d1www.yyy13.com

www.yyy13.com  时间:2021-04-07  阅读:()
Volumexxx,1998numberyyypp.
000000Metro:measuringerroronsimpliedsurfacesP.
Cignoniy,C.
RocchinizandR.
ScopignoxIstitutoperl'Elaborazionedell'Informazione-ConsiglioNazionaledelleRicerche,Pisa,ItalyTechnicalNoteShortcontributionAbstractThispaperpresentsanewtool,Metro,designedtocompensateforadeciencyinmanysimplicationmethodsproposedinliterature.
Metroallowsonetocomparethedierencebetweenapairofsurfacese.
g.
atriangulatedmeshanditssimpliedrepresentationbyadoptingasurfacesamplingapproach.
Ithasbeendesignedasahighlygeneraltool,anditdoesnoassuptionontheparticularapproachusedtobuildthesimpliedrepresentation.
Itreturnsbothnumericalresultsmeshesareasandvolumes,maximumandmeanerror,etc.
andvisualresults,bycoloringtheinputsurfaceaccordingtotheapproximationerror.
Keywords:surfacesimplication,surfacecomparison,approximationerror,scanconversion.
1.
IntroductionManyapplicationsproduceormanageextremelycom-plexsurfacemeshese.
g.
volumerendering,solidmod-eling,3Drangescanning.
Excessivesurfacecomplex-itycausesnoninteractiverendering,secondarytomainmemorybottleneckswhilemanaginginteractivevisualsimulations,ornetworksaturationin3Ddis-tributedmulti-mediasystems.
Inspiteofthecon-stantincreaseinprocessingspeed,theperformancesrequiredbyinteractivegraphicsapplicationsareinmanycasesmuchhigherthanthosegrantedbycur-renttechnology.
Substantialresultshavebeenreportedinthelastfewyears,aimedatreducingsurfacecomplexitywhileas-suringagoodshapeapproximation13;6.
Thetech-niquesproposedsimplifytriangularmesheseitherbymergingcollapsingelementsorbyre-samplingver-tices,usingdierenterrorcriteriatomeasurethet-nessoftheapproximatedsurfaces.
Anylevelofre-ductioncanbeobtainedwiththeseapproaches,ontheconditionthatasucientlycoarseapproximationthresholdissetanexampleisdrawninFigure1.
yEmail:cignoni@iei.
pi.
cnr.
itzEmail:rocchini@calpar.
cnuce.
cnr.
itxEmail:r.
scopigno@cnuce.
cnr.
itAgeneralcomparisonofthesimplicationap-proachesisnoteasy,becausethecriteriatodrivethesimplicationprocessarehighlydierentiatedandthereisnocommonwayofmeasuringerror;anat-tempthasbeenrecentlypresented3.
Infact,manysimplicationapproachesdonotreturnmeasuresoftheapproximationerrorintroducedwhilesimplifyingthemesh.
Forexample,giventhecomplexityreductionfactorsetbytheuser,somemethodstrytooptimize"theshapeofthesimpliedmesh,buttheygivenomea-sureontheerrorintroduced18;9;8.
Otherapproacheslettheuserdenethemaximalerrorthatcanbein-troducedinasinglesimplicationstep,butreturnnoglobalerrorestimateorbound17;7.
Someotherre-centmethodsadoptaglobalerrorestimate10;15;2;5orsimplyensuretheintroducederrortobeunderagivenbound4.
Buttheeldofsurfacesimplicationstilllacksaformalanduniversallyacknowledgedde-nitionoferror,whichshouldinvolveshapeapproxi-mationandhopefullypreservationoffeatureelementsandmeshattributese.
g.
color.
Forthesereasons,ageneraltoolthatwouldmea-suretheactualgeometricdierence"betweentheoriginalandthesimpliedmesheswouldbestrategicbothforresearchers,inthedesignofnewsimplica-tionalgorithms,andforusers,toallowthemtocom-paretheresultsofdierentsimplicationapproachescTheEurographicsAssociation1998.
PublishedbyBlackwellPublishers,108CowleyRoad,OxfordOX41JF,UKand238MainStreet,Cambridge,MA02142,USA.
2P.
Cignoni,C.
RocchiniandR.
ScopignoMetro:measuringerroronsimpliedsurfacesFigure1:Ameshsimplicationexample:theoriginalmesh7,960trianglesisontheleft,asimpliedone179trianglesisontheright.
onthesamemeshandtochoosethesimplicationmethodthatbestts"thetargetmesh.
Infact,evenboundedprecisionmethods10;15;2;5;4behavedier-entlyondierentmeshes.
Theygenerallyensuretheuserthattheapproximationwillnotbelargerthanagiventhreshold,butdinotgivedataontheactualerrordistributiononthemesh.
Anexampleisthefol-lowingquery:aretheresectionsofthemeshwhichholdanapproximationmuchbetterthanthegivenboundAnd,ifyes,whatistheirsizeanddistributionMetrohasbeendenedasatoolwhichisgeneralandsimpletoimplement.
Itcomparesnumericallytwotrianglemeshes,whichdescribethesamesurfaceatdierentlevelsofdetailLOD.
Metrorequiresnoknowledgeonthesimplicationapproachadoptedtobuildthereducedmesh.
Metroevaluatesthedierencebetweentwomeshes,onthebasisoftheapproximatedistancedenedinthefollowingsection.
2.
TerminologyWedeneheresometermsthatwillbeusedinthefollowingsectionactually,allthemeasuresevaluatedbyMetrofollowthedenitionsbelow.
Theapproximationerrorbetweentwomeshesmaybedened,asfollows,asthedistancebetweencor-respondingsectionsofthemeshes.
GivenapointpandasurfaceS;wedenethedistanceep;Sas:ep;S=minp02Sdp;p0wheredistheEuclideandistancebetweentwopointsinE3.
Theone-sideddistancebetweentwosurfacesS1;S2isthendenedas:ES1;S2=maxp2S1ep;S2:Notethatthisdenitionofdistanceisnotsymmetric.
ThereexistsurfacessuchthatES1;S26=ES2;S1.
Atwo-sideddistanceHausdordistancemaybeobtainedbytakingthemaximumofES1;S2andES2;S1.
Givenasetofuniformlysampleddistances,wede-notethemeandistanceEmbetweentwosurfacesasthesurfaceintegralofthedistancedividedbytheareaofS1:EmS1;S2=1jS1jZS1ep;S2dsIfthesurfaceS1isorientablewecanextendthedenitionofdistancebetweenapointpofS1andS2sothat,informallyspeaking,thisdistancee0ispositiveifthenearestpointp02S2isintheouterspacewithrespecttoS1,andnegativeotherwiseseeFigure2.
Or,inotherwords,ifNpisthevectornormaltoS1inthesampledpointpandp02S2isthenearestpoint,thenthesignofourdistancemeasureisthesignofNpp0,p.
ThisdenitionofsigneddistanceisintroducedtoletMetrodistinguishbetweenpositiveandnegativedis-tancesbetweentwosurfacesasfollows:E+S1;S2=maxp2S1e0p;S2cTheEurographicsAssociation1998P.
Cignoni,C.
RocchiniandR.
ScopignoMetro:measuringerroronsimpliedsurfaces3||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||p2p1d1d2S1S2Figure2:Signeddistanceevaluation;distanceisposi-tiveinp1andnegativeinp2S1isthesampledcurve.
E,S1;S2=jminp2S1e0p;S2jSigneddistancesareusedbyMetrotogiveaninde-pendentevaluationtothesectionsoftherstmeshwhichareintheinteriororintheexteriorspacewithrespecttothesecondmesh.
3.
TheMetroToolMetronumericallycomparestwotrianglemeshesS1andS2,whichdescribethesamesurfaceatdierentlevelsofdetail.
Itrequiresnoknowledgeofthesimpli-cationapproachadoptedtobuildthereducedmesh.
Metroevaluatesthedierencebetweenthetwomeshesonthebasisoftheapproximationerrormeasurede-nedintheprevioussection.
Itadoptsanapproximateapproachbasedonsurfacesamplingandthecomputa-tionofpointtosurfacedistances.
Thesurfaceoftherstmeshhereafterpivotmeshissampled,andforeachelementarysurfaceparcelwecomputethedis-tancetothenotpivotmesh.
Theideaisthereforetoadoptanintegrationprocessoverthesurface.
Surfacesamplingisachievedbyscanconvertingtriangularfacesunderauser-selectedsam-plingresolution.
Thesamplingresolutioncharacterizestheprecisionoftheintegration,andweobservedthatinmostcasesasucientlythinsamplingstepsizeis0.
1oftheboundingboxdiagonal.
WealsoimplementedaMontecarloapproachgener-aterandomkpointsintheinteriorofeachface,withthenumberkofsamplesproportionaltothefacetarea,whichgavesimilarresultsintermsofprecision.
Moreover,theadoptionofMontecarlosamplingmakesnotpossibletheerrorvisualizationviaerror-texturemapping,becausethelatterrequiresaregular,rastersampling.
InanearlyversionofourtoolMetrov.
1aray-castingapproachwasadoptedtocomputepointtosurfacedistances.
InordertoimproveperformancesandprecisionweadoptedadierentapproachinthecurrentreleaseofMetro,v.
2.
Distancesfromthesam-plingpointandthenon-pivotmesharenowcomputedecientlybyusingabucketeddatastructure.
UniformgridUGtechniquesareveryeectiveingeometriccomputationsbecauseinmanycaseselementswhicharefarapartgenerallyhavelittleornoeectoneachother1.
Localprocessingcan,therefore,highlyreduceempiricalcomplexityformanygeometricproblems.
A3DuniformgridisusedinMetrov.
2asanindexingschemeforthefastsearchofthenearestfacetothesamplingpoint.
TheboundingboxofmeshS2ispar-titionedintocubiccellsfollowingaregularpattern.
Then,westoreineachcellcijkthelistoffacesofS2whichintersectcijk.
Foreachsamplingpointp,rstlywecomputethedistancebetweenpandallthefacesofthenon-pivotmeshS2containedinthesamegridcellofp.
Then,adjacentgridcellsareprocessed,inorderofincreasingdistancefromp,untilwendthatallnottestedcellsarefartherthanthecurrentnearestface.
ThedistancebetweenpandasinglefaceofS2iscom-putedusinganoptimizedalgorithmcontainedinthesourcecodeofthePOVray-tracer12.
Thestrategyadoptedimpliesthatuniquenessofthenearestpointisnotensured.
Accordingtothedeni-tioninSection2,wemightndmultiplefacesatmin-imaldistancefromthecurrentsamplingpoint.
But,ifwearelookingforunsignedapproximationerror,thenuniquenessisnotaproblembecauseweareinterestedonlyinthevalueofthisdistance.
Conversely,inthecaseofsignedapproximationerrorevaluation,havingpointsatthesamedistancebutholdingdierentsignforcesMetrotooperatearandomchoiceandintro-ducesapotentialimprecision.
TheworstcasecomputationalcomplexityofMetrodependsonthesurfaceareaAS1ofthepivotmeshmeasuredinsquaredsamplingstepunitstimesthenumbernfoffacesofthenon-pivotmesh.
Theresult-ingcomplexityisOAS1nf.
But,ifweuseanUG,thenwecanexpectthatamuchlowernumberoffaceswillbetestedtocomputetheminimaldistanceforeachsamplingpoint.
Wemeasuredinanumberofrunsthatthemeannumberoffacesevaluatedforeachsam-plingpointisonlyfewtensaspresentedinTable1.
InTable1wereportalsotherunningtimesandthenumberofsamplesexecutedbyMetroonthreedier-entpairsofmeshes.
Timesareinseconds,measuredonaSGIO2workstationR5000180Mhz,96MBRAM.
AnoptionisprovidedbyMetrotocomputeasym-metricevaluationofthemaximalerror.
AttheendcTheEurographicsAssociation19984P.
Cignoni,C.
RocchiniandR.
ScopignoMetro:measuringerroronsimpliedsurfacesS1S2samplingstepsamplesno.
testedfacesno.
timefacesno.
facesno.
persamplesec.
4,00169,4510.
2365,30730.
3292,86728,3220.
1540,66729.
324.
76,36967,6070.
11,670,42024.
889.
8Table1:Numberofsamplingpoints,samplingstepsize,timeandnumberoffacestestedpersampleonthreedierentmeshes.
ofthesamplingprocess,ifthe,soptionisset,thenMetroswitchesthepivotandnotpivotmeshesandexecutessamplingagain.
Givenasamplingstep,themeshmaycontaintrian-gleswhichhaveanareasmallerthanthesquaredsam-plingstep.
Metromanagesthisspecialcasebyadopt-ingarandomchoice:arandomvariableisgenerated,withtheprobabilityofitsTRUEvalueequaltothera-tiobetweenthetriangleareaandthesquaredsamplearea.
IftherandomvalueisTRUE,asinglepointtosurfacedistanceiscomputed;otherwise,Metrostartsthescanconversionofthenextface.
MetroInputMetrohasacommand-lineinputinterface.
Theop-tionsavailableareshown,asusual,bytyping:metro-h.
TheoptionsavailableareshowninFigure3.
ThedataformatsacceptedininputareeithertheOpenInventor19formatorarawindexedrepresen-tationalistofvertexcoordinates,andalistoftrian-gularfaces,denedbythethreeindicestothevertexlist.
Thetwomeshesshouldhavesimilarshapesasinmul-tiplelevelofdetailrepresentation.
Iftheshapesdiertoomuch,withthedisappearanceofsignicantfea-tures,thecomputationoftheerrormightbelocallyimprecise.
Metroconsidersexcessivethedierencebe-tweentwomeshesiftheirboundingboxdiagonalsdif-ferinlengthbymorethan10.
Ifthesurfacestobecomparedarenotorientableormultiple-connected,thenitwouldbeimpossibletodis-tinguishbetweenpositiveandnegativeerrorsi.
e.
ifthelowdetailmeshpassesbeloworabovethehighdetailmesh.
MetroOutputMetroreturnsbothnumericalandvisualevaluationsofsurfacemesheslikeness"Figure5showsasnap-shotofitsGUI.
TheformatofthenumericalresultsisreportedinFigure4.
Itcontainsdataoninputmeshescharacteris-ticstopology,size,surfacearea,meshvolume,featureedgestotallength,diagonaloftheminimalbound-ingbox,diameteroftheminimalboundingsphere;themeanandmaximumdistancesbetweenmeshesreturnedusingabsolutemeasuresandasapercent-agesofthediagonalofthemeshboundingbox;andaveryroughapproximationofthepositive,negativeandtotalvolumeofthedierencebetweenthetwomeshesi.
e.
thetotalvolumeVtisthevolumeofS1,S2S2,S1.
Allthepositivenegativemeasuresfollowstheden-itionsinSection2,andcanbecomputedonlyiftheinputsurfacesareorientableandsingle-connected.
Errorisalsovisualizedbycoloringthepivotmeshwithrespecttotheevaluatedapproximationerror.
Twodierentcolormappingmodalitiesareavailable:per-vertexmapping:foreachvertex,wecomputetheerroroneachmeshvertexasthemeanoftheer-rorsontheincidentfaces,andassignacolorpro-portionaltothaterror.
Thefacesarethencoloredbyinterpolatingvertexcolors;error-texturemapping:foreachface,argb-textureiscomputedwhichstoresthecolor-codederrorseval-uatedoneachsamplingpointmappedonacolorscale.
Theerror-texturemappingapproachgivesvisualre-sultswhichingeneralaremoreprecise,butwhosevi-sualizationdependsonthesamplingstepsizeusedbyMetro.
SeeforexampleinFigure6thedierentvisualrepresentationofthesamemeshzone.
Inbothcases,ahistogramreportingtheerrordistrib-utionisalsovisualizedontheleftoftheMetrooutputwindowFigure5.
Whentheerror-texturemappingisused,wecanalsovisualizetheerrorbyconsideringitssign:zeroerrormapstogreen,negativeandpositivetoredandblueseeFigure7.
LimitednumericalprecisionmanagementTheerrorevaluatedbyMetromaybeaectedbythelimitednumericalprecision,althoughdoubleprecisionisadoptedinnumericalcomputations.
Anadhoc"managementhasbeenprovidedforanumberofdan-gerouscases,suchasnearlycoincidentvertices,facetscTheEurographicsAssociation1998P.
Cignoni,C.
RocchiniandR.
ScopignoMetro:measuringerroronsimpliedsurfaces5Usage:Metrofile1file2-a-e-h-l-s-r-q|v-b|bs|tfile1,file2:inputmeshestobecompared;-acreaseanglesettingforfeatureedgesdetectionandclassification.
Theanglevalue""isgivenindegrees,from0alledgesareclassified'featureedge'to180degrees.
itisusedtomeasurethetotallengthofthefeatureedges;-bshowerrorusing"error-texture"modeDEFAULTis"per-vertex"mode-bsshowerrorusing"signederror-texture"modegreen==error=0;-esetthemaximalabsoluteerrorinthehistogramscaleandcolormapping;itisusefultocomparevisuallytheresultsoftwodifferentrunsofMetro;-hshowtheMetrocommandsyntaxandtheoptionsavailable;-lselectthescanconversionstepvalue"":percentageofthemeshboundingbox;-quse"quiet"i.
e.
verysyntheticoutput;-ruse"Montecarlo"samplingDEFAULT:usescanconversion;-scomputesymmetricmaximumdistancedoublerun;-tsettextmodeonly,donotvisualizeresultsunderOpenInventor;-vverboseoutput.
Example:metro-vmeshcomp.
ivmesh.
iv-l0.
5-a45Figure3:Metroinputoptions.
Figure5:TheMetrographicoutputwindow.
withsmallarea,andveryelongatedtriangles.
Anotherproblemmaybethecomputationofthesumofhundredsofthousandsofnearlyzerovalues.
Tomin-imizeroundingerrorsinthecomputationofthesum,weusedafaninalgorithmbinarytreestructuredsum11.
4.
ConcludingRemarksWehaveintroducedanewtool,Metro,toallowsim-plecomparisonsbetweensurfaces.
Itsmainuseisintheevaluationoftheerrorintroducedinthesimpli-cationofsurfaces.
Metroreturnsbothnumericalandvisualevaluationsofthemeshes'likeness.
Thesemea-suresarecomputedusinganerrordenedasanap-cTheEurographicsAssociation19986P.
Cignoni,C.
RocchiniandR.
ScopignoMetro:measuringerroronsimpliedsurfacesFigure6:Dierentcolormappingmodality:per-vertexmappingontheleft,anderror-texturemappingontheright.
proximationofthesurfacetosurfacedistance.
Theerrorisevaluatedby:1scanconvertingtherstmeshfaceswithauserspeciedsamplingstep,and2computingapointtosurfacedistanceforeachscanconvertedpoint.
Thetooladoptswellknowntechniquesandcanbesimplyimplemented.
WetestedwithMetrothesimpliedmeshesob-tainedwithsomepublicdomainsoftware.
Inthecaseofaboundedprecisionmethod,theSimplicationEn-velopes4,weobtainederrorvaluesverysimilartothethresholdset;ingeneral,aslightlylowererrorismea-sured:0.
759forameshsimpliedundertargeterror0.
77,or0.
0884fortherelativetargeterror0.
0895.
ButtheaddedvalueofMetrointhecaseofaboundederrormethodistogivethepossibilitytoviewthedistribu-tionoftheerroronthemeshFigure5.
Animportantpointtobeconsideredintheeval-uationofasurfacesimplieristowhatextentitpreservesfeatureedges.
ThecurrentimplementationofMetrodetectsfeatureedgesandreturns,foreachmesh,theirtotallength.
Butthismaynotbesu-cient:eventwomesheswithnearlyequaltotallengthofthefeatureedgesmightdieralot.
Metrocouldbeeasilyextendedtogetridofthislim-itation.
GiventwosetoffeatureedgesF1andF2,wemightapplyagainasamplingapproach.
Foreachfea-tureedgee2F1andeachsamplingpointspi2e,letusevaluatetheminimaldistancebetweenpiandtheedgesinF2.
Theseminimaldistancescanthenbeusedtocomputethemaximumandmeandisplacementsbe-tweenthesetoffeatureedgesoralsothemaximumandmeananglesbetweenpairsofcorrespondingfea-tureedges.
AlimitationofMetroregardsthetopologychangesthatsomesimplicationalgorithmscanintroduceinthesimpliedsurfaces5;14;16.
Metrocanonlypar-tiallycoverthisissue.
Itreturnsthenumberofcon-nectedcomponentsofeachmeshandalsoiftheyareorientableandclosed,andthereforeinmanycaseswemaydetectifatopologychangehasoccurred.
Butamoresophisticatedapproachisneededtodetecteachsinglechangeoftopologyandtomeasuretheassoci-atedimpactonmeshesdisparity.
5.
AcknowledgementsMetrov.
2isavailableaspublicdomainsoft-wareattheVisualComputingGroupwebsiteoftheCNUCEandIEI,C.
N.
R.
InstitutesatPisahttp:miles.
cnuce.
cnr.
itcgmetro.
html.
ThisworkwaspartiallynancedbytheProgettoFi-nalizzatoBeniCulturalioftheItalianNationalRe-searchCouncilCNR.
References1.
V.
Akman,W.
R.
Franklin,M.
Kankanhalli,andC.
Narayanaswami.
Geometriccomputinganduniformgridtechnique.
Computer-AidedDesign,217:410420,Sept.
1989.
2.
A.
Ciampalini,P.
Cignoni,C.
Montani,andR.
Scopigno.
Multiresolutiondecimationbasedonglobalerror.
TheVisualComputer,135:228246,June1997.
3.
P.
Cignoni,C.
Montani,andR.
Scopigno.
Acom-parisonofmeshsimplicationalgorithms.
Com-putersAndGraphics,221:3754,1998.
cTheEurographicsAssociation1998P.
Cignoni,C.
RocchiniandR.
ScopignoMetro:measuringerroronsimpliedsurfaces7Mesh1Mesh2Orientable.
|yes|yes|2Manifold.
.
|yes|yes|Closed.
.
.
.
.
|no|no|Vertices.
.
.
|115|4079|Triangles.
.
|179|7960|Conn.
Comp.
|1|1|BBoxDiag.
.
|345.
234|345.
842|Diameter.
.
.
|330.
88|329.
457|EdgeLength|1628.
01|198.
537|Area.
78732.
6|78702.
8|Volume.
.
.
.
.
|NA|NA|Mesh1Mesh2Samples.
.
.
.
|2462768|MaximalErrorE+.
.
:3.
33140.
96491.
0068E-.
.
:3.
20040.
92700.
9672MeanErrorE+.
.
:0.
82710.
23950.
2499E-.
.
:0.
89030.
25780.
2690Et.
.
:0.
86360.
25010.
261MeanSquareErrorE+.
.
:1.
06220.
30760.
3210E-.
.
:1.
12580.
32610.
3402Et.
.
:1.
09940.
31840.
3322VolumeofDifference-----+V+.
.
:2.
86346e+10V-.
.
:5.
75679e+10Vt.
.
:1.
67459e+11LEGEND:Conn.
Comp.
=no.
ofconnectedcomponentsDiameter=isanapproximatemeasureEdgeLength=total,FEATUREedgesonlySamples=no.
ofsamplingpointsevaluatedFigure4:NumericalresultsproducedbyMetroonthemeshesinFigure1inthiscasetheVolumemeasureisnotavailablebecausethemeshesarenotclosed.
4.
J.
Cohen,A.
Varshney,D.
Manocha,G.
Turk,H.
Weber,P.
Agarwal,F.
Brooks,andW.
Wright.
Simplicationenvelopes.
InComputerGraphicsProc.
,AnnualConf.
SeriesSiggraph'96,ACMPress,pages119128,Aug.
6-81996.
5.
M.
GarlandandP.
S.
Heckbert.
Surfacesimplica-tionusingquadricerrormetrics.
InComp.
Graph.
Proc.
,AnnualConf.
SeriesSiggraph'97,ACMPress,pages209216,1997.
6.
P.
HeckbertandM.
Garland.
Surveyofsur-facesimplicationalgorithms.
Technicalreport,CarnegieMellonUniversity-Dept.
ofComputerFigure7:Colormaybemappedconsideringthesignoftheerrori.
e.
thesignoftheevaluateddistance,denedonlyfororientablemeshes.
Science,1997.
toappear.
7.
P.
HinkerandC.
Hansen.
Geometricoptimiza-tion.
InIEEEVisualization'93Proc.
,pages189195,October1993.
8.
H.
Hoppe.
Progressivemeshes.
InACMCom-puterGraphicsProc.
,AnnualConferenceSeries,Siggraph'96,pages99108,1996.
9.
HuguesHoppe,TonyDeRose,TomDuchamp,JohnMcDonald,andWernerStuetzle.
Meshop-timization.
InACMComputerGraphicsProc.
,AnnualConferenceSeries,Siggraph'93,pages1926,1993.
10.
R.
Klein,G.
Liebich,andW.
Straer.
Meshreductionwitherrorcontrol.
InR.
YagelandG.
Nielson,editors,ProceedingsofVisualization`96,pages311318,1996.
11.
PeterLinz.
Accurateoating-pointsumma-tion.
CommunicationsoftheACM,136:361362,June1970.
12.
POV-Team.
Persistenceofvisionraytracer3.
0.
Publiclyavailableonweb:http:www.
povray.
org,1996.
13.
E.
PuppoandR.
Scopigno.
Simplication,LOD,andMultiresolution-PrinciplesandAp-plications.
InEUROGRAPHICS'97TutorialNotesISSN1017-4656.
EurographicsAssocia-tion,Aire-la-VilleCH,1997PS97TN4.
14.
M.
Reddy.
Scrooge:Perceptually-drivenpolygoncTheEurographicsAssociation19988P.
Cignoni,C.
RocchiniandR.
ScopignoMetro:measuringerroronsimpliedsurfacesreduction.
ComputerGraphicsForum,154:191203,1996.
15.
R.
RonfardandJ.
Rossignac.
Full-rangeap-proximationoftriangulatedpolyhedra.
Com-puterGraphicsForumEurographics'96Proc.
,153:6776,1996.
16.
J.
RossignacandP.
Borrel.
Multi-resolution3Dapproximationforrenderingcomplexscenes.
InB.
FalcidienoandT.
L.
Kunii,editors,GeometricModelinginComputerGraphics,pages455465.
SpringerVerlag,1993.
17.
WilliamJ.
Schroeder,JonathanA.
Zarge,andWilliamE.
Lorensen.
Decimationoftrianglemeshes.
InEdwinE.
Catmull,editor,ACMCom-puterGraphicsSIGGRAPH'92Proceedings,volume26,pages6570,July1992.
18.
GregTurk.
Re-tilingpolygonalsurfaces.
InEd-winE.
Catmull,editor,ACMComputerGraphicsSIGGRAPH'92Proceedings,volume26,pages5564,July1992.
19.
JosieWernecke.
TheInventormentor:program-mingObject-oriented3DgraphicswithOpenIn-ventor.
AddisonWesley,1994.
cTheEurographicsAssociation1998

安徽BGP云服务器 1核 1G 5M 29元/月 香港云服务器 1核 1G 19元首月 麻花云

麻花云怎么样?麻花云公司成立于2007年,当前主打产品为安徽移动BGP线路,数据中心连入移动骨干网。提供5M,10M大带宽云主机,香港云服务器产品,数据中心为香港将军澳机房,香港宽频机房 cn2-GIA优质线路、采用HYPER-V,KVM虚拟技术架构一、麻花云官网点击直达麻花云官方网站合肥网联网络科技有限公司优惠码: 专属优惠码:F1B07B 享受85折优惠。最新活动 :双11 云上嗨购 香港云主...

小渣云(36元/月)美国VPS洛杉矶 8核 8G

小渣云 做那个你想都不敢想的套餐 你现在也许不知道小渣云 不过未来你将被小渣云的产品所吸引小渣云 专注于一个套餐的商家 把性价比 稳定性 以及价格做到极致的商家,也许你不相信36元在别人家1核1G都买不到的价格在小渣云却可以买到 8核8G 高配云服务器,并且在安全性 稳定性 都是极高的标准。小渣云 目前使用的是美国超级稳定的ceranetworks机房 数据安全上 每5天备份一次数据倒异地 支持一...

易探云:香港物理机服务器仅550元/月起;E3-1230/16G DDR3/SATA 1TB/香港BGP/20Mbps

易探云怎么样?易探云(yitanyun.com)是一家知名云计算品牌,2017年成立,从业4年之久,目前主要从事出售香港VPS、香港独立服务器、香港站群服务器等,在售VPS线路有三网CN2、CN2 GIA,该公司旗下产品均采用KVM虚拟化架构。目前,易探云推出免备案香港物理机服务器性价比很高,E3-1230 8 核*1/16G DDR3/SATA 1TB/香港BGP线路/20Mbps/不限流量,仅...

www.yyy13.com为你推荐
h连锁酒店全国比较有名的连锁酒店?中老铁路老挝磨丁经济特区的前景如何?地图应用哪个手机定位软件最好用?巨星prince去世Whitney Houston因什么去世的?老虎数码虎打个数字www.20ren.com求此欧美艳星名字http://www.sqsmm.com/index.php?album-read-id-1286.html地陷裂口造成地陷都有哪些原因?lunwenjiancepaperrater论文检测准确吗同ip域名两个网站同一个IP怎么绑定两个域名www.7788dy.com回家的诱惑 哪个网站更新的最快啊
域名服务 免费域名解析 冰山互联 主机 webhosting softbank官网 java空间 admit的用法 申请网页 服务器硬件防火墙 安徽双线服务器 raid10 空间首页登陆 网站加速软件 德讯 wordpress中文主题 cdn网站加速 镇江高防 如何登陆阿里云邮箱 网络速度 更多