multiple4444yy.com

4444yy.com  时间:2021-04-09  阅读:()
NANOEXPRESSOpenAccessThermalconductivityinporoussiliconnanowirearraysJeffreyMWeisse1,AmyMMarconnet1,DongRipKim1,PratapMRao1,MatthewAPanzer2,KennethEGoodson1andXiaolinZheng1*AbstractThenanoscalefeaturesinsiliconnanowires(SiNWs)cansuppressphononpropagationandstronglyreducetheirthermalconductivitiescomparedtothebulkvalue.
ThisworkmeasuresthethermalconductivityalongtheaxialdirectionofSiNWarrayswithvaryingnanowirediameters,dopingconcentrations,surfaceroughness,andinternalporositiesusingnanosecondtransientthermoreflectance.
ForSiNWswithdiameterslargerthanthephononmeanfreepath,porositysubstantiallyreducesthethermalconductivity,yieldingthermalconductivitiesaslowas1W/m/KinhighlyporousSiNWs.
However,whentheSiNWdiameterisbelowthephononmeanfreepath,boththeinternalporosityandthediametersignificantlycontributetophononscatteringandleadtoreducedthermalconductivityoftheSiNWs.
Keywords:Thermalconductivity,Siliconnanowires,Poroussilicon,ThermoreflectanceBackgroundSiliconwithahighdensityofnanoscalefeaturessuchasinterfaces,porosity,andimpuritiescanhavethermalconductivities(κ)uptothreeordersofmagnitudelowerthanthatofbulkSithroughenhancedphononscattering[1-17].
Forexample,thethermalconductivityofnano-porousbulkSigenerallydecreaseswithincreasingpor-osityanddecreasingporesize[1-9]and,withhighporosity,approachestheamorphouslimit(0.
2to0.
5W/m/K)[1-3].
Similarly,siliconnanowires(SiNWs)withdiameterssignificantlysmallerthanthebulkphononmeanfreepath(Λ%100to300nmat300K)werereportedtohavethermalconductivityvaluesaslowas0.
76W/m/KduetostrongphononscatteringattheSiNWboundary[10,11].
IntroducingsurfaceroughnesstotheSiNWsleadstoadditionalphononscatteringatlengthscalesevensmallerthantheNWdiameter[12-16].
However,therehavebeenfewinvestigationsonthecombinedeffectsofexternaldimensionsandinternalporosityonthethermalconductivityvaluesofSiNWs.
Inthiswork,wereporttheeffectsofinternalporosityonthethermalconductivityofSiNWsoftwodifferentdiametersthatallowthephononpropagationtospantherangefromballistictodiffusivethermaltransport(davg%350and130nm)bymeasuringthethermalcon-ductivityofverticallyalignedSiNWarraysusingnano-secondtransientthermoreflectance(TTR).
AsopposedtomeasurementsofindividualSiNWs,measurementsofarraysofSiNWsoffertheadvantageofaveragingouttheinherentthermalconductivityvariationsthatarecausedbydifferencesinSiNWdiameter,surfaceroughness,anddefectswithinthearrays.
MethodsTheverticallyalignedSiNWarraysarefabricatedusingafour-steppreparationprocessillustratedinFigure1.
TwosetsofverticallyalignedSiNWarrayswithdifferentdiametersarefabricated(Figure1a,e)usingtop-downetchingtechniquestoachievearangeofporosities(Table1).
Forthefirstset,thediameter(davg%300to350nm)anddensityoftheSiNWsarecontrolledbynanospherelithography[18].
Specifically,amonolayerofSiO2spheresisdepositedusingtheLangmuir-BlodgettmethodontoSiwafers(p-typewithborondopantatoms,(100))andusedasamaskforthesubsequentetchingsteps.
TheinternalporosityoftheSiNWsisvariedfromnonporoustohighlyporousbychangingtheetchingmethodsandconditions[19-21].
NonporousSiNWsare*Correspondence:xlzheng@stanford.
edu1DepartmentofMechanicalEngineering,StanfordUniversity,Stanford,CA94305,USAFulllistofauthorinformationisavailableattheendofthearticle2012Weisseetal.
;licenseeSpringer.
ThisisanOpenAccessarticledistributedunderthetermsoftheCreativeCommonsAttributionLicense(http://creativecommons.
org/licenses/by/2.
0),whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedtheoriginalworkisproperlycited.
Weisseetal.
NanoscaleResearchLetters2012,7:554http://www.
nanoscalereslett.
com/content/7/1/554formedbydeepreactiveionetching(DRIE),andtheresultingSiNWshaveslightlysmallerdiameters(davg%300nm)thanthespheresusedastheetchmask[22].
PorousSiNWarraysarefabricatedbymetal-assistedchemicaletching(MACE)inasolutionof4.
8MHFand0.
3MH2O2,andtheporosityiscontrolledbyvaryingthemetalcatalystandwaferdopingconcentrations[19-21,23-25].
Forlow-porositynanowires,thecatalystlayerconsistsofa15-nmAgfilmcoveredby5-nmAu,whileforthemoderatetohighlyporousnanowires,a50-nmAgfilmisusedasthecatalystandtheinitialwaferdopingconcentrationisvaried.
ThesecondsetofSiNWs,withgenerallysmallerdiameters,isfabricatedusingatwo-stepMACEprocesswithsilversalts[19,20,23,26,27].
First,theAgfilmisdepositedusingasolutionof0.
005MAgNO3and4.
8MHFfor1min.
Then,theSiNWsareformedbyetchinginasolutionof4.
8MHFwithvariousconcentrationsofH2O2(0.
15,0.
30,0.
60,and1.
20M)toadjusttheSiNWporosity[19,20,23,26,27].
TheresultingSiNWshaveanaveragediameterof130nm,butthereissignificantdiametervariationwithintheSiNWarray(d%20to300nm).
Forallthesamples,theSiNWlengthisapproximately10μm.
FollowingtheformationoftheSiNWarrays,thegapsbetweenSiNWsarecompletelyfilledwithparyleneN(poly-para-xylylene;Figure1b,f),whichhasathermalconductivitysignificantlylowerthantheSiNWs(Kparylene=0.
125W/m/K)andahighmeltingtemperature(Tm%410°C).
Theparylenefillingqualityisinspectedbyexaminingmultiplefreshlycutcrosssec-tionsunderascanningelectronmicroscope(SEM),andnoparylenevoidsareobserved.
TheSiNWtipsaresub-sequentlyexposedviachemicalmechanicalpolishingtoremovetheparylenecoveringtheSiNWs(Figure1c,g)thatfacilitatestheSiNWstoformagoodthermalcon-tactwiththetopmetalfilm.
Finally,a15-nmCrlayer(foradhesion)anda500-nmCulayeraredepositedbyelectronbeamevaporationontopoftheSiNWtipstoformaflat,reflectivetransducerlayerforthethermore-flectancemeasurements(Figure1d,h).
ThethermalconductivityoftheverticalSiNWarraysismeasuredatroomtemperaturebynanosecondTTR;thedetailsofwhichcanbefoundinPanzeretal.
[28].
Briefly,themetaltransducerlayerthatisdepositedontheparylene-filledSiNWarrayisheatedbya3-mmFigure1FabricationoftheverticallyalignedSiNWarraysforthenanosecondthermoreflectancemeasurements.
(a,e)SiNWarraysareformedusingthetop-downetching.
(b,f)ParyleneisconformallydepositedinbetweenNWsandactsasamechanicalscaffoldforthetopmetaltransducerlayer.
(c,g)TheSiNWtipsareexposedbychemicalmechanicalpolishingtoensuregoodthermalcontactbetweentheSiNWsandthemetalfilm,and(d,h)ametalfilmisdepositedovertheSiNWarray.
ThescalebarsontheSEMimagesare5μm.
Table1SummaryofSiNWarrayswithvarieddiametersandporositiesDiametercontrolPorositycontrolSet1NanospherelithographyEtchingmethodanddopingconcentrationdavg%300to350nmNonporous:DRIEVFDRIE=21%to23%Lowporosity:Ag/AuMACEVFMACE=45%to60%Moderateporosity:AgMACE,lightlydopedHighporosity:AgMACE,heavilydopedSet2SilversaltsMACEetchantsolutiondavg%130nmLowporosity,0.
15MH2O2VF=26%to35%Highporosity,1.
2MH2O2Weisseetal.
NanoscaleResearchLetters2012,7:554Page2of5http://www.
nanoscalereslett.
com/content/7/1/554diameter,532-nmwavelength,6-nspulsefromaNd:YAGlaseratafrequencyof10Hz.
Thereflectedinten-sityoftheprobelaser(d%20μm,10mW,658nm,continuouswave)isdirectlycorrelatedtothetemperatureofthemetallayerthatisaffectedbythethermalconductivityoftheSiNW/parylenecomposite.
ThethermalconductivityoftheSiNW/parylenecom-positeanditsinterfacethermalresistanceatthetopmetallayerareextractedusingatwo-parameterfitofthemeasuredtemperaturedecaytrace(normalizedbythemaximumtemperature)tothesolutionofaone-dimensionalheatdiffusionequationforamultilayerstackwithsurfaceheating.
Thevolumetricheatcapacityofthefilm(Cv,composite)isassumedtobethevolumetricaverageoftheheatcapacityofparylene(Cv,parylene)andbulksili-con(Cv,Si):Cv,composite=VFCv,Si+(1VF)Cv,parylene,whereVFisthevolumefractionofSiNWswithinthecomposite.
TheVFofSiNWswithineacharrayismea-sureddirectlyfromtop-viewSEMimagesofthefilmbysettingabrightnessthresholdtodefinetheedgeofSiNWs.
TheaveragethermalconductivityofanindividualSiNWwithinthearrayiscalculatedfromtheextractedfilmthermalconductivity(Kcomposite)usinganeffectivemediummodel:KNW=[Kcomposite(1VF)Kparylene]/VF,whereKNWandKparylenearethethermalconductivitiesoftheSiNWsandparylene,respectively.
Inthismodel,SiNWarraysaretreatedasthermalresistorsinparallelwiththeparylenematrix.
TheuncertaintyoftheextractedkNWiscalculatedthroughanerrorpropagationanalysisgivenbythefollowingequation:ΔkNW@kNW@kfilmΔkfilm2@kNW@VFΔVF2@kNW@kparlyeneΔkparlyene2s1whereΔkparyleneisthethermalconductivityvariationfromtheliterature.
ΔkfilmandΔVFarethemeasuredspot-spotvariationinthesametypeofsamples.
DetailederroranalysisdataforallthedatareportedherecanbefoundinAdditionalfile1.
ResultsanddiscussionThethermalconductivityfortheSiNWswithlargedia-meters(davg%300to350nm)demonstratesaclearde-creasewithincreasingporosity(Figure2).
ThethermalconductivityofnonporousSiNWs,thoughwithroughsurfaces,is142±13W/m/K,whichisveryclosetothatofbulkSi(κ%150W/m/K).
Thissuggeststhatforlarge-diameterSiNWs,surfaceroughnessatthisdepthandperiodicitydoesnotcauseeffectivephonon-externalboundaryscatteringandthereforehaslittleeffectonthethermalconductivity.
Ontheotherhand,theinternalporosityofSiNWssignificantlyreducesthethermalcon-ductivityfrom142W/m/KforthenonporousSiNWsto98W/m/K(Au/Ag-MACE)and51W/m/K(Ag-MACE)fortheincreasinglyporousSiNWs.
Thethermalconductivityoflarge-diameterSiNWarrays(davg%350nm)withthreedifferentp-typeborondopantatomconcentrations(1014,1016,and1018cm3)isfurtherinvestigatedforbothnonporousandporousNWs(Figure3).
Thethermalconductivityofnonpor-ousSiNWsdecreasesslightlywithincreasingdopingconcentrationduetotheincreasedphonon-impurityscattering,similartobulkSi[29,30].
Conversely,thethermalconductivityofporousSiNWsdropstoabout1W/m/Kwhenthedopingconcentrationisincreasedfrom1016to1018cm3.
Itshouldbenotedthatthemainreasonforthedramaticdropinconductivitywithdopingconcentrationisthathigherdopingcon-centrationsleadtoincreasedporosityinSiNWsfabri-catedwithMACE(Figure3b,c,d).
Thedopantatomsitesactaspreferredlocationsforporeformation[19,23,26,27].
IncomparisontotheinternalNWpor-osity,thephonon-impurityscatteringathigherdopingconcentrationhasamuchsmallerimpactonthether-malconductivity[2,12].
ThethermalconductivitiesofSiNWswithsmalldia-meters(davg%130nm)alsodecreasewithincreasingporosity(Figure4),similartothelarge-diameterSiNWs.
However,thethermalconductivityoftheseSiNWsismuchsmallerthanthatoflarge-diameterSiNWsofsimilarporosities(i.
e.
,thesameetchantsolution,0.
3MH2O2).
Specifically,thethermalconductivityisreducedfrom51W/m/Kforthelarge-diameter(davg%350nm)Figure2Thermalconductivityoflarge-diameterSiNWs(approximately350nm;1014cm3p-typedoping).
Thethermalconductivitywiththreelevelsofporosity,correspondingtodifferentetchingconditions,isshown.
Thethermalconductivitydecreasessignificantlywithincreasingporosity.
TheinsetimagesshowthetopviewoftheSiNWs,andthescalebarsare200nm.
Weisseetal.
NanoscaleResearchLetters2012,7:554Page3of5http://www.
nanoscalereslett.
com/content/7/1/554SiNWsto28W/m/Kforthesmaller-diameterSiNWs(davg%130nm).
Thishighlightsthesignificantimpactofphonon-externalboundaryscatteringonthethermalconductivityatlengthscalesthataresmallerthanthephononmeanfreepath.
Theadditionalreductioninthermalconductivity(to17W/m/K)withincreasingH2O2concentrationforthesmaller-diameterSiNWsindicatesthattheincreasinginternalporosityalsohasasignificantimpactonthethermalconductivity.
ConclusionsInsummary,wemeasuredthethermalconductivityofSiNWarrayswithvariousnanowirediameters,dopingconcentrations,surfaceroughnessandinternalporositiesusingananosecondtransientthermoreflectancemethod.
WhentheSiNWdiameter(davg%350nm)islargerthanthephononmeanfreepathinthebulksilicon,thether-malconductivityshowslittledependenceonthedopingFigure3Thermalconductivityoflarge-diameternonporousandporousSiNWarrays.
(a)ThermalconductivityofnonporousandporousSiNWarraysoflargediametersasafunctionofdopingconcentrations.
TEMimagesshowtherelativeporosityforAg-MACESiNWarraysfabricatedwithdopingconcentrationsof(b)1014,(c)1016,and(d)1018cm3.
ThescalebarsontheTEMandinsetTEMimagesare5and200nm,respectively.
TheuncertaintybarfortheMACEnanowireswithadopingconcentrationof1018cm3isontheorderofthedatapointmarkersize.
Figure4Thermalconductivityofsmall-diameter(approximately130nm)SiNWs(1014cm3)asafunctionofporosity.
Forcomparison,thethermalconductivityofthelarge-diameterSiNWetchedatthesameconditionisshownastheredcircle.
IncreasingnanowireporosityisrealizedbyincreasingtheH2O2concentrationduringMACE,asevidencedbytheinsetTEMimages.
ThescalebarsonalltheTEMimagesare100nm.
Weisseetal.
NanoscaleResearchLetters2012,7:554Page4of5http://www.
nanoscalereslett.
com/content/7/1/554concentrationandsurfaceroughnessbutdecreasessig-nificantlywithincreasingporosityduetophononscat-teringattheporeinterfaces.
Incontrast,whentheSiNWdiameter(davg%130nm)issmallerthanthepho-nonmeanfreepath,thethermalconductivitystronglydependsonboththeexternalboundary-phononscatter-ingandtheinternalporeinterface-phononscattering,leadingtoasignificantreductioninthethermalcon-ductivityforsmall-diameterSiNWs.
AdditionalfileAdditionalfile1:ErroranalysisofthethermalconductivityofverticalSiNWarrays.
AnXLSXfileshowingdetailederroranalysisdataforallthedatareported.
CompetinginterestsTheauthorsdeclarethattheyhavenocompetinginterests.
Authors'contributionsJMW,AMM,KEG,andXLZdesignedandinterpretedtheexperiments.
JMWandDRKfabricatedthesamples.
JMWandPMRperformedSEMandTEMcharacterization.
AMMandMAPdesignedandcarriedoutthethermoreflectancesetupandmeasurements.
Allauthorscontributedtoandapprovedthefinalmanuscript.
AcknowledgmentsTheauthorsgratefullyacknowledgethesupportofthePECASEprogram,theLinkFoundationEnergyFellowshipprogram,theNationalScienceFoundationGraduationResearchFellowshipprogram,andtheStanfordGraduateFellowshipprogram.
Authordetails1DepartmentofMechanicalEngineering,StanfordUniversity,Stanford,CA94305,USA.
2KLA-TencorCorporation,Milpitas,CA95035,USA.
Received:16August2012Accepted:24September2012Published:6October2012References1.
GeseleG,LinsmeierJ,DrachV,FrickeJ,Arens-FischerR:Temperature-dependentthermalconductivityofporoussilicon.
JPhysD:ApplPhys1997,30:2911–2916.
2.
YangCC,LiS:Basicprinciplesforrationaldesignofhigh-performancenanostructuredsilicon-basedthermoelectricmaterials.
ChemPhysChem2011,12:3614–3618.
3.
MiyazakiK,TanakaS,NagaiD:Heatconductionofaporousmaterial.
JHeatTransfer2012,134:051018.
4.
AlvarezFX,JouD,SellittoA:Pore-sizedependenceofthethermalconductivityofporoussilicon:aphononhydrodynamicapproach.
ApplPhysLett2010,97:033103.
5.
deBoorJ,KimDS,AoX,HagenD,CojocaruA,FoellH,SchmidtV:Temperatureandstructuresizedependenceofthethermalconductivityofporoussilicon.
EurophysLett2011,96:16001.
6.
GomesS,DavidL,LysenkoV,DescampsA,NychyporukT,RaynaudM:Applicationofscanningthermalmicroscopyforthermalconductivitymeasurementsonmeso-poroussiliconthinfilms.
JPhysD:ApplPhys2007,40:6677–6683.
7.
HeY,DonadioD,LeeJ-H,GrossmanJC,GalliG:Thermaltransportinnanoporoussilicon:interplaybetweendisorderatmesoscopicandatomicscales.
ACSNano2011,5:1839–1844.
8.
LeeJ-H,GalliGA,GrossmanJC:NanoporousSiasanefficientthermoelectricmaterial.
NanoLett2008,8:3750–3754.
9.
RomanoG,DiCarloA,GrossmanJC:MesoscalemodelingofphononicthermalconductivityofporousSi:interplaybetweenporosity,morphologyandsurfaceroughness.
JComputElectron2012,11:8–13.
10.
BoukaiAI,BunimovichY,Tahir-KheliJ,YuJK,GoddardWA,HeathJR:Siliconnanowiresasefficientthermoelectricmaterials.
Nature2008,451:168–171.
11.
LiDY,WuYY,KimP,ShiL,YangPD,MajumdarA:Thermalconductivityofindividualsiliconnanowires.
ApplPhysLett2003,83:2934–2936.
12.
HochbaumAI,ChenRK,DelgadoRD,LiangWJ,GarnettEC,NajarianM,MajumdarA,YangPD:Enhancedthermoelectricperformanceofroughsiliconnanowires.
Nature2008,451:163–167.
13.
LimJ,HippalgaonkarK,AndrewsSC,MajumdarA,YangP:Quantifyingsurfaceroughnesseffectsonphonontransportinsiliconnanowires.
NanoLett2012,12:2475–2482.
14.
LiuL,ChenX:Effectofsurfaceroughnessonthermalconductivityofsiliconnanowires.
JApplPhys2010,107:033501.
15.
LuisierM:InvestigationofthermaltransportdegradationinroughSinanowires.
JApplPhys2011,110:074510.
16.
MartinP,AksamijaZ,PopE,RavaioliU:Impactofphonon-surfaceroughnessscatteringonthermalconductivityofthinSinanowires.
PhysRevLett2009,102:125503.
17.
AbramsonAR,KimWC,HuxtableST,YanHQ,WuYY,MajumdarA,TienCL,YangPD:Fabricationandcharacterizationofananowire/polymer-basednanocompositeforaprototypethermoelectricdevice.
JMicroelectromechSyst2004,13:505–513.
18.
HaynesCL,VanDuyneRP:Nanospherelithography:aversatilenanofabricationtoolforstudiesofsize-dependentnanoparticleoptics.
JPhysChemB2001,105:5599–5611.
19.
ZhongX,QuYQ,LinYC,LiaoL,DuanXF:Unveilingtheformationpathwayofsinglecrystallineporoussiliconnanowires.
ACSApplMaterInterfaces2011,3:261–270.
20.
QuY,ZhouH,DuanX:Poroussiliconnanowires.
Nanoscale2011,3:4060–4068.
21.
WeisseJM,LeeCH,KimDR,ZhengX:Fabricationofflexibleandverticalsiliconnanowireelectronics.
NanoLett2012,12:3339–3343.
22.
GarnettE,YangPD:Lighttrappinginsiliconnanowiresolarcells.
NanoLett2010,10:1082–1087.
23.
QuYQ,LiaoL,LiYJ,ZhangH,HuangY,DuanXF:Electricallyconductiveandopticallyactiveporoussiliconnanowires.
NanoLett2009,9:4539–4543.
24.
WeisseJM,KimDR,LeeCH,ZhengX:Verticaltransferofuniformsiliconnanowirearraysviacrackformation.
NanoLett2011,11:1300–1305.
25.
KimJ,HanH,KimYH,ChoiS-H,KimJ-C,LeeW:Au/AgbilayeredmetalmeshasaSietchingcatalystforcontrolledfabricationofSinanowires.
ACSNano2011,5:3222–3229.
26.
ZhangML,PengKQ,FanX,JieJS,ZhangRQ,LeeST,WongNB:Preparationoflarge-areauniformsiliconnanowiresarraysthroughmetal-assistedchemicaletching.
JPhysChemC2008,112:4444–4450.
27.
ChiappiniC,LiuX,FakhouryJR,FerrariM:Biodegradableporoussiliconbarcodenanowireswithdefinedgeometry.
AdvFunctMater2010,20:2231–2239.
28.
PanzerMA,ZhangG,MannD,HuX,PopE,DaiH,GoodsonKE:Thermalpropertiesofmetal-coatedverticallyalignedsingle-wallnanotubearrays.
JHeatTransfer2008,130:052401.
29.
AsheghiM,KurabayashiK,KasnaviR,GoodsonKE:Thermalconductionindopedsingle-crystalsiliconfilms.
JApplPhys2002,91:5079–5088.
30.
SlackGA:Thermalconductivityofpureandimpuresilicon,siliconcarbide,anddiamond.
JApplPhys1964,35:3460–3465.
doi:10.
1186/1556-276X-7-554Citethisarticleas:Weisseetal.
:Thermalconductivityinporoussiliconnanowirearrays.
NanoscaleResearchLetters20127:554.
Weisseetal.
NanoscaleResearchLetters2012,7:554Page5of5http://www.
nanoscalereslett.
com/content/7/1/554

DogYun27.5元/月香港/韩国/日本/美国云服务器,弹性云主机

DogYun怎么样?DogYun是一家2019年成立的国人主机商,称为狗云,提供VPS及独立服务器租用,其中VPS分为经典云和动态云(支持小时计费及随时可删除),DogYun云服务器基于Kernel-based Virtual Machine(Kvm)硬件的完全虚拟化架构,您可以在弹性云中,随时调整CPU,内存,硬盘,网络,IPv4路线(如果该数据中心接入了多条路线)等。DogYun弹性云服务器优...

ucloud国内云服务器2元/月起;香港云服务器4元/首月;台湾云服务器3元/首月

ucloud云服务器怎么样?ucloud为了扩大云服务器市场份额,给出了超低价云服务器的促销活动,活动仍然是此前的Ucloud全球大促活动页面。目前,ucloud国内云服务器2元/月起;香港云服务器4元/首月;台湾云服务器3元/首月。相当于2-4元就可以试用国内、中国香港、中国台湾这三个地域的云服务器1个月了。ucloud全球大促仅限新用户,国内云服务器个人用户低至56元/年起,香港云服务器也仅8...

inlicloud48元/月,云主机,2核1G/200Mbps,可选安徽/上海联通/广州移动/江门移动NAT

inlicloud怎么样?inlicloud(引力主机)主要产品为国内NAT系列VPS,目前主要有:上海联通NAT(200Mbps带宽)、宿州联通NAT(200Mbps带宽)、广州移动NAT(200Mbps带宽)。根据官方的说法国内的NAT系列VPS不要求备案、不要求实名、对中转要求也不严格,但是,禁止任何形式的回国!安徽nat/上海联通/广州移动/江门移动nat云主机,2核1G/200Mbps仅...

4444yy.com为你推荐
金评媒朱江请问朱江恺撒堡KX系列的钢琴怎么样?同ip网站查询服务器禁PING 是不是就可以解决同IP网站查询问题www.kkk.com谁有免费的电影网站,越多越好?seo优化工具SEO优化工具哪个好用点啊?长尾关键词挖掘工具怎么挖掘长尾关键词,可以批量操作的那种www.e12.com.cn有什么好的高中学习网?125xx.com115xx.com是什么意思www.zjs.com.cn中通快递投诉网站网址是什么?www.ijinshan.com驱动人生是电脑自带的还是要安装啊!?在哪里呢?没有找到朴容熙这个网诺红人叫什么
singlehop locvps 紫田 免费ftp空间 服务器日志分析 好看的桌面背景大图 青果网 建立邮箱 softbank邮箱 200g硬盘 工作站服务器 789电视 网站木马检测工具 彩虹云 四川电信商城 域名转入 空间服务器 万网注册 国外免费云空间 免费获得q币 更多