www.energetic-materials.org.cn

mv222.com  时间:2021-04-09  阅读:()
含能材料ChineseJournalofEnergeticMaterials,Vol.
27,No.
4,2019(326-347)SabrinaHanafi,DjalalTrache,SlimaneAbdous,ZineddineBensalem,AbderrahmaneMezroua5Nitro1,2,4triazole3one:AReviewofRecentAdvancesSabrinaHanafi,DjalalTrache,SlimaneAbdous,ZineddineBensalem,AbderrahmaneMezroua(UERProcédésEnergétiques,EcoleMilitairePolytechnique,Algiers16046,Algeria)Abstract:The3Nitro1,2,4triazole5one(NTO)isahighenergydensitymaterialsofkeeninterestforbothcommercialandscientificworldsowingtoitsreducedsensitivity,betterthermalstabilityandhighperformances.
Itplaysasignificantroletoreplacethecurrentenergeticingredients.
Inthisreview,wesummarizevariousstrategiesinvolvedinthesynthesisofNTOaswellastheexistingapproachestotailoritsparticlemorphologyandsizes.
ThemostprominentpropertiesofNTO,suchasinsensitivityandperformance,whichareusuallyrequiredtoproduceefficientformulations,havebeenconciselydiscussed.
Inaddition,thisoverviewreportsonsomenewerformsofNTOincludingderivativesandcocrystalsavailableintheliterature,whichcanenhancetheNTOfeaturesandextenditsapplications.
TheadvantagesandshortcomingsofvariousNTOformsforspecificandpotentialusearealsohighlightedtogetherwiththeattemptsmadetoovercometheseissues.
Therefore,effortswillcertainlycontinuetoimprovecharacteristicsandperformancesofNTOeitherbychemicalmodificationorbycocrystallizationinordertoproducepromisingformulationsforwidespreadapplicationsinthenearfuture.
Keywords:Triazolone;3nitro1,2,4triazole5one(NTO);synthesis;properties;particlemorphology;derivatives;cocrystals;applicationsCLCnumber:TJ55Documentcode:ADOI:10.
11943/CJEM20183711IntroductionThestudyofhighenergeticmaterials,e.
g.
,explosives,propellants,andpyrotechnics,hasdrawnmuchattentioninmilitaryandcivilianengineeringscience.
Themostcommonlyusedenergeticmaterials(EMs)are1,3,5,7tetranitro1,3,5,7tetraazacyclooctane(HMX),1,3,5trinitro1,3,5triazacyclohexane(RDX),2,4,6trinitrotoluene(TNT),ammoniumperchlorate(AP),nitroglycerin(NG),andnitrocellulose(NC)[1-4].
Recently,someofnewenergeticmaterialshaveshownprominentapplications,suchashexaazahexanitroisowurtzitane(HNIW,CL20),2,6diamino3,5dinitropyrazine1oxide(LLM105),1,1diamino2,2dinitroethylene(FOX7),1,3,3trinitroazetidine(TNAZ),2,4,6triamino1,3,5trinitrobenzene(TATB)and3nitro1,2,4triazole5one(NTO)[5-8].
Thesynthesis,modificationandapplicationofsuchmaterialsarestillveryactive.
MajoreffortsaredevotedtodevelophighperformanceEMswithnotonlyexcellentcombustion/detonationproperties,highdensities,andpositiveoxygenbalances,butalsogoodthermalstabilities,insensitivitiestoexternalforces,inexpensivesynthesis,safehandlingandgoodenvironmentalcompatibility,amongothers.
However,achievingafinebalancebetweenthevariousrequirementsofphysicochemicalpropertiesisaninterestingbutchallengingtaskbecauseenhancementinsomeproperties(e.
g.
performance)oftencomesattheexpenseoftheothers(e.
g.
molecularstability).
NTOhascapturedamajorroleinresearchof文章编号:10069941(2019)04032622ReceivedDate:20181229;RevisedDate:20190125PublishedOnline:20190301Biography:SabrinaHanafi(1993-),female,PhD,Researchfield:energeticmaterials,nanocatalysts,propellant,characterization.
email:sabrinahnf@yahoo.
comCorrespondingauthor:DjalalTrache(1982-),male,TeacherResearcher,Researchfield:propellant,stability,newenergeticmaterials,analyticalchemistry,nanocatalysts,kinetics,biobasedmaterials,advancedmaterials.
email:djalaltrache@gmail.
com引用本文:SabrinaHanafi,DjalalTrache,SlimaneAbdous,etal.
5Nitro1,2,4triazole3one:AReviewofRecentAdvances[J].
ChineseJournalofEnergeticMaterials(HannengCailiao),2019,27(4):326-347.
326CHINESEJOURNALOFENERGETICMATERIALS含能材料2019年第27卷第4期(326-347)5Nitro1,2,4triazole3one:AReviewofRecentAdvancesEMsasoneoftheimportantinsensitivehighexplosive.
AkeycharacteristicofthethermallystableNTOisitsinsensitivitytoimpact,friction,heat,sparkandshockwaves[9].
Itisrelativelyeasytosynthesize.
Itdisplaysperformancecharacteristicscomparabletothoseofthecurrentlycommonlyemployedsecondaryexplosivesandpossessesanappropriatepotentialtobeusedasanexplosiveandpropellantingredient[10].
Thiscompoundhasbeenshowntobelessharmfultohumanhealththantraditionalexplosives[11].
Itcanbealsopressedwithoutabinderintodesiredmorphologyhavingahighdensity[12].
Severalauthorshavetailoreditsparticlesizeandmorphologyinordertomeettherequirementofenergeticmaterialsformulations.
Sphericalmorphologyisrevealedtobeappropriateforbetterprocessabilityandhasgreatimpactonscaletoaltertheperformanceandinsensitivitytowardsasuddenmechanicalstimulithannonsphericalcrystals[13-14].
However,thisnitrogenheterocyclicenergeticcompoundpresentssomedrawbacks,whatlimititsfurtherapplications,suchasnegativeoxygenbalance,negativeenthalpyofformationandacidity.
Toovercomesuchshortcomings,theresearchershaveadoptedtwomainapproaches.
ThefirstoneconcernsthepreparationofNTOderivativesowingtoitsacidityandthesecondoneisdedicatedtotheformationofNTOcocrystals.
Thefirstapproachisthefamousone,whereseveralmetalandaminesalts,andotherderivativesofNTOhavebeenproducedandothercontinuetoappear.
Severalofthelattercompoundsexhibitinterestingphysicochemicalproperties.
Thesecondnewapproach,whichisthecocrystallization,mayprovideapromisingpathwaytouseNTO.
Acocrystalisatypeofamolecule,displayingintermolecularinteractionarisingfromhydrogenbonds,πstacking,vanderWaalsforces,andhalogenbonds.
ItisreportedthatcocrystallizationcantailorthecrystaldensityofEMswithoutchangingtheirchemicalstructure.
Besides,theinsensitivitymaybedecreasedwithoutsacrificingtheperformance[15].
VariousNTOcocrystalshavebeenrecentlyinvestigatedtheoreticallyandexperimentally.
Itisshownthatthismethodologyprovidesanopportunitytomodifythephysicochemicalpropertiesandpreparesuperiorcocrystalswithbetterintegratedpropertiesatamolecularlevel[16].
SeveralreviewpapersandbookchaptershavebeenpublishedinthelasttwodecadesdealingwithNTO,itsderivativesaswellastheconventionalsynthesisproceduresandapplications[5,14,17-21].
However,thefocusofthecurrentarticleisdifferentfromthepublishedliteratureandwhereappropriate,specificpointscoveredinpublishedliteraturearesummarizedand/orreferencedouttothecorrespondingpaper/book/patent.
OneoftheprimeobjectivesofthisreviewistosummarizeandemphasizetheuptodateproceduresusedtoproduceNTOshowingtheiradvantagesanddrawbacks.
Webelievethatitmayprovideastrongbaseforthefuturedevelopmentinthisemergingareaofresearch.
AnoverviewoftheNTOparticlemorphologyandsizecontrolwillbeprovidedaswellastheireffectsonthephysicochemicalproperties.
TherecentNTOderivativesandthedifferentNTObasedcocrystalsaspotentialsubstances,thatcouldreplacethecurrentenergeticingredients,arediscussed.
CurrentapplicationsofNTOinenergeticformulationsarealsohighlighted.
2SynthesisofNTOManchotandNolleareconsideredasthepioneersinthesynthesisofNTO,althoughtheirstructureassignmentwaswrong,byusingatwostepprocess[22].
Thefirststepisdedicatedtotheproductionoftriazolone,whichundergonethenitrationprocessinthesecondstep.
Chipenetal.
andotherscientistshavefollowedthisapproachfewdecadeslater[23-26].
SlightmodificationsonthesynthesisprocedurehavebeenperformedbyLeeetal.
atLosAlamosNationalLaboratory,USA,andpublishedthefirstreportontheexplosivenatureofNTOduring1980s[27].
Therecognitionofsuchenergeticfeatureshaspromoteditsextensivetheoreticalstudies,synthesisandcharacterization[19,28].
Varioussynthesismethodshavebeenexploredworldwideforpreparingthisenerget327www.
energetic-materials.
org.
cn含能材料ChineseJournalofEnergeticMaterials,Vol.
27,No.
4,2019(326-347)SabrinaHanafi,DjalalTrache,SlimaneAbdous,ZineddineBensalem,AbderrahmaneMezrouaiccompound,wherethefocusisthedevelopmentandimprovementofthesynthesispathwaysofsuchheterocycliccompound.
Thedetailedmethodologiesoftheefficientsynthesismethodsaregivenbellow.
2.
1SynthesisofTriazolone(TO)Bothofthetwoisomers1,2,4triazol5oneand1,2,4triazol3oneareabbreviatedastriazoloneoroxytriazole.
Itisconsideredasanintermediateproduct.
Triazoloneisaheterocycliccompoundcontainingthreenitrogenatoms,oneCNdoublebondandcarbonylgroup.
ItcanbepreparedbydifferentwaysasdepictedinFig.
1.
Thethermaldecarboxylationof1,2,4triazol3onecarboxylicacidisusedbyManchotetal.
tosynthesistriazolone[29-30].
Theobtainedyieldwaslow.
Fewyearslater,Chipenetal.
havetriedtoenhancetheyieldofsuchreactionbyimprovingtheyieldof1,2,4triazol3onecarboxylicacid(Ⅲ)usingdifferentconcentrationsofsulfuricacid(15%,25%and35%)todecomposethe3diazo1,2,4triazole5carboxylicacid(Ⅱ)togeneratethecompoundⅢ[29].
Thislatterwasdecarboxylatedat205-210℃toproduce75%ofTO.
ThereactionprocessisdisplayedinScheme1.
ThesimilarauthorshavesynthesizedTObyacylationofacetonesemicarbazonewithformicacid,theintermediatereactionhasproduceddiformylsemicarbazide,whichonprolongedheatinggeneratesTO.
Theauthorsmentionedthatthereactionyielddoesnotexceed10%.
Inanotherwork,Krgeretal.
havepreparedTObythedeaminationof4amino1,2,4triazol5onewithnitrousacid[26].
During1990s,Becaweetal.
haveboiledeithersemicarbazidealoneorsemicarbazidehydrochloridewithformicacid(90%)[5,31-32].
Theyrevealedthatthebestwaytogetabetteryield(70%)andgreatestpurity(99%)istouseeitherasolidsemicarbazidehydrochloride(SC)itselforbyformingSCinsituemployingsemicarbazideandaqueoushydrochloricacid.
ThismethodbasedonsolidSCremainsthemostandwidelyemployedmethodtoproduceTO[9,12,33-35].
2.
2NitrationofTOAnumberofresearchworksdealingwiththenitrationofTOhavebeenundertakenbyseveralscientists.
ThesynthesisofNTOwasachievedusingoneofthefollowingnitratingagents:fumingnitricacid[22],nitricacidatdifferentconcentrations[5,27,36]orsulfuricnitricacidmixture[37].
Manysynthesisstrategieswereadoptedtoimprovebothreactionprocessandyield(Table1).
Thisprocesscanbeperformedinoneortwosteps.
2.
2.
1NitrationofTOwithNitricAcidNTOcanbeobtainedbynitrationoftriazoloneFig.
1Differentmethodstosynthesizetriazolone.
TO:1,2,4triazole5one;SC:semicarbazide;ASCO:acetonesemicarbazone;ATO:4amino1,2,4triazol5one;TOCA:3carboxylicacid1,2,4triazol5oneScheme1TOsynthesisfromthethermaldecarboxylationof1,2,4triazol3onecarboxylicacid[29]Table1YieldofNTOproductionusingdifferentnitratingagentsnitratingagentfumingnitricacid(98%)fumingnitricacid/waterfumingnitricacid(withinitialcooling)nitricacid(70%)(onepotreaction)nitricacid(70%)(twostepreaction)nitricacid/sulfuricacid(onepot)nitricacid/sulfuricacid/heatingwithmicrowavecyclodextrinnitrateester/sulfuricacid/watermetalnitrate/sulfuricacidyield/%-6770-75758077748880reference[22][29][25][38][21][38][34][12][39]328CHINESEJOURNALOFENERGETICMATERIALS含能材料2019年第27卷第4期(326-347)5Nitro1,2,4triazole3one:AReviewofRecentAdvances(TO)indiluted/concentratednitricacidorsimplybyusingfumingnitricacid,whichmaybepreparedbyaddingexcessnitrogendioxidetonitricacid.
Broadly,thesynthesisprocedureisnotaneasyprocess,becauseseveralparameterscanaffectthechemicalreactionsuchastheconcentrationoftheacid,itspurity,theratio,thedurationandtemperatureofthereaction,tonameafew.
During1980s,varioussynthesisrouteshavebeendeveloped.
Spearsetal.
havemadeaconcisereviewdealingwiththepreparationmethodsofNTO,wheretheypointedouttheemploymentofdifferentratiosofsemicarbazide,formicacid,nitricacidaloneormixedwithsulfuricacidunderdifferentexperimentalconditions[38].
TheyhavereportedthattheyieldofNTOvariedbetween36%-75%.
ManyresearchworkshavebeendevotedtoenhancetheyieldofNTObystudyingthenitrationofTOusingdifferentconcentrationofnitricacid(65%to100%)[22-24,26-27,31,40].
In1993,BecaweandDelcos[31]optimizedthenitrationprocesspreviouslyintroducedbyManchotandNoll[22].
Theyinvestigatedvariousparameterssuchasthenitrationtemperature,thenitrationratio(HNO3/triazolone),reactiontime,anddilutionratio.
Theydeducedthatthenitrationratioof5isanacceptablepromise,thetemperaturevaluesbetween20℃and30℃areperfectlyacceptable,thereactiontimeofthreehoursprovidesamaximumyield,andthedilutionratioofslightlylessthanunityseemstobeoptimum.
However,theypointedoutthatthedissolutionofTOinnitricacidshouldbestartedatatemperaturecloseto0℃becauseitishighlyexothermicbeforeallowingthereactionmediumtoreachtheroomtemperature.
Theprocesswasdoneintwostepsasgivenbellow(Scheme2).
Mukundanetal.
havealsousedthesametwostepprocess,wheretheysynthesizedTOfollowedbyNTOafternitrationusingHNO3[41].
Theyreportedayieldof80%aftercrystallizationfromwater.
Singhetal.
employedthesimilarsynthesisroutebyusing70%nitricacidfornitrationofTOtoNTO[42].
ZbarskyandYudinperformedadetailedinvestigationofthenitrationkineticsofTOin70%-100%nitricacid,andtheyfoundthattheprocesscanbesimulatedbypseudofirstorder[43].
TheyreportedthattheyieldofNTOdidnotdependontemperatureintherangeof0-30℃.
Thereactiontime,whichdecreasesbytheincreaseoftemperature,wasindependentonboththeinitialacidconcentrationintherangeof90%-98%HNO3andtheratioofHNO3totriazoloneintherangeof4-8molHNO3permoleTO.
Nevertheless,atacidconcentrationexceeding77%,1nitro1,2,4triazoloneisobtainedwithinthefirstminutesofthenitration.
ItwasfoundthatatotaldestructionoftheTOringoccurredwiththeformationofNxOy,CH2OandCOasdecompositionproductswhenH0>1;whereas,ifH0CN—chemicalgroupinadditiontoC—NO2linkage.
Itexhibitsgoodthermalstability,lowsensitivitytoradiationdamage,accidentalandsympatheticinitiation[69,77-78].
TheacidiccharacterofNTOandthepresenceoftworeactive(N—H)protonsinitsmoleculeallowedthepreparationofnumeroussaltsofmetalsaswellasaromaticandaliphaticamines,whichcanbetailoredforawiderangeofapplications[69,79].
Inaddition,NTOisnitrogenrichandcontainsotherfunctionalgroupssuitableforinteractionssuchashydrogenbonding.
Thederivedsaltshaveanumberofadvantagesovernonionicmolecules,sincethesesaltsdisplayhigherdensityandlowervaporpressurethantheirrespectiveatomicallynonionicanalogues[71].
However,NTOpresentedsomedrawbackssuchasthehighsolubilityinwater,theacidreactionbyhydrolysisandthelargecriticaldiameterneededforthecontinuationofthedetonation[80].
TheformerissuecanleadtotheincreaseofNTOamountinindustrialwastewaterproducedduringTable2SomephysicochemicalpropertiesofNTONTOnameCASNo.
structuralformulamolecularmass/g·mol-1density/g·cm-3solubilitydecompositiontemperature/℃heatofformation/kJ·mol-1oxygenbalanceacidity1HNMR13CNMR14NNMRIRspectrum/cm-1NearIRspectrum/cm-1RamanIRspectrum/cm-1C2H2N4O33Nitro1,2,4triazole5one,5Nitro1,2,4triazole3one,5oxy3nitro1,2,4triazole(ONTA),nitrotriazolone9326491301.
93,1.
911,2.
06solublein:water,acetone,acetonitrile,dioxin,NMP,DMF,trifluoroaceticacidandDMSO.
limiltedsolubilityin:toluene,chloroform,diethylether,ethylacetate.
insolublein:dichloromethane.
271-273-101.
1-24.
6adibasicacid:pK1=3.
76,pK2=11.
2513.
5(H—NadjacentNO2)and12.
8(DMSOd6)154.
4(CO)and148.
0(C—NO2)(DMSOd6)-34.
5.
5(H—N),-112.
9(N—H),-205.
4,-207.
4,-243.
93212(NH),1714(CO),and1547(NO2)6250and45501361and1329reference[5,17]-[69][21][27,70-71][19,21][72-73][71][73-74][71,75][2021][19]Fig.
2AperformancecomparisonofNTOwiththoseofotherhighexplosives[17,19,21]333www.
energetic-materials.
org.
cn含能材料ChineseJournalofEnergeticMaterials,Vol.
27,No.
4,2019(326-347)SabrinaHanafi,DjalalTrache,SlimaneAbdous,ZineddineBensalem,AbderrahmaneMezrouathemanufacturingandprocessingofitsformulations.
RecentreportsonthetoxicityofaqueousNTOonCeriodaphniadubia,northernleopard,frogandrat,citetoxiceffectwhentheconcentrationreachesandexceedstherangeof1kg/1000L[81-82].
Forthispurpose,ahugeamountofworkhavebeendoneworldwideinordertofindefficientprocedurestoremovesuchaharmfulexplosivefromsolutionsandreducetheriskofenvironmentalcontamination[35,67,83].
3.
2MorphologyofNTOMorphologies,sizes(distribution),defects,etc.
arethestructuresabovethecrystalpackingandnotintrinsic.
Theyaregovernedbypreparationmethodsinsteadofemergentmolecularpackingincrystal.
Itiswidelyacceptedthatstructure,sizeandmorphologyhavegreatinfluenceonpropertiesofdifferentmaterials.
Theparticlesizesignificantlyaffectsvariousfeaturesofparticulatematerialsandoffersappropriateindicationforqualitycontrolandperformance.
Coarsesphericalparticlescanfloweasilyandgeneratehighbulkdensity.
Fineparticleswithsuitablemorphology,however,areoftennecessitatedtoenhancetheballisticparametersandincreasetheenergyoutputowingtothehighsurfacearea[13].
Inaddition,someauthorsreportedthatflowpropertiessuchaswettability,packability,andcompatibilitycanbeincreasedtoagreatextentoncesphericalparticlesareused[84].
Consequently,suchphysicalcharacteristicsplayvitalroleinachievinginsensitivity,solidloadingandmixfluidityinprocessingandhighperformanceofEMs.
Oneapproachtodecreasethesensitivitytowardsmechanicalstimuliconcernsthealterationofparticlesizeandmorphologytocubicorsphericaldesiredmorphology,whichcanbereachedbyappropriatecrystallizationmethodalongwithsuitableoperationalconditions[48,85-86].
TheconventionalprocessofNTOpreparationfromsemicarbazidehydrochlorideintwostepsgivesrisetorodlikemorphologythatisnonsphericalinnature,whichreadilyagglomeratesandeventuallybecomessensitivetounexpectedshock.
LargescaleproductionofNTOinvolvescrystallizationfromwater,andthisyieldsirregularrodsandjaggedcrystals.
Thisundesiredirregularmorphologyleadstohighviscosity,poorprocessabilityandconsequentlyreducessolidloading.
Thismaycreateissueswithexplosiveformulations,whereadversemorphologyandsizegeneratehandlingsdifficultiesandformulationmaybehighlyviscousandnoteasytopour.
Thus,watercanonlybeutilizedtopurifytheproductsandnotforobtaininggoodmorphology.
Forthatpurpose,severalauthorshavetestedvariousprocedurestoproduceadesiredNTOmorphology(Table3).
Collignon,asoneofthepioneersinthecrystallizationofcrudeNTO,studiedawayforobtainingspheroidalNTOafteritscrystallizationfromaliphatTable3SomeprocedurestoproducedifferentmorphologiesofNTOmethodcoolingrecrystallizationwater/oilmicroemulsionfreezedryingintoliquidrapidexpansionofsupercriticalsolutioninfluencingfactorsconcentration,volumeration,agitatorconfiguration,speedtemperature,ratiosolvent/antisolventconcentration,temperatureconcentrationextractiontemperatureandpressure,nozzlesize,flowratekeypointscoolingratesurfactantnozzlediameterandfreezetemperatureselectionofpropersolventmorphologysphericalsphericalgridsneedlelikecosolventwater/1methyl2pyrolidonenalkanolpolyoxyethylenealkylphenolether-commentbulkdensity:0.
65-1.
15g·mL-1size:10-200μmsize:10-30nmparticlesize:70-90nmparticlesize:540nmRef.
[48,87-88][89][90][91]334CHINESEJOURNALOFENERGETICMATERIALS含能材料2019年第27卷第4期(326-347)5Nitro1,2,4triazole3one:AReviewofRecentAdvancesicalcoholscontaining1to4carbonatomsortheiradmixturewithwater[92].
Thesolutionwasheatedfrom40℃toaboilingtemperatureofalcoholfollowedbyafastcooling(6-20℃·min-1)understirring.
SpheroidalparticlesofNTOwererecoveredat5-10℃.
Similarauthorusedamethodofcrystallizationfromwaterwiththeadditionofasurfactant(perfluorinatedsaltsofaliphaticcompounds)andmethylcelluloseinordertoformspheroidalNTO[40].
SomeauthorsreportedthatcrashprecipitationfromDMSOcouldprovidemoresuitablecrystalmorphologies.
DissolutionofNTOinDMSOandsubsequentinjectionthroughanopeningsmallerthan0.
7mmintodichloromethanegivesrisetoNTOasfinelydividedparticleswithsurfaceareaoftheorderof5.
7m2·cm-3[19].
KimproducedsphericalNTObycoolingcrystallizationusingcosolventNmethyl2pyrrolidone(NMP)andwater[87].
Theyfoundthatthecoolingrateof10℃·min-1gavebetterresults.
ItwasreportedthatthemassratioofNTO/NMPaffectedthemorphologyofNTO.
Porousparticleswithcracksandfissuresweregeneratedwhentheratioisover0.
6.
Fromthedifferenttestedmixtures,thecombinationwater/NP=1.
0,NTO/NMP=0.
39providedthemostadvantageousmorphology.
Furthermore,itwasestablishedthatthewaterquantityinthemixturewithNMPaffectedthediameterandthemorphologyoftherecrystallizedNTO[93].
Thesizeofparticleshadanaveragediameterof50-220m,whichdependedproportionallyonthecontentofwaterinthemixture.
Similarapproachbasedonwater/NMPmixturewasusedbyVijayalakshmi[48].
TheyfocusedonthesynthesisofsphericalNTObyrapidcoolingcrystallizationandoptimizedthecrystallizationprocesstoachievefineandsphericalparticles.
Theymentionedthathigheragitationspeedandcoolingrateleadtotherelativelyfineparticles.
TheyrevealedalsothatsphericalNTOpossessedabout40%reductioninviscositywithrespecttotheconventionaljaggedandrodtypeones.
TheseauthorsalsotriedtorecrystallizeNTOfromothersolvents,suchasaliphaticalcoholsandtheiradmixtureswithwater.
Itwaspointedoutthatnoneoftheselattersolventsappearedtoadequatelyobtainbettermorphology.
ThecrystallizedNTOgranules,inthiscase,werepartlyrounded.
Recently,theTrzcinskigrouppreparedsphericalparticlesofNTOwithdiametersrangingfrom50μmto500musingawater/NMPmixture(H2O/NMP=60/40V/V,coolingrate1K·min-1)[88].
TheobtainedNTOwastestedintheformulationscontainingDNAN(2,4dinitroanisole)orTNTwithRDX.
Morerecently,thesimilarresearchgrouphaveinvestigatedtheeffectofadditionofdifferentsurfactantstothemixturewater/NMP[14].
TheauthorsdemonstratedthatthesystemNTO/H2O/NMP/Polyvinylalcohol(9-10/80/20/0.
008-0.
1)at5-15℃provideddesirablemorphologyofNTO.
Theobtainedproducthadahighbulkdensityandpresentedgoodresistancetomechanicalstimuli,suchasfriction(353N)andimpact(minimumsensitivityequalto13J).
Similartothemorphology,theparticlesizeofEMsalsoownsavitalroletoachievegoodperformanceinenergeticmaterialformulation,sinceitaffectspackingdensity,porosity,cohesion,flowability,andinteractionwithfluids/binders.
NanosizingofEMsleadstoalargeavailablesurfaceareaandconsequentlybetterheattransmission.
Thereareotheradvantagesofusingnanoenergeticmaterials(NEM)suchasimprovinginsensitivity,decreasingthermaldecompositiontemperatureandnanomeltingpointeffect.
TheseNEMmayexhibitsomewhatfasterreactioncomparedtoconventionalmicronsizedones.
Yang[90]producednanoNTObyemployingsprayfreezinginliquidmethodfrom90%pureNTO.
Theobtainednanoparticlesshowedanaveragesizeof70-90nmwithelongatedmorphology.
TheseauthorscomparedthethermaldecompositionaswellastheimpactsensitivityofbothnanoNTOandmicroNTO.
TheyconcludedthatthedecompositionofnanoNTOoccurredatalowertemperatureanditislesssensitivetoimpactstimuliwithrespecttomicroNTO.
335www.
energetic-materials.
org.
cn含能材料ChineseJournalofEnergeticMaterials,Vol.
27,No.
4,2019(326-347)SabrinaHanafi,DjalalTrache,SlimaneAbdous,ZineddineBensalem,AbderrahmaneMezrouaWangetal.
utilizedareversemicroemulsionofsolventevaporationtechniquetoproducenanoscaleNTO[89].
Annalkanolwasemployedasacosurfactant.
Themassratiobetweensurfactantandcosurfactantwas7∶1andthewatercontentofthesolutionwas24%.
Theexperimentwasperformedat298-303Kunderavacuumbetween-0.
6and-0.
85MPa.
Theparticlesize10-30nmwasobtained.
3.
3CrystalStructuresofNTOTwopolymorphicmodificationsarerecognizedforcrystallineNTO.
LeeandGilardireportedthedetailedmethodologiestopreparetheseforms[94].
Thefirstpolymorph,αfrom,wasproducedbyslowcoolingofahotsolutionofNTOinvarioussolvent(suchaswater)followedbyrefrigeration.
Theobtainedcrystalsappearedaslongneedles,whichshatterwhencutperpendiculartothecrystalaxis.
Thisformisconsideredasthemoststablebuttendstotwinning,andthatisthereasonwhyparametersofitscrystalstructurewereobtainedquiterecently.
TheαformbelongstothetriclinicspacegroupP1andcontainseightmoleculesinacellunit.
ExperimentalanalysisforαNTO(withdensityof1.
903g·cm-3)wascarriedoutat223.
2KbyXraydiffractionmethod.
ItwasfoundthatmoleculesintheNTOcrystalsformribbons,andareconnectedbyanethydrogenbondsandweakvanderWaalsinteractions[95].
Thesecondform,βpolymorph,waspreparedbyrecrystallizationfrommethanoloramixedethanol/dichloromethanesolvent.
ItwasmentionedthatβNTOremainedstableforsixmonthafterwhichitdecomposed.
TheunitcellofβNTOismonoclinicofthespacegroupP21/cwithfourmoleculesintheunitcell,whereeachmoleculeislinkedtootherbyfourhydrogenbonds.
AtambientconditionstheβNTO(withdensityof1.
876g·cm-3)islessdensethanαNTO[96].
ThelatticeparametersofthetwopolymorphsaredepictedinTable4[17,95,97].
Bolotinaetal.
haveinvestigatedtheeffectoftemperaturefrom100Kto298KonthecrystalstructureofthemetastableβNTOusingsinglecrystalXraydiffractiontechniques[96].
Theyreportedthatthethermalexpansionoccurredinaplane,whichisalmostperpendiculartotheplanesofallNTOmolecules.
Thecrystallatticeindicatedanharmonicityoftheatomicthermalmotion.
ThesimilarresearchgroupreportedthecrystalstructureofαNTOat298K[28].
Theyexhibitedthatαformcrystalizedasafourcomponenttriclinictwinwithfourcrystallographicindependentmoleculesinthesymmetricunit.
Hydrogenbondingcreatedtwoindependentribbonsinthecrystalstructure.
Recently,Rykounovhasstudiedtheeffectoffinitepressuresonthestructuralandthermodynamicpropertiesofthetwopolymorphicformsusingtheabinitioapproach[95].
Nosignificantstructurewasfoundunderpressureof50GPaforαNTO,whereasβNTOshowedastructuralchangeevenat17.
5GPa.
IntheworkofWuetal.
,thestructuralpropertiesofβNTOhavebeeninvestigatedunderhydrostaticpressureof0-160GPa[98].
ThebandcparametersaresensitivetovanderWaalsinteractions.
Thestructurewasthestiffestinadirectioninthewholepressurerange.
ItwasrevealedthatNTOdecomposesat150GPabybreakingofN—Obondinnitrogroup,andpolymerizedbyforminganewN—Hcovalentbondbetweenonenitrogenatomintheringandonehydrogenatomconnectedtotheringinanothermolecule.
4NTObasedCocrystalsArelativelynewconceptthatisreceivingsubTable4ThecrystallatticeparametersofαandβpolymorphsofNTOcrystalpolymorphcrystalsystemspacegroupa/b/c/α/(°)β/(°)γ/(°)density/g·cm-3αNTOtriclinic,8molecules/cellP15.
1210.
3017.
90106.
797.
7090.
201.
903βNTOmonoclinic,4molecules/cellP21/c9.
3105.
4509.
03090.
00101.
4690.
001.
876336CHINESEJOURNALOFENERGETICMATERIALS含能材料2019年第27卷第4期(326-347)5Nitro1,2,4triazole3one:AReviewofRecentAdvancesstantialinteresttotailorthephysicochemicalpropertiesofEMsiscocrystallization[99].
Althoughnowadaysestablishedwithinthepharmaceuticalfield,asameansforenhancingthesolubility,bioavailability,physicochemicalandstabilitypropertiesofactivepharmaceuticalcomponentswithoutmodificationsintheirchemicalstructure[100-101],cocrystallizationisnowatanearlyphaseofdevelopmentwithinthefieldofEMs,butitisstartingtodemonstrateconsequentpromise.
Thelatterstrategycanimprovethecomprehensivepropertieswithoutsacrificingtheenergyoutput.
Moreandmoreenergeticcocrystals(ECC)arebeingproduced,openingaroadtonewhighEMswithrequiredfeatures[99,102-104].
ECCarecrystalsencompassingtwoormoreneutralmolecularcompoundsinwhichatleastoneisenergeticinacertainratiothroughnonbondedinteractions.
Theintermolecularinteractionsandhydrogenbondsformedbetweenthecomponentsofcocrystalshelptoachieveprominentfeaturesthantheirrespectiveconstituents.
RecentresearchactivitiesonsynthesisofnewEMsbycombiningasensitiveandalesssensitivematerialtoobtainbetterpackingdensity,desiredmorphology,higherperformanceandincreasedsafetythroughtheprocessofcocrystallizationarereported[105].
Todate,severalECChavebeensynthesizedexperimentallyandcalculatedtheoretically.
Forinstance,17cocrystalsofTNTwithvariousaromaticorheterocycliccoformershavebeenpreparedbyLandenbergerandMatzgeranddemonstratedanalterationofkeycharacteristicssuchasmeltingpoint,decompositiontemperatures,anddensity[106].
SimilarauthorsproducedvariousHMXcocrystalsandrevealedatremendousdecreaseinsensitivitycomparedtopureHMX[107].
Othercocrystalshavebeenachievedsuchasthoseofbenzotrifuroxan(BTF)[108-109],2,4,6,8,10,12hexanitrohexaazaisowurtzitane(CL20)[110-112],ethylenedinitramine[113-114],diacetonediperoxide[115-116],azolederivatives[117-118],amongothers.
AzolebasedEMsareofpotentialinterestforcocrystallizationinvestigationsastheyexhibitrelativelygoodhydrogenbonddonororacceptormolecules.
NTOisanexampleofsuchazolederivatives.
Linetal.
exploredNTOascocrystalformertococrystallizewithHMX[15].
Theycalculatedthebondingenergies,thermodynamicproperties,detonationproperties,andthermalstabilityusingdensityfunctionaltheorymethods.
Furthermore,theystudiedthecrystalstructureofHMX/NTOcocrystalusingMonteCarlosimulationandfirstprinciplesmethods.
TheauthorsdemonstratedthattheintermolecularinteractionsweregovernedbyCH…OandNH…Ointeractions,aswellasO…OandN…Oweakinteractions.
Thecocrystalformationwasexothermicwithlowentropy.
ThechangeofGibbsfreeenergywasnegativeat300K,showingthatlowertemperatureallowstheformationofHMX/NTOcocrystals.
ItwasalsoexhibitedthatthedetonationvelocityofthecocrystalwaslowerthanthatofHMX,anditsthermalstabilitymeetstherequirementofhighenergydensitymaterials.
Recently,Songetal.
employedamoleculardynamicsmethodtoinvestigatethebondingenergiesassociatedwiththecocrystallizationofNTOwitheitherαandβHMX[119].
TheyexhibitedthatHMX/NTOwithlowmolecularrations(2∶1,1∶1,1∶2,1∶3),arethemoststable.
ThebindingenergiesofsuchcocrystalarelargerthanthoseofHMX/TATBandHMX/FOX7cocrystals.
ItwasshownthatCO…H—Chydrogenbondinginteractionswerethemaindrivingforceforcocrystallization.
Inaddition,theβformwaspreferredwhenmoleculesinNTOsupercellsweresubstitutedwithHMX,asinαform.
TheauthorsrevealedthattheincreaseofHMXproportionwouldincreasethedenotationvelocityandpressuretothedetrimentofthesensitivity.
Inanotherwork,Lietal.
preparedacocrystalofHMX/NTOinamolarratioof1∶1bysolvent/antisolventmethod[120].
Itwasshown,asmentionedinTable5,thatthemorphologyofthecocrystalisdifferentfromitsrespectivecoformers.
TheproducedcocrystalspossessedlowsensitivitytoimpactandfrictioncomparedtoHMX.
Recently,Wuetal.
reportedthecocrystallizationofNTOwithanitrogenrichcompound5,6,7,8tetrahydrotetrazolo[1,5b][1,2,4]triazine337www.
energetic-materials.
org.
cn含能材料ChineseJournalofEnergeticMaterials,Vol.
27,No.
4,2019(326-347)SabrinaHanafi,DjalalTrache,SlimaneAbdous,ZineddineBensalem,AbderrahmaneMezroua(TZTN)[121].
ThislatterwaschosenasitisaweakbaseanditcouldpotentiallytheacidityofNTO.
StrongintermolecularNH…NandNH…OhydrogenbondinginteractionsaretheprimarydrivingforceinthepreparationoftheenergeticenergeticNTO/TZTNcocrystal.
AsmentionedinTable5,thecocrystalmeltsat156.
6℃andincreasescomparingwithTZTN,whatisattributedtothehydrogenbondinginthestructure.
Itsexothermicpeakshiftstolowertemperaturewithtwocontinuoussharpexothermicprocessat177.
5℃and197.
9℃,respectively,whatindicatessomechangesinthecrystalphase.
ThedetonationvelocityanddetonationpressureofNTO/TZTNcocrystalare7458km·s-1and23.
5GPa,respectively,alittlelowerthanthoseofNTO.
Thecocrystalpresentsacrystallographicdensityof1.
665g·cm-3,whichishigherthanTZTN,butlowerthanthatofNTO.
Inanotherresearchwork,ZhaoandYang[16]haveusedthedensityfunctionaltheory(DFT)tostudytheeffectofhydrostaticpressureof0-80GPaonthegeometricalandelectronicstructuresoftheenergeticNTO/TZTNcocrystal.
Ithasbeenrevealedthattheincreasingofpressurecontributedtotheincreaseofinteractionforcegradually.
Thestabilityofsuchcocrystalhasbeenimprovedbytheformationoffiveandeightmemberedringsduringexternalcompression.
At4GPa,thetransformationfromHbondO(1)…H(3)tocovalentbondcontributedtotheformationoftheeightmemberedring.
Inaddition,anewcovalentbondisgeneratedbetweenN(2)andH(4)atoms.
After8GPa,thecovalentbondbetweenO(1)andH(3)atoms,N(4)andH(2)atomsintensifiedthethermalstabilityofthecocrystalsystemsignificantly.
Inadditiontothecurrentmethodwidelyemployedfortheformationofcocrystalssuchassolutioncocrystallization,mechanochemicalmethodsandultrasounds,arelativelynewmethod,whichistheresonantacousticmixing,hasbeenrecentlyutilized[122].
Thislatterisrevealedtobesafe,simple,scalableandissupportedbyacommercialplatformofRAMmixersavailablethroughtheResodynCorporation.
ThisapproachwasefficientlyappliedtoprepareNTO/4,4biperidine(BP)cocrystal,whereadropofwaterisrequiredotherwiseasaltisformed[123].
SpontaneouscrystallizationfromsolutionatroomtemperaturewasreportedbyLloyd,whichproducesacocrystalofNTO/BPin1∶1molarratios[124].
ItwasexhibitedthatthecrystalstructuredensityanddetonationvelocityofthecocrystalarelowerthanthoseofNTO.
Thecocrystaldisplayedasharpexothermicpeakat217℃.
Asharpendothermicpeakwasalsoobserved,whichisattributedtothemeltingofthedecompositionproducts.
InthepaperofHang,anovelenergeticcocrystalconsistedofCL20/NTOwithdifferentmolarratioswasestablishedthroughsubstitutionmethod[97].
Thegeometricstructuresandthepropertieswereoptimizedbasedonthemoleculardynamicsmethod.
Theauthorsrevealedthatthecocrystalformedwiththemolarratioin2∶1,1∶1or1∶2showedhigherstability,lowermechanicalsensitivityandbettersafetyincomparisontoCL20.
Thedetonationpropertiesandperformancesofthecocrystalsaredeclined,buttheystilldisplayedexcellentenergydensity.
5NTODerivativesTheacidicnatureofNTOallowstheformationTable5PropertiesofNTO,TZTNandtheircocrystalsampledensity/g·cm-3heatofformation/kJ·mol-1detonationvelocity/m·s-1detonationpressure/GPaexothermicpick/℃NTO1.
93-6.
3844633279TZTN1.
577499.
2727221.
6197.
1HMX--910037.
76281NTO/TZTN1.
665481.
4745823.
5177.
5,197.
9NTO/HMX1.
92-873035.
14282.
5338CHINESEJOURNALOFENERGETICMATERIALS含能材料2019年第27卷第4期(326-347)5Nitro1,2,4triazole3one:AReviewofRecentAdvancesofalargenumberofsaltswithmetals,aliphaticandaromaticsamines(Fig.
3)[69].
ThepreparationofNTOsaltsinvolvessimpleacidbasereaction.
TherearemanyreportsintheliteratureabouttheionizationofNTO.
ThetwohydrogensitesinNTOmoleculeatpositionsN(2)andN(4)(Table2)canbeionizedtoformdifferentderivativesofNTObychangingthenatureofthesolution.
Ithasbeenshownthatthehydrogenatposition2ismoreacidicthanthatatposition4[19,72].
Severalworkshavebeenperformeduntilnow,whereahugenumberofNTOderivativeshavebeenreported[17,71-73,79,125-126].
ThepioneeringworksonNTOderivativeshavebeencarriedoutbyChipenetal.
andthencompletedbyaresearchgroupfromUSdepartmentofthearmyandtheUSdepartmentofenergy[29].
Commonly,thepreparationofaminesaltsofNTOwasachievedbymixingthehotaqueoussolutionofNTOwithasolutionofcorrespondingbase.
Leeetal.
havesynthetizedsevenaminosaltsofNTOhydrazine(HNTO),ammonia(ANTO),ethylenediamine(ENTO),guanidine(GuNTO),aminoguanidine(AGuNTO),diaminoguanidine(DAGuNTO),triaminoguanidine(TAGuNTO)[70,127].
Furthermore,ithasbeendemonstratedthatANTOandENTOappearedaspotentialcandidatestobeusedasexplosives[128].
Recently,Singhhasdeeplyreviewedthepreparation,characterization,thermolysisandapplicationofmorethan50NTOsalts[19].
Varioussaltsareconsideredinsensitiveandhighlyenergeticinnature,inadditiontootherprominentfeaturesandpotentialapplications.
Saltswithhighnitrogencationssuchashydrazineandtriaminoguanidine,aresuggestedasconstituentsofgunpropellants[127].
Saltswithmetalshavebeenassessedasballisticmodifiersandcatalystsforsolidrocketpropellants[129-130].
OtherinterestingaminobasedsaltsofNTO,thathavealsobeenwellcharacterized,aredimethylamine(DMNTO),3,3dinitroazetidine(DNAZNTO),and2azidoethylamine(AANTO)[125-126,131-132].
AnotherderivativeofNTOhasbeenobtainedbynitrationusingfumingnitricacidandaceticanhydride,whichisthe2,4dihydro2,4,5trinitro3H1,2,4triazol3one(DTNTO).
Inthiscase,theNHgroupofNTOissubstitutedbyNO2.
IthasbeenfoundthatthisnewderivativeismoresensitivethanNTO,buthaspositiveoxygenbalancewhichisanattractivefeaturefromthepointofviewofitsapplicationasanecofriendlyoxidizerinpropellantformulations[133].
Duringthepastfewyears,newNTOsaltshavebeeninvestigatedaswell(Fig.
3).
Energeticsaltscontainingeitherenergeticsubstitutedtriazoliumortetrazoliumcationsand3nitro1,2,4triazolate5oneanionshavebeensynthesizedandcharacterizedbyShreeve′sgroup[71].
3Amino1,2,4triazolium3nitro1,2,4triazolate5one,1amino1,2,4triazolium3nitro1,2,4triazolate5one,4amino1,2,4triazolium3nitro1,2,4triazolate5one,methyl5aminotetrazolium,and3Nitro1,2,4triazolate5oneareformedbyusingNTOassubstrate.
TheseenergeticsaltsexhibitedgoodpropertiesinFig.
3AcompilationofNTOderivativesreportedinliterature.
SCZNTO:semicarbazidiumNTO;NCGuNTO:NcarbamoylguanidiumNTO;TTABTZNTO:4,40,5,50tetraamino3,30bi1,2,4triazoliumNTO;TATATNTO:3,6,7triamino7H[1,2,4]triazolo[5,1c][1,2,4]triazol2iumNTO;DATTZNTO:1,5diamino1,2,4tetrazoliumNTO;TATZNTO:3,4,5triamino1,2,4triazoliumNTO;XATNTZO:XAmino1,2,4triazolium3Nitro1,2,4triazolate5one;Methyl5ATTNTZO:Methyl5Amino1,2,4tetrazolium3Nitro1,2,4triazolate5one;NPTNPTO:5nitro2picryl(2,4,6trinitrophenyl)2,4dihydro3H1,2,4triazol3one;NDPDTNPTO:5nitro2,4dipicryl(di2,4,6trinitrophenyl)2,4dihydro3H1,2,4triazol3one[69]339www.
energetic-materials.
org.
cn含能材料ChineseJournalofEnergeticMaterials,Vol.
27,No.
4,2019(326-347)SabrinaHanafi,DjalalTrache,SlimaneAbdous,ZineddineBensalem,AbderrahmaneMezrouacludingrelativelyhighdensities,highpositiveheatofformationandmoderatedetonationproperties,becausebothcationandanionhavethehighestnitrogencontentwhichinturnenhancedthedensityandthedetonationcharacteristics.
Themelamine3nitro1,2,4triazol5onesalt(MNTO)wassynthesizedandcharacterizedbyNajafietal.
[134].
IthasbeenfoundthatitpossessesacriticaltemperatureofthermalexplosionhigherthanthatofNTO.
In2011,theyfurtherperformedastudyonthermalbehaviorofMNTO.
ItrevealsthatMNTOcouldbeusedinvariousapplicationswhichrequireshighinsensitivity,thermalstability,andnitrogencontent[135].
Wallaceetal.
havereportedthesynthesisofnewazoandazoxycompoundsviaelectrochemicalreductionofnitrotriazolesinaqueousmediausingnitrotriazolone(NTO)andnitrotriazole(NTr)asrepresentativesubstrates.
ReductionofNTOproducesmainlysolidazoxytriazolone(AZTO),withazotriazolone(azoTO)andaminotriazolone(ATO)asminorproducts[136].
Thesecompounds,whichexhibitedgreaterthermalstabilitythanNTO,havebeenshowntobeofinterestasnewgreenhighnitrogencompoundsforuseasinsensitivehighexplosives[137].
Beforethat,Croninetal.
hadreportedontheformationofAZTObyelectrochemicalreductionofnitrotriazolone(NTO)inacidicaqueoussolution[138].
Inanotherwork,Renetal.
havesynthesizedanioniccompound(3ATz)+(NTO)-bythereactionof3amino1,2,4triazole(3ATz)withNTOinethanol[125].
Theobtainedproducthasagoodoxygenbalance,ahigherchemicalstabilityandconsistencytobeemployedinpropellantandexplosiveformulations.
MonopicrylanddipicrylderivativesofNTO(5nitro2picryl(2,4,6trinitrophenyl)2,4dihydro3H1,2,4triazol3oneand5nitro2,4dipicryl(di2,4,6trinitrophenyl)2,4dihydro3H1,2,4triazol3one)havebeensynthesizedbythetreatmentofNTOwithpicrylfluoridein1methyl2pyrrolidinone(NMP)atroomtemperature[139].
Inref.
[140],authorshaveinvestigatedthetheoreticalinvestigationoftwoclassesofNTOpicrylderivativesincluding12constitutionalisomers.
Ithasbeenrevealedthatallconstitutionalisomersareendothermicinnature,andhavehigherdetonationperformancethanNTO.
Becauseofthelackofdetonationdataofseveralaminesalts(HNTO,ANTO,GuNTO,AGuNTO,DAGuNTO,TAGuNTO),Zhang[73]haverecentlysynthesizedandcharacterizedtheselatterinadditiontosixnewsalts,whichareNcarbamoylguanidinium,semicarbazidium,1,5diamino1,2,4tetrazolium,3,4,5triamino1,2,4triazolium,3,6,7triamino7H[1,2,4]triazolo[5,1c][1,2,4]triazol2ium,and4,40,5,50tetraamino3,30bi1,2,4triazolium.
ThereportedresultsshowedthatalltheenergeticsaltsexceptTAGuNTOexhibitedexcellentthermalstabilitieswithdecompositiontemperaturesupto200℃.
Moreover,theyhaveestablishedthatHNTOhadexcellentpropertiessuchasthedetonationvelocityof9575m·s-1,whichiscomparabletothatofCL20,andthefrictionsensitivityof360Nwithadecompositiontemperatureof203℃.
ItisalsofoundcompatiblewithmostofpotentialEMs,whatmakingHNTOahighlypromisingenergeticmaterialforcompositeexplosivesandpropellants.
Morerecently,SzalahavesynthesizedtwonewsaltsofNTO,whicharethe2methylimidazole(2MeIm·NTO)andImidazole(Im·NTO)bydissolvingNTOinDMSOandheatingthesolutionto40℃forimidazoleand50℃for2methylimidazole[79].
Theyhavereportedthatbothsaltsarestableupto200℃andpresentlowersensitivityformechanicalstimulithanTNT.
DetonationvelocityandpressurearesimilartothoseofTNTandmuchlowerthanthatestimatedforNTO.
Furthermore,2MeIm·NTOhasmethylgroupwiththreeprotonswhicharrangesthemoleculesincrystalbetterthantheparentimidazole.
NewlydescribedNTOimidazolesaltsmayhaveloweraciditythanappropriatecocrystals.
6NTObasedFormulationsResearchersareexploringdifferentapproachestofulfilltheincreasingrequirementsofEMsthatim340CHINESEJOURNALOFENERGETICMATERIALS含能材料2019年第27卷第4期(326-347)5Nitro1,2,4triazole3one:AReviewofRecentAdvancesparthighperformance,enhancedmechanicalproperties,prolongedlifetime,lessvulnerability,andnegligibleenvironmentaleffectsduringmanufacturing,processing,handling,transport,storage,usageanddisposal[2,8].
Effortsarebeingmadeallovertheworldtodevelopmodern/furisticEMsbasedsystemsmeetingthepreviouslymentionedchallenges.
Safetyaspectsofhighenergymaterialsareoneofthekeyfactorsofresearchactivitiesinthisfield.
Thus,compoundswithhighenergycombinedwithlesssensitivityaresoughtfor.
Luckily,theNTOissuchacomponentwithperformancescomparabletothatofRDXandinsensitivitycomparabletothatofTATB.
Itsthermalstabilityisalsohighanddecomposesexothermicallyataround272℃[18].
NTOiscurrentlywidelyemployedinseveralformulationssuchasexplosivefillings:meltcast,castcuredplasticbondedexplosives(PBX)andpressedPBX,gasgeneratorsforautomobileinflatorairbagssystems,etc.
[2,18-19,21,76,79,82,110,141].
ThesaltderivativesofNTOarealsofoundinsensitiveandaretestedforseveralexplosiveformulations,ingredientofgunpropellants,modifierandcatalystforrocketpropellant[19,73,79].
Nevertheless,despitethenumberofpreparationmethodsandcharacteristicsofseveralNTOsaltsexistingintheopenliterature,thereportsontheapplicationsoftheseEMsareeithermeagerlyaccessibleorhiddeninclassifiedreports.
NTObasedexplosiveformulationshavebeenconsideredforavarietyofapplications.
SmithandCliffhavereviewedtheformulationscontainingNTOdevelopedbyUK,SwissandNorwegian,GermanandCanadianandthatperformedatSNPE(French)[21,142].
Mukundanetal.
haveprovedthatNTObasedpressesandcastcuredexplosiveformulationsexhibitedsuperiormechanicalandthermalproperties,andmoreimportantlytheyareinsensitive[41].
NTOhasbeenusedinPBXbasedonsiliconrubberandithasbeenrevealedthatitsactivationenergyandonsettemperaturearerelativelyhigh(267.
0℃),whichrevealsbetterthermalstabilitythanotherPBXs[143].
TheSociétéNationaledesPoudresetExplosifs(SNPE),France,hasreportedB2214basedonaninertbinder,HMXandNTO(12%and72%respectively)formissilewarhead.
ItwasdemonstratedthatthisformulationislesssensitiveandmoreefficientthatCompositionB(Hexol60/40)[2].
Baudinetal.
havestudiedtheshocktodetonationtransition(SDT)anditsmodelingforcastcuredPBXcontainingHMX,RDXandNTOandtheyhavecomparedittopressedone[144].
TheyhaverevealedthatacastcuredPBXisnotporousincontrarytoapressedPBXandthehotspotsaremainlylocatedatthegrainbinderinterfaceincaseofcastcuredPBX,leadingtoadifferentburningbehaviorduringshocktodetonationtransition.
Moreover,ithasbeenrevealedthatcastcuredPBXcontainingHMX,RDXandNTOdoesnotexhibitanydesensitizationwhensubmittedtodoubleshockwaves.
Morerecently,Zeman′sgrouphasreportedanewPBXbasedoncis1,3,4,6tetranitrooctahydroimidazo[4,5d]imidazole(BCHMX)andNTO,bonedbypolydimethylsiloxanebinder(44/44/12massfraction).
TheseresearchersrevealedthatthisinsensitiveformulationappearedasagoodcandidateforLOVAexplosiveswithhighdetonationparameters,goodthermalstabilityandbettermechanicalproperties[76].
Inanotherwork,Tappanetal.
havepreparedaformulationsbasedon3,3′Diamino4,4′Azoxyfurazan(DAAF)andNTOtoevaluatetheirdetonationperformance.
Theobtainedproductpresentedbetterpropertiessuchasasmallerfailurediameter,lowershocksensitivity,higherdensityanddetonationpressure[141].
Belaadaetal.
havepreparedameltcastcompositionbasedonNTOandFOX7[145].
Theobtainedcompositionexhibitedgoodrheologicalfeaturesandthecastingprocessmaybeperformedatatemperaturerangeof85-90℃.
Thesensitivitiestoimpact,shockwave,jetattackandfastheatingdeterminedwerelowerthanthoseofTNT.
Itisindicatedthatsuchcompositionispromisingasamainchargefillingdestinedforinsensitivemunitions.
Intherecentyears,TNThasbeensubstitutedbyNTOinIMX101formulation,whichcontained43.
5%2,4dinitroanisole(DNAN),19.
7%NTO,341www.
energetic-materials.
org.
cn含能材料ChineseJournalofEnergeticMaterials,Vol.
27,No.
4,2019(326-347)SabrinaHanafi,DjalalTrache,SlimaneAbdous,ZineddineBensalem,AbderrahmaneMezrouaand36.
8%nitroguanidine,andhasbeenqualifiedforusebyU.
S.
NationalServiceAuthority[146].
OtherformulationssuchasIMX104(OSX7,DNAN/NTO/RDX)andPAX48(OSX8,DNAN/NTO/HMX)havebeenreported,whereNTOwasrevealedasalternativetoreplaceRDXinlargecalibermunitions,andconsideredsaferfortroopsduetotheirlowerlikelihoodforunintendedexplosions[67,147].
AnumberofNTOsaltswereconsideredforexplosiveformulations[19].
Recentstudiesconcludedthatsomesaltsarelikelytoshowinterestingpropertiessuchasdecompositiontemperature,densities,detonationpressureanddetonationvelocities[73,79].
Furthermore,inadditiontothelowenvironmentalimpact,theyareconsideredmorecompatiblewithmostofthecommonlyemployedorpotentialenergeticcompoundssuchasTNT,CL20,TNAZ,TKX50,Al,ammoniumperchlorate,etc.
Therefore,suchsaltsarepromisingcandidatesforuseinfuturecompositeexplosivesandpropellants.
Ontheotherhand,variousNTOsaltshavebeentestedinpropellantcompositionsasballisticmodifiers.
Singhetal.
haveassessedtheeffectofNTOascatalystsforHTPB/APpropellants.
Verypromisingresultshavebeenachieved[130,148].
SomeauthorshavealsodemonstratedthepotentialofNTOtosubstituteAP(heatofformationof-296.
0kJ·mol-1)incompositesolidpropellantssinceNTOpresentshigherheatofformation(-276.
56J·mol-1)anditscombustionisenvironmentallyfriendly[19].
However,itisworthytonotethatmuchworkisneededtobedoneontheeffectsofthesesaltsontheprocessingparameters,stabilityandaging,beforeitsrealusage.
Inaddition,varioustheoreticalcalculationsshouldbeexperimentallyvalidatedtochecktheeffectofsuchcomponentsonthetotalenergyaswellasspecificimpulse.
Theextensionoftheseinvestigationstoothercompositesolidpropellants,compositemodifieddoublebasepropellants,andexplosivesmaybeconsidered.
Furthermore,newformulationsbasedonNTOcocrystalswillcertainlybringnewinsightinthefield.
7ConclusionsThecurrentlydevelopedsubstitutesoftheconventionalEMssuchasNTOneedoptimizationtofullysatisfytherequirementsofidealhighEMs.
Thus,highperformingenergeticingredientswithbettersafetycharacteristicsareatoppriorityinternationallyandneedfurtherendeavortoreachtheiraim.
Inthepresentreport,comparativestrategiestoproduceNTOaswellasthemethodologiestomodifyitsparticlesmorphologyandsizehavebeeninvestigated.
IthasbeenfoundthatsomerecentsynthesismethodsareefficientandthepreparedNTOhadbetteryieldsthantheconventionalmethods.
TheuseofsphericalNTOisvitalinrealizinghighenergyformulationswithhighphysicochemicalpropertiesandbetterperformance.
TheexistingliteratureonnewerformofNTOincludingderivativesandcocrystalshasbeencollected.
VariousrecentNTOderivativespresenttremendousadvantagessuchashighperformance,betterstability,insensitivity,compatibilityandhighdensity,andaresufficientlyassessedindifferentpropellantandexplosiveformulations.
FurtherimprovementonthepropertiesofNTOhasbeenreachedbythepreparationofcocrystals,andsuchapproachprovidespromisingwaytotunetheNTOphysicochemicalfeaturesandperformance.
Forthenearfuture,energeticformulationscontainingNTO,itsderivativesorcocrystalsareexpectedtoadvancethestateoftheartofEMsfield.
NewNTOderivativesandcocrystalsbasedformulationswithimprovedsafetyandperformancefeatures,comparedwiththecorrespondingconventionalformulations,areveryinterestingandmayplayaprominentroleinthefutureofhighEMs,propellantsandweaponry.
References:[1]KlaptkeTM.
Chemistryofhighenergymaterials[M].
Berlin:WalterdeGruyterGmbH&CoKG,2017.
[2]AgrawalJP.
Highenergymaterials:propellants,explosivesandpyrotechnics[M].
Weinheim:JohnWiley&Sons,2010.
[3]TracheD,KhimecheK,MezrouaA,etal.
PhysicochemicalpropertiesofmicrocrystallinenitrocellulosefromAlfagrassfi342CHINESEJOURNALOFENERGETICMATERIALS含能材料2019年第27卷第4期(326-347)5Nitro1,2,4triazole3one:AReviewofRecentAdvancesbresanditsthermalstability[J].
JournalofThermalAnalysisandCalorimetry,2016,124(3):1485-1496.
[4]TracheD,TarchounAF.
Stabilizersfornitrateesterbasedenergeticmaterialsandtheirmechanismofaction:astateoftheartreview[J].
JournalofMaterialsScience,2018,53(1):100-123.
[5]KlaptkeTM,WitkowskiTG.
Covalentandionicinsensitivehighexplosives[J].
Propellants,Explosives,Pyrotechnics,2016,41(3):470-483.
[6]WilliamsonDM,GymerS,TaylorNE,etal.
Characterisationoftheimpactresponseofenergeticmaterials:observationofalowlevelreactionin2,6diamino3,5dinitropyrazine1oxide(LLM105)[J].
RSCAdvances,2016,6(33):27896-27900.
[7]ViswanathDS,GhoshTK,BodduVM.
EmergingEnergeticMaterials:Synthesis,Physicochemical,andDetonationProperties[M].
TheNetherlands:Springer,2018.
[8]TracheD,KlaptkeTM,MaizL,etal.
Recentadvancesinnewoxidizersforsolidrocketpropulsion[J].
GreenChemistry,2017,19(20):4711-4736.
[9]ZhaoY,ChenS,JinS,etal.
HeateffectsofNTOsynthesisinnitricacidsolution[J].
JournalofThermalAnalysisandCalorimetry,2017,128(1):301-310.
[10]PourmortazaviSM,RahimNasrabadiM,KohsariI,etal.
Nonisothermalkineticstudiesonthermaldecompositionofenergeticmaterials:KNFandNTO[J].
Journalofthermalanalysisandcalorimetry,2011,110(2):857-863.
[11]KrzmarzickMJ,KhatiwadaR,OlivaresCI,etal.
Biotransformationanddegradationoftheinsensitivemunitionscompound,3nitro1,2,4triazol5one,bysoilbacterialcommunities[J].
Environmentalscience&technology,2015,49(9):5681-5688.
[12]DeshmukhMB,WaghND,SkiderAK,etal.
Cyclodextrinnitrateester/H2SO4asanovelnitratingsystemforefficientsynthesisofinsensitivehighexplosive3nitro1,2,4triazol5one[J].
Industrial&EngineeringChemistryResearch,2014,53(50):19375-19379.
[13]SarangapaniR,RamavatV,ReddyTS,etal.
EffectofparticlesizeandshapeofNTOonmicromeriticcharacteristicsanditsexplosiveformulations[J].
PowderTechnology,2014,253:276-283.
[14]LasotaJ,ChyekZ,TrzcińskiW.
Methodsforpreparingspheroidalparticlesof3nitro1,2,4triazol5one(NTO)[J].
CentralEuropeanJournalofEnergeticMaterials,2015,12(4):769-783.
[15]LinH,ZhuSG,ZhangL,etal.
Intermolecularinteractions,thermodynamicproperties,crystalstructure,anddetonationperformanceofHMX/NTOcocrystalexplosive[J].
InternationalJournalofQuantumChemistry,2013,113(10):1591-1599.
[16]ZhaoG,YangD.
PeriodicDFTstudyofstructuraltransformationsofcocrystalNTO/TZTNunderhighpressure[J].
RSCAdvances,2018,8(56):32241-32251.
[17]ViswanathDS,GhoshTK,BodduVM.
5Nitro2,4Dihydro3H1,2,4Triazole3One(NTO),inEmergingEnergeticMaterials:Synthesis,Physicochemical,andDetonationProperties[M].
Springer,2018,163-211.
[18]BadgujarDM,TalawarMB,MahulikarPP.
Reviewofpromisinginsensitiveenergeticmaterials[J].
CentralEuropeanJournalofEnergeticMaterials,2017,14(4):821-843.
[19]SinghG.
RecentAdvancesonEnergeticMaterials[M].
NewYork:NovaSciencePublishers,2015.
[20]ZbarskiiV,Kuz′minV,YudinN.
Synthesisandpropertiesof1nitro4,5dihydro1H1,2,4triazol5one[J].
RussianJournalofOrganicChemistry,2004,40(7):1069-1070.
[21]SmithMW,CliffMD.
NTObasedexplosiveformulations:Atechnologyreview[R].
DTSOAeronautialMaritimeResearchLaboratory,Melbourne,1999.
[22]ManchotVW,NollR.
UeberderivatedesTriazols[J].
Justusliebigsannalenderchemie,1905,343(1):1-27.
[23]ChipenGI,BokalderRP,RinshteinVY.
1,2,4Triazol3oneanditsnitroandaminoderivatives[J].
ChemHeterocyclCompds,1966,2(1):110-116.
[24]GehlenHSchmidtJ.
ZurKenntnisder1,2,4Triazolone(5),Vdereinflussvonsubstituentenaufdiegeschwindigkeitderhydrolysevon1,2,4triazolonen(5)inhalbkonzentrierterschwefelsure[J].
JustusLiebigsAnnalenderChemie,1965,682(1):123-135.
[25]KrgerCF,MiethchenR,FrankH,etal.
ber1,2,4Triazole,XVII.
dienitrierungundbromierungvon1,2,4triazolonen[J].
ChemischeBerichte,1969,102(3):755-766.
[26]KrgerCF,HummelL,MutscherM,etal.
ber1,2,4Triazole,IX:SynthesenundReaktionenvon4Amino1,2,4triazolonen(5)[J].
ChemischeBerichte,1965,98(9):3025-3033.
[27]LeeKY,ChapmanLB,CoburaMD.
3Nitro1,2,4triazol5one,alesssensitiveexplosive[J].
JournalofEnergeticMaterials,1987,5(1):27-33.
[28]BolotinaN,KirschbaumK,PinkertonAA.
Energeticmaterials:aNTOcrystallizesasafourcomponenttriclinictwin[J].
ActaCrysstallographia,2005,B61:577-584.
[29]ChipenG,BokalderR,GrinshteinVY.
1,2,4Triazol3oneanditsnitroandaminoderivatives[J].
Chemistryofheterocycliccompounds,1966,2(1):79-83.
[30]RozinYA,BelyaeveNA,BakulevVA,etal.
Rearrangementof1aminoimidazolidine4,5trionesto5oxo4,5dihydro1,2,4triazole3carboxylicacid[J].
ChemistryofHeterocyclicCompounds,2011,12(46):1534-1535.
[31]BecuweA,DelclosA.
Lowsensitivityexplosivecompoundsforlowvulnerabilitywarheads[J].
Propellants,Explosives,Pyrotechnics,1993,18(1):1-10.
[32]BojarskaolejnikE,StefaniakL,WitanowskiM,etal.
PreparationandC13NMRspectraofsomeazolones,azolothionesandtheirmethoxyandmethylmercaptorelatives[J].
BulletinofThePolishAcademyofSciencesChemistry,1986,34(7-8):295-303.
[33]TrzcińskiWA,SzalaM,RejmerW.
Studyoftheheatandkineticsofnitrationof1,2,4triazol5one(TO)[J].
Propellants,Explosives,Pyrotechnics,2015,40(4):498-505.
[34]SaikiaA,SivabalanR,GoreGM,etal.
Microwaveassistedquicksynthesisofsomepotentialhighexplosives[J].
Propellants,Explosives,Pyrotechnics,2012,37(5):540-543.
[35]KhatiwadaR,AbrellL,LiG,etal.
Adsorptionandoxidationof3nitro1,2,4triazole5one(NTO)anditstransformationproduct(3amino1,2,4triazole5one,ATO)atferrihydriteandbirnessitesurfaces[J].
EnvironmentalPollution,2018,240:200-208.
[36]FanL,DassC,BurkeyTJ.
Synthesisandthermaldecompositionof15NlabelledNTO[J].
JournalofLabelledCompoundsandRadiopharmaceuticals,1996,38(1):87-94.
[37]KimHS,GohEM,ParkBS.
Preparationmethodof3nitro1,2,4triazol5onebyaprocessminimizingheatgenerationduringcrystallization[P].
USpatent6583296B1,Agency343www.
energetic-materials.
org.
cn含能材料ChineseJournalofEnergeticMaterials,Vol.
27,No.
4,2019(326-347)SabrinaHanafi,DjalalTrache,SlimaneAbdous,ZineddineBensalem,AbderrahmaneMezrouaforDefenceDevelopment:Korea,2003.
[38]SpearRJ,LoueyCN,WolfsonMG.
Apreliminaryassessmentof3nitro1,2,4triazol5one(NTO)asaninsensitivehighexplosive[R].
DSTOMateralsResearchLaboratory,Australia,ReportNo.
MLRTR8918,1989.
[39]SaikiaA,SivabalanR,GoreGM,etal.
Synthesisofsomepotentialhighenergymaterialsusingmetalnitrates;anapproachtowardsenvironmentalbenignprocess[J].
JournalofScientific&IndustrialResearch,2014,73:485-488.
[40]CollignonSL,FarncombR.
Preparationofspheroidal3Nitro1,2,4triazole5onebycrystallization[P].
USPatentH719,USSecretaryofNavy:USA,1989.
[41]MukundanT,PurandareGN,NairJK,etal.
Explosivenitrotriazoloneformulates[J].
DefenceScienceJournal,2002,52(2):127-133.
[42]SinghG,KapoorIPS,TiwariSK,etal.
Studiesonenergeticcompounds:Part16.
Chemistryanddecompositionmechanismsof5nitro2,4dihydro3H1,2,4triazole3one(NTO)[J].
JournalofHazardousMaterials,2001,81(1-2):67-82.
[43]ZbarskyVL,YudinNV.
KineticsofthesynthesisofNTOinnitricacid[J].
Propellants,Explosives,Pyrotechnics,2005,30(4):298-302.
[44]ZhaoY,ChenS,JinS,etal.
EmpiricalkineticsequationofthesynthesisofNTOinnitricacid[J].
Propellants,Explosives,Pyrotechnics,2016,41(6):1085-1091.
[45]DelaudeL,LaszloP,SmithK.
Heightenedselectivityinaromaticnitrationsandchlorinationsbytheuseofsolidsupportsandcatalysts[J].
Accountsofchemicalresearch,1993,26:607-613.
[46]LiJ.
Onepotsynthesisof3nitro1,2,4triazol5one[J].
BeijingLigongDexueXuebao,1998,18(4):518-519.
[47]ZecheruT,RotariuT,MatacheLC,etal.
Synthesisandapplicationsof3nitro1,2,4triazol5onebasedhybridenergeticcompositions[J].
RevistadeChimie,2014,65:11861189.
[48]VijayalakshmiR,RadhakrishnanS,RajendraPS,etal.
Particlesizemanagementstudiesonspherical3nitro1,2,4triazol5one[J].
Particle&ParticleSystemsCharacterization,2011,28(34):57-63.
[49]GabaM,DhingraN.
Microwavechemistry:generalfeaturesandapplications[J].
IndianJournalofPharmaceuticalEducationandResearch,2011,45(2):175-183.
[50]KumarRS,GnanavelB.
Highperformancecatalyticactivityofpureandsilver(Ag)dopedTiO2nanoparticlesbyanovelmicrowaveirradiationtechnique[J].
JournalofMaterialsScience:MaterialsinElectronics,2017,28(5):4253-4259.
[51]Liu,D,WuZ,TianF,etal.
SynthesisofNandLacodopedTiO2/ACphotocatalystbymicrowaveirradiationforthephotocatalyticdegradationofnaphthalene[J].
JournalofAlloysandCompounds,2016,676:489-498.
[52]JiangY,WangY,MengF,etal.
NdopedcarbondotssynthesizedbyrapidmicrowaveirradiationashighlyfluorescentprobesforPb2+detection[J].
NewJournalofChemistry,2015.
39(5):3357-3360.
[53]QiuH,CuiB,LiG,etal.
NovelFe3O4@ZnO@mSiO2nanocarrierfortargeteddrugdeliveryandcontrollablereleasewithmicrowaveirradiation[J].
TheJournalofPhysicalChemistryC,2014,118(27):14929-14937.
[54]EkezieFGC,SunDW,HanZ,etal.
Microwaveassistedfoodprocessingtechnologiesforenhancingproductqualityandprocessefficiency:Areviewofrecentdevelopments[J].
TrendsinFoodScience&Technology,2017,67:58-69.
[55]RashadM,HamdallaTA,AlGaniSE,etal.
OpticalandelectricalbehaviorsinNiO/xFe2O3nanoparticlessynthesizedbymicrowaveirradiationmethod[J].
OpticalMaterials,2018,75:869-874.
[56]KshirsagarAD,MahulikarPP.
Microwaveassistedsynthesisofpoly(glycidylazidecotetrahydrofuran)[J].
PolymerBulletin,2017,74(5):1727-1742.
[57]ZhangC,LiJ,LuoYJ,etal.
Microwaveassistedazidationreactionforrapidsynthesisofpoly(3,3′bisazidomethyloxetane)[J].
JournalofEnergeticMaterials,2016,34(2):197-204.
[58]FatimahI.
GreensynthesisofsilvernanoparticlesusingextractofParkiaspeciosaHasskpodsassistedbymicrowaveirradiation[J].
JournalofAdvancedResearch,2016,7(6):961-969.
[59]SaifMJ,NaveedM,AsifHM,etal.
Irradiationapplicationsforpolymernanocomposites:Astateoftheartreview[J].
Journalofindustrialandengineeringchemistry,2018,60:218-236.
[60]YangQ,GeJ,GongQ,etal.
Twoenergeticcomplexesincorporating3,5dinitrobenzoicacidandazoleligands:microwaveassistedsynthesis,favorabledetonationproperties,insensitivityandeffectsonthethermaldecompositionofRDX[J].
NewJournalofChemistry,2016,40(9):7779-7786.
[61]BadgujarD,TalawarMB,AsthanaSN,etal.
Synthesisandcharacterizationofmethylnitramino2,4,6trinitrobenzenesusingbismuthnitratepentahydrateasanecofriendlynitratingagent[J].
JournalofScientific&IndustrialResearch,2010,69:208-210.
[62]KshirsagarA,GiteV,HundiwaleD,etal.
Microwaveassistedsynthesisandcharacterizationofglycidylazidepolymerscontainingdifferentinitiatingdiolunits[J].
CentralEuropeanJournalofEnergeticMaterials,2015,12:757-767.
[63]CovaTF,MurtinhoD,PaisAACC,etal.
Combiningcelluloseandcyclodextrins:fascinatingdesignsformaterialsandpharmaceutics[J].
FrontiersinChemistry,2018,6:271-289.
[64]RuebnerA,StattonGL,ConsagaJP.
Polymericcyclodextrinnitrateesters[M].
PA:MachI,Inc.
,KingofPrussia,2003.
[65]MaH,SongJ,HuR.
Areviewon3nitro1,2,4triazol5oneanditssalts[J].
ChineseJournalofExplosivesandPropellants,2006,29(6):915.
[66]KondrikovBN,SmirnivSP,MinakinAV,etal.
ChemicalkineticsofthethermaldecompositionofNTO[J].
Propellants,Explosives,Pyrotechnics,2004,29(1):27-33.
[67]MadeiraCL,FieldJA,SimonichMT,etal.
Ecotoxicityoftheinsensitivemunitionscompound3nitro1,2,4triazol5one(NTO)anditsreducedmetabolite3amino1,2,4triazol5one(ATO)[J].
JournalofHazardousMaterials,2018,343:340-346.
[68]RichardT,WeidhaasJ.
BiodegradationofIMX101explosiveformulationconstituents:2,4dinitroanisole(DNAN),3nitro1,2,4triazol5one(NTO),andnitroguanidine[J].
JournalofHazardousMaterials,2014,280:372-379.
[69]SinghG,FelixSP.
Studiesonenergeticcompounds.
Part32:crystalstructure,thermolysisandapplicationsofNTOanditssalts[J].
Journalofmolecularstructure,2003,649(12):71-83.
[70]LeeKY,CoburnMD.
3nitro1,2,4triazol5one,alesssensitiveexplosive[P].
USPatentS4733610,USDepartmentofEnergy:USA,1988.
[71]XueH,GaoH,TwamleyB,etal.
Energeticsaltsof3nitro1,2,4triazole5one,5nitroaminotetrazole,andotherni344CHINESEJOURNALOFENERGETICMATERIALS含能材料2019年第27卷第4期(326-347)5Nitro1,2,4triazole3one:AReviewofRecentAdvancestrosubstitutedazoles[J].
ChemistryofMaterials,2007,19(7):1731-1739.
[72]KulkarniP,PurandareGN,NairJK,etal.
Synthesis,characterization,thermolysisandperformanceevaluationstudiesonalkalimetalsaltsofTABAandNTO[J].
Journalofhazardousmaterials,2005.
119(1-3):53-61.
[73]ZhangM,LiC,GaoH,etal.
Promisinghydrazinium3Nitro1,2,4triazol5oneanditsanalogs.
Journalofmaterialsscience,2016,51:10849-10862.
[74]VolkF,BatheltH.
Influenceofenergeticmaterialsontheenergyoutputofgunpropellants[J].
Propellants,Explosives,Pyrotechnics,1997,22(3):120-124.
[75]Langlet,A.
3Nitro1,2,4triazole5one(NTO),Anewexplosivewithhighperformanceandlowsensitivity[R].
NationalDefenceResearchEstablishment,Stockholm,Sweden,FOAReportC207892.
3,1990.
[76]HusseinAK,ElbeihA,ZemanS.
Thermaldecompositionkineticsandexplosivepropertiesofamixturebasedoncis1,3,4,6tetranitrooctahydroimidazo[4,5d]imidazoleand3nitro1,2,4triazol5one(BCHMX/NTO)[J].
ThermochimicaActa,2017,655:292-301.
[77]RothgeryE,AudetteDE,WedlichRC,etal.
Thestudyofthethermaldecompositionof3nitro1,2,4triazol5one(NTO)byDSC,TGAMS,andARC[J].
ThermochimicaActa,1991,185(2):235-243.
[78]YiX,RongzuH,XiyouW,etal.
Thermalbehaviourof3nitro1,2,4triazol5oneanditssalts[J].
ThermochimicaActa,1991,189(2):283-296.
[79]SzalaM,TrzcińskiWA.
Synthesisandenergeticpropertiesofimidazoliumand2methylimidazoliumsaltsof3nitro1,2,4triazol5one[J].
Propellants,Explosives,Pyrotechnics,2017,42(9):1027-1031.
[80]MathieuJ,StuckiH.
Militaryhighexplosives[J].
Chimia,2004,58(6):383-389.
[81]LentEM,CrouseLCB,JackovitzAM,etal.
Anextendedonegenerationreproductivetoxicitytestof1,2,4Triazol5one(NTO)inrats[J].
JournalofToxicologyandEnvironmentalHealth,PartA,2016,79(24):1159-1178.
[82]KennedyAJ,PodaAR,MelbyNL,etal.
Aquatictoxicityofphotodegradedinsensitivemunition101(IMX101)constituents[J].
Environmentaltoxicologyandchemistry,2017,36(8):2050-2057.
[83]ChewSC,TennantM,MaiN,etal.
PracticalRemediationof3nitro1,2,4triazol5onewastewater[J].
Propellants,Explosives,Pyrotechnics,2018,43(2):198-202.
[84]PatilS,SahooS.
Improvementincompressibility,flowabilityanddrugreleaseofglibenclamidebysphericalcrystallizationwithadditives[J].
DigestjournalofNanomaterials&Biostructures,2011,6(4):1463-1477.
[85]KumarR,SirilPF,SoniP.
Tuningtheparticlesizeandmorphologyofhighenergeticmaterialnanocrystals[J].
DefenceTechnology,2015,11(4):382-389.
[86]VijayalakshmiR,RadhakrishnanS,ShitoleP,etal.
Spherical3nitro1,2,4triazol5one(NTO)basedmeltcastcompositions:heraldinganeweraofshockinsensitiveenergeticmaterials[J].
RSCAdvances,2015,5(123):101647-101655.
[87]KimKJ,KimKM.
Growthkineticsinseededcoolingcrystallizationof3nitro1,2,4triazol5oneinwaterNmethylpyrrolidone[J].
Powdertechnology,2002,122(1):46-53.
[88]Trzciński,W,CudziloS,DyjakS,etal.
AcomparisonofthesensitivityandperformancecharacteristicsofmeltpourexplosiveswithTNTandDNANbinder[J].
CentralEuropeanJournalofEnergeticMaterials,2014,11(3):443-455.
[89]DunjuW,ZhangJ,JinyingW,etal.
PreparationofNanometerNTObyW/Omicroemulsion[J].
Initiators&Pyrotechnics,2007,14(1):9-11.
[90]YangG,NieF,LiJ,etal.
PreparationandcharacterizationofnanoNTOexplosive[J].
JournalofEnergeticMaterials,2007,25(1):35-47.
[91]TeipelU,KrberH,KrauseHH.
Formationofenergeticmaterialsusingsupercriticalfluids[J].
Propellants,Explosives,Pyrotechnics,2001,26(4):168-173.
[92]CollignonSL.
Preparationofspheroidal3nitro1,2,4triazole5one[P].
USpatent4894462,USSecretaryofNavy:USA,1990.
[93]KimKJ.
Spheruliticcrystallizationof3nitro1,2,4triazol5oneinwater+Nmethyl2pyrrolidone[J].
JournalofCrystalGrowth,2000,208(1-4):569-578.
[94]LeeK,GilardiR,ArmstrongRW,etal.
Structureandpropertiesofenergeticmaterials[M].
MaterialsResearchSociety,Pittsburgh,PA,1993,296:237.
[95]RykounovA.
Structuralandthermodynamicpropertiesoftwopolymorphicmodificationsoftheinsensitivehighexplosive5nitro2,4dihydro1,2,4triazol3one(NTO)underfinitepressuresandtemperaturesfromabinitiocalculations[J].
CrystEngComm,2015,17(40):7653-7662.
[96]BolotinaNB,ZhurovaE,PinkertonAA.
Energeticmaterials:variabletemperaturecrystalstructureofβNTO[J].
Journalofappliedcrystallography,2003,36(2):280285.
[97]HangGY,YuWL,WangJT,etal.
Theoreticalinvestigationsonstabilities,sensitivity,energeticperformanceandmechanicalpropertiesofCL20/NTOcocrystalexplosivesbymoleculardynamicssimulation[J].
TheoreticalChemistryAccounts,2018,137(8):1-14.
[98]WuQ,ZhuW,XiaoH.
DispersioncorrectedDFTstudyonthestructureandabsorptionpropertiesofcrystalline5nitro2,4dihydro1,2,4triazole3oneundercompression[J].
StructuralChemistry,2015,26(2):477-484.
[99]AakeryCB.
SinhaAS.
Cocrystals:Preparation,CharacterizationandApplications[M].
UK:RoyalSocietyofChemistry,2018.
[100]YorkP,ParadkarA.
Crystalengineeringandparticledesignforthepowdercompactionprocess[M].
inPharmaceuticalPowderCompactionTechnology,SecondEdition,CRCPress,2016:248-265.
[101]DuggiralaNK,PerryML,Almarsson,etal.
Pharmaceuticalcocrystals:alongthepathtoimprovedmedicines[J].
ChemicalCommunications,2016,52(4):640-655.
[102]SpitzerD,RisseB,SchnellF,etal.
Continuousengineeringofnanococrystalsformedicalandenergeticapplications[J].
Scientificreports,2014,4:6575-6575.
[103]BoltonO,MatzgerAJ.
Improvedstabilityandsmartmaterialfunctionalityrealizedinanenergeticcocrystal[J].
AngewandteChemie,2011,123(38):9122-9125.
[104]BennionJC,SiddiqiZR,MatzgerAJ.
Ameltcastableenergeticcocrystal[J].
ChemicalCommunications,2017,53(45):6065-6068.
[105]ViswanathJV,VenugopalKJ,RaoNVS,etal.
Anoverviewonimportance,syntheticstrategiesandstudiesof2,4,6,8,10,12hexanitro2,4,6,8,10,12hexaazaisowurtzitane(HNIW)[J].
Defencetechnology,2016,12(5):401-418.
[106]LandenbergerKB,MatzgerAJ.
Cocrystalengineeringofapro345www.
energetic-materials.
org.
cn含能材料ChineseJournalofEnergeticMaterials,Vol.
27,No.
4,2019(326-347)SabrinaHanafi,DjalalTrache,SlimaneAbdous,ZineddineBensalem,AbderrahmaneMezrouatotypeenergeticmaterial:supramolecularchemistryof2,4,6trinitrotoluene[J].
CrystalGrowth&Design,2010,10(12):5341-5347.
[107]LandenbergerKB,MatzgerAJ.
Cocrystalsof1,3,5,7tetranitro1,3,5,7tetrazacyclooctane(HMX)[J].
CrystalGrowth&Design,2012,12(7):3603-3609.
[108]YangZ,WangY,ZhouJ,etal.
PreparationandperformanceofaBTF/DNBcocrystalexplosive[J].
Propellants,Explosives,Pyrotechnics,2014,39(1):9-13.
[109]WeiX,MaY,LongX,etal.
AstrategydevelopedfromtheobservedenergeticenergeticcocrystalsofBTF:cocrystallizingandstabilizingenergetichydrogenfreemoleculeswithhydrogenousenergeticcoformermolecules[J].
CrystEngComm,2015,17(37):7150-7159.
[110]ZhangX,ChenS,WuY,etal.
AnovelcocrystalcomposedofCL20andenergeticionicsalt[J].
ChemicalCommunications,2018,54:13268-13270.
[111]SunS,ZhangH,LiuY,etal.
TransitionsfromseparatelycrystallizedCL20andHMXtoCL20/HMXcocrystalbasedonsolventmedia[J].
CrystalGrowth&Design,2017,18(1):77-84.
[112]HangG,YuW,WangT,etal.
TheoreticalinvestigationsonthestructuresandpropertiesofCL20/TNTcocrystalanditsdefectivemodelsbymoleculardynamicssimulation[J].
Journalofmolecularmodeling,2018,24(7):1-9.
[113]AakeryCB,WijethungaTK,DesperJ.
Crystalengineeringofenergeticmaterials:cocrystalsofethylenedinitramine(EDNA)withmodifiedperformanceandimprovedchemicalstability[J].
ChemistryAEuropeanJournal,2015,21(31):11029-11037.
[114]HusseinAK,ZemanS,ElbeihA.
Synthesis,performance,andthermalbehaviorofanovelinsensitiveEDNA/DATcocrystal[J].
ZeitschriftfüranorganischeundallgemeineChemie,2018,644(8-9):430-437.
[115]LandenbergerKB,BoltonO,MatzgerAJ.
Energeticenergeticcocrystalsofdiacetonediperoxide(DADP):Dramaticanddivergentsensitivitymodificationsviacocrystallization[J].
JournaloftheAmericanChemicalSociety,2015,137(15):5074-5079.
[116]GaoH,ZhangS,GouR,etal.
Theoreticalinsightintothetemperaturedependentacetonitrile(ACN)solventeffectonthediacetonediperoxide(DADP)/1,3,5tribromo2,4,6trinitrobenzene(TBTNB)cocrystallization[J].
ComputationalMaterialsScience,2016,121:232-239.
[117]BennionJC,McBainA,SonSF,etal.
Designandsynthesisofaseriesofnitrogenrichenergeticcocrystalsof5,5′dinitro2H,2H′3,3′bi1,2,4triazole(DNBT)[J].
CrystalGrowth&Design,2015,15(5):2545-2549.
[118]ZhangJ,ParrishDA,ShreeveJM.
Curiouscasesof3,6dinitropyrazolo[4,3c]pyrazolebasedenergeticcocrystalswithhighnitrogencontent:analternativetosaltformation[J].
ChemicalCommunications,2015,51(34):7337-7340.
[119]SongK,ZhangS,ShiW.
Theoreticalinsightsintothestabilities,detonationperformance,andelectrostaticpotentialsofcocrystalscontainingαorβHMXandTATB,FOX7,NTO,orDMFinvariousmolarratios[J].
Journalofmolecularmodeling,2016,22(10):249.
[120]LiJ,JiaoQL,GongYG,etal.
ExplosiveperformanceofHMX/NTOcocrystal[J].
IOPConferenceSeries:MaterialsScienceandEngineering,2018,292:012032.
[121]WuJT,ZhangJG,LiT,etal.
AnovelcocrystalexplosiveNTO/TZTNwithgoodcomprehensiveproperties[J].
RSCAdvances,2015,5(36):28354-28359.
[122]AndersonSR,EndeDJ,SalanJS,etal.
Preparationofanenergeticenergeticcocrystalusingresonantacousticmixing[J].
Propellants,Explosives,Pyrotechnics,2014,39(5):637-640.
[123]HopeKS,LloydHJ,WardD,etal.
Resonantacousticmixinganditsapplicationstoenergeticmaterials[C]//18thSeminaronNewTrendinResearchofEnergeticMaterials.
InstituteofEnergeticMaterialsUniversityofPardubice,Pardupice,CzechRepublic,2015.
[124]LloydHJ.
Cocrystallisationofenergeticmaterialsastepchangeinthecontrolofpropertiesandperformanceofmunitions[D].
Edinburgh:UniversityofEdinburgh,2017.
[125]RenY,ZhaoFQ,Yi,JH,etal.
Studiesonanioniccompound(3ATz)+(NTO)-:crystalstructure,specificheatcapacity,thermalbehaviorsandthermalsafety[J].
JournaloftheIranianChemicalSociety,2012,9(3):407-414.
[126]MaH,SongJ,HuR,etal.
Molecularstructure,thequantumchemicalinvestigationandthethermalbehaviorofthedimethylaminesaltof3nitro1,2,4triazol5one,(CH3)2NH2+C2N4O3H-[J].
JournalofMolecularStructure:THEOCHEM,2004,678(1):217-222.
[127]LeeKY,StinecipherMM.
Synthesisandinitialcharacterizationofaminesaltsof3nitro1,2,4triazol5one[J].
Propellants,Explosives,Pyrotechnics,1989,14(6):241-244.
[128]DePazJL,CillerJ.
StructureandtautomerismofANTA(Aminonitrotriazole)[J].
Propellants,Explosives,Pyrotechnics,1994,19:32-41.
[129]SinghG,KapoorIPS,PremFelixS,etal.
StudiesonenergeticcompoundsPart23:Preparation,thermalandexplosivecharacteristicsoftransitionmetalsaltsof5nitro2,4dihydro3H1,2,4triazole3one(NTO)[J].
Propellants,Explosives,Pyrotechnics,2002,27(1):16-22.
[130]SinghG,FelixSP.
Studiesonenergeticcompounds:25.
Anoverviewofpreparation,thermolysisandapplicationsofthesaltsof5nitro2,4dihydro3H1,2,4triazol3one(NTO)[J].
Journalofhazardousmaterials,2002,90(1):1-17.
[131]LiZ,MaH,YanB,etal.
Synthesis,crystalstructure,theoreticalcalculationandthermalbehaviorofDNAZ·NTO[J].
ChineseJournalofChemistry,2009,27(11):2284-2290.
[132]DongS,ZhangG,ChenB,etal.
Anewenergeticmaterial:anazidoethylaminesaltoftriazole[J].
ActaCrystallographicaSectionC:CrystalStructureCommunications,1996,52(8):2057-2058.
[133]JadhavH,TalawarMB,DhavaleDD,etal.
Synthesis,characterizationandthermolysisof2,4dihydro2,4,5trinitro3H1,2,4triazol3one(DTNTO):Anewderivativeof3nitro1,2,4triazol5one(NTO)[J].
IndianJournalEngineeringandMaterialsSciences,2005,12:467-471.
[134]NajafiM,MoghimiA,MoumenianH,etal.
New3nitro1,2,4triazol5one(nto)saltssynthesizedfromamines[J].
JournalofEnergeticMaterials,2008,3(1):2-12.
[135]NajafiM,SamanganiAK.
NonIsothermalkineticstudyofthethermaldecompositionofmelamine3nitro1,2,4triazol5onesalt[J].
Propellants,Explosives,Pyrotechnics,2011,36(6):487-492.
[136]WallaceL,UnderwoodCJ,DayAI,etal.
Electrochemicalreductionofnitrotriazolesinaqueousmediaasanapproachtothesynthesisofnewgreenenergeticmaterials[J].
NewJournalofChemistry,2011,35(12):2894-2901.
[137]UnderwoodCJ,WallC,ProvatasA,etal.
Newhighnitrogencompoundsazoxytriazolone(AZTO)andazotriazolone(azoTO)asinsensitiveenergeticmaterials[J].
NewJournalof346CHINESEJOURNALOFENERGETICMATERIALS含能材料2019年第27卷第4期(326-347)5Nitro1,2,4triazole3one:AReviewofRecentAdvancesChemistry,2012,36(12):2613-2617.
[138]CroninMP,DayAI,WallaceL.
ElectrochemicalremediationproducesanewhighnitrogencompoundfromNTOwastewaters[J].
Journalofhazardousmaterials,2007,149(2):527-531.
[139]CoburnMD,LeeKY.
Picrylderivativesof5nitro2,4dihydro3H1,2,4triazol3one[J].
Journalofheterocyclicchemistry,1990,27(3):575-577.
[140]TürkerL,Bayar.
NTOpicrylconstitutionalisomers—ADFTstudy[J].
JournalofEnergeticMaterials,2012,30(1):72-96.
[141]TappanBC,BowdenPR,LichthardtJP,etal.
Evaluationofthedetonationperformanceofinsensitiveexplosiveformulationsbasedon3,3′diamino4,4′azoxyfurazan(DAAF)and3nitro1,2,4triazol5one(NTO)[J].
JournalofEnergeticMaterials,2018,36(2):169-178.
[142]BécuweA,DelclosA,DonzelG,etal.
ImprovementsinNTOBasedPBXs.
ANewPowerfulandInsensitiveClassofPBX[C]//InsensitiveMunitionsandEnergeticMaterialsTechnologySymposium,Event#854,Florida,USA,69thOctober.
NationalDefenseIndustrialAssociation,1997.
[143]LeeJS,JawKS.
ThermaldecompositionpropertiesandcompatibilityofCL20,NTOwithsiliconerubber[J].
Journalofthermalanalysisandcalorimetry,2006,85(2):463-467.
[144]BaudinG,RoudotM,GenetierM,etal.
ShocktodetonationtransitionofRDX,HMXandNTObasedcompositehighexplosives:Experimentsandmodelling[J].
JournalofPhysics:ConferenceSeries,2014,500:052004.
[145]BelaadaA,TrzcinskiWA,ChylekZ,etal.
AmeltcastcompositionbasedonNTOandFOX7[J].
CentralEuropeanJournalofEnergeticMaterials,2016,13(4):882-902.
[146]OxleyJC,SmithJL,DonnellyMA,etal.
ThermalstabilitystudiescomparingIMX101(dinitroanisole/nitroguanidine/NTO)toanalogousformulationscontainingdinitrotoluene[J].
Propellants,Explosives,Pyrotechnics,2016,41(1):98113.
[147]CuddyMF,PodaAR,ChappellMA.
EstimationsofvaporpressuresbythermogravimetricanalysisoftheinsensitivemunitionsIMX101,IMX104,andindividualcomponents[J].
Propellants,Explosives,Pyrotechnics,2014,39(2):236-242.
[148]SinghG,FelixSP.
Studiesonenergeticcompounds:Part36:EvaluationoftransitionmetalsaltsofNTOasburningratemodifiersforHTPBANcompositesolidpropellants[J].
CombustionandFlame,2003,135(1-2):145-150.
(责编:张琪)中国兵工学会火工烟火专业委员会第二十届学术年会征文通知为促进我国火工烟火行业的创新发展,紧跟世界火工烟火前沿技术和新兴技术发展趋势,加强科技人员间的学术交流与信息沟通,提高研究水平,经研究,定于2019年四季度召开中国兵工学会火工烟火专业委员会第二十届学术年会.
现将会议征文有关事项通知如下:一、征文内容1.
国内外火工品及相关药剂、烟火剂的基础理论和关键技术;2.
国内外火工品、爆破器材、烟火器材的发展动态、现状及趋势;3.
国内外火工品及相关药剂设计的新理论、新方法、新技术;4.
国内外火工品及相关药剂制造的新工艺、新材料、新设备;5.
火工品及相关药剂测试、分析、计量的新理论、新技术及新仪器;6.
火工品安全性、可靠性评估新理论、新方法、新技术;7.
火工烟火行业标准化的研究、标准探讨、经验交流、发展趋势;8.
信息技术在火工品及相关药剂管理、设计、仿真、试验、工艺、评估、数据库建设中的应用;9.
火工品机械化、自动化、智能化先进制造技术;10.
其它具有一定创新价值的技术、产品或具有较大意义的军民融合技术.
二、征文要求1.
研究成果具有较高的理论水平或应用价值;2.
论文未在国内外正式出版物上发表过,文责自负;3.
提交的论文为非密,须通过所在单位的保密审查;4.
论文格式按照科技论文标准规范,要求用Word2007以上版本软件排版;5.
论文格式及排序:题目,作者名,单位名,所在地,邮编,中文摘要,中文关键词,正文,参考文献,作者简介.
三、征文时间征文截至时间为2019年6月20日.
优秀论文将推荐到《火工品》期刊发表.
学术年会召开的具体时间和地点另行通知.
四、联系方式投稿邮箱:hgxh2005@163.
com联系地址:西安市99号信箱兵工学会邮编:710061联系人:王建华029-8533347013152441200.
中国兵工学会火工烟火专业委员会2019年3月18日读者·作者·编者347

国内云服务器 1核 2G 2M 15元/月 萤光云

标题【萤光云双十二 全场6折 15元/月 续费同价】今天站长给大家推荐一家国内云厂商的双十二活动。萤光云总部位于福建福州,其成立于2002 年。主打高防云服务器产品,主要提供福州、北京、上海 BGP 和香港 CN2 节点。萤光云的高防云服务器自带 50G 防御,适合高防建站、游戏高防等业务。这家厂商本次双十二算是性价比很高了。全线产品6折,上海 BGP 云服务器折扣更大 5.5 折(测试了一下是金...

CloudCone中国春节优惠活动限定指定注册时间年付VPS主机$13.5

CloudCone 商家产品还是比较有特点的,支持随时的删除机器按时间计费模式,类似什么熟悉的Vultr、Linode、DO等服务商,但是也有不足之处就在于机房太少。商家的活动也是经常有的,比如这次中国春节期间商家也是有提供活动,比如有限定指定时间段之前注册的用户可以享受年付优惠VPS主机,比如年付13.5美元。1、CloudCone新年礼物限定款仅限2019年注册优惠购买,活动开始时间:1月31...

搬瓦工VPS:高端线路,助力企业运营,10Gbps美国 cn2 gia,1Gbps香港cn2 gia,10Gbps日本软银

搬瓦工vps(bandwagonhost)现在面向中国大陆有3条顶级线路:美国 cn2 gia,香港 cn2 gia,日本软银(softbank)。详细带宽是:美国cn2 gia、日本软银,都是2.5Gbps~10Gbps带宽,香港 cn2 gia为1Gbps带宽,搬瓦工是目前为止,全球所有提供这三种带宽的VPS(云服务器)商家里面带宽最大的,成本最高的,没有第二家了! 官方网站:https...

mv222.com为你推荐
蓝瘦香菇被抢注有没有恶心蓝瘦香菇这两词的。ip购买不同的ID不同的IP买同一个店铺同样的商品属于虚假交易吗?.cn域名cn域名和com域名有什么不同?哪个更好?好在哪里?美国互联网瘫痪网络中断会对美国军力造成什么影响百度关键词工具常见的关键词挖掘工具有哪些百度关键词分析如何正确分析关键词?www.haole012.com012qq.com真的假的www.22zizi.com乐乐电影天堂 http://www.leleooo.com 这个网站怎么样?广告法有那些广告法?还有广告那些广告词?bk乐乐bk乐乐和CK是什么关系?
淘宝虚拟主机 westhost themeforest 优惠码 国外bt suspended e蜗 gspeed 谁的qq空间最好看 徐正曦 域名和空间 超级服务器 四川电信商城 服务器论坛 ledlamp 实惠 网站加速 服务器防御 双11促销 hosting24 更多