climate38mmm.com
38mmm.com 时间:2021-04-08 阅读:(
)
ContentslistsavailableatScienceDirectAtmosphericResearchjournalhomepage:www.
elsevier.
com/locate/atmosresImprovingWRFmodelturbine-heightwind-speedforecastingusingasurrogate-basedautomaticoptimizationmethodZhenhuaDia,JuanAob,QingyunDuana,,JinWangb,WeiGonga,ChenweiShena,YanjunGanc,ZhaoLiubaStateKeyLaboratoryofEarthSurfaceProcessesandResourceEcology,FacultyofGeographicalScience,BeijingNormalUniversity,Beijing100875,ChinabBeijingGoldwindScience&CreationWindpowerEquipmentCo.
,Ltd.
,Beijing100176,ChinacStateKeyLaboratoryofSevereWeather,ChineseAcademyofMeteorologicalSciences,Beijing100081,ChinaARTICLEINFOKeywords:WRFParameteroptimizationSurrogatemodeling-basedoptimizationTurbine-heightwind-speedforecastingABSTRACTImprovingturbine-heightwind-speedforecastingusingamesoscalenumericalweatherprediction(NWP)modelisimportantforwind-powerpredictionbecauseofthecubiccorrelationbetweenwindpowerandwindspeed.
Thisstudyinvestigateshowasurrogate-basedautomaticoptimizationmethodcanbeusedtoimprovewind-speedforecastingbyanNWPmodelbyoptimizingitsparameters.
AkeychallengeinoptimizingNWPmodelparametersisthetremendouscomputationalrequirementsofsuchanexercise.
AglobalsensitivitymethodknownastheMultivariateAdaptiveRegressionSpline(MARS)methodwasfirstusedtoidentifythemostsensitiveparametersamongalltunableparameterschosenfromsevenphysicalparameterizationschemesoftheWeatherResearchandForecast(WRF)model.
Then,ahighlyeffectiveandefficientoptimizationmethodknownasadaptivesurrogatemodeling-basedoptimization(ASMO)wasusedtotunethesensitiveparameters.
InacasestudycarriedoutoverEasternChina,thesevenparametersthatweremostsensitivetowind-speedsimulationwereidentifiedfromamong27tunableparameters.
ThosesevenparameterswereoptimizedusingtheASMOmethod.
Thepresentstudyindicatesthatthehourlywind-speedsimulationaccuracywasimprovedby8.
7%duringthecalibrationphaseandby7.
58%duringthevalidationphase.
Inaddition,clearphysicalinterpreta-tionswereprovidedtoexplainwhytheoptimalparametersleadtoimprovedwindspeedforecasts.
Overall,thisstudyhasdemonstratedthatautomaticoptimizationmethodisahighlyeffectiveandefficientwaytoimprovewind-speedforecastingbyanNWPmodel.
1.
IntroductionWiththerapidgrowthoftheglobaleconomy,consumptionoftra-ditionalfossilfuelssuchascoalandoilhassoared,leadingtoanenergysourcedepletioncrisis.
Theresultingenvironmentalproblemssuchasairandwaterpollutionarebecomingcritical(Boffey,1970).
Develop-mentofrenewableenergyresourcesisthoughttobethemostpromisingresponsebecausetheseresourcesarebasicallyinexhaustible,offerhugecapacity,andareclean,withverylittlepollution.
Duetoitswidedis-tribution,windenergy,asthemajorrenewableenergyresourceavail-able,hasbeenwidelyusedtogenerateelectricityaroundtheworld(GrubbandMeyer,1993;NationalRenewableEnergyLaboratory,2008;Luetal.
,2009;Moemkenetal.
,2018).
Windturbineshaveusuallybeenbuiltonmountaintopsorincoastalareaswithstrongwind.
Theturbinerotorisinstalledataheightabovethetowerbottom(usuallythegroundsurface)rangingfrom70to110m,whichiscalledtheturbineheightinthisstudy.
Theturbine-heightwindspeedisacriticalvariableaffectingtheamountofwind-generatedelectricitythatcanbeproduced.
Whentheturbine-heightwindspeedisbetween3and15ms1,windelectricitygenerationstarts,andthecorrespondingelectricpowerproductionisapproxi-matelyacubicfunctionofwindspeed(JaramilloandBorja,2004;Yangetal.
,2017).
Thisimpliesthatwind-power(i.
e.
,wind-generatedelec-tricpower)estimationaccuracyreliesmainlyontheaccuracyoftur-bine-heightwind-speedforecasting.
Additionally,whenthewindspeedis>15ms1,andespeciallyhigherthan20–25ms1,theturbinecomponentswillbedamagedduetoexcessivepowerinputs,whichdisturbthestableoperationofthewind-poweredelectricalgenerationsystemandcausehugeeconomiclosses.
Thebestsolutionistoshutdowntheturbinesbeforestrongwindsarrive.
Therefore,theforecastingaccuracyofturbine-heightwindspeedisbecomingveryimportantfortheaccurateevaluationofwindpowerandthesafeoperationofwind-https://doi.
org/10.
1016/j.
atmosres.
2019.
04.
011Received10December2018;Receivedinrevisedform8April2019;Accepted9April2019Correspondingauthorat:BeijingNormalUniversity,NO.
19,XinjiekouwaiStreet,HaidianDistrict,Beijing,China.
E-mailaddress:qyduan@bnu.
edu.
cn(Q.
Duan).
AtmosphericResearch226(2019)1–16Availableonline11April20190169-8095/2019PublishedbyElsevierB.
V.
Tpoweredelectricalgenerationsystemsinwindfarms.
Wind-speedforecastingmethodsincludestatisticalestimationmethodsandphysicalmodel-basedsimulationmethods.
Commonsta-tisticalestimationmethodsincludepredictivetime-seriesmodelsbuiltusingKalmanfilters(Bossanyi,1985)orautoregressivemovingaveragefunctions(Sfetsos,2002)andcorrelationmodelsbuiltusingartificialneuralnetworks(Mohandesetal.
,1998)orfuzzylogic(Pinsonetal.
,2003).
Thepredictiveaccuracyofthesestatisticalmodelsdependsstronglyonthereliabilityofpastdataobservationsandthenumberofobserveddatapoints.
Inaddition,statisticalmodelstendtohaveashortpredictionleadtime,usuallysixtoeighthours.
Unlikestatisticalmodels,physicalmodel-basedmesoscalenumericalweatherprediction(NWP)modelshavesignificantadvantagesforoperationalforecastingofturbine-heightwindspeed.
AnNWPmodelnotonlyislessdependentonobserveddataandthereforecancompensatefordatadeficiencies,especiallyincomplexterrain,butalsohasalongerforecastperiod,with72-hpredictionaccuracy>80%.
Inrecentdecades,mesoscaleNWPmodelshavebeenwidelyusedtoprovidehigh-resolutionwind-speedforecasts.
Forinstance,Lazietal.
(2010)assessedtheperformanceoftheEtamodelonthewindforecastsfortheNasuddenpowerplantsatGotlandIsland,Sweden.
Dvoraketal.
(2010)usedtheNationalCenterforAtmosphericResearchMesoscaleModelversion5(MM5)modeltosimulatemulti-yearhigh-resolutionwindspeedat80mtoassessthewindenergyresourceinoffshoreCalifornia.
TheWeatherResearchandForecasting(WRF)model(Skamarocketal.
,2008)isanew-generationmesoscaleNWPmodeldevelopedonthebasisoftheMM5model.
Ithasamodularstructurethatfacilitatesintegrationofvariousphysicalprocessmodules,andeachphysicalmodulehasbeendevelopedbyadifferentgroup(Dudhia,2014).
Re-cently,moreandmorestudieshaveevaluatedturbine-heightwindspeedusingtheWRFmodel.
Deppeetal.
(2013)evaluatedthesimu-lationabilityoftheWRFmodelon80mturbine-heightwindspeedatthePomeroy,IowawindfarmsiteinUnitedStates.
Hahmannetal.
(2015)foundthatthebiasesinmeanannualwindspeedbetweenWRFsimulationsandobservationsatheightsaround100mwerefarsmallerthanthoseobtainedbyusingwindsdirectlyfromthereanalysisatoffshoresitesovertheNorthandBalticSeas.
However,smallbiasesinsimulatedwindspeedhaveasignificanteffectonwind-powerpredic-tionaccuracybecauseofthecubicrelationshipbetweenwindpowerandturbine-heightwindspeed.
Moreover,theWRFsimulationhassignificanterrorsofitsownduetoitsimperfectdescriptionsofsub-gridphysicalprocessesandtopography.
Improvingthesimulationaccuracyofturbine-heightwindspeedintheWRFmodelisthereforeofcriticalimportance.
Asinothernumericalmodels,therearethreemainsourcesofun-certaintyintheWRFmodel:thespecificationofinitialandboundaryfields,therealismofthemodelphysicsrepresentation,andthespeci-ficationofmodelparameters(Dietal.
,2015).
Toreduceinitialandboundaryerrors,three-andfour-dimensionalvariationdataassimila-tion(3DVAR/4DVAR)methodsareusedtoimprovethespecificationofinitialandboundaryfieldsfortheWRFmodelbyingestingdiscreteobservationaldatafromdiversesources.
Wangetal.
(2013)improvedthesurface-layerwindforecastingaccuracyoftheWRFmodelinawind-powerfarmusingthe3DVARmethod.
Fanetal.
(2013)assimi-latedquickscatterometerocean-surfacewinddataintoaWRFmodelusingthe3DVARmethodtoobtainahigh-qualitysimulationofthesurfacewindfieldintheChukchi/BeaufortSearegion.
ToreduceerrorsinWRFphysicalrepresentations,manystudieshaveanalyzedtherepresentativenessofvariousphysicalpara-meterizationschemesforthesimulationofthephysicalprocessesre-latedtowind.
Fernández-Gonzálezetal.
(2019)analyzedtheWRFuncertaintyassociatedwiththemultiphysicsandthemultipleinitialandboundaryconditionfortheshort-termwindspeedprediction,andfoundthatthephysicalparameterizationuncertaintywasgreaterforshort-termwindforecasts.
SomestudiesbuiltWRFensemblefore-castingsystemstoimprovethewindspeedanddirectionforecastsusingseveralsetsofparameterizationschemecombinations(Traiteuretal.
,2012;Fernández-Gonzálezetal.
,2018;Panetal.
,2018).
Notedthattheensembleforecastingaccuracywouldbefurtherimprovedusingamoreadvancedpost-processingtechnique(Holmanetal.
,2018);someotherstudiesfocusedonthesensitivityofthedifferentboundarylayerschemestowindforecaststoquantifytheirsuitableboundarylayerschemes(Hariprasadetal.
,2014;Avolioetal.
,2017;Tymviosetal.
,2018;Xiangetal.
,2019).
However,verylittleresearchhasbeendoneonparameteroptimi-zationtoimproveturbine-heightwind-speedforecastingintheWRFmodel.
Thekeychallengeincludestwoaspects:(1)theWRFmodelhasmanytunableparameters,whichmakesparameteroptimizationdiffi-cultifallparametersareadjusted;and(2)aWRFrunisveryexpensive,whichmakesitdifficulttofindtheoptimalparametervaluesfortra-ditionaloptimizationmethodsbecauseofrelativelylowsearcheffi-ciency.
Therefore,ahighlyefficientoptimizationmethodshouldbeusedtoconductparameteroptimizationofacomplexWRFmodel.
ToperformparameteroptimizationforthecomplexdynamicmodelssuchasWRF,twostepsarerecommended(Dietal.
,2015).
Thefirstistoconductparameterscreeningusingasensitivityanalysis(SA)methodtochoosethesensitiveparameterstobeoptimized.
NotallparametersaresensitivetotheWRFoutputs(e.
g.
,theturbine-heightwindspeed),andiftheinsensitiveparametersarecalibrated,notonlyistheWRFsimu-lationaccuracynotsignificantlyimproved,butalsothehugecompu-tationresourcesarewasted.
ManystudieshaveevaluatedparametersensitivityforcomplexweatherandclimatemodelsusingqualitativeandquantitativeSAmethods(Qianetal.
,2015;Dietal.
,2017).
TheseresultshavedemonstratedthattheMultivariateAdaptiveRegressionSpline(MARS)methodisaveryeffectiveandefficientqualitativeSAmethodtoidentifythesensitiveparameters.
Oncethesensitiveparametershavebeendetermined,thenextstepinvolvesconductinganoptimizationoftheseparameters.
However,theefficiencyoftraditionaloptimizationmethodsisstilllowevenforop-timizingthesensitiveparametersasasmallproportionofalltunableparameters.
Therefore,amorehighlyeffectiveandefficientoptimiza-tionmethodshouldbeused.
Wangetal.
(2014)proposedanadaptivesurrogatemodeling-basedoptimization(ASMO)methodbycombiningthemoresuitableGaussianProcessesregressionmethodandtheshuf-fledcomplexevolution(SCE-UA)globaloptimizationalgorithm.
Duanetal.
(2017)firstconductedhighlyefficientparameteroptimizationfortheWRFmodeltoimprovetheaccuracyofsummerprecipitationsi-mulationintheGreaterBeijingareausingtheASMOmethoddevelopedbyWangetal.
(2014).
Finally,theaccuracyofprecipitationsimulationwasimprovedbyapproximately18%usingonly127modelruns.
Morerecently,theASMOmethodhasbeenappliedtoparameteroptimizationofcomplexlandandweathermodels(Gongetal.
,2015;Dietal.
,2018).
However,theASMOmethodhasnotyetbeenappliedtoparameteroptimizationfortheWRFmodeltoimprovethesimulationaccuracyofturbine-heightwindspeed.
Thepresentworkintendstoimplementahighlyeffectiveandeffi-cientparameteroptimizationstrategyincludingMARS-basedparameterSAandASMO-basedsensitivityparameteroptimizationfortheWRFmodeltoimproveturbine-heightwind-speedsimulation.
Thereason-ablenessandapplicabilityoftheoptimalparametersobtainedbytheASMOmethodwillthenbeassessed.
Thispaperisorganizedasfollows.
Section2presentsthemetho-dology,includingtheMARSSAmethodandtheASMOoptimizationprocedure.
Section3describestheexperimentdesign,includingthesimulationdesign,thetunableparameters,andthestatisticalmetrics.
Section4firstpresentstheresultsofthesensitiveparametersinbriefandthenpresentsanalysesoftheoptimizationresults,includingtheoptimizationefficiencyandaccuracyimprovementforwind-speedandwind-powersimulations.
Comparisonsofvalidationeventsimulationsandphysicalinterpretationsofwhytheoptimalparametersleadtoimprovedwind-speedforecastsarealsodescribedinthissectiontoprovidefurtherproofofthereasonablenessandapplicabilityoftheZ.
Di,etal.
AtmosphericResearch226(2019)1–162optimalparametersobtained.
Conclusionsarepresentedinthelastsection.
2.
MaterialsandmethodsAnintegratedparameteroptimizationprocedureforcomplexdy-namicmodelssuchasWRFshouldconsistoftwosteps.
First,parameterSAshouldbeconductedforalltunableparametersusinganSAmethodtoscreenasmallnumberofsensitiveparameters.
Second,thescreenedsensitiveparametersshouldbeoptimizedusingahighlyeffectiveandefficientparameteroptimizationmethodinsteadofmoretraditionaloptimizationmethods.
2.
1.
Goodlatticepoint(GLP)samplingmethodUniformityisoneoftheimportantindicesforsamplingmethodsbecauseuniformsampleshelptoobtainmoreaccurateparametricSAandoptimizationresults.
Theuniformitiesofthreecategoriesofquasi-Monte-Carlomethods,includingtheGLPmethod,theHaltonsequence,andtheSobol'sequence,havebeencomparedbyGongetal.
(2016),whodemonstratedthattheGLPmethodhashigheruniformitythantheothertwomethodswiththesamesamplesize.
Therefore,GLPsamplingmethodsarerecommendedtogenerateuniformsamplesforfurtherSAandASMOmethods.
TheGLPmethodwasfirstproposedbyKorobov(1959a),anditsdesigncanbebrieflydescribedasfollows.
Let(n;h1,…,hs)beavectorofintegerssatisfying1≤hi1,whichleadstoaparametervaluewithnophysicalsignificance.
Therefore,therangeofradiation_2issetto0.
5–1.
0.
Theradiation_3parameterisascalingfactorrelatedtothediffusivityangleofcloudopticaldepth,anditsrangeissetto0.
9–1.
08basedonthelimitsontherangeofdiffusivityangleintheprogramcode.
TheparameterrangesaredeterminedbasedonacomprehensiveanalysisofparameterperturbationsandarethereforethoughttobesuitableforperformingSAunderallwindconditions.
Moreover,thesixteencalibrationeventsareselectedfromfourseasonsofoneyear,whichalsodemonstratesthattheparameterrangesaresuitabletodifferentseasons.
Fig.
2.
Theeightwindprocesses,includingvariationsinwindspeedanddirection.
Z.
Di,etal.
AtmosphericResearch226(2019)1–1653.
3.
StatisticalmetricsThestatisticalmetricsusedtoevaluatewind-speedsimulationsaretherootmeansquareerror(RMSE),thecorrelationcoefficient(R),andtheWeibullprobabilitydensityfunction.
Anotherstatisticalmetricusedtoevaluateaveragewindpoweriswindpowerdensity(WPD).
RMSEcanbeexpressedasfollows:(3)wheresimitandobsitrepresentthesimulatedandobservedturbine-heightwindspeedattheithobservationstationattimet,andMandTarethetotalnumbersofobservationstationsandtimesteps.
Toprovideabetteroptimizationresultformulti-eventcases,thenormalizedRMSE(NRMSE)isusuallyusedasthecostfunction;itsformulacanbeexpressedasfollows:(4)whereRMSEpirepresentstheRMSEvalueofthesimulationwiththeperturbedparametervaluefortheitheventandRMSEdefirepresentstheRMSEvalueofthesimulationwiththedefaultparametervalueforithevent.
Nisthenumberofsimulationevents.
WhenNRMSEis6.
5ms1,andthemaximumimprovementoccursinthesi-mulationofthestrongestwindspeed.
Forwindspeeds6.
5ms1.
Inaddition,ithasbeendemonstratedthatWRFmodelsimulationscanbettercapturethedailyvariationcharacteristicsofturbine-heightwindspeed.
ByconvertingUniversalTimeCoordinates(UTC)intolocaltime(i.
e.
,Beijingtime),itisfoundthatthewindspeedislowerinthedaytimeandhigheratnight.
Morespecifically,thelowestwindspeedoccursat~14:00localtime(correspondingto6:00,30:00,and54:00inUTC,asshowninFig.
6a),whereasthewindspeedatlocalnighttime(correspondingto12:00–24:00,36:00–48:00,and60:00–72:00inUTC,asshowninFig.
6a)isrelativelystrongandsteady.
Overall,therea-sonablesimulationresultsprovethesuitabilityoftheWRFmodeltosimulateturbine-heightwindspeed,andthesignificantimprovementofFig.
5.
Comparisonofwind-speedsimulationerrorsforsixteenevents(1)–(16)usingtheWRFmodelwithdefaultandoptimalparameters.
Fig.
6.
Comparisonsoftimevariationsinobservedandsimulatedturbine-heightwindspeedusingtheWRFmodelwithdefaultandoptimalparametersfor:(a)72-hleadtimes(b)fourseasons.
Z.
Di,etal.
AtmosphericResearch226(2019)1–168thehourlysimulationsdemonstratestheeffectivenessoftheASMOparameteroptimizationmethod.
Becausethe16optimizationevents[(1)–(16)]arechosenfromthefourseasonsofoneyear(i.
e.
,fromJune2014toMay2015),thecomparisonsofoptimizedanddefaultsimulationsareconductedforthefourseasons.
Specifically,events(1)–(4),(5)–(8),(9)–(12),and(13)–(16)belongedtosummer,fall,winter,andspringrespectively.
Fig.
6bshowsthecomparisonresultsforobservedandsimulatedtur-bine-heightwindspeedwithdefaultandoptimalparametersforthefourseasons.
Comparedtoobservations,thesimulationswithbothdefaultandoptimalparametershavetheconsistentvariancechar-acteristicthatturbine-heightwindspeedishighestinspringandlowestinsummer.
Itisalsoapparentthattheoptimalparametersgreatlyim-provetheturbine-heightwind-speedsimulationsforthefourseasonscomparedtothedefaultparameters.
Theimprovementratesinspringandfallwithstrongwindareobviouslyhigherthanthoseinsummerandwinterwithlightwind,whichconfirmsoncemorethattheASMOmethodachievessignificantimprovementforthesimulationofstrongwind(seeFig.
6a).
Fig.
7showstheWeibullPDFsofobservedandsimulatedturbine-heightwindspeed.
WhencomparingthemedianvaluesoftheWeibullPDFs,itisfoundthattheWRFsimulationswithdefaultparametersoverestimatewindspeedscomparedtotheobserveddataandthatthesimulatedvaluesofaveragewindspeedareclosertoobservationswhenASMOparameteroptimizationisused.
Similarly,thefrequencyofthesimulatedmedianwindspeedisalsobroughtclosertoobservationsbyparameteroptimization.
ComparingthewholesetofWeibullPDFsfortheobservationsandthesimulationwithdefaultparameters,itisde-monstratedthatthesimulationwithdefaultparametersstronglyover-estimatesthefrequencyofstrongwindswithspeeds>7ms1andunderestimatethefrequencyoflightwindswithspeeds500Wm2.
Forthenorthernprovinces,theaverageWPDrangesfrom200to300Wm2.
Forthesouthernpro-vinces,theaverageWPDrangesfrom100to200Wm2.
Fig.
11alsoshowsthepositionsoftheobservationstationsmarkedwithredaster-isks.
FromthepositionsoftheobservationstationsandtheWPDspatialdistribution,itisclearthatmostoftheobservationstationsarebuiltintheregionswithhighwindenergy,butafewarebuiltinregionswithlowwindenergy(seethebottomrightcornerinFig.
11).
Therefore,fromtheviewpointofwind-energysimulation,itcanbeconcludedthatthelocationsofsomealready-builtobservationstationsareinappropriate.
4.
5.
ValidationanalysisofWRFoptimalparametersComparedwiththedefaultparameters,thesuperiorityoftheop-timalparametersobtainedbytheASMOmethodforimprovingWRFturbine-heightwind-speedsimulationhasbeendemonstratedintheoptimizationperiod.
However,forthevalidationperiodwhennewFig.
10.
ComparisonofsimulatedandobservedWPDvaluesoverthefourseasons.
Fig.
11.
SpatialdistributionofsimulatedWPDwiththeoptimalwindspeed.
Theredasterisksrepresentthepositionsoftheobservationstations.
(Forin-terpretationofthereferencestocolourinthisfigurelegend,thereaderisre-ferredtothewebversionofthisarticle.
)Z.
Di,etal.
AtmosphericResearch226(2019)1–1611eventsmustbesimulated,thequestionwhethertheoptimalparametersarestilleffectivedeservestobeinvestigated.
SixnewvalidationeventsareselectedfromJune2014toMay2015,asshowninTable2.
Thedesignsofthedomainandsimulation,thevariationcharacteristicsofwindspeedanddirection,thesimulationduration,andtheforcingdatasourcearethesameasintheparameteroptimizationexperiment.
Fig.
12acomparestheRMSEofsimulatedhourlyturbine-heightwindspeedusingtheWRFmodelwithdefaultandoptimalparametersforthesixvalidationevents.
Overall,comparedwiththeWRFsimula-tionswithdefaultparameters,theaverageimprovementpercentageofRMSEintheWRFwind-speedsimulationsis7.
58%usingWRFsimu-lationswithoptimalparameters.
Moreover,allvalidationeventsimu-lationsareimprovedusingtheWRFsimulationswithoptimalpara-meters,andthewind-speedsimulationsareimprovedbypercentagesvaryingfrom2.
63%to12.
29%.
Fig.
12bshowsacomparisonofRforthesimulatedhourlyturbine-heightwindspeedusingtheWRFmodelwithdefaultandoptimalparameters.
Overall,theaverageimprovementpercentageofRintheWRFwind-speedsimulationswithoptimalparametersis6.
49%,demonstratingthattheoptimalparameterscanalsoimprovethecorrelationofWRFturbine-heightwind-speedsimu-lationsinthevalidationevents.
Notethatoneofthesixsingle-objectivesimulationsexperiencesnegativeimprovement,whichmayberelatedtotheparametervaluesobtainedbyoptimizingRMSE.
Notethattheobservedwindevolutionforthecalibrationandva-lidationperiodsfollowstwopatternvariations:oneisthatwhenthewindspeedincreases(lighttostrong),thewinddirectionexperiencesasouth-to-northvariation,andtheotheristhatwhenthewindspeeddecreases(strongtolight),thewinddirectionexperiencesanorth-to-southvariation.
However,itisunknownwhethertheoptimalpara-metersstillworkwhenotherwindpatternsaresimulated.
Inthissec-tion,twooppositewindpatternsareselectedforsimulationtovalidatefurtherthesuperiorityoftheoptimalparameters.
Eachpatternincludesthree3-daywindevents.
Fig.
13a–cshowsthefirstpattern,inwhichwhenwindspeeddecreases(strongtolight),thewinddirectionvar-iationisapproximatelysouth-to-north;Fig.
13d–fshowsthesecondpattern,inwhichwhenwindspeedincreases(lighttostrong),thewinddirectionvariationisapproximatelynorth-to-south.
Fig.
13a–fillus-tratesthenewevents(A)-(F),respectively.
Thetwocategoriesofsimulationsareseparatelycomparedtoex-aminewhethertheoptimalparametersworkforsimulationsofotherwindpatterns.
Fig.
14showsthecomparisonresults.
Itisapparentthattheoptimalparametersimprovethesimulationsofallsixwindeventscomparedwiththedefaultparameters.
Overall,usingWRFsimulationswithoptimalparameters,theaverageimprovementpercentagesinRMSEinhourlyturbine-heightwind-speedsimulationforthetwonewlysimulatedwindpatternsare6.
68%and4.
66%,respectively.
Thisdemonstratesthattheoptimalparametersarereasonableforsimulatingdifferentwindpatterns,andthemethodisthereforeeffectiveinim-provingWRFturbine-heightwind-speedsimulation.
Overall,theoptimalparametersobtainedbyoptimizingtheRMSEofturbine-heightwind-speedsimulationsusingtheASMOmethodnotonlyimprovetheRofwind-speedsimulationsintheoptimizationperiod,butalsoimprovetheRMSEandRofwind-speedsimulationsinthevalidationperiod.
Inaddition,theoptimalparameterscanbeusedtosimulateotherwindpatterns.
Theseanalysesdemonstratecompre-hensivelythattheoptimalparameterscanbeusedtoimproveturbine-heightwind-speedsimulationsinthestudyarea.
Therefore,theoptimalparametervaluesarethoughttobereasonableandeffective.
4.
6.
PhysicalinterpretationandverificationoftheoptimalparametervaluesThevaluesofthedefaultandoptimalparametersarenormalizedwithintheirrangestoprovideaclearerillustrateofthevariationsbe-tweenthem.
Fig.
15showsacomparisonofthenormalizedoptimalanddefaultparametervalues.
AlltheoptimalparametervaluesshowTable2ThesixvalidationeventsfromJune2014toMay2015.
EventsDurationI2014/09/26–2014/09/28II2014/09/29–2014/10/01III2014/12/28–2014/12/30IV2014/12/31–2015/01/02V2015/03/14–2015/03/16VI2015/03/17–2015/03/19Fig.
12.
Comparisonsofsimulationerrorsofhourlyturbine-heightwindspeedusingWRFmodelwithdefaultandoptimalparametersfor:(a)RMSE(b)R.
Z.
Di,etal.
AtmosphericResearch226(2019)1–1612Fig.
13.
Twodifferentwindpatterns.
(a)-(c)isthefirstcategory,inwhichthewindspeedgraduallydecreasesandthewinddirectionexperiencesanapproximatelysouth-to-northvariation;(d)-(f)isthesecondcategory,inwhichthewindspeedgraduallyincreasesandthewinddirectionexperiencesanapproximatelynorth-southvariation.
Fig.
14.
Comparisonsofsimulationerrorsinhourlyturbine-heightwindspeedusingtheWRFmodelwithdefaultandoptimalparametersfor:(a)thewindpatternwithwindspeeddecreasingandwinddirectionchangingsouth-to-north(b)thewindpatternwithwindspeedincreasingandwinddirectionchangingnorth-to-south.
Z.
Di,etal.
AtmosphericResearch226(2019)1–1613inconsistentvariations.
Forthekarman(thevonKármánconstant)andradiation_2(scalingrelatedtoaerosolsinglescattering)parameters,theirvaluesarebasicallyunchangedandremainedthesameasthedefaultparametervalues.
Forthesurface_1(scalingrelatedtosurfaceroughness)parameter,thevaluevariesfromtheminimumforthede-faultparametertothemaximumfortheoptimalparameterinitsrange.
Fortheotherfourparameters,theiroptimalvaluesarelowerthantheirdefaultvalues.
Ithasbeenfoundfrompreviousanalyses(e.
g.
,Fig.
6)thatthede-faultsimulationparametersgenerallyoverestimatewind-speedvaluescomparedwithobservationsandthattheoptimalsimulationpara-metersreducethisoverestimation.
Thespecificphysicalinterpretationoftheparametervariationisthefollowing.
Largervaluesofsurface_1meanagreaterroughnesslengthtobedefinedinthesurfacelayer,whichelevatesthezero-planedisplacementheightandthereforere-duceswindspeedatturbineheight.
Largervaluesofkarmanenhancethemagnitudeoftheturbulentlengthscaleintheplanetaryboundarylayer,leadingtostrongerverticalmixingduringdaytime.
However,largervaluesofkarmanalsoleadtoincreasesintheexchangecoeffi-cientformomentumnearsurface,causingareductionofwindspeed.
Smallervaluesofconvection_2(scalingrelatedtoentrainmentflow)leadtolowerratiosofentrainmenttoupdraftflux,whichenhancestheupdraft,leadingtodecreasesinhorizontalwindspeeds.
Themicro-phys_2parameter(scalingrelatedtoicefall)directlyaffectsthecon-versionratefromcloudicetorainwaterinthedescriptionofthemi-crophysicsparameterizationscheme.
Therefore,smallervaluesofmicrophys_2eventuallybringsaboutreductionsinprecipitation,leadingtodecreasesinevapotranspirationorturbulenceandreductionsinturbine-heightwindspeed.
Largervaluesofradiation_2leadtomorescatteringofsolarradiationreflectedtothesky,whichreducestheamountofshortwaveradiationreachingthesurface,furthersuppres-singevaporationandultimatelyleadingtodecreasesinwindspeeds.
Smallvaluesofland_2(scalingrelatedtosoilporosity)leadtolowersoilporosity,whichsuppressestheconveyanceofsoilwaterandheatup-wardfromgroundwatertothesurfaceandthusdecreasesthedifferencebetweensurfaceenergiesatdifferentlocations,blockingthedevelop-mentofwindspeed.
Theplanetary_3parameter(profileshapeexponentofthemomentumdiffusivity)hasapositiveeffectonthemomentumdiffusivitycoefficient.
Whenplanetary_3decreases,theeddyturbulencediffusivityintensityisweakened,inducinglowerwindspeedatturbineheight.
5.
ConclusionsThisstudyfirstusestheglobalSAmethodtoidentifythesevensensitiveparametersfrom27tunableparametersinsevenWRFphysicalparameterizationschemesandthenoptimizesthesevensensitivityparametersfromthesixWRFphysicalparameterizationschemesusingtheASMOmethodtoimproveturbine-heightwind-speedsimulationoverEasternChina.
TheWRFmodelsimulationswithdefaultandop-timalparametersarecomparedfromfiveaspects,includingthevaria-tionofturbine-heightwindspeedovera72-hleadtimeandthefourseasons,theWeibullfrequencydistributionofwindspeed,wind-speedandtemperatureprofilesfrom1000to100hPa,thecorrelationofsi-mulatedwindspeed,andthespatialandtemporaldistributionofWPDinthestudyarea.
Inaddition,theapplicabilityoftheoptimalpara-metersobtainedbytheASMOmethodisexaminedinnewsimulationsofthesixvalidationeventstoshowtheirsuperioritiestothedefaultparametersforimprovingturbine-heightwind-speedsimulation.
TheoptimizationresultsdemonstratethatparameteroptimizationforthecomplexWRFmodel,whichhasverytime-consumingcalcula-tionrequirements,canbeconductedusingtheASMOmethod.
Inpar-ticular,theoptimalvaluesofthesevenparametersinthisstudyareobtainedusing131samples,including100initialand31adaptivesamplesobtainedusingtheASMOmethod.
Thisapproachgreatlyre-ducesthenumberofWRFmodelrunsanddemonstratesthattheASMOmethodisahighlyeffectiveandefficientoptimizationmethodandiswellsuitedtooptimizetheparametersofothercomplexweatherandclimatemodels.
BycomparingtheWRFmodelsimulationswithdefaultandoptimalparameters,itisfoundthatthehourlyturbine-heightwind-speedsi-mulationisimprovedby8.
7%usingASMOoptimization.
Variationanalysesofwind-speedtimeseriesshowthattheWRFsimulationwithdefaultparametersoverestimateswindspeed,whereastheWRFsimu-lationwithoptimizedparametersgreatlyreducestheoverestimationtrend.
BycomparingthesimulatedWeibullfrequencydistributions,ithasbeenfoundthattheWRFmodelwithoptimalparametersreducesthefrequencyofsimulatedstrongwindsandincreasesthefrequencyofsimulatedlightwinds,bringingtheoptimizationresultsclosertoob-servations.
Besidesimprovingturbine-heightwind-speedsimulation,theWRFmodelwithoptimalparametersalsoimprovesthesimulationofwindandtemperatureprofilesfrom1000to100hPa.
Similarly,italsoimprovestheRofturbine-heightwind-speedsimulationbyap-proximately4%inadditiontoimprovingRMSEby8.
7%asthecostfunction.
BasedontheWPDformula,ithasbeendemonstratedthattheWRFmodelwithoptimalparametersimprovesWPDestimationby36%.
ByexaminingthespatialdistributionofWPDsimulationswithoptimalwindspeeds,ithasalsobeenfoundthatthelocationsofafewobservationstationsbuiltinregionswithlowwindenergyarein-appropriate,althoughmostofthestationsarebuiltinhigh-wind-energyFig.
15.
Comparisonofthenormalizedoptimalanddefaultparametervalues.
Z.
Di,etal.
AtmosphericResearch226(2019)1–1614regions.
Finally,theapplicabilityoftheoptimalparametersisalsodemonstratedbycomparingturbine-heightwind-speedsimulationsfortwocategoriesofnewvalidationevents:oneisthesamepatternasthecalibrationevents,whereastheotherrepresentsanoppositepattern.
TheresultsshowthattheWRFmodelwithoptimalparametersim-provestheRMSEandRofwindspeedsimulationsforthesamepatternofsixvalidationeventsby7.
58%and6.
49%respectively.
Forthetwodifferentpatterns,theaverageRMSEimprovementpercentagesofwind-speedsimulationsforthethreevaliationeventsare6.
68%and4.
66%,respectively.
Thisfullydemonstratesthereasonablenessoftheoptimalparameters.
However,itshouldbenotedthatgenerallythewind-speedsimula-tionsareimprovedbytheWRFmodelwithoptimalparameters,butthatseveralsinglesimulationsshownegativeimprovements.
Thesephenomenaarecausedbythedefinitionofthesingle-objectivecostfunction,whichallocatesequalweighttoeachsinglesimulationandthenaveragesallthesimulationerrors.
Ifthesuitableweightsareusedtoconstructthemulti-objectivecostfunction,itwillbepossibletoimproveallthesinglesimulationsusingmulti-objectiveoptimizationmethodssuchasNSGA-II(Debetal.
,2002)andASMO-PODE(GongandDuan,2017).
Inaddition,thesameapproachcanbemigratedtoothermulti-variablejointoptimizationproblemssuchaswindspeed,tem-perature,andpressure.
AcknowledgementsThisresearchwassupportedbytheMinistryofScienceandTechnologyofChina(No.
IUMKY201603),theStrategicPriorityResearchProgramoftheChineseAcademyofSciences(Nos.
XDA19070104,XDA20060401),theIntergovernmentalKeyInternationalS&TInnovationCooperationProgram(No.
2016YFE0102400),theSpecialFundforMeteorologicalScientificResearchinthePublicInterest(No.
GYHY201506002,CRA–40:40-yearCMAglobalatmosphericreanalysis),theNationalBasicResearchProgramofChina(No.
2015CB953703),andtheNaturalScienceFoundationofChina(41305052).
WeacknowledgeNationalCenterforEnvironmentalPredictionReanalysisdataset(http://rda.
ucar.
edu/datasets/ds083.
2/)andsoundingdataset(http://weather.
uwyo.
edu/upperair/sounding.
html).
Thehourlyturbine-heightwind-speedda-tasetareavailuponrequestfromtheauthorDr.
Ao.
AppendixA.
SupplementarydataSupplementarydatatothisarticlecanbefoundonlineathttps://doi.
org/10.
1016/j.
atmosres.
2019.
04.
011.
ReferencesAvolio,E.
,Federico,S.
,Miglietta,M.
M.
,Feudo,T.
L.
,Calidonna,C.
R.
,Sempreviva,A.
M.
,2017.
SensitivityanalysisofWRFmodelPBLschemesinsimulatingboundary-layervariablesinsouthernItaly:anexperimentalcampaign.
Atmos.
Res.
192,58–71.
https://doi.
org/10.
1016/j.
atmosres.
2017.
04.
003.
Boffey,P.
M.
,1970.
Energycrisis:environmentalissueexacerbatespowersupplyproblem.
Science168,1554–1559.
https://doi.
org/10.
1126/science.
168.
3939.
1554.
Bossanyi,E.
A.
,1985.
Short-termwindpredictionusingKalmanfilters.
WindEng.
9,1–8.
Chen,F.
,Dudhia,J.
,2001.
Couplinganadvancedlandsurface–hydrologymodelwiththePennState–NCARMM5modelingsystempartI:modelimplementationandsensi-tivity.
Mon.
WeatherRev.
129,569–585.
https://doi.
org/10.
1175/1520-0493(2001)1292.
0.
CO;2.
Deb,K.
,Pratap,A.
,Agarwal,S.
,Meyarivan,T.
,2002.
Afastandelitistmultiobjectivegeneticalgorithm:NSGA-II.
IEEET.
Evolut.
Comput.
6,182–197.
https://doi.
org/10.
1109/4235.
996017.
Deppe,A.
,Gallus,W.
,Takle,E.
,2013.
AWRFensembleforimprovedwindspeedfore-castsatturbineheight.
WeatherForecast.
28,212–228.
https://doi.
org/10.
1175/WAF-D-11-00112.
1.
Di,Z.
,Duan,Q.
,Gong,W.
,Wang,C.
,Gan,Y.
,Quan,J.
,Li,J.
,Miao,C.
,Ye,A.
,Tong,C.
,2015.
AssessingWRFmodelparametersensitivity:acasestudywith5daysummerprecipitationforecastingintheGreaterBeijingArea.
Geophys.
Res.
Lett.
42,579–587.
https://doi.
org/10.
1002/2014GL061623.
Di,Z.
,Duan,Q.
,Gong,W.
,Ye,A.
,Miao,C.
,2017.
Parametricsensitivityanalysisofprecipitationandtemperaturebasedonmulti-uncertaintyquantificationmethodsintheweatherresearchandforecastingmodel.
Sci.
ChinaEarthSci.
60,876–898.
https://doi.
org/10.
1007/s11430-016-9021-6.
Di,Z.
,Duan,Q.
,Wang,C.
,Ye,A.
,Miao,C.
,Gong,W.
,2018.
AssessingtheapplicabilityofWRFoptimalparametersunderthedifferentprecipitationsimulationsintheGreaterBeijingArea.
Clim.
Dyn.
50,1927–1948.
https://doi.
org/10.
1007/s00382-017-3729-3.
Duan,Q.
,Sorooshian,S.
,Gupta,V.
K.
,1994.
OptimaluseoftheSCE-UAglobaloptimi-zationmethodforcalibratingwatershedmodels.
J.
Hydrol.
158,265–284.
https://doi.
org/10.
1016/0022-1694(94)90057-4.
Duan,Q.
,Di,Z.
,Quan,J.
,Wang,C.
,Gong,W.
,Gan,Y.
,Ye,A.
,Miao,C.
,Miao,S.
,Liang,X.
,Fan,S.
,2017.
Automaticmodelcalibration:anewwaytoimprovenumericalweatherforecasting.
B.
Am.
Meteorol.
Soc.
98,959–970.
https://doi.
org/10.
1175/BAMS-D-15-00104.
1.
Dudhia,J.
,2014.
Ahistoryofmesoscalemodeldevelopment.
Asia-Pac.
J.
Atmos.
Sci.
50,121–131.
https://doi.
org/10.
1007/s13143-014-0031-8.
Dudhia,J.
,Gill,D.
,Manning,K.
,Wang,W.
,Bruyere,C.
,1999.
PSU/NCARMesoscaleModelingSystemTutorialClassNotesanduser'sGuide:MM5ModelingSystemVersion3.
(Boulder).
Dvorak,M.
,Archer,C.
,Jacobson,M.
,2010.
Californiaoffshorewindenergypotential.
Renew.
Energy35,1244–1254.
https://doi.
org/10.
1016/j.
renene.
2009.
11.
022.
Fan,X.
,Krieger,J.
,Zhang,J.
,Zhang,X.
,2013.
AssimilatingquikSCAToceansurfacewindswiththeWeatherResearchandforecastingmodelforsurfacewind-fieldsi-mulationovertheChukchi/Beaufortseas.
Bound.
-LayerMeteorol.
148,207–226.
https://doi.
org/10.
1007/s10546-013-9805-2.
Fernández-González,S.
,Martín,M.
L.
,Garcrc-Ortega,E.
,Merino,A.
,Lorenzana,J.
,Sánchez,J.
L.
,Valero,F.
,Rodrigo,J.
S.
,2018.
SensitivityanalysisofWRFmodel:wind-resourceassessmentforcomplexterrain.
J.
Appl.
Meteorol.
Climatol.
57,733–753.
https://doi.
org/JAMC-D-17-0121.
1.
Fernández-González,S.
,Sastre,M.
,Valero,F.
,Merino,A.
,García-Ortega,E.
,Sánchez,J.
,Lorenzana,J.
,Martín,M.
,2019.
Characterizationofspreadinamesoscaleensemblepredictionsystem:Multiphysicsversusinitialconditions.
Meteorol.
Z.
28,59–67.
https://doi.
org/10.
1127/metz/2018/0918.
Friedman,J.
,1991.
Multivariateadaptiveregressionsplines.
Ann.
Stat.
19,1–141.
https://doi.
org/10.
1214/aos/1176347963.
Gong,W.
,Duan,Q.
,2017.
Anadaptivesurrogatemodeling-basedsamplingstrategyforparameteroptimizationanddistributionestimation(ASMO-PODE).
Environ.
Model.
Softw.
95,61–75.
https://doi.
org/10.
1016/j.
envsoft.
2017.
05.
005.
Gong,W.
,Duan,Q.
,Li,J.
,Wang,C.
,Di,Z.
,Dai,Y.
,Ye,A.
,Miao,C.
,2015.
Multi-objectiveparameteroptimizationofcommonlandmodelusingadaptivesurrogatemodeling.
Hydrol.
EarthSyst.
Sc.
19,2409–2425.
https://doi.
org/10.
5194/hess-19-2409-2015.
Gong,W.
,Duan,Q.
,Li,J.
,Wang,C.
,Di,Z.
,Ye,A.
,Miao,C.
,Dai,Y.
,2016.
Aninter-comparisonofsamplingmethodsforuncertaintyquantificationofenvironmentaldynamicmodels.
J.
Environ.
Inf.
28,11–24.
https://doi.
org/10.
3808/jei.
201500310.
Grubb,M.
,Meyer,N.
,1993.
WindEnergy:Resources,SystemsandRegionalStrategies,inRenewableEnergy.
Islandpress,Washington,pp.
157–212.
Hahmann,A.
,Vincent,C.
,Pena,A.
,Lange,J.
,Hasager,C.
,2015.
WindclimateestimationusingWRFmodeloutput:methodandmodelsensitivitiesoverthesea.
Int.
J.
Climatol.
35,3422–3439.
https://doi.
org/10.
1002/joc.
4217.
Hariprasad,K.
B.
R.
R.
,Srinivas,C.
V.
,Singh,A.
B.
,Rao,S.
V.
B.
,Baskaran,R.
,Venkatraman,B.
,2014.
NumericalsimulationandintercomparisonofboundarylayerstructurewithdifferentPBLschemesinWRFusingexperimentalobservationsatatropicalsite.
Atmos.
Res.
145–146,27–44.
https://doi.
org/10.
1016/j.
atmosres.
2014.
03.
023.
Holman,B.
P.
,Lazarus,S.
M.
,Splitt,M.
E.
,2018.
Statisticallyanddynamicallydownscaled,calibrated,probabilistic10-mwindvectorforecastsusingensemblemodeloutputstatistics.
Mon.
WeatherRev.
146,2859–2880.
https://doi.
org/10.
1175/MWR-D-17-0338.
1.
Hong,S.
Y.
,Noh,Y.
,Dudhia,J.
,2006.
Anewverticaldiffusionpackagewithanexplicittreatmentofentrainmentprocesses.
Mon.
WeatherRev.
134,2318–2341.
https://doi.
org/10.
1175/MWR3199.
1.
Iacono,M.
J.
,Delamere,J.
S.
,Mlawer,E.
J.
,Shephard,M.
W.
,Clough,S.
A.
,Collins,W.
D.
,2008.
Radiativeforcingbylonglivedgreenhousegases:calculationswiththeAERradiativetransfermodels.
J.
Geophys.
Res.
-Atmos.
113,D13103.
https://doi.
org/10.
1029/2008JD009944.
Jaramillo,O.
A.
,Borja,M.
A.
,2004.
WindspeedanalysisinLaVentosa,Mexico:abimodalprobabilitydistributioncase.
Renew.
Energy29,1613–1630.
https://doi.
org/10.
1016/j.
renene.
2004.
02.
001.
Kain,J.
S.
,2004.
TheKain-Fritschconvectiveparameterization:anupdate.
J.
Appl.
Meteorol.
Climatol.
43,170–181.
https://doi.
org/10.
1175/1520-0450(2004)0432.
0.
CO;2.
Korobov,N.
M.
,1959a.
Computationofmultipleintegralsbythemethodofoptimalcoefficients.
VestnikMoskowUniv.
Sec.
Math.
Astr.
Fiz.
Him.
4,19–25.
Korobov,N.
M.
,1959b.
Theapproximatecomputationofmultipleintegrals.
Dokl.
Akad.
NaukSSSR124,1207–1210.
Lazi,L.
,Pejanovi,G.
,ivkovi,M.
,2010.
WindforecastsforwindpowergenerationusingtheEtamodel.
Renew.
Energy35,1236–1243.
https://doi.
org/10.
1016/j.
renene.
2009.
10.
028.
Lu,X.
,McElroy,M.
B.
,Kiviluoma,J.
,2009.
Globalpotentialforwind-generatedelec-tricity.
P.
Natl.
Acad.
Sci.
USA106,10933–10938.
https://doi.
org/10.
1073/pnas.
0904101106.
Mass,C.
,Ovens,D.
,2010.
WRFmodelphysics:progress,problems,andperhapssomesolutions.
In:The11thWRFusers'Workshop,(Boulder,CO,21–25June,2010).
Mathew,S.
,2006.
WindEnergy:Fundamentals,ResourceAnalysisandEconomics.
Springer,Berlin.
Moemken,J.
,Reyers,M.
,Feldmann,H.
,Pinto,J.
G.
,2018.
FuturechangesofwindspeedandwindenergypotentialsinEURO-CORDEXensemblesimulations.
J.
Geophys.
Res.
-Atmos.
123,6373–6389.
https://doi.
org/10.
1029/2018JD028473.
Z.
Di,etal.
AtmosphericResearch226(2019)1–1615Mohandes,M.
A.
,Rehman,S.
,Halawani,T.
O.
,1998.
Aneuralnetworksapproachforwindspeedprediction.
Renew.
Energy13,345–354.
https://doi.
org/10.
1016/S0960-1481(98)00001-9.
NationalRenewableEnergyLaboratory,2008.
20%WindEnergyby2030:IncreasingWindenergy'sContributiontoU.
S.
ElectricitySupply.
U.
S.
DepartmentofEnergy,Washington,pp.
228.
Pan,L.
,Liu,Y.
,Knievel,J.
,Monache,L.
,Roux,G.
,2018.
EvaluationsofWRFsensitivitiesinsurfacesimulationswithanensemblepredictionsystem.
Atmosphere9,106.
https://doi.
org/10.
3390/atmos9030106.
Pinson,P.
,Siebert,N.
,Kariniotakis,G.
,2003.
ForecastingofRegionalwindGenerationbyaDynamicFuzzy-NeuralNetworksBasedUpscalingApproach.
EuropeanwindEnergyConference(EWEC).
(Madrid,Spain,June).
Qian,Y.
,Yan,H.
,Hou,Z.
,Johannesson,G.
,Klein,S.
,Lucas,D.
,Neale,R.
,Rasch,P.
,Swiler,L.
,Tannahill,J.
,Wang,H.
,Wang,M.
,Zhao,C.
,2015.
ParametricsensitivityanalysisofprecipitationatglobalandlocalscalesintheCommunityAtmosphereModelCAM5.
J.
Adv.
Model.
EarthSy.
7,382–411.
https://doi.
org/10.
1002/2014MS000354.
Sfetsos,A.
,2002.
Anovelapproachfortheforecastingofmeanhourlywindspeedtimeseries.
Renew.
Energy27,163–174.
https://doi.
org/10.
1016/S0960-1481(01)00193-8.
Skamarock,W.
,Klemp,J.
,Dudhia,J.
,Gill,D.
,Barker,D.
,Duda,M.
,Huang,X.
,Wang,W.
,Powers,J.
,2008.
ADescriptionoftheAdvancedResearchWRFVersion3,NCARTechnicalNote.
MesoscaleandMicroscaleMeteorologyDivision.
NationalCenterforAtmosphericResearch,Boulder.
Stull,R.
,1988.
AnIntroductiontoBoundaryLayerMeteorology.
KluwerAcademicPublishers,Dordrecht.
Tao,W.
,Simpson,J.
,1993.
Goddardcumulusensemblemodel.
PartI:modeldescription.
Terr.
Atmos.
Ocean.
Sci.
4,35–72.
Traiteur,J.
,Callicutt,D.
,Smith,M.
,Roy,S.
,2012.
Ashort-termensemblewindspeedforecastingsystemforwindpowerapplications.
J.
Appl.
Meteorol.
Climatol.
51,1763–1774.
https://doi.
org/10.
1175/JAMC-D-11-0122.
1.
Tymvios,F.
,Charalambous,D.
,Michaelides,S.
,Lelieveld,J.
,2018.
IntercomparisonofboundarylayerparameterizationsforsummerconditionsintheeasternMediterraneanislandofCyprususingtheWRF-ARWmodel.
Atmos.
Res.
208,45–59.
https://doi.
org/10.
1016/j.
atmosres.
2017.
09.
011.
Wang,Y.
,Yang,Y.
,Zhang,F.
,Yang,L.
,2013.
Improvetheforecastofsurface-layerwindinwindpowerfarmwithWRF-3DVAR.
Adv.
Mater.
Res.
724,480–484.
https://doi.
org/10.
4028/www.
scientific.
net/AMR.
724-725.
480.
Wang,C.
,Duan,Q.
,Gong,W.
,Ye,A.
,Di,Z.
,Miao,C.
,2014.
Anevaluationofadaptivesurrogatemodelingbasedoptimizationwithtwobenchmarkproblems.
Environ.
Model.
Softw.
60,167–179.
https://doi.
org/10.
1016/j.
envsoft.
2014.
05.
026.
Xiang,Y.
,Zhang,T.
,Liu,J.
,Lv,L.
,Dong,Y.
,Chen,Z.
,2019.
AtmosphereboundarylayerheightanditseffectonairpollutantsinBeijingduringwinterheavypollution.
Atmos.
Res.
215,305–316.
https://doi.
org/10.
1016/j.
atmosres.
2018.
09.
014.
Yang,B.
,Qian,Y.
,Lin,G.
,Leung,L.
R.
,Zhang,Y.
,2012.
Someissuesinuncertaintyquantificationandparametertuning:acasestudyofconvectiveparameterizationschemeintheWRFregionalclimatemodel.
Atmos.
Chem.
Phys.
12,2409–2427.
https://doi.
org/10.
5194/acp-12-2409-2012.
Yang,B.
,Qian,Y.
,Berg,L.
,Ma,P.
,Wharton,S.
,Bulaevskaya,V.
,Yan,H.
,Hou,Z.
,Shaw,W.
,2017.
Sensitivityofturbine-heightwindspeedstoparametersinplanetaryboundary-layerandsurface-layerschemesintheWeatherResearchandforecastingmodel.
Bound.
-LayerMeteorol.
162,117–142.
https://doi.
org/10.
1007/s10546-016-0185-2.
Zhang,D.
,Anthes,R.
A.
,1982.
Ahigh-resolutionmodeloftheplanetaryboundarylayer–sensitivitytestsandcomparisonswithSESAME-79data.
J.
Appl.
Meteorol.
21,1594–1609.
https://doi.
org/10.
1175/1520-0450(1982)0212.
0.
CO;2.
Z.
Di,etal.
AtmosphericResearch226(2019)1–1616
? ? ? ?创梦网络怎么样,创梦网络公司位于四川省达州市,属于四川本地企业,资质齐全,IDC/ISP均有,从创梦网络这边租的服务器均可以****,属于一手资源,高防机柜、大带宽、高防IP业务,另外创梦网络近期还会上线四川联通大带宽,四川联通高防IP,一手整CIP段,四川电信,联通高防机柜,CN2专线相关业务。成都优化线路,机柜租用、服务器云服务器租用,适合建站做游戏,不须要在套CDN,全国访问快...
久久网云怎么样?久久网云好不好?久久网云是一家成立于2017年的主机服务商,致力于为用户提供高性价比稳定快速的主机托管服务,久久网云目前提供有美国免费主机、香港主机、韩国服务器、香港服务器、美国云服务器,香港荃湾CN2弹性云服务器。专注为个人开发者用户,中小型,大型企业用户提供一站式核心网络云端服务部署,促使用户云端部署化简为零,轻松快捷运用云计算!多年云计算领域服务经验,遍布亚太地区的海量节点为...
今天早上相比很多网友和一样收到来自Linode的庆祝18周年的邮件信息。和往年一样,他们会回顾在过去一年中的成绩,以及在未来准备改进的地方。虽然目前Linode商家没有提供以前JP1优化线路的机房,但是人家一直跟随自己的脚步在走,确实在云服务器市场上有自己的立足之地。我们看看过去一年中Linode的成就:第一、承诺投入 100,000 美元来帮助具有社会意识的非营利组织,促进有价值的革新。第二、发...
38mmm.com为你推荐
小度商城小度怎么下载app?百度商城百度知道一般一天能挣多少钱?罗伦佐娜罗拉芳娜 (西班牙小姐)谁可以简单的介绍以下丑福晋八阿哥胤禩有几个福晋 都叫啥名儿呀钟神发战旗TV ID:新年快乐丶未央不见是哪个主播同ip站点同IP做同类站好吗?www.haole012.com012qq.com真的假的51sese.comwww.51xuanh.com这是什么网站是骗人的吗?www.765.com下载小说地址www.ijinshan.com桌面上多了一个IE图标,打开后就链接到009dh.com这个网站,这个图标怎么删掉啊?
免费域名解析 域名商 pw域名 iisphpmysql 日志分析软件 godaddy 火车票抢票攻略 线路工具 html空间 网站挂马检测工具 ibox官网 中国电信测速112 有奖调查 广州服务器 卡巴斯基免费试用 银盘服务 上海电信测速 什么是web服务器 国内域名 免费asp空间申请 更多