiogenesisandtheregulatingnetworkarequitecomplex,especiallyinregardtofunc-tionsoftheERanddynamiccyclingonthecellmembrane.
TherearemanybiochemicalandmoleculartargetsthatmayinducechanneldisordersincludingLQTS.
Inaddition,LQTS-associatedmutationsspreadthroughoutthewholeareaofthehERGchannel,particularlyintheporeareaandtrans-mem-branesegments.
Traffickingismostoftenaffected.
Rescuestrategiesincludeactivators,blockers,biogenesisregulatingfactorsandothermethods.
Lookingtowardthefuture,comprehensiveconsiderationandindividualtreatmentofthehERGchanneldisorderandLQTSarethetrends.
Activatorsseemtobethemostpromis-ingrescuestrategyforhERGchanneldysfunctionandLQTS.
Importantly,rescuestrategieswithgreatpotentialawaitexploitationinthebiogenesisregulationnetwork,especiallythetraffickingprocess.
AcknowledgementsThisworkwassupportedbygrantsfromtheNationalNaturalScienceFoundationofChina(No31173050and30973530)andtheKeyProgramoftheNationalNaturalScienceFoundationofChina(No81230081).
References1VandenbergJI,PerryMD,PerrinMJ,MannSA,KeY,HillAP.
hERGK+channels:structure,function,andclinicalsignificance.
PhysiolRev2012;92:1393–478.
2SanguinetiiMC,Tristani-FirouziM.
hERGpotassiumchannelsandcardiacarrhythmia.
Nature2006;440:463–9.
3BabcockJJ,LiM.
hERGchannelfunction:beyondlongQT.
ActaPharmacolSin2013;34:329–35.
4WarmkeJW,GanetzkyB.
AfamilyofpotassiumchannelsgenesrelatedtoeaginDrosophilaandmamals.
ProcNatlAcadSciUSA1994;91:3438–43.
5SanguinettiMC,JiangCG,CurranME,KeatingMT.
Amechanisticlinkbetweenaninheritedandanacquiredcardiacarrhythmia:HERGencodestheIkrpotassiumchannel.
Cell1995;81:299–307.
6ZhouJ,MengR,LiXX,LvCF,FanSJ,YangBF.
TheeffectofarsenictrioxideonQTintervalprolongationduringAPLtherapy.
ChinMedJ2003;116:1764–6.
7FickerE,KuryshevYA,DennisAT,Obejero-PazC,WangL,HawrylukP,etal.
Mechanismsofarsenic-inducedprolongationofcardiacrepolarization.
MolPharmacol2004;66:33–44.
8BaiYL,WangJX,ShanHL,LvYJ,ZhangY,LuoXB,etal.
Sphingolipidmetaboliteceramidecausesmetabolicperturbationcontributingto1482HERGK+channeldysfuncion.
CellPhysiolBiochem2007;20:429–40.
9GongQ,ZhangL,VincentGM,HorneBD,ZhouZ.
NonsensemutationsinhERGcauseadecreaseinmutantmRNAtranscriptsbynonsense-mediatedmRNAdecayinhumanlong-QTsyndrome.
Circulation2007;116:17–24.
10HebertDN,MolinariM.
InandoutoftheER:proteinfolding,qualitycontrol,degradation,andrelatedhumandiseases.
PhysiolRev2007;87:1377–408.
11SmithJL,McBrideCM,NatarajPS,BartosDC,JanuaryCT,DelisleBP.
Trafficking-deficienthERGK+channelslinkedtolongQTsyndromeareregulatedbyamicrotubule-dependentqualitycontrolcompartmentintheER.
AmJPhysiolCellPhysiol2011;301:C75–85.
12LiuL,HayashiK,KanedaT,InoH,FujinoN,UchiyamaK,etal.
Anovelmutationinthetransmembranenon-poreregionoftheKCNH2genecausessevereclinicalmanifestationsoflongQTsyndrome.
HeartRhythm2013;10:61–7.
13DennisAT,WangL,WanH,NassalD,DeschenesI,FickerE.
Moleculardeterminantsofpentamidine-inducedhERGtraffickinginhibition.
MolPharmacol2012;81:198–209.
14ChapmanH,RamstromC,KorhonenL,LaineM,WannKT,LindholmD,etal.
DownregulationoftheHERG(KCNH2)K+channelbyceramide:evidenceforubiquitin-mediatedlysosomaldegradation.
JCellSci2005;118:5325–34.
15ZhouZ,GongQ,JanuaryCT.
CorrectionofdefectiveproteintraffickingofamutantHERGpotassiumchannelinhumanlongQTsyndromepharmacologicalandtemperatureeffects.
JBioChem1999;274:31123–6.
16ChenMX,SandowSL,DoceulV,ChenYH,HarperH,HamitonB,etal.
Improvedfunctionalexpressionofrecombinanthumanether-a-go-go(hERG)Kchannelsbycultivationatreducedtemperature.
BMCBiotechnol2007;7:93.
17WangY,HuangX,ZhouJ,YangX,LiD,MaoH,etal.
Trafficking-deficientG572R-hERGandE637K-hERGactivatestressandclearancepathwaysinendoplasmicreticulum.
PLoSOne2012;7:e29885.
18PerryM,SanguinettiM,MitchesonJ.
RevealingthestructuralbasisofactionofhERGpotassiumchannelactivatorsandblockers.
JPhysiol2010;588:3157–67.
19KangJ,ChenXL,WangH,JiJ,ChengH,IncardonaJ,etal.
Discoveryofasmallmoleculeactivatorofthehumanether-a-go-go-relatedgene(HERG)cardiacKchannel.
MolPharmacol2005;67:827–36.
20LiuX,LimberisJT,SuZ,HousemanK,DiazGJ,GintantGA,etal.
CharacterizationofA-935142,ahERGenhancer,inthepresenceandabsenceofstandardhERGblockers.
LifeSci2012;90:607–11.
21GuoJ,ZhangX,HuZ,ZhuangZ,ZhuZ,ChenZ,etal.
A422TmutationinHERGpotassiumchannelretainedinERisrescurablebypharmacologicormolecularchaperones.
BiochemBiophysResCommun2012;422:305–10.
22ZhangY,DongZX,JinL,ZhangK,ZhaoX,FuJ,etal.
Arsenictrioxide-inducehERGKchanneldeficiencycanberescuedbymatrineandoxymatrinethroughup-regulatingtranscriptionfactorSp1expression.
BiochemPharmacol2013;85:59–68.
23DelisleBP,AnsonBD,RajamaniS,JanuaryCT.
Biologyofcardiacarrhythmiasionchannelproteintrafficking.
CircRes2004;94:1418–28.
24FickerE,DennisAT,WangL,BrownAM.
RoleofthecytosolicchaperonesHsp70andHsp90inmaturationofthecardiacpotassiumchannelHERG.
CircRes2003;92:e87–100.
25LiP,NinomiyaH,KurataY,KatoM,MiakeJ,YamamotoY,etal.
ReciprocalcontrolofhERGstabilitybyHsp70andHsc70withimplicationforrestorationofLQT2mutantstability.
CircRes2011;108:458–68.
26BaakliniI,WongMJ,HantoucheC,PatelY,ShrierA,YoungJC.
TheDNAJA2substratereleasemechanismisessentialforchaperone-mediatedfolding.
JBiolChem2012;287:41939–54.
27WalkerVE,AtanasiuR,LamH,ShrierA.
Co-chaperoneFKBP38promotesHERGtrafficking.
JBiolChem2007;282:23509–16.
28WalkerVE,WongMJ,AtanasiuR,HantoucheC,YoungJC,ShrierA.
Hsp40chaperonespromotedegradationoftheHERGpotassiumchannel.
JBiolChem2010;285:3319–29.
29KeY,HunterMJ,NgCA,PerryMD,VandenbergJI.
RoleofthecytoplasmicN-terminalcapandPer-Arnt-Sim(PAS)domanintraffickingandstabilizationofKv11.
1channels.
JBiolChem2014;289:13782–91.
30DelisleBP,UnderkoflerHA,MoungeyBM,SlindJK,KilbyJA,BestJM,etal.
SmallGTPasedeterminantsfortheGolgiprocessingandplasmalemmalexpressionofhumanether-a-go-gorelated(hERG)K+channels.
JBiolChem2009;284:2844–53.
31RotiEC,MyersCD,AyersRA,BoatmanDE,DelfosseSA,ChanEK,etal.
InteractionwithGM130duringHERGionchanneltraffickingdisruptionbytype2congenitallongQTsyndromemutation.
Humanether-a-go-go-relatedgene.
JBiolChem2002;277:47779–85.
32NanduriJ,WangN,BergsonP,YuanG,FickerE,PrabhakarNR.
Mitochondrialreactiveoxygenspeciesmediatehypoxicdown-regulationofhERGchannelprotein.
BiochemBiophysResCommun2008;373:309–14.
33GrantBD,DonaldsonJG.
Pathwaysandmechanismsofendocytosisrecycling.
NatRevMolCellBiol2009;10:597–608.
34KarnikR,LudlowMJ,AbuarabN,SmithAJ,HardyME,ElliottDJ,etal.
EndocytosisofhERGisclathrin-independentandinvolvesArf-6.
PLoSOne2013;8:e85630.
35AlbesaM,GriloLS,GavilletB,AbrielH.
Nedd4-2-dependentubiquitylationandregulationofthecardiacpotassiumchannelhERG1.
JMolCellCardiol2001;51:90–8.
36GuoJ,WangT,LiX,ShallowH,YangT,LiW,etal.
Cellsurfaceexpressionofhumanether-a-go-go-relatedgene(hERG)channelsisregulatedbycaveolin-3proteinviatheubiquitinligaseNedd4-2.
JBiolChem2012;287:33132–41.
37LamotheSM,ZhangS.
Theserum-andglucocorticoid-induciblekinaseSGK1andSGK3regulatehERGchannelexpressionviaubiquitinligaseNedd4-2andGTPaseRab11.
JBiolChem2013;288:15075–84.
38CuiZ,ZhangS.
Regulationofthehumanether-a-go-go-relatedgene(hERG)channelbyRab4throughneuralprecursorcell-expresseddevelopmentallydownregulatedprotein4-2(Nedd4-2).
JBiolChem2013;288:21876–86.
39GuoJ,LiX,ShallowH,XuJ,YangT,MassaeliH,etal.
Involvementofcaveolininprobucol-inducedreductioninhERGplasma-membraneexpression.
MolPharmacol2011;79:806–13.
40CaohuyH,JozwikC,PollardHB.
RescueofF508-CFTRbytheSGK1/Nedd4-2signalingpathway.
JBiolChem2009;284:25241–53.
41ZhangH,ZouB,YuH,MorettiA,WangX,YanW,etal.
ModulationofhERGpotassiumchannelgatingnormalizesactionpotentialdurationprolongedbydysfunctionalKCNQ1potassiumchannel.
ProcNatlAcadSciUSA2012;109:11866–71.
42AbbottGW,SestiF,SplawskiI,BuckME,LehmannMH,TimothyKW,etal.
MiRP1formspotassiumchannelswithHERGandisassociatedwithcardiacarrhythmia.
Cell1999;97:175–87.
43HayashiK,ShuaiW,SakamotoY,HigashidaH,YamagishiM,KupershmidtS.
Traffcking-competentKCNQ1variablyinfluencesthefunctionofHERGlongQTalleles.
HeartRhythm2010;7:973–80.
44Organ-DarlingLE,VernonAN,GiovannielloJR,LuY,MoshalK,RoderK,1483etal.
InteractionbetweehERGandKCNQ1α-subunitsaremediatedbytheirC-terminiandmodulatedbycAMP.
AmJPhysiolHeartCircPhysiol2013;304:H589–99.
45ZhangM,WangY,JiangM,ZankovDP,ChowdhuryS,KasirajanV,etal.
KCNE2proteinismoreabundantinventriclesthaninatriaandcanacceleratehERGproteindegradationinaphosphorylation-dependentmanner.
AmJPhysiolHeartCircPhysiol2012;302:H910–22.
46MassaeliH,GuoJ,XuJ,ZhangS.
ExtracellularK+isaprerequisiteforthefunctionandplasmamembranestabilityofHERGchannels.
CircRes2010;106:1072–82.
47LarsenLA,AndersenPS,KantersJ,SvendsenIH,JacobsenJR,VuustJ,etal.
ScreeningformutationsandpolymorphismsinthegenesKCNH2andKCNE2encodingthecardiacHERG/MiRP1ionchannel:implicationsforacquiredandcongenitallongQTsyndrome.
ClinChem2001;47:1390–5.
48WeerapuraM,NattelS,ChartierD,CaballeroR,HebertTE.
AcomparisonofcurrentscarriedbyHERG,withandwithoutcoexpressionofMiRP1,andthenativerapiddelayedrectifiercurrent-IsMiRP1themissinglinkJPhysiol2002;540:15–27.
49SunT,GuoJ,ShallowH,YangT,XuJ,LiW,etal.
Theroleofmonoubiquitinationinendocyticdegradationofhumanether-a-go-go-relatedgene(hERG)channelsunderlowK+conditions.
JBiolChem2011;286:6751–9.
50WangL,DennisAT,TrieuP,CharronF,EthierN,HebertTE,etal.
Intracellularpotassiumstabilizeshumanether-a-go-go-relatedgenechannelsforexportfromendoplasmicreticulum.
MolPharmacol2009;75:927–37.
51NanduriJ,BergsonP,WangN,FickerE,prabhakarNR.
HypoxiainhibitsmaturationandtraffickingofhERGK+channelprotein:RoleofHsp90andROS.
BiochemBiophysResCommun2009;388:212–6.
52DePontiF,PoluzziE,CavalliA,RecanatiniM,MontanaroN.
Safetyofnon-antiarrhythmidrugsthatprolongtheQTintervalorinducetorsadedepointes.
DrugSaf2002;25:263–86.
53LiBX,YangBF,ZhouJ,XuCQ,LiYR.
InhibitoryeffectsofberberineonIK1,IK,andHERGchanelsofcardiacmyocytes.
ActaPharmacolSin2001;22:125–31.
54KamiyaK,NiwaR,MitchesonJS,SanguinettiMC.
MoleculardeterminantsofHERGchannelblock.
MolPharmacol2006;69:1709–16.
55YangBF,XuDH,XuCQ,LiZ,DuZM,WangHZ,etal.
Inactivationgatingdeterminesdrugpotency:acommonmechanismfordrugblockadeofHERGchannels.
ActaPharmacolSin2004;25:554–60.
56WindischA,TiminE,SchwarzT,Stork-RiedlerD,ErkerT,EckerG,etal.
TrappinganddissociationofpropafenonederivativesinHERGchannels.
BrJPharmacol2011;162:1542–52.
57FernadezD,GhantaA,KauffmanGW,SanguinettiMC.
PhysiocochemicalfeaturesoftheHERGchanneldrugbindingsite.
JBiolChem2004;279:10120–7.
58KnapeK,LinderT,WolschannP,BeyerA,Stary-WeinzingerA.
Insilicoanalysisofconformationalchangesinducedbymutationofaromaticbindingresidues:consequencesfordrugbindinginthehERGK+Channel.
PLoSOne2011;6:e28778.
59MoorthyNS,RamosMJ,FernandesPA.
Humanether-a-go-go-relatedgenechannelblockersanditsstructuralanalysisfordrugdesign.
CurrDrugTargets2013;14:102–13.
60ShanHL,ZhangY,BaiYL,ChenX,FanYH,YangLL,etal.
UpregulationofmicroRNA-1andmicroRNA-133contributestoarsneic-inducedcardiacelectricalremodeling.
IntJCardio201;167:2789–805.
61VarkevisserR,HoutmanMJ,LinderT,deGitKC,BeekmanHD,TidwellRR,etal.
Structure-activityrelationshipsofpentamidine-affectedionchanneltraffickinganddofetilidemediatedrescue.
BrJPharmacol2013;169:1322–34.
62RajamaniS,EckhardtLL,ValdiviaCR,KlemensCA,GillmanBM,AndersonCL,etal.
Drug-inducedlongQTsyndrome:hERGK+channelblockanddisruptionofproteintraffickingbyfluoxetineandnorfluoxetine.
BrJPharmacol2006;149:481–9.
63DennisAT,NassalD,DeschenesI,ThomasD,FickerE.
Antidepressant-inducedubiquitinationanddegradationofthecardiacpotassiumchannelhERG.
JBiolChem2011;286:34413–25.
64SplawskiI,ShenJ,TimothyKW,LehmannMH,PrioriS,RobinsonJL,etal.
Spectrumofmutationsinlong-QTsyndromegenes:KVLQT1,HERG,SCN5A,KCNE1,andKCNE2.
Circulation2000;102:1178–85.
65KapplingerJD,TesterDJ,SalisburyBA,CarrJL,Harris-KerrC,PollevickGD,etal.
Spectrumandprevalenceofmutationsfromthefirst2500consecutiveunrelatedpatientsreferredfortheFAMILIONlongQTsyndromegenetictest.
HeartRhythm2009;6:1297–303.
66SanguinettiMC.
HERG1channelopathies.
PflugersArch2010;460:265–76.
67GongQ,KeeneyDR,MolinariM,ZhouZ.
Degradationoftrafficking-defectivelongQTsyndrometypeIImutantchannelsbytheubiquitin-proteasomepathway.
JBioChem2005;280:19419–25.
68KellerSH,PlatoshynO,YuanJX.
LongQTsyndrome-associatedI593RmutationinHERGpotassiumchannelactivatesERstresspathways.
CellBiochemBiophys2005;43:365–77.
69HarleyCA,JesusCS,CarvalhoR,BritoRM,Morais-CabralJH.
ChangesinchanneltraffickingandproteinstabilitycausedbyLQT2mutationsinthePASdomainoftheHERGchannel.
PLoSOne2012;7:e32654.
70AideryP,KisselbachJ,GasparH,BaldeaI,SchweizerPA,BeckerR,etal.
Identificationandfunctionalcharacterizationofthenovelhumanether-a-go-go-relatedgene(hERG)R744PmutantassociatedwithhereditarylongQTsyndrome2.
BiochemBiophysResCommun2012;418:830–5.
71BalijepalliSY,LimE,ConcannonSP,ChewCL,HolzemKE,TesterDJ,etal.
MechanismofLossofKv11.
1K+currentinmutantT421M-Kv11.
1-expressingratventricularmyocytesClinicalperspectiveinteractionoftraffickingandgating.
Circulation2012;126:2809–18.
72SunY,ZhangP,LiX,ZhangH,LiJ,LiuG,etal.
AnovelnonsensemutationY652XintheS6/poreregionofhumanether-go-gogenefoundinalongQTsyndromefamily.
ScandCardiovascJ2009;43:81–6.
73GongQ,StumpMR,ZhouZ.
Inhibitionofnonsense-mediatedmRNAdecaybyantisensemorpholinooligonucleotidesrestoresfunctionalexpressionofhERGnonsenseandframeshiftmutationsinlong-QTsyndrome.
JMolCellCardiol2011;50:223–9.
74GongQ,KeeneyDR,RobinsonJC,ZhouZ.
DefectiveassemblyandtraffickingofmutantHERGchannelswithC-terminaltruncationsinlongQTsyndrome.
JMolCellCardiol2004;37:1225–33.
75GongQ,StumpMR,ZhouZF.
PositionofprematureterminationcodonsdeterminessusceptibilityofhERGmutationstononsense-mediatedmRNAdecayinlongQTsyndrome.
Gene2014;539:190–7.
76MihicA,ChauhanVS,GaoX,OuditGY,TsushimaRG.
TraffickingdefectandproteasomaldegradationcontributetothephenotypeofanovelKCNH2longQTsyndromemutation.
PLoSOne2011;6:e18273.
77StumpMR,GongQ,ZhouZ.
MultiplesplicingdefectscausedbyhERGsplicesitemutation2592+1G>AassociatedwithlongQTsyndrome.
AmJPhysiolHeartCircPhysiol2011;300:H312–8.
78AnsonBD,AckermanMJ,TesterDJ,WillML,DelisleBP,AndersonCL,etal.
Molecularandfunctionalcharacterizationofcommon1484polymorphismsinHERG(KCNH2)potassiumchannels.
AmJPhysiolHeartCircPhysiol2004;286:H2434–41.
79CrottiL,LundquistAL,InsoliaR,PedrazziniM,FerrandiC,DeFerrariGM,etal.
KCNH2-K897Tisageneticmodifieroflatentcongenitallong-QTsyndrome.
Circulation2005;112:1251–8.
80YangP,KankiH,DroletB,YangT,WeiJ,ViswanathanPC,etal.
Allelicvariantsinlong-QTdiseasegenesinpatientswithdrug-associatedtorsadesdepointes.
Circulation2002;105:1943–8.
81HayashiK,ShimizuM,InoH,YamaguchiM,TeraiH,HoshiN,etal.
ProbucolaggravateslongQTsyndromeassociatedwithanovelmissensemutationM124TintheN-terminusofHERG.
ClinSci2004;107:175–82.
82HeFZ,McLeodHL,ZhangW.
CurrentpharmacogenomicstudiesonhERGpotassiumchannels.
TrendsMolMed2013;19:227–38.
83ZengH,LozinskayaIM,LinZ,WilletteRN,BrooksDP,XuX.
Mallotoxinisanovelhumanether-a-go-go-relatedgene(hERG)potassiumchannelactivator.
JPharmacolExpTher2006;319:957–62.
84ZhouP,BabcockJ,LiuL,LiuLQ,LiM,GaoZB.
Activationofhumanether-a-go-gorelatedgene(hERG)potassiumchannelsbysmallmolecules.
ActaPharmacoSin2011;32:781–8.
85ZhangY,DuJ,ZhangY,SunHL,PanZW,LuYJ,etal.
Effectsofmatrine,oxymatrineandresveratrolonHERGchannelexpression.
YaoXueXueBao2007;42:139–44.
86WangTZ,AndrewHC,KangYD,CuiZ,GuoJ,YangTH,etal.
MuscarinicreceptoractivationincreaseshERGchannelexpressionthroughphosphorylationofubiquitinligaseNedd4-2.
MolPharmacol2014;85:877–86.
87MehtaA,SsequieraGL,RamachandraCJ,SudibyoY,ChungYY,ShengJW,etal.
Re-traffickingofhERGreverseslongQTsyndrome2phenotypeinhumaniPS-derivedcardiomyocytes.
CardiovascRes2014;102:497–506.
88CasisO,OlesenSP,SanguinetiiMC.
Mechanismofactionofanovelhumanether-a-go-go-relatedgenechannelactivator.
MolPharmacol2006;69:658–65.
89AsayamaM,KurokawaJ,ShirakawaK,OkuyamaH,KagawaT,OkadaJ,etal.
EffectsofanhERGactivator,ICA-105574,onelectrophysiologicalpropertiesofcaninehearts.
JPharmacolSci2013;121:1–8.
90DinessTG,YehYH,QiXY,ChartierD,TsujiY,HansenRS,etal.
Antiarrhythmicpropertiesofarapiddelayed-rectifiercurrentactivatorinrabbitmodelsofacquiredlongQTsyndrome.
CardiovascRes2008;79:61–9.
91MaoHY,LuXL,KarushJM,HuangXY,YangX,BaYN,etal.
PharmacologicapproachtodefectiveproteintraffickingintheE637K-hERGmutantwithPD-118057andthapsigargin.
PLoSOne2013;8:e65481.
92RajamaniS,AndersonCL,AnsonBD,JanuaryCT.
PharmacologicalrescueofhumanK+channellong-QT2mutationshumanether-a-go-go-relatedgenerescuewithoutblock.
Circulation2002;105:2830–5.
93LuXL,YangX,HuangX,HuangC,SunHH,JinL,etal.
RNAinterferencetargetingE637KmutationrescuesthehERGchannelcurrentsandrestoresitskineticproperties.
HeartRhythm2013;10:128–36.
94MatsaE,DixonJE,MedwayC,GeorgiouO,PatelMJ,MorganK,etal.
Allele-specificRNAinterferencerescuesthelong-QTsyndromephenotypeinhuman-inducedpluripotencystemcellcardiomyocytes.
EurHeartJ2014;35:1078–87.
95ThorrezL,SampaolesiM.
Thefutureofinducedpluripotentstemcellsforcardiactherapyanddrugdevelopment.
CurrPharmDes2011;17:3258–70.
96SampsonHM,LamH,ChenPC,ZhangD,MottilloC,MirzaM,etal.
CompoundsthatcorrectF508del-CFTRtraffickingcanalsocorrectotherproteintraffickingdiseases:aninvitrostudyusingcelllines.
OrphanetJRareDis2013;8:11.
97DongDL,LiZ,WangHZ,DuZM,SongWH,YangBF.
Acidificationaltersantiarrhythmicdrugblockadeoftheether-a-go-go-relatedgene(HERG)channels.
BasicClinPharmacolToxicol2004;94:209–12.
Megalayer 商家主营业务是以独立服务器和站群服务器的,后来也陆续的有新增香港、菲律宾数据中心的VPS主机产品。由于其线路的丰富,还是深受一些用户喜欢的,有CN2优化直连线路,有全向国际线路,以及针对欧美的国际线路。这次有看到商家也有新增美国机房的VPS主机,也有包括15M带宽CN2优化带宽以及30M带宽的全向线路。Megalayer 商家提供的美国机房VPS产品,提供的配置方案也是比较多,...
CloudCone商家在前面的文章中也有多次介绍,他们家的VPS主机还是蛮有特点的,和我们熟悉的DO、Linode、VuLTR商家很相似可以采用小时时间计费,如果我们不满意且不需要可以删除机器,这样就不扣费,如果希望用的时候再开通。唯独比较吐槽的就是他们家的产品太过于单一,一来是只有云服务器,而且是机房就唯一的MC机房。CloudCone 这次四周年促销活动期间,商家有新增独立服务器业务。同样的C...
傲游主机商我们可能很多人并不陌生,实际上这个商家早年也就是个人主机商,传说是有几个个人投资创办的,不过能坚持到现在也算不错,毕竟有早年的用户积累正常情况上还是能延续的。如果是新服务商这几年确实不是特别容易,问到几个老牌的个人服务商很多都是早年的用户积累客户群。傲游主机目前有提供XEN和KVM架构的云服务器,不少还是亚洲CN2优化节点,目前数据中心包括中国香港、韩国、德国、荷兰和美国等多个地区的CN...
boatman为你推荐
北京市儿童福利院sqlserver数据库电脑如何找到sql server数据库波音737起飞爆胎飞机会爆胎?重庆400年老树穿楼生长生长百年的老树,仍能不断生长,是因为主要有什么组织internetexplorer无法打开Internet Explorer无法打开站点怎么解决可信网站可信网站认证怎么做?贵不?价格大概是多少?123456hd手机上有电话的标志,后面有个HD是什么意思美国独立美国是什么时候独立的?站点管理谁有好的车站管理制度?长沙电话号码升位湖南的电话号码什么时候从6位数升到7位数的?
php空间租用 新网域名管理 t牌 10t等于多少g suspended 好看的桌面背景图 mysql主机 eq2 阿里云官方网站 starry 国外在线代理服务器 畅行云 电信宽带测速软件 免费赚q币 沈阳idc windowsserver2012r2 阿里云宕机故障 iptables dmz主机 网易轻博客 更多