10.0http

http://www.qvod.com/  时间:2021-04-09  阅读:()
RESEARCHOpenAccessAminimalgrowthmediumforthebasidiomycetePleurotussapidusformetabolicfluxanalysisMarcoAFraatz1,StefanieNaeve2,VanessaHausherr3,HolgerZorn1*andLarsMBlank4AbstractBackground:Pleurotussapidussecretesahugeenzymaticrepertoireincludinghydrolyticandoxidativeenzymesandisanexampleforhigherbasidiomycetesbeinginterestingforbiotechnology.
Thecomplexgrowthmediausedforsubmergedcultivationlimitbasicphysiologicalanalysesofthisgroupoforganisms.
Usingundefinedgrowthmedia,onlylittleinsightsintotheoperationofcentralcarbonmetabolismandbiomassformation,i.
e.
,theinterplayofcatabolicandanabolicpathways,canbegained.
Results:ThedevelopmentofachemicallydefinedgrowthmediumallowedrapidgrowthofP.
sapidusinsubmergedcultures.
AsP.
sapidusgrewextremelyslowinsaltmedium,theco-utilizationofaminoacidsusing13C-labelledglucosewasinvestigatedbygaschromatography–massspectrometry(GC-MS)analysis.
Whilesomeaminoacidsweresynthesizedupto90%invivofromglucose(e.
g.
,alanine),asparagineand/oraspartatewerepredominantlytakenupfromthemedium.
Withthisinformationinhand,adefinedyeastfreesaltmediumcontainingaspartateandammoniumnitrateasanitrogensourcewasdeveloped.
TheobservedgrowthratesofP.
sapiduswerewellcomparablewiththosepreviouslypublishedforcomplexmedia.
Importantly,fastgrowthcouldbeobservedfor4daysatleast,uptocellwetweights(CWW)of400gL-1.
Thechemicallydefinedmediumwasusedtocarryouta13C-basedmetabolicfluxanalysis,andtheinvivoreactionsratesinthecentralcarbonmetabolismofP.
sapiduswereinvestigated.
TheresultsrevealedahighlyrespiratorymetabolismwithhighfluxesthroughthepentosephosphatepathwayandTCAcycle.
Conclusions:ThepresentedchemicallydefinedgrowthmediumenablesresearcherstostudythemetabolismofP.
sapidus,significantlyenlargingtheanalyticalcapabilities.
DetailedstudiesontheproductionofextracellularenzymesandofsecondarymetabolitesofP.
sapidusmaybedesignedbasedonthereporteddata.
Keywords:Basidiomycete,Metabolicfluxanalysis,Minimalgrowthmedium,Centralcarbonmetabolism,Submergedculture,13C-fluxanalysisBackgroundHigherbasidiomycetescontributetothehumandietinmanysocietiesandareincreasinglyinvestigatedfortheirpotentialinbiotechnology.
Thelatterismainlymotivatedbythehugehydrolyticpotentialofthislargegroupoforganisms,ofwhichmanyaresaprophytic.
Applicationexamplesoffungalenzymesincludethedegradationofbiomass[1],theproductionoffinechemi-calsincludinge.
g.
norisoprenoids[2],monoterpenes[3,4],andcyathanetypediterpenoids[5].
Whiletheenzymaticrepertoireofsomehigherbasidiomyceteshasbeenin-vestigatedindetail[6],thenutritionalrequirementsofhigherbasidiomycetesareoftennot.
Themyceliumoffilamentousfungi,likePleurotussapidus,canbegrowninsubmergedculturesutilizingshakeflasksorbioreactors.
Ingeneral,glucoseactsasthemajorcarbonsourceinthegrowthmediaofhigherbasidiomycetes,whichusuallycontainadditionalcomplexingredients,likeyeastextract,maltextract,orsoyapeptone.
By-productsofthefoodin-dustrycanbeaddedtoliquidculturesofbasidiomycetesastheonlycarbonsourceandtopromotethebiotechno-logicalproductionofcomplexflavormixtures[7].
Inor-ganicsalts,aminoacids,vitamins,andtraceelementsolutionsareoftenaddedtothemedia.
Thesecomplexmediacansupportbiomassformation,withspecificgrowthratesof0.
02h1andhigher[8].
In-deed,thegrowthrateisofmajorimportanceforexperi-mentersanditisthusoptimizedtoallowrapidand*Correspondence:holger.
zorn@uni-giessen.
de1InstituteofFoodChemistryandFoodBiotechnology,JustusLiebigUniversityGiessen,Heinrich-Buff-Ring58,35392Giessen,GermanyFulllistofauthorinformationisavailableattheendofthearticle2014Fraatzetal.
;licenseeBioMedCentralLtd.
ThisisanOpenAccessarticledistributedunderthetermsoftheCreativeCommonsAttributionLicense(http://creativecommons.
org/licenses/by/4.
0),whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedtheoriginalworkisproperlycredited.
TheCreativeCommonsPublicDomainDedicationwaiver(http://creativecommons.
org/publicdomain/zero/1.
0/)appliestothedatamadeavailableinthisarticle,unlessotherwisestated.
Fraatzetal.
FungalBiologyandBiotechnology2014,1:9http://www.
fungalbiolbiotech.
com/content/1/1/9reproducibleexperiments.
However,thecomplexnatureofthegrowthmediausuallyusedmakesitdifficulttode-terminesubstrateuptakeratesandhence,thetruede-mandofthemyceliumgrowninsubmergedcultureismainlyunknown.
Intheliterature,onlyveryfewreportsarefoundcoveringfluxanalysisofbasidiomycetes[9,10].
Noneofthemcoversfilamentousspecies,butthebasidio-mycetousyeastPhaffiarhodozymahasbeenexamined.
Therefore,achemicallydefinedmediumthatallowedhighgrowthratesandhencemetabolicstudieswasdevel-oped.
Withthismedium,theintracellularfluxdistribu-tioninahigherbasidiomycetebymeansof13C-tracerbasedfluxanalysiswasestimatedforthefirsttime.
Theresultsrevealedahighlyrespiratorymetabolism,withsig-nificantcontributionofglucosecatabolismviathepen-tosephosphatepathway.
Theanalyticalpossibilitiesreportedhereopennewpotentialsforhigherbasidio-mycetebio(techno)logy.
ResultsanddiscussionDevelopmentofaminimalmediumforthesubmergedcultivationofP.
sapidusBasidiomyceteslikeP.
sapidusaretypicallygrownsub-mergedincomplexculturemedia.
Toinvestigategrowthkineticsandcellularphysiologyindetail,min-imalmediaarethefirstchoiceinmanyareasofmicro-biology.
ForhigherfungilikeP.
sapidusminimalmediawerenotreadilyavailable.
Hence,adefinedminimalmediumwasdevelopedstartingfromacommonlyusedcomplexmediumcalledstandardnutritionsolution(SNL-H3-G30,cf.
Table1).
SNL-H3-G30isderivedfromSprecher'smedium[11]byadditionofyeastextract.
Likemanyotherbasidiomycetes,P.
sapidusgrowsonlypoorlyinunmodifiedSpecher'smediumbutverywellinthemodifiedone.
Tobenchmarkgrowth,P.
sapiduswasthereforecultivatedinSNL-H3-G30.
DuringthefirstfourdaysofgrowthP.
sapidusconsumedap-proximately15gL-1glucose.
Reducingthesugarconcen-trationoftheculturemediumbyafactoroftwodidnotinfluencethebiomassproductionsignificantly(Figure1).
Afterreplacingthestandardnutritionsolution's(SNL-H3-G15)nitrogensourceasparaginebyammoniumnitrate(NL-H3-G15,Table1)thegrowthratewasinitiallyhighercomparedtoSNL-H3-G15,butstalledafter48h(Figure2).
Toinvestigateiftheavailabilityofnitrogencausedreducedgrowth,differentammoniumnitrateconcentra-tions(1.
2-7.
2gL-1)wereevaluated.
TheproductionofbiomassofP.
sapiduswasnoteffected(datanotshown).
Incontrast,theconcentrationofyeastextractinthecul-turemediumcorrelateddirectlywiththebiomassproduc-tionofP.
sapidus(Figure3).
Withouttheadditionofyeastextract(SNL-H0-G15)verylimitedgrowthwasobservedinstandardnutritionsolution(Figure3),aswellasinmediumwithammoniumnitrateasthenitrogensource(NL-H0-G15)(Table2).
Inaddition,theinfluenceofthiamine,avitaminmix-ture(after[12]),aswellasofdifferenttraceelementso-lutions(after[11]and[12],respectively)onthegrowthratewasinvestigated.
Nosignificanteffectsontherateofgrowthorthefinalbiomassconcentrationswereob-served(datanotshown).
TodeterminewhichaminoacidsareusedbyP.
sapidusasco-substratesandtowhichextent,thebasidiomycetewasgrowninyeastcontainingstandardnutritionsolutionTable1CompositionofculturemediaGlc[gL-1]Asn[gL-1]Asp[gL-1]NH4NO3[gL-1]KH2PO4[gL-1]MgSO4[gL-1]yeast[gL-1]TE[mLL-1]vit[mLL-1]SNL-H3-G3030.
04.
50.
00.
01.
51.
03.
01.
00.
0SNL-H5-G1515.
04.
50.
00.
01.
51.
05.
01.
00.
0SNL-H4-G1515.
04.
50.
00.
01.
51.
04.
01.
00.
0SNL-H3-G1515.
04.
50.
00.
01.
51.
03.
01.
00.
0SNL-H2-G1515.
04.
50.
00.
01.
51.
02.
01.
00.
0SNL-H1-G1515.
04.
50.
00.
01.
51.
01.
01.
00.
0SNL-H0-G1515.
04.
50.
00.
01.
51.
00.
01.
00.
0NL-H3-G1515.
00.
00.
02.
41.
51.
03.
01.
00.
0NL-H2-G1515.
00.
00.
02.
41.
51.
02.
01.
00.
0NL-H1-G1515.
00.
00.
02.
41.
51.
01.
01.
00.
0NL-H0-G1515.
00.
00.
02.
41.
51.
00.
01.
00.
0NL-D5-G3015.
00.
04.
82.
41.
51.
00.
01.
010.
0BMENL-D5-G1515.
00.
04.
82.
41.
51.
00.
01.
010.
0BMENL-D0.
4-G1515.
00.
00.
42.
41.
51.
00.
01.
01.
0VERThepHwasadjustedto6.
0with1MNaOHpriortosterilization;Glc:D-glucosemonohydrate,Asn:L-asparagine,Asp:L-asparticacid,MgSO4:magnesiumsulfateheptahydrate,yeast:yeastextract,TE:traceelementssolution(5mgL-1CuSO4·5H2O,80mgL-1FeCl3·6H2O,90mgL-1ZnSO4·7H2O,30mgL-1MnSO4·H2O,and0.
4gL-1EDTA),vit:BMEvitaminssolutionorafter[12](VER),mediumNL-D5-G15(highlightedinbold)wasusedforfluxanalysis(cf.
Figure6).
Fraatzetal.
FungalBiologyandBiotechnology2014,1:9Page2of8http://www.
fungalbiolbiotech.
com/content/1/1/9(SNL-H3-G15)withamixtureof[U-13C]-glucoseandun-labeledglucose(50:50,w/w)asitscarbonsource.
Afterharvestingthefungus,hydrolysis,andderivatization,thefractionallabelingoftheaminoacids(Ala,Asx,Glx,Gly,His,Ile,Leu,Lys,Met,Phe,Pro,Ser,Thr,Tyr,andVal)wasdeterminedbyGC-MS.
Thedenovosynthesisofaminoacidsfromglucosewasbetween22%(Asx)and92%(Ala)(Figure4).
Thus,allaminoacidsweremetabo-lizedbyP.
sapidus,howevertoverydifferentproportions.
Tofurthersimplifythemedium,singleaminoacidsaswellasselectedcombinationsofaminoacidsweretestedfortheirgrowthratepromotioninyeastfreemediacon-tainingammoniumnitrateasanadditionalnitrogensource.
Allcombinationswithoutaspartateresultedinpoorgrowthratesandbiomassconcentrations(datanotshown).
Therefore,mediumNL-D5-G15containingaspartate(4.
8gL-1),salts(NH4NO3,KH2PO4,andMgSO4),vitamins,traceelements,and15gL-1glucosewasselectedasthesimplestchemicallydefinedminimalmediumforfurtherinvestigations.
Underallconditionstested,P.
sapidusgrewfilamentous.
Themyceliumrapidlyformedpellets,whichincreasedovertimeinsize(cf.
Figure3).
Strategiestoavoidpelletformationarediscussedintheliterature[13,14]andmightbeappliedtothenewlydevelopedgrowthmediuminfu-ture.
Theresultingsaltmediumwiththesingleaminoacidaspartateallowedforaconsistentandrapidgrowthfor6to8days(Figure5),andcouldthereforebeusedforquan-titativephysiologicalexperiments.
UseoftheminimalmediumforquantitativephysiologyofP.
sapidusForthesoleadditionofaspartate,thedenovosynthesisofaminoacidswasquantifiedby13C-labelingofglucoseFigure1GrowthkineticsofP.
sapidusincomplexstandardmedium.
Initialglucoseconcentrationofstandardmedium30gL-1(SNL-H3-G30)and15gL-1(SNL-H3-G15),respectively,BM:biomass,Glc:glucose,cf.
Table1fordetailedmediumcomposition.
Figure2GrowthkineticsofP.
sapidusindependenceonAsnsupplementation.
BM:biomass,Glc:glucose,SNL-H3-G15:standardmedium,NL-H3-G15:withoutAsn,cf.
Table1fordetailedmediumcomposition.
Fraatzetal.
FungalBiologyandBiotechnology2014,1:9Page3of8http://www.
fungalbiolbiotech.
com/content/1/1/9(Figure4)attwodifferentaspartateconcentrations(NL-D0.
4-G15,NL-D5-G15,Table1).
Theadditionofonly0.
4gL-1aspartateresultedinminoruseofthisaminoacidasadditionalcarbonsource.
OnlyAsx,Ile,Pro,andThrwerepartially(about20%)synthesizedfromaspar-tate,whileglucosewasthemainsourceoftherespectivecarbonskeleton.
Indeed,aspartateistheprecursorforthreonineandisoleucinesynthesis.
Theabsenceofun-labeledcarboninglycinesuggeststhatathreoninealdol-ase,catalyzingthesynthesisofglycinefromthreoninewhileproducingacetaldehydeisnotpresentornotac-tiveinP.
sapidusundertheinvestigatedconditions.
Theaminoacidsderivedfromketoglutarate(Glx,Pro)werepartiallysynthesizedfromaspartate.
AspartateisreadilydeaminatedtooxaloacetateexplainingthecontributiontoTCAcycleintermediates.
Nounlabeledcarbonwasobservedinpyruvatederivedaminoacids(e.
g.
,Ala,Val),indicatingthatgluconeogenicreactionsareabsentdur-inggrowthonglucose.
Thecontributionof10%ofas-partatetothemainlypyruvatederivedaminoacidleucineisnotreadilyexplained,aspyruvateisfullyla-beled(e.
g.
,Ala).
Inaddition,twocarbonatomsofleucineoriginatefromacetyl-CoA.
Acetyl-CoAcaneitherorigin-atefromcytosolicormitochondrialpyruvate.
Thelatterissynthesizedviathepyruvatedehydrogenasecomplex,al-thoughcontributionsfromthemalicenzyme(malatetopyruvate)werereportedforascomycetous[10,15,16],butnotbasidiomycetousyeasts.
Indeed,whenperforminga13C-basedmetabolicfluxanalysis,amalicenzymeactivitywasobservedinP.
sapidus(Figure6).
Ingeneral,within-creasedaspartateconcentrations(4.
8gL-1),thecontribu-tiontoaminoaciddenovosynthesisincreasedslightly.
TheexceptionwasthesynthesisofAsx,whichoriginatedtomorethan80%fromaspartatetakenupfromthemedium,andlessdistinctthesynthesisofisoleucineandthreonine(about40%).
Performinga13C-fluxanalysisexperimentwiththede-finedmediumNL-D5-G15(Table1)allowedforthequan-tificationoftheglucoseuptakerateandspecificgrowthratewith0.
24mmolg-1h-1and0.
048h-1,respectively.
Thesevaluesarelowwhencomparedtopreviousreportsonascomycetes.
Glucosewascatabolizedviaglycolysisandupto35%viathepentosephosphatepathway.
Intheba-sidiomycetousyeastPhaffiarhodozyma,glucosewascatab-olizedviathepentosephosphatepathwayupto65%[10].
Noby-productslikeethanol,acetateorglycerolwereob-servedinP.
sapiduscultures(datanotshown).
Thesere-sultincombinationwithahighlyactiveTCAcycle(morethan80%oftheoxaloacetateoriginatedfromtheTCAcycle,whilelessthan20%originatedfromtheanapleroticreactioncatalyzedbythepyruvatecarboxylase)stronglyin-dicatedthatthemetabolismofP.
sapidusisfullyrespira-toryunderthegrowthconditionstestedhere.
Theabsolutefluxesindicatedaconsiderablefluxtobiomass.
ThisisalsoinagreementwiththefluxthroughthepentosephosphatepathwayasnotonlybiomassFigure3GrowthofP.
sapidusindependenceonyeastextractsupplementation.
Left:GrowthofP.
sapidusindependenceonyeastextractsupplementation;H0-H5equatesto0–5gL-1yeastextract,cf.
Table1fordetailedmediumcomposition.
Right:VisualcomparisonofP.
sapidusgrownfor4daysinstandardnutritionmediumwith3gL-1(SNL-H3-G15,top)and0gL-1(SNL-H0-G15,bottom)yeastextract.
Table2Biomass(cellwetweight)ofP.
sapidusafter4dayswhengrowninculturemediawithammoniumnitrateasnitrogensourceanddifferentyeastextractconcentrationsMediumnameYeastextract[gL-1]Cellwetweight[gL-1]NL-H0-G150.
031NL-H1-G151.
083NL-H2-G152.
0157NL-H3-G153.
0192Cf.
Table1fordetailedmediumcomposition.
Fraatzetal.
FungalBiologyandBiotechnology2014,1:9Page4of8http://www.
fungalbiolbiotech.
com/content/1/1/9precursorslikeriboseanderythrose-4Pfornucleicandaminoacidssynthesis,respectively,butalsotheanabolicdemandforNADPHcanbemetviatheoxidativebranchofthispathway.
Indeed,thefluxthroughthepentosephosphatepathwaywaspreviouslylinkedtothebiomassyieldinascomycetes[16].
ConclusionsThepresentedresultsallowforexperimentswithP.
sapidusgrowingsubmergedinachemicallydefinedmedium.
ThisenablesresearcherstostudythebiologyofP.
sapidus(andpossiblyothermushrooms)inthecontextofmetabolism,significantlyenlargingtheana-lyticalcapabilities.
Whiletheinformationoftherespiratorycapabilitiesishighlyinteresting,thelowoverallmetabolicactivitymostlikelyrequiresmodifica-tionsofP.
sapidusasaproductionhostinindustrialbiotechnology.
Withthisinformationinhand,e.
g.
,de-tailedinductionstudiesofhydrolyticenzymesofP.
sapiduscanbedesigned.
MethodsChemicalsCopper(II)sulfatepentahydrate,iron(III)chloridehexa-hydrate,andzincsulfateheptahydratewerepurchasedfromAppliChem(Darmstadt,Germany),D-glucose[U-13C]fromEURISO-TOP(Gif-sur-Yvette,France);D-glucosemonohydrateandL-asparticacidwereobtainedFigure4DenovosynthesisofaminoacidsinP.
sapidus.
Thebarsrepresenttherelativeamountofdenovosynthesizedaminoacidsduringgrowthinstandardnutritionsolution(SNL-H3-G15)andtwochemicaldefinedmediawithdifferentaspartateconcentrations(0.
4gL-1:NL-D0.
4-G15;4.
8gL-1:NL-D5-G15).
Thecontributionofdenovosynthesiswasestimatedfromtheamountoflabelmeasuredintheaminoacids,whichoriginatedfrom50%[U-13C]-labeledglucoseasmaincarbonsource.
Errorbarsrepresenttherangeofduplicates.
Figure5GrowthkineticsofP.
sapidusindevelopedminimalmedium(NL-D5-G15)incomparisontostandardnutritionsolution(SNL-H3-G30).
BM:biomass,Glc:glucose,cf.
Table1fordetailedmediumcomposition.
Fraatzetal.
FungalBiologyandBiotechnology2014,1:9Page5of8http://www.
fungalbiolbiotech.
com/content/1/1/9fromCarlRothGmbH(Karlsruhe,Germany),EDTAfromFluka(Buchs,Germany);agar,L-asparagine,magnesiumsulfateheptahydrate,manganese(II)sulfatemonohydrate,andyeastextractwerepurchasedfromServa(Heidelberg,Germany);BasalMediumEagle(BME)vitaminssolutionwaspurchasedfromSigma(Steinheim,Germany).
Figure6AbsolutemetabolicfluxesofP.
sapidus.
P.
sapiduswasgrowninmediumNL-D5-G15,cf.
Table1fordetailedmediumcomposition.
Fraatzetal.
FungalBiologyandBiotechnology2014,1:9Page6of8http://www.
fungalbiolbiotech.
com/content/1/1/9MicroorganismThefilamentousfungusPleurotussapiduswasobtainedfromtheGermanCollectionofMicroorganismsandCellCultures(DSMZ8266),Brunswick,Germany.
CultivationofP.
sapidusStockculturesweremaintainedonagarplatescontain-ingstandardnutritionsolution(SNL-H3-G30,Table1)and15gL-1agar.
Thestockcultureswerestoredat4°Cuntilusage.
Preculturesweregrownaerobicallyinstandardnutri-tionsolution(SNL-H3-G30,Table1)aftertransferring1cm2agarplugsfromtheleadingmycelialedgeofthestockculturesfollowedbyhomogenizationusinganUltraTurraxhomogenizer(IKA,Staufen,Germany).
Thesubmergedcultures(200mLmedium)werekeptonarotaryshaker(25mmshakingdiameter;Multitron,Infors,Einsbach,Germany)at150rpmand24°CinErlenmeyerflasks(500mL)for4daysindarkness.
Theprecultureswerecentrifugedfor10min(3375*g,4°C),andthesupernatantwasdecanted.
Theremainingpelletswereresuspendedinthesamevolumeofdistilledwaterandcentrifugedagainfor10min(3375*g,4°C).
Thisprocedurewasrepeatedtwice.
Subsequentlytothelastcentrifugationstepthepelletsweredispersedinthemainculturemedium(Table1)andhomogenizedusinganUltraTurraxhomogenizer.
Forthemaincultures40mLmediumwasinoculatedwith4mLhomogenizedpre-culturebrothinErlenmeyerflasks(100mL)andincu-batedonarotaryshaker(25mmshakingdiameter,150rpm,24°C)for4to10days.
13C-basedcarbonfluxanalysisTheGC-MSdatarepresentsetsofionclusters,eachshowingthedistributionofmassisotopomersofagivenaminoacidfragment.
Foreachfragmentα,onemassiso-topomerdistributionvector(MDV)wasassigned,MDVam0m1m2…mn266664377775withXmi11withm0beingthefractionalabundanceofthelowestmassandmi>0theabundancesofmoleculeswithhighermasses.
Toobtaintheexclusivemassisotopedis-tributionofthecarbonskeleton,correctionsfornatur-allyoccurringisotopesinthederivatizationreagentandtheaminoacidswereperformedasdescribedpreviously[17,18],followedbythecalculationsofthemassdistri-butionvectorsoftheaminoacids(MDVAA)andtheme-tabolites(MDVM).
MetabolicfluxratioswerecalculatedfromtheMDVMasdescribedindetailbyNanchenetal.
[19]usingFiatFlux[20].
AbsolutevaluesofintracellularfluxeswerecalculatedwithafluxmodelfromtheyeastSaccharomycescerevisiaethatcomprisedallmajorpath-waysofcentralcarbonmetabolism[21].
TheerrorminimizationwascarriedoutasdescribedbyFischeretal.
[18].
AnalyticalmethodsDeterminationofcellwetweightTheculturebrothwascentrifugedfor10min(3375*g,4°C),andthesupernatantwasreplacedbythesamevol-umeofdistilledwater.
Themyceliumwasresuspendedandcentrifuged.
Thiswashingstepwasrepeatedtwice.
Afterwards,thesupernatantwasdiscarded,andtheweightoftheremainingmyceliumwasdetermined.
DeterminationofglucoseTheD-glucoseconcentrationintheculturesupernatantwasdeterminedenzymaticallybymeansofanenzymaticD-glucoseassay(R-BiopharmAG,Darmstadt,Germany)accordingtomanufacturer'sinstruction.
Determinationofthe13C-labelingpatternsoftheproteinogenicaminoacidsTheglucoseusedinshakeflasksexperimentswasamix-tureof50%(n/n)uniformlylabeled[U-13C]-glucoseand50%(n/n)naturallylabeledglucose.
Thebiomasswaswashedtwicewith0.
9%NaClandhydrolyzedwith150μLof6MHClfor15–24hat105°C.
Thehydroly-zatewasdriedbyheatingthevialto85°Cunderacon-stantflowofair.
Thehydrolyzatewasdissolvedin50μLdimethylformamideandtransferredtoanewvial.
Theaminoacidsweresilylatedbyadditionof50μLN-methyl-N(tert-butyldimethylsilyl)-trifluoroacetamideandsubse-quentlyincubatedat85°Cfor60min.
OneμLofthismixturewasinjectedintoaVarianGC3800gaschro-matograph,equippedwithaVarianMS/MS1200triplequadrupolemassspectrometer(VarianDeutschland,Darmstadt,Germany).
ThederivatizedaminoacidswereseparatedonaFactorFourVF-5mscolumn(30m*0.
25mmID,0.
25μmfilmthickness;VarianDeutschland)ataconstantflowrateof1mLhelium(5.
0)min-1.
Thesplitratiowas1:25andtheinlettemperaturewassetto250°C.
ThetemperatureoftheGCovenwaskeptconstantfor2minat150°Candafterwardsincreasedto250°Cwithagradientof3°Cmin-1.
Thetemperaturesofthetransferlineandthesourcewere280°Cand250°C,respectively.
Ionizationwasperformedbyelectronimpactionizationat-70eV.
Forenhanceddetection,aselectedionmoni-toringtimesegmentwasdefinedforeveryaminoacid[22].
GC-MSrawdatawereanalyzedusingtheWork-stationMSDataReview(VarianDeutschland).
Fraatzetal.
FungalBiologyandBiotechnology2014,1:9Page7of8http://www.
fungalbiolbiotech.
com/content/1/1/9DeterminationofdenovoaminoacidsynthesisIntracellulardenovoaminoacidsynthesiswasdeter-minedfortheaminoacidsalanine,aspartate,glutamate,glycine,histidine,isoleucine,leucine,lysine,methionine,phenylalanine,proline,serine,threonine,tyrosine,andvalineaspreviouslyreportedin[23].
Thepercentagesofdenovosynthesizedaminoacidscorrespondtothe13C-labelingintheaminoacidsderivedfrom13Clabeledglu-cose.
Theunlabeledfractioncorrespondstotheamountofunlabeledaminoacid,whichwastakenupfromthemedium.
GC-MSanalysisbasedonproteinogenicaminoacidsisabletodetect15ofthe20proteinogenicaminoacids.
Argininewasomittedbecauserearrangementsdur-ingelectronimpactionizationobscureitsfragmentationpattern.
Cysteineandtryptophanareoxidativelydestroyedduringacidhydrolysis,andasparagineandglutaminearedeamidatedtoaspartateandglutamate,respectively[24].
Themixturesofasparagine/aspartateandglutamine/glutamateweresubsequentlyreferredtoasASXandGLX,respectively.
LabelingpatternswereanalyzedusingthesoftwareFiatFlux[20].
AbbreviationsAla:Alanine;Asx:Asparagine/aspartate;Asn:Asparagine;Asp:Asparticacid;BME:Basalmediumeagle;CWW:Cellwetweight;EDTA:Ethylenediaminetetraaceticacid;GC:Gaschromatography;GC-MS:Gaschromatography–massspectrometry;Glc:Glucose;Glx:Glutamine/glutamate;Gly:Glycine;His:Histidine;ID:Innerdiameter;Ile:Isoleucine;Leu:Leucine;Lys:Lysine;MDV:Massisotopomerdistributionvector;Met:Methionine;Phe:Phenylalanine;Pro:Proline;Ser:Serine;SNL:Standardnutritionsolution;TCA:Tricarboxylicacidcycle;Thr:Threonine;TE:Traceelementssolution;Tyr:Tyrosin;Val:Valine;vit:Vitaminssolution.
CompetinginterestsTheauthorsdeclarethattheyhavenocompetinginterests.
Authors'contributionsMAFcoordinatedtheexperimentsandwrotethemanuscript,SNandVHperformedandanalyzedtheexperiments,HZcoordinatedthestudyandcriticallyreviewedthemanuscript,LMBcoordinatedandanalyzedthemetabolicfluxexperimentsandwrotethemanuscript.
Allauthorsreadandapprovedthefinalmanuscript.
AcknowledgementsTheauthorswouldliketothankAndreasSchmidforlaboratoryaccessaswellasJanHeylandandRahulDeshpandeforassistancewithGC-MSmeasurements.
HZisgratefultotheHessianMinistryofScienceandArtforagenerousgrantfortheLOEWEresearchfocus'IntegrativeFungalResearch'.
Authordetails1InstituteofFoodChemistryandFoodBiotechnology,JustusLiebigUniversityGiessen,Heinrich-Buff-Ring58,35392Giessen,Germany.
2LaboratoryofTechnicalBiochemistry,TUDortmund,44221Dortmund,Germany.
3IfADo-LeibnizResearchCenterforWorkingEnvironmentandHumanFactors,Ardeystr.
67,44139Dortmund,Germany.
4iAMB-InstituteofAppliedMicrobiology,ABBt-AachenBiologyandBiotechnology,RWTHAachenUniversity,WorringerWeg1,52074Aachen,Germany.
Received:11August2014Accepted:13October2014References1.
IchinoseH:CytochromeP450ofwood-rottingbasidiomycetesandbiotechnologicalapplications.
BiotechnolApplBiochem2013,60:71–81.
2.
ZelenaK,HardebuschB,HülsdauB,BergerRG,ZornH:Generationofnorisoprenoidflavorsfromcarotenoidsbyfungalperoxidases.
JAgricFoodChem2009,57:9951–9955.
3.
KringsU,LehnertN,FraatzMA,HardebuschB,ZornH,BergerRG:Autoxidationversusbiotransformationofα-pinenetoflavorswithPleurotussapidus:regioselectivehydroperoxidationofα-pineneandstereoselectivedehydrogenationofverbenol.
JAgricFoodChem2009,57:9944–9950.
4.
FraatzMA,RiemerSJL,StberR,KasperaR,NimtzM,BergerRG,ZornH:AnoveloxygenasefromPleurotussapidustransformsvalencenetonootkatone.
JMolCatalBEnzym2009,61:202–207.
5.
BhandariDR,ShenT,RmppA,ZornH,SpenglerB:Analysisofcyathane-typediterpenoidsfromCyathusstriatusandHericiumerinaceusbyhigh-resolutionMALDIMSimaging.
AnalBioanalChem2014,406:695–704.
6.
BouwsH,WattenbergA,ZornH:Fungalsecretomes—nature'stoolboxforwhitebiotechnology.
ApplMicrobiolBiotechnol2008,80:381–388.
7.
BosseAK,FraatzMA,ZornH:Formationofcomplexnaturalflavorsbybiotransformationofapplepomacewithbasidiomycetes.
FoodChem2013,141:2952–2959.
8.
Tlecuitl-BeristainS,SánchezC,LoeraO,RobsonGD,Díaz-GodínezG:LaccasesofPleurotusostreatusobservedatdifferentphasesofitsgrowthinsubmergedfermentation:productionofanovellaccaseisoform.
MicrobiolRes2008,112:1080–1084.
9.
DongQ-L,ZhaoX-M,MaH-W,XingX-Y,SunN-X:Metabolicfluxanalysisofthetwoastaxanthin-producingmicroorganismsHaematococcuspluvialisandPhaffiarhodozymainthepureandmixedcultures.
BiotechnolJ2006,1:1283–1292.
10.
CannizzaroC,ChristensenB,NielsenJ,vonStockarU:MetabolicnetworkanalysisonPhaffiarhodozymayeastusing13C–labeledglucoseandgaschromatography–massspectrometry.
MetabEng2004,6:340–351.
11.
SprecherE:berdieGuttationbeiPilzen.
Planta1959,53:565–575.
12.
VerduynC,PostmaE,ScheffersWA,VanDijkenJP:Effectofbenzoicacidonmetabolicfluxesinyeasts:acontinuous-culturestudyontheregulationofrespirationandalcoholicfermentation.
Yeast1992,8:501–517.
13.
KaupBA,EhrichK,PescheckM,SchraderJ:Microparticle-enhancedcultivationoffilamentousmicroorganisms:increasedchloroperoxidaseformationbyCaldariomycesfumagoasanexample.
BiotechnolBioeng2008,99:491–498.
14.
WaliskoR,KrullR,SchraderJ,WittmannC:Microparticlebasedmorphologyengineeringoffilamentousmicroorganismsforindustrialbio-production.
BiotechnolLett2012,34:1975–1982.
15.
BlankLM,SauerU:TCAcycleactivityinSaccharomycescerevisiaeisafunctionoftheenvironmentallydeterminedspecificgrowthandglucoseuptakerates.
Microbiology2004,150:1085–1093.
16.
BlankLM,LehmbeckF,SauerU:Metabolic-fluxandnetworkanalysisinfourteenhemiascomycetousyeasts.
FEMSYeastRes2005,5:545–558.
17.
FischerE,SauerU:MetabolicfluxprofilingofEscherichiacolimutantsincentralcarbonmetabolismusingGC-MS.
EurJBiochem2003,270:880–891.
18.
FischerE,ZamboniN,SauerU:High-throughputmetabolicfluxanalysisbasedongaschromatography–massspectrometryderived13Cconstraints.
AnalBiochem2004,325:308–316.
19.
NanchenA,FuhrerT,SauerU:Determinationofmetabolicfluxratiosfrom13C-experimentsandgaschromatography–massspectrometrydata.
MethodsMolBiol2007,358:177–197.
20.
ZamboniN,FischerE,SauerU:FiatFlux–asoftwareformetabolicfluxanalysisfrom13C-glucoseexperiments.
BMCBioinformatics2005,6:209.
21.
BlankLM,KuepferL,SauerU:Large-scale13C-fluxanalysisrevealsmechanisticprinciplesofmetabolicnetworkrobustnesstonullmutationsinyeast.
GenomeBiol2005,6:R49.
22.
WittmannC:FluxomeanalysisusingGC-MS.
MicrobCellFact2007,6:6.
23.
HeylandJ,FuJ,BlankLM,SchmidA:QuantitativephysiologyofPichiapastorisduringglucose-limitedhigh-celldensityfed-batchcultivationforrecombinantproteinproduction.
BiotechnolBioeng2010,107:357–368.
24.
DaunerM,SauerU:GC-MSanalysisofaminoacidsrapidlyprovidesrichinformationforisotopomerbalancing.
BiotechnolProgress2000,16:642–649.
doi:10.
1186/s40694-014-0009-4Citethisarticleas:Fraatzetal.
:AminimalgrowthmediumforthebasidiomycetePleurotussapidusformetabolicfluxanalysis.
FungalBiologyandBiotechnology20141:9.
Fraatzetal.
FungalBiologyandBiotechnology2014,1:9Page8of8http://www.
fungalbiolbiotech.
com/content/1/1/9

台湾CN2云服务器 2核2G 5M 5IP 台湾物理服务器 E5x2 64G 20M 5IP

提速啦(www.tisula.com)是赣州王成璟网络科技有限公司旗下云服务器品牌,目前拥有在籍员工40人左右,社保在籍员工30人+,是正规的国内拥有IDC ICP ISP CDN 云牌照资质商家,2018-2021年连续4年获得CTG机房顶级金牌代理商荣誉 2021年赣州市于都县创业大赛三等奖,2020年于都电子商务示范企业,2021年于都县电子商务融合推广大使。资源优势介绍:Ceranetwo...

Bluehost美国虚拟主机2.95美元/月,十八周年庆年付赠送顶级域名和SSL证书

Bluehost怎么样,Bluehost好不好,Bluehost成立十八周年全场虚拟主机优惠促销活动开始,购买12个月赠送主流域名和SSL证书,Bluehost是老牌虚拟主机商家了,有需要虚拟主机的朋友赶紧入手吧,活动时间:美国MST时间7月6日中午12:00到8月13日晚上11:59。Bluehost成立于2003年,主营WordPress托管、虚拟主机、VPS主机、专用服务器业务。Blueho...

美国VPS 美国高防VPS 香港VPS 日本VPS 首月9元 百纵科技

百纵科技湖南百纵科技有限公司是一家具有ISP ICP 电信增值许可证的正规公司,多年不断转型探索现已颇具规模,公司成立于2009年 通过多年经营积累目前已独具一格,公司主要经营香港服务器,香港站群服务器,美国高防服务器,美国站群服务器,云服务器,母机租用托管!美国CN2云服务器,美国VPS,美国高防云主机,美国独立服务器,美国站群服务器,美国母机。美国原生IP支持大批量订货 合作 适用电商 亚马逊...

http://www.qvod.com/为你推荐
西部妈妈网我爸妈在云南做非法集资了,钱肯定交了很多,我不恨她们。他们叫我明天去看,让我用心的看,,说是什么...百度关键词价格查询百度推广关键词怎么扣费?钟神发战旗TV ID:新年快乐丶未央不见是哪个主播同一ip网站如何用不同的IP同时登陆一个网站www.kanav001.com长虹V001手机小游戏下载的网址是什么www.zjs.com.cn我的信用卡已经申请成功了,显示正在寄卡,怎么查询寄卡信息?百度指数词什么是百度指数partnersonline国内有哪些知名的ACCA培训机构广告法广告法有什么字不能用www.ijinshan.com在电脑看港台电视台那个网站最好而又不用钱速度又快
网站空间购买 游戏服务器租用 韩国俄罗斯 webhostingpad 香港cdn 腾讯云数据库 wordpress技巧 42u标准机柜尺寸 网站监控 好看的桌面背景图 商务主机 圣诞促销 双拼域名 宁波服务器 1g空间 稳定免费空间 美国在线代理服务器 百度云1t 免费测手机号 申请网页 更多