Nascentkkk755.com

kkk755.com  时间:2021-04-07  阅读:()
ChaperoneInteractionsattheRibosomeElkeDeuerling,MartinGamerdinger,andStefanG.
KreftMolecularMicrobiology,DepartmentofBiology,UniversityofKonstanz,78464Konstanz,GermanyCorrespondence:elke.
deuerling@uni-konstanz.
deThecontinuousrefreshmentoftheproteomeiscriticaltomaintainproteinhomeostasisandtoadaptcellstochangingconditions.
Thus,denovoproteinbiogenesisbyribosomesisvitallyimportanttoeverycellularsystem.
Thisprocessisdelicateanderror-proneandrequires,besidescytosolicchaperones,theguidancebyaspecializedsetofmolecularchaperonesthatbindtransientlytothetranslationmachineryandthenascentproteintosupportearlyfoldingeventsandtoregulatecotranslationalproteintransport.
Thesechaperonesincludethebacterialtriggerfactor(TF),thearchaealandeukaryoticnascentpolypeptide-associatedcomplex(NAC),andtheeukaryoticribosome-associatedcomplex(RAC).
Thisreviewfocusesonthestructures,functions,andsubstratesoftheseribosome-associatedchaperonesandhighlightsthemostrecentfindingsabouttheirpotentialmechanismsofaction.
Thelifeofeveryprotein,irrespectiveofitsfunctionororigin,startsbyitsmessengerRNA(mRNA)-templatedtranslationonribo-somes.
Uponsynthesisbyribosomes,theemerg-ingpolypeptidechainsdirectlystarttheirfold-ingprogramintotheuniquethree-dimensional(3D)structuretobecomebiologicallyactive.
However,aboutone-thirdofnewlymadepro-teinsarecotranslationallytransportedtoanoth-erdestinationbeforefolding,forexample,totheendoplasmicreticulum(ER).
Thedenovofold-ingandtransportofproteinsisproblematicbecausehydrophobicresiduesofunfoldedpoly-peptidechainsareaccessible,whichenhancestheprobabilitythatthenewlysynthesizedpro-teinsfollowanunproductiveoffpathwayleadingtomisfoldingandaggregationorprematuredeg-radation(DeuerlingandBukau2004;Hartletal.
2011;Balchinetal.
2016).
Moreover,alargefrac-tionofnewproteinsarecotranslationallymodi-ed,forexample,byamino-terminalacetylationor/andcleavageoftheamino-terminalmethio-nine.
Thus,differentfactorsactcotranslationallyonnascentchainsassuminglyinahighlyspecicandcoordinatedmanner,bothtemporallyandspatially,toensurethefunctionalityofthetrans-latome(Krameretal.
2009;Gamerdinger2016).
Toaccomplishproductivefoldingandtransportandtopreventoffpathways,newlysynthesizedpolypeptidesinteractwithribosome-associatedchaperonesthatpreventinappropriateinter-andintramolecularinteractionsandthuspro-motetransportand/orfoldingintothenativestate.
Ribosome-associatedchaperonesarefoundineverycellbutdiffersignicantlyamongthedifferentkingdomsoflifewithregardtotheirstructureandmechanismofaction.
Whereasprokaryoteshaveonlyoneribosome-associatedchaperone,whichiscalledtriggerfactor(TF),eukaryotesusetwodifferentTF-unrelatedchaperonesystemsattheribosome(Fig.
1),theconservedheterodimericnascentpolypeptide-Editors:RichardI.
Morimoto,F.
UlrichHartl,andJefferyW.
KellyAdditionalPerspectivesonProteinHomeostasisavailableatwww.
cshperspectives.
orgCopyright2019ColdSpringHarborLaboratoryPress;allrightsreservedAdvancedOnlineArticle.
CitethisarticleasColdSpringHarbPerspectBioldoi:10.
1101/cshperspect.
a0339771onMarch8,2019-PublishedbyColdSpringHarborLaboratoryPresshttp://cshperspectives.
cshlp.
org/Downloadedfromassociatedcomplex(NAC)andaspecializedHsp70/Hsp40dimericchaperonesystemcalledribosome-associatedcomplex(RAC).
RACactsasacofactorforanadditionalribosome-attachedHsp70partnerinyeast(calledSsb)oracytosolicHsp70inhighereukaryotes(DeuerlingandBukau2004;Hartletal.
2011;PreisslerandDeuerling2012).
Recentanalysesofthenascentinteractomeofthesechaperonessuggestthattheyactonalmosteverynewproteinsynthesizedwithonlyafewexceptions(seebelow).
Asubsetofnewlysynthesizedproteinsbindtoothercyto-solicchaperones,forexample,Hsp70orHsp60familymembers,laterduringsynthesisorafterthereleasefromribosomesforfurtherassistanceoftheirdenovofoldingprogram(forreview,seeBuskiewiczetal.
2004;Hartletal.
2011;PreisslerandDeuerling2012).
THERIBOSOMEASPARTNERINCRIMETheribosomeisalargeribonucleoproteinpar-ticleof2.
4MDainbacteriaand4MDaineukaryotes(Steitz2008;Jenneretal.
2012;Klingeetal.
2012).
Itconsistsoftwosubunitsinallorganisms,asmallsubunit(30Sinbacte-ria,40Sineukaryotes)andalargesubunit(50Sinbacteria,60Sineukaryotes).
Fourfunctionalfeaturesareintrinsictoribosomes(Fig.
2A):Therstfeatureisthedecodingcenter,whichen-suresselectionofthecorrectaminoacyl-transferRNA(tRNA)speciedbythecodoninthemRNA.
Thedecodingcenterliesinthesmallsubunitandrecognizesthegeometryofco-don–anticodonbasepairingandstericallydis-criminatesagainstmismatches(SchmeingandRamakrishnan2009).
Thesecondfeaturerepre-sentsthepeptidyl-transferasecenter(PTC),theactivesiteoftheribosomewherepeptidebondformationoccurs.
ThePTCislocatedinacleftwithinthesubunitinterfacewithinthelargeri-bosomalsubunit.
Athirdfeatureistheribosom-altunnelinsidethelargesubunit.
Withalengthof80–100andadiameterof10atitsnarrowestpointand20atitswidestpointitconnectsthePTCwiththeribosomeexitsite50S60S60STriggerfactor30S40SYeastProkaryotesEukaryotesMammals40SMPP11RACRACNACNACSsbHsp70Hsp70L1Ssz1Zuo1Figure1.
Ribosome-bindingchaperones.
Theconceptofribosome-associatedchaperonesthatassistdenovoproteinfoldingisconservedinprokaryotesandeukaryotes,albeitrealizedbydifferenttypesofchaperones.
The30Sor40Sribosomalsubunitisschematicallydrawnindarkgrayandthe50Sor60Ssubunitinmiddleandlightgray,indicatingthatthe50S/60Sisslicedinhalftoillustratetheinteriorwiththeribosomaltunnel.
Thenascentpolypeptide(orange)attachedtoatransferRNA(tRNA)intheP-sitemigratesthroughthetunnelandinteractswithchaperoneswhenitleavestheribosomeattheexitsite.
Inprokaryotes(left),asinglechaperonecalledtriggerfactor([TF],red)bindstransientlytotheribosometowelcomenascentpolypeptides.
Ineukaryotes(right),tworibosome-associatedchaperonesystemsexist:theheterodimericnascentpolypeptide-associatedcomplex([NAC],showninpinkandpurple)andtheribosome-associatedcomplex([RAC],showninyellowandlightgreen),whichconsistsofSsz(lightgreen)andZuotin(Zuo,yellow)inyeastandtheZuo-homologMPP11(yellow)anditscomplexpartnerHsp70L1(lightgreen)inmammals,respectively.
Restrictedtofungi,theHsp70Ssb(darkgreen)additionallybindstoribosomesandactsonnascentpolypeptides,whereasinmammalsRAC(MPP11/Hsp70L1)recruitacytosolicHsp70(darkgreen)tobindtonascentpolypeptides.
E.
Deuerlingetal.
2AdvancedOnlineArticle.
CitethisarticleasColdSpringHarbPerspectBioldoi:10.
1101/cshperspect.
a033977onMarch8,2019-PublishedbyColdSpringHarborLaboratoryPresshttp://cshperspectives.
cshlp.
org/Downloadedfrom(WilsonandBeckmann2011).
ThetunnelwallispredominantlycomposedofribosomalRNA(rRNA)andonlyfewribosomalproteins.
TheribosomalproteinsuL4anduL22contributetothetunnelwallandforma10narrowcon-striction30fromthePTC.
ThehighcontentofrRNAgivesthetunnelanoverallelectroneg-ativepotential.
Oncethoughtofasamerelypas-siveconduit,thetunnelisnowacknowledgedtoplayanimportantroleinproteinbiogenesis,forexample,incontextofarrestsequences,whichtriggerPTCinactivationaswellasformingasecludedenvironmentinwhichrstfoldingeventsofthenascentpolypeptidetakeplace,mostlytheformationofα-helicalelements(Wil-sonandBeckmann2011).
Thefactor-bindingplatformcenteredaroundthetunnelexitrepre-sentsthefourthfunctionalfeatureoftheribo-some(Fig.
2B).
ItcomprisesseveralribosomalproteinsandrRNAelementsandconstitutesthebindingsitesforvariousribosome-associatedfactorsthatactonnascentpolypeptidesinclud-ingchaperones,processingenzymes(suchasN-acetyltransferases[NATs])andtargetingfac-tors(e.
g.
,signalrecognitionparticle[SRP]).
Thetunnelexithasadiameterof20andiscomposedofrRNAandfourconservedribo-somalproteins,uL22,uL23,uL24,anduL29(Fig.
2B).
Inaddition,kingdom-specicribo-somalproteinsarealsopresentattheexitsite(e.
g.
,eL19,eL31,eL39inarcheaandeukaryotes;bL17andbL32onlyinbacteria).
Someoftheseribosomalproteinshavebeenshowntoserveasbindingsitesforribosome-associatedfactors.
Inparticular,uL23associateswithmultiplena-scentchain-processingfactors,includingTF,NAC,SRP,andSec61,andwasthereforedubbedthe"universalribosomedockingsite"(Krameretal.
2002;Pooletal.
2002;Wegrzynetal.
2006).
Fromamultitudeofcross-linkingandcryo-electronmicroscopy(cryo-EM)studies,howev-er,amorecomplexpictureemerged,inwhichadditionalribosomalproteins,suchaseL19,eL22,uL22,uL29,eL31,andeL39alsorepresentcrucialcontactsitesforribosome-associatedfac-tors(Pooletal.
2002;Peiskeretal.
2008;Pole-vodaetal.
2008;Pechetal.
2010;Leidigetal.
2013;Zhangetal.
2014;Gumieroetal.
2016;Leeetal.
2016).
Inaddition,ribosome-associatedfactorsalsocontactrRNAelements(Leidig30S/40S50S/60SDCPTCuL23eL19uL29eL39uL22H24eL22eL31TunnelTunnelexitTunnelexitBAFigure2.
Functionalfeaturesofaribosome.
(A)Schematicdepictionofaribosome.
Thedecodingcenter(DC)islocatedinthesmallribosomalsubunit(30Sor40S).
Peptidyl-transferasecenter(PTC),ribosomaltunnel(tunnel),andthetunnelexitarelocatedinthelargeribosomalsubunit(50Sor60S).
Apeptidyl-transferRNA(tRNA)inthePTCwithnascentchain(orange)isincludedtoillustratethepathofanascentchain.
Theconstrictionsitewithintheribosomaltunnelisindicatedbythetwoarrowheads.
(B)Topviewonribosometunnelexit.
Surfacerenderingoftheyeast60Ssubunit(gray)withribosomalproteinsimplicatedincofactorbindingaroundthetunnelexit(whitecircle)highlighted.
eL19(palegreen),eL22(green),uL22(magenta),uL29(marine),eL31(red),eL39(limegreen).
Helix24(H24)ofthe25SribosomalRNA(rRNA)isdepictedinorange.
ChaperoneInteractionsattheRibosomeAdvancedOnlineArticle.
CitethisarticleasColdSpringHarbPerspectBioldoi:10.
1101/cshperspect.
a0339773onMarch8,2019-PublishedbyColdSpringHarborLaboratoryPresshttp://cshperspectives.
cshlp.
org/Downloadedfrometal.
2013;Zhangetal.
2014;Gumieroetal.
2016;Leeetal.
2016).
Theseinteractionsaretypicallybasedonelectrostaticinteractionsbe-tweenpositivelychargedstretcheswithintheas-sociatedfactorsandnegativelychargedRNA.
Ingeneral,ribosomeassociationofindividualfac-torsishighlydynamicandincasesinwhichfactorscompeteforthesameorclosenearbybindingsite(s),bindingoffactorsisoftenmutu-allyexclusive.
Notably,theorderinwhichfac-torsassociatewiththeribosomeandbindthenascentchainisprimarilydeterminedbythechemicalattributesoftheemergingnascentchainitself.
Itislikelythatseveralfactorscanadoptdif-ferentconformationsontheribosomeandhavemorethanonebindingsiteontheribosomede-pendingontheirfunctionalstate.
Forexample,fortheribosome-attachedHsp70Ssbinyeast,differentconformationsandcontactswiththeribosomehavebeensuggestedfortheATP-boundopenandADP-boundclosedconforma-tion(Gumieroetal.
2016).
Clearly,weareonlyatthebeginningofadetailedmechanisticunder-standingandappreciationoftheintricatedy-namicprocessestakingplaceattheribosomeexitsiteandwithintheribosomaltunnel.
STRUCTURES,FUNCTIONS,ANDMECHANISMSOFACTIONOFRIBOSOME-ASSOCIATEDCHAPERONESBacterialTriggerFactorTFisahighlyabundantchaperonefoundinbacteriaandchloroplastsbutnotinthecytosolofeukaryotes.
Itassociatesviaaribosome-bind-ingmotifinitsND(Fig.
3)transientlyina1:1uL23arm1HeadPPlaseTallribosomebindingarm2118149150-GFRxGxxP-43250432360PPlasearm1arm2Ribosome-bindingmotifBACFigure3.
Escherichiacolitriggerfactor(TF).
(A)SchematicrepresentationofthelineardomainorganizationofTF.
Theribosome-bindingdomain("tail")withtheribosome-bindingmotif(residues43–50)isshowninred,thePPIase"head"ingreenand"arm"1and"arm"2inlightblueanddarkblue,respectively.
(B)TFadoptsanextendedthree-dimensionalfold.
(Left)RibbondiagramoftheTFfold.
ColorcodeissimilartoA.
Inpositionsoftheribosome-bindingmotif(residues43–50),thearmsandthePPIaseareindicated.
(Right)SurfacechargedistributionofTFinthesameorientationasintheribbondiagram.
Positivelyandnegativelychargedresiduesareshowninblueandred,respectively.
(C)StructuralmodelofTFboundtotheribosome(differentshadesofgrayasinFig.
1).
ThemaincontactbetweenTF(colorsasinA)involvestheribosome-bindingmotifintheNdomainandtheribosomalproteinuL23(lightgray).
Thenascentpolypeptide(yellow)migratesintotheTFcradleduringsynthesis.
AllTFstructureswerepreparedusingPyMOL(DeLanoScienticLLC)basedonFerbitzetal.
(2004).
E.
Deuerlingetal.
4AdvancedOnlineArticle.
CitethisarticleasColdSpringHarbPerspectBioldoi:10.
1101/cshperspect.
a033977onMarch8,2019-PublishedbyColdSpringHarborLaboratoryPresshttp://cshperspectives.
cshlp.
org/DownloadedfromratiowithribosomesmainlyviainteractionwiththeribosomalproteinuL23atthetunnelexit(Krameretal.
2002;Ferbitzetal.
2004).
FirstevidencethatTFactsasachaperonefornascentpolypeptideswasprovidedbyexperimentsshowingthatcombinedlossofTFandtheHsp70chaperoneDnaKprovokedsynergisticdefectsindenovoproteinfoldingresultinginglobalproteinaggregationanddecreasedviabil-ityofEscherichiacolicells(Deuerlingetal.
1999;Teteretal.
1999).
TFhasaunique3Dconformation.
Itisanextendeddragon-likestructurewithacentralbodyincludingtwoprotrudingarms,ahead,andatailregion(Fig.
3).
Boundtotheribosomeasmonomerbyitsamino-terminaltail,TFleansovertheribosomalexittunneltherebyexposingitslargeinteriorsurfacespeckledwithmultiplehydrophobicpatchestowardtheexitingnascentchain(Fig.
3B,C;Ferbitzetal.
2004).
Thus,TFisideallypositionedtocaptureemergingchains.
Basedonthecrystalstructure,TFcanaccom-modateentireproteindomainsorevensmallproteins(uptoalengthof130aa)initscentralcavity.
Ribosome-boundTFcanpreventprema-tureandincorrectfoldingofproteinsduringsynthesis.
Forexample,TFretardscotransla-tionalfoldingofrecombinantlyexpressedreyluciferaseinE.
colicells,therebyenhancingthetotalyieldofactiveluciferase(Agasheetal.
2004;Kaiseretal.
2006).
MorerecentdatasuggestthatTFcanreshapeandimprovethefoldingpathwayofaproteinbyprotectingpartiallyfoldedinter-mediates(Singhaletal.
2015;Wrucketal.
2018).
Evenmoreintriguing,TFcanreverseprematurefoldingbyfacilitatingunfoldingofpreformedstructuresinnascentpolypeptides,whichallowsthenascentpeptidetoreentertheproductivefoldingpath(Hoffmannetal.
2012;Mashaghietal.
2013).
AmoredetailedunderstandingoftheTFmechanismofactionwasprovidedbyarecentstudyofSaioandcolleaguesusingsophisticatednuclearmagneticresonance(NMR)techniques(GamerdingerandDeuerling2014;Saioetal.
2014).
Theseinvestigatorsdeterminedthestruc-tureanddynamicsofpuriedTFinteractingwithunfoldedmodelsubstratesinsolution.
TFformsabindingscaffoldwithuptofourdistinctsubstrate-bindingsitesdistributedalongTFs'innersurface(Fig.
3B)withavariableorderofbindingandoccupancy.
Thebindingsitesarecomposedofnonpolarresiduesthatcanformnumeroushydrophobicpocketstobindtohy-drophobicpeptidestretchesof6–10residuesinsubstrateproteins.
Additionally,polarresiduesproximatetothehydrophobic-bindingsitescanbeusedtoformhydrogenbondswiththesub-strateprobablytoenhanceafnityandnavigatebinding.
Importantly,thesebindingsitesshowaexiblelocalarchitectureandtheengagementofindividualresidueswithinthebindingsitesisvariabledependingonthesubstratesegmentboundtoit.
ThishighdegreeofplasticityofTFs'bindingsurfacesexplainshowTFcanservesuchapromiscuousandlargepoolofnascentsubstrates(GamerdingerandDeuerling2014;Saioetal.
2014).
Usingupallofitsbindingsites,TFcandirectlybindupto50amino-acidresi-duesofasubstrate.
ThehydrophobicpeptidestretchesboundbyTFareseparatedbylinkerregionsinbetweenthatremainunboundandmayevenloopoutwardofthecentralcavity.
Perhaps,multipleTFmoleculescanbindsimul-taneouslytoanascentsubstrate,whichenablesTFtoretainalsolargepolypeptidesinanunfold-edstateandprotectthemfromaggregationbyshieldingtheirexposedhydrophobicregions.
ThisinteractionmodeofTFmayevenexerttheforcedrivenbythebindingenergytounfoldmisfoldedpeptidesegmentsoflowthermody-namicstability.
Morethan300differentaggregation-proneproteinspecieswerefoundinTF-andDnaK-decientE.
colicells.
Theidentiedproteinsareinvolvedinmanydifferentcellularprocesses,rangeinsizefrom16kDato140kDa,andarespecicallyenrichedforlarge(>40kDa)multi-domainproteins(Deuerlingetal.
2003).
Selec-tiveribosomeproling(SeRP)providedtherstglobalanalysisofthenascentinteractomeofTF(Ohetal.
2011).
Thistechniquecombinesafn-itypuricationofribosome–TFcomplexesandsubsequentidenticationofthemRNAsegmentthatisbeingreadbyTF-boundribosomes(Beckeretal.
2013).
Thiselegantapproachrevealednewfundamentalfeaturesoftheco-translationalactivityofTF.
TFrecruitmenttoChaperoneInteractionsattheRibosomeAdvancedOnlineArticle.
CitethisarticleasColdSpringHarbPerspectBioldoi:10.
1101/cshperspect.
a0339775onMarch8,2019-PublishedbyColdSpringHarborLaboratoryPresshttp://cshperspectives.
cshlp.
org/Downloadedfromtranslatingribosomesisdelayedinvivountilnascentpeptidesreachalengthof100aa.
As-sumingthat30–40aaofthenascentchainsareburiedintheribosomaltunnel,TFmustbindtoemergingpeptidesonlyoncetheyhaveexposedatleast60–70aaoutsidetheribosome.
Thisini-tialexclusionofTF,whichonlycorrelateswiththelengthofthepolypeptides,providesatimewindowtoallowprocessingenzymestoaccessnascentproteins(Ohetal.
2011).
Theseenzymesarerequired,forexample,toremovetheformyl-moietyandtheinitiatormethioninefromtheaminoterminiofnascentpolypeptidechains.
Thesecondimportantndingfromtheribo-someprolingstudyisthatTFinteractswithallnewlysynthesizedproteins,exceptforthosethatareinsertedintothecytoplasmicmembraneviatheSRPtargetingpathway.
Incontrast,na-scentoutermembraneβ-barrelproteins(Omps)wereamongthestrongestTFinteractorsduringtheirsynthesisonribosomes.
ThissuggeststhatthechaperoneactivityofE.
coliTFisparticularlyimportantforkeepingOmpsinatranslocation-competentconformation,sothattheycanbeefcientlyexportedbytheSecmachinery(Ohetal.
2011).
ItshouldbementionedthatthisndingisinagreementwithpioneeringstudiesbyWicknerandcoworkers,whoin1987initial-lyidentiedE.
coliTFinareconstitutedinvitrotranslocationexperiment,asacytosoliccomponentthatmaintainsproOmpAinatransport-competentconformationfordeliveryintoinside-outmembranevesicles(CrookeandWickner1987).
EukaryoticRibosome-AssociatedSystemsTheNascentPolypeptide-AssociatedComplexTheNACisanevolutionarilyconservedeukary-oticheterodimericproteincomplexcomposedofaα-andβ-subunit,referredtoasαNACandβNAC(Fig.
4A)(Wiedmannetal.
1994).
BothsubunitscontainahomologousNACdomain,whichdimerizebyformingaβ-barrel-likestructurewithahydrophobiccore(Fig.
4A,B)(Liuetal.
2010;Wangetal.
2010).
Besidesthedimerizationdomain,structuralinformationisalsoavailableforthecarboxylterminusofαNAC,whichformsacompactthree-helix-bun-dlemotifcharacteristicforubiquitin-associateddomains(UBAs)(Fig.
4B)(Spreteretal.
2005).
TheremainingpartsofNACincludingtheNDsofbothsubunitsandthecarboxy-terminaldo-mainofβNAChavenotbeenstructurallyre-solvedyet,andmanyregionsinthesedomainsarepredictedtobeintrinsicallydisordered,sug-gestingthatoverallNACshowshighexibility(Pechetal.
2010;Martinetal.
2018).
NACisabundantlyexpressedinequimolarconcentrationrelativetoribosomesandrevers-iblybindsina1:1stoichiometrytoribosomesincloseproximitytotheribosomaltunnelexit(Raueetal.
2007;PreisslerandDeuerling2012).
Cross-linkingdatasuggestthatbothsubunitscaninteractwithnascentchains(Wiedmannetal.
1994),whilespecicallytheamino-termi-nalregionofβNACiscriticalforribosomebind-ing(Wegrzynetal.
2006;Pechetal.
2010).
Stud-iesinyeastshowedthatdeletionoftherst11amino-terminalresiduesormutationofacon-servedpositivelychargedmotifinthecenter(RRKxxKK)abolishesribosomebinding,sug-gestingthattheamino-terminalpartofβNACmakesthemainribosomalcontact(Wegrzynetal.
2006;Pechetal.
2010).
Cross-linkingdatasuggestthatβNACcontactstheribosomeviatheribosomalproteinuL23(Wegrzynetal.
2006);however,otherstudiesalsosuggestaninteractionwitheL31(Pechetal.
2010;Zhangetal.
2012;NyathiandPool2015).
Bothribo-somalproteinsarelocatednexttothenas-centpeptidetunnelexitbutonoppositesides(Fig.
4C),indicatingsomeexibilityofNAConribosomes.
Inaddition,alsotheα-subunitmaycontributetoribosomebindingasarecentstudyshowedacross-linkbetweenαNACandtheribosomalproteinuL29,aneighboringproteinofuL23(Fig.
4C)(NyathiandPool2015).
However,apartfromthesecross-linkingdatanofurtherstructuralinformationisavail-ableyetandtheexactpositioningandstructureofNACattheribosomaltunnelexitremainsobscure.
Theabundanceandthepositionattheribo-somaltunnelexitindicateacentralroleforNACinguardingdenovoproteinsynthesis.
TheE.
Deuerlingetal.
6AdvancedOnlineArticle.
CitethisarticleasColdSpringHarbPerspectBioldoi:10.
1101/cshperspect.
a033977onMarch8,2019-PublishedbyColdSpringHarborLaboratoryPresshttp://cshperspectives.
cshlp.
org/DownloadedfromdeletionofNACleadstoembryoniclethalityinworms,ies,andmice,demonstratingafundamentalroleofNACintheproteinhomeo-stasisnetwork(DengandBehringer1995;Mar-kesichetal.
2000;Blossetal.
2003).
Despiteitsessentialrole,theinvivofunctionofNACremainedenigmaticforalongtimeandonlyrecentlyimportantfunctionalinsightswereob-tainedinCaenorhabditiselegansshowingaprimaryfunctionofNACinregulatingthecotranslationalproteintransporttotheER(Gamerdingeretal.
2015).
IntheabsenceofNAC,translatingribosomesunspecicallyasso-ciatewiththeSec61transloconintheERmem-braneleadingtothemislocalizationofnascentsubstratestotheER.
Topreventincorrectribo-some–Sec61interactions,ribosomebindingofNACwasfoundtobeessential,indicatingthatNACfunctionsasaregulatorydeviceblockingahigh-afnitySec61-bindingsiteonribosomesnearthetunnelexit.
ThishypothesisisbasedonthefactthatribosomesperseshowaveryhighintrinsicafnitytotheSec61complexinthelownanomolarrangeindependentofwhetherornotasignalsequenceisexposed(Borgeseetal.
1974;JungnickelandRapoport1995).
Thus,tomaintainERtargetingspecicitythebindingofribosomestoSec61mustbeneg-ativelyregulatedbyNAC.
Thisisinagreementwithapreviousinvitrostudyshowingthatpu-riedNACpreventsunspecicbindingofribo-somestoER-derivedmembranes(Molleretal.
1998).
TheactivityofNACopposesthatoftheSRP,whichpromotesthebindingofcorrect,NCuL29eL31TunnelexituL2340S60SNNACdomainUBAdomainNACβNACNACUBAαNACαNAC-RRKKK-2731531101621841321762151ACBβNACFigure4.
Thenascentpolypeptide-associatedcomplex(NAC)ineukaryotes.
(A)SchematicrepresentationofthelineardomainorganizationofhumanαNACandβNAC.
BothsubunitscontainahomologousNACdimeriza-tiondomain.
Aconservedpositivelychargedribosome-bindingmotif(RRKKK)islocatedintheamino-terminaldomainofβNAC.
Aconservedubiquitin-associateddomain(UBA)islocatedattheverycarboxylterminusofαNAC.
(B)CrystalstructureofthehumanNACdimerizationdomain,whichformsacompactβ-barrel-likestructure(blue,βNAC;violet,αNAC,PDB:3MCB).
ThestructureoftheUBAdomain(fromarchaealNAC,PDB:1TR8)consistsofatypicalthree-helix-bundle.
GraydashedlinesindicatepartsofNACthatarenotstructurallyresolvedyet.
(C)Surfacerenderingofyeast60S(gray)and40S(wheat)subunitswithpotentialmajorcontactpointsofNACnearthetunnelexitrevealedbycross-linkingexperiments.
βNACcross-linkstobothuL23andeL31,whereasαNACcross-linkstouL29.
ChaperoneInteractionsattheRibosomeAdvancedOnlineArticle.
CitethisarticleasColdSpringHarbPerspectBioldoi:10.
1101/cshperspect.
a0339777onMarch8,2019-PublishedbyColdSpringHarborLaboratoryPresshttp://cshperspectives.
cshlp.
org/Downloadedfromsignalsequence-containing,ribosome-nascentchaincomplexes(RNCs)totheERtranslocon(Keenanetal.
2001).
Thisantagonistic"sortandcountersort"interplaybetweenNACandSRPisessentialtoenhanceaccuracyandefciencyofthecellularprotein-sortingmachinery(Gamer-dingeretal.
2015).
ThepivotalphysiologicalroleofNACinERproteintransportisunder-scoredbythefactthatNACdeciencyleadstostronginductionoftheunfoldedproteinre-sponse(UPR)intheERandaccompanyingin-ductionofcellapoptosis,asshowninC.
elegans,zebrash,andhumancells(Hotokezakaetal.
2009;Arsenovicetal.
2012;Murayamaetal.
2015).
Moreover,inadditiontocontrollingtheinherentSec61–ribosome-bindingafnity,NACmaybealsoimportanttoregulatethebindingspecicityofSRPtotranslatingribosomes.
ApreviousinvitrostudyindicatedthatNACisrequiredtopreventSRPtobindtosignalse-quencelessRNCs,indicatingthatNACandSRPuseoverlappingbindingsitesonribosomesandNACinhibitsthelow-afnitybindingofSRPtononsecretoryRNCs(Wiedmannetal.
1994).
Thisndingwaspartiallyreproducedinvivoinyeast,showingthatNACmodulatesSRP-bindingspecicitytosomedegree(delAlamoetal.
2011).
However,theNAC–SRPinterplayremainsobscureandiscontroversiallydis-cussed,asotherinvitrostudiesdidnotndevidenceforanalteredSRP-bindingspecicity(Neuhofetal.
1998;RadenandGilmore1998),and,mostimportantly,becauseoverallSRP-directedERmembranetargetingofRNCsseemsnottobeaffectedinvivointheabsenceofNAC(delAlamoetal.
2011;Gamerdingeretal.
2015).
Inadditiontoitsfunctionasanegativereg-ulatorofERproteintransport,severallinesofevidencealsosuggestafunctionofNACasanATP-independentmolecularchaperone.
Cross-linkingdataindicateadirectbindingofNACtonascentchainsandNACdeletioninyeastandhumancellsleadstoanincreasedubiquitylationofnascentpolypeptidessuggestingthatNACdirectlybindstonascentsubstratestoprotectthemfromprematuredegradation(Wiedmannetal.
1994;Duttleretal.
2013;Wangetal.
2013).
Furthermore,NACisrequiredtopromotegrowthofyeastcellstreatedwiththeprolinean-alogazetidine-2-carboxylicacid(AZC),whichisknowntocorruptthefoldingofnewlysyn-thesizedproteins(Duttleretal.
2013).
NACdeletionalsoexacerbateswidespreadproteinaggregationinyeastcellslackingthemajor,ATP-drivencotranslationalchaperonesystem,theRAC–Ssbsystem(Koplinetal.
2010).
Alto-gether,thesedatasupportaroleforNACasanearlyactingmolecularchaperoneassistingthecotranslationalfoldingofnascentchains.
TheprinciplethatATP-independentribosome-as-sociatedchaperoneshaveacrucialfunctioninthefoldingofmanynewlysynthesizedproteinsiswellestablishedforTFinbacteria,asoutlinedabove.
TFprotectsnascentchainsagainstpre-matureaggregationanddegradationbyusingseveralexiblebindingsitestoshieldhydropho-bicpeptidestretchesinsubstrateproteins.
How-ever,whetherNACactssimilartotheholdasechaperoneTFisspeculative.
Apartfromcross-linkingdatasuggestingthatbothNACsubunitsinteractwithnascentchains,littleisknownaboutNAC'ssubstrate-bindingspecicityandeventheparticularsubstrate-bindingsite(s)ofαNACandβNAChavenotbeenmappedsofar.
Arecentcross-link-massspectrometrystudyindicatedthatNACpredominantlyinteractswithsubstratesviatheexibleamino-terminalregionsofαNACandβNAC;however,whetheracrucialchaperonedomainislocatedinthesedo-mainsisyetunknown(Martinetal.
2018).
Stud-iesinyeastshowedthatNACcanassociatewithpracticallyeveryribosome-attachednascentpolypeptideofacellindicatingthatNACmayserveaverylargepoolofnascentsubstrates(delAlamoetal.
2011).
Incontrasttootherorgan-isms,yeastcellsexpresstwodifferentβNACsub-units,βNACandβ0NAC,thelatterexpressedinloweramounts(Ottetal.
2015).
Interestingly,thecotranslationalsubstratepoolgreatlydif-feredbetweenthetwoNACspeciesthatexistinyeast.
NACcontainingβ0NACpreferentiallyassociateswithproteinsshowinghighintrinsicdisorderandlowerhydrophobicity.
Conversely,NACcontainingtheβ-subunitbindstolongerpolypeptideswithhighhydrophobicityandlow-erintrinsicdisorder(delAlamoetal.
2011).
ThesedifferencesindicatethateachNACsub-E.
Deuerlingetal.
8AdvancedOnlineArticle.
CitethisarticleasColdSpringHarbPerspectBioldoi:10.
1101/cshperspect.
a033977onMarch8,2019-PublishedbyColdSpringHarborLaboratoryPresshttp://cshperspectives.
cshlp.
org/Downloadedfromunitrecognizesspecicphysicochemicalprop-ertiesofthenascentpolypeptide.
However,β0NACisonlypresentinyeast,suggestingthatitsspecicfunctioniseithernotrequiredoradoptedbycanonicalNACorotherproteinsinhighereukaryotes.
FurtherevidencealsosuggestsafunctionforNACinproteintransporttomitochondria.
KnockdownofNACinducesthemitochondri-alUPRinC.
elegansandcausesmitochondrialdysfunctioninhumancells(Hotokezakaetal.
2009;Gamerdingeretal.
2015).
Moreover,inyeast,NACwasfoundtoenhancetheefciencyofproteinimporttomitochondria(Georgeetal.
1998;FünfschillingandRospert1999).
Inthisrespect,NACpromotestheinteractionofribo-someswiththemitochondrialsurface,suggest-ingthatNACstimulatesimportofmitochondri-alproteinsinacotranslationalmanner(Georgeetal.
2002).
Arecentstudyinyeastshowedthatcotranslationalproteintransporttomitochon-driaismorewidespreadthanpreviouslythought(Williamsetal.
2014).
ThetargetingprocessofRNCsexposingamitochondrialtargetingse-quence(MTS)tothetranslocase(TOMcom-plex)oftheorganelleisnotyetestablished.
However,NACcouldplayamajorrolethereinasitbindstothemitochondrialoutermem-braneproteinOM14inyeast(Lesniketal.
2014).
Throughthisinteraction,translatingri-bosomesgetlocalizedtomitochondriaandbothNACandOM14arerequiredtoenhancepro-teinimportefciency.
Consistentwithamito-chondrialtargetingfunction,β0NACwasfoundtoassociatepreferentiallywithribosomestrans-latingmitochondrialprecursorsinyeast(delAlamoetal.
2011).
Moreover,mitochondrialproteinsinparticulargetmistargetedandmis-localizedtotheERonNACdepletioninC.
elegans(Gamerdingeretal.
2015).
Insum,thesendingssupportafunctionofNACincotranslationalproteintransporttomitochon-dria.
However,thequestionariseshowNAC,whichbroadlybindstoRNCs,canexertdis-criminativetargetingactivitytowardRNCs,ex-posinganMTS.
Moreover,OM14isnotcon-servedandapotentialreceptorforNAConmitochondriainhigherorganismshasnotbeenidentiedyet.
TheRibosome-AssociatedComplexEukaryotesfeatureasecondconservedribo-some-associatedchaperonesystemthatisin-volvedininitialproteinfolding,targeting,andpreventionofaggregationofnewlysynthe-sizedproteins,theRAC.
RACactstogetherwitharibosome-boundHsp70(heat-shock70kDaprotein)inyeast(Ssb)orrecruitscytosolicHsp70tonascentpolypeptidesinmammals(Fig.
1B,C)(PreisslerandDeuerling2012;Zhangetal.
2017).
RACisastableheterodimericcomplexofanHsp40protein(Zuo1inyeast,ZRF1/MPP11inhumans)andadegeneratedATPase-inactiveHsp70protein(Ssz1inyeast,Hsp70L1inhumans)(Fig.
5A,B)(Gautschietal.
2001,2002;Huangetal.
2005;Conzetal.
2007).
MostofourknowledgeofthefunctionandstructureoftheRAC–Hsp70systemisde-rivedfromstudiesinthebaker'syeastSaccharo-mycescerevisiae.
RACstimulatestheATPaseactivityofSsbinyeastandtherebyenhancestheafnityofthisHsp70forunfoldedpolypep-tidesultimatelyassistingdenovoproteinfolding(PreisslerandDeuerling2012;Zhangetal.
2017).
RACitselfseemsnottodirectlycontactthenascentchain(Gautschietal.
2002;Conzetal.
2007),butnonethelessitplaysanimpor-tantroleincoordinatingthesubstrate-bindingspecicityofSsbinyeast(Koplinetal.
2010;Willmundetal.
2013;Dringetal.
2017).
AfunctionalcooperationbetweencomponentsoftheyeastHsp40/Hsp70–chaperonetriadwasrstrevealedbygeneticanalyses.
CellslackingeitherSsborRACorbothdisplayasimilarphe-notype,whichincludessensitivitytohighsaltconcentrations,lowtemperature,andtransla-tioninhibitorydrugssuchasaminoglycosides(Nelsonetal.
1992;Yanetal.
1998;Gautschietal.
2002;Hundleyetal.
2002).
ThersthinttoaroleoftheRAC–Ssbsysteminfoldingofnascentchainsattheribosomecamefromcross-linkingexperimentsestablishingaRAC-dependentinteractionofSsbwithshortnascentchains(Pfundetal.
1998;Gautschietal.
2002;Hundleyetal.
2002).
AninvolvementofRAC–Ssbindenovoproteinfoldingwasfurthercor-roboratedbythefactthattheaminoglycosidesensitivityofracΔssbΔyeastcellscanbepartiallyChaperoneInteractionsattheRibosomeAdvancedOnlineArticle.
CitethisarticleasColdSpringHarbPerspectBioldoi:10.
1101/cshperspect.
a0339779onMarch8,2019-PublishedbyColdSpringHarborLaboratoryPresshttp://cshperspectives.
cshlp.
org/DownloadedfromZuo1S.
cerevisiaeHumanND11538390411Linker391403Linker380403Linker1512516613144595168184285348433JDZHDNBDSBDβRACRACNBDSBDβNBDSBDβSBDαMD4HB40SCABH44eL31Zuo1uL2260SH24TunnelexitND11509154686161178279346449512549605621JDZHDMD4HBSANTSANTSsz1MPP11Hsp70L1Ssb1Figure5.
Theribosome-associatedHsp70/40systemineukaryotes.
(A)Theyeastribosome-associatedchaperonesystemconsistsoftheHsp40Zuo1,andtheHsp70sSsbandSsz1.
Zuo1andSsz1formthestableheterodimericribosome-associatedcomplex(RAC).
Zuo1bindstotheSsz1nucleotide-binding(NBD)andsubstrate-bindingdomainβ(SBDβ)viaitsamino-terminaldomain(ND).
TheJdomain(JD)ofZuo1isrequiredforstimulationoftheATPaseactivityofitsHsp70partnerSsb.
TheZou1homologydomain(ZHD),thehighlychargedmiddledomain(MD),andthefour-helixbundle(4HB)areinvolvedinribosomebinding.
Ssz1andSsbcontainanamino-terminalNBDandacarboxy-terminalSBD.
Ssz1containsanincompleteSBD,whichconsistsofonlytheSBDβmoiety,whereastheSBDofSsbiscompleteandconsistsofSBDαandSBDβ.
AutonomousribosomebindingofSsbismostlymediatedviaapositivelychargedstretchatthecarboxylterminus.
RACisconservedinmammalswhileSsbhomologsareabsent(andasolubleHsp70isusedinstead).
(B)ThehumanRACcomplexisformedbytheHsp40MPP11andHsp70L1.
MPP11containstwoSANTdomainsatitscarboxylterminus.
(C)Surfacerenderingofyeast60S(gray)and40S(wheat)subunitswithmajorcontactpointswithZuo1highlighted.
ThedottedemptyoutlinecoarselytracestheshapeofZuo1.
Exittunnel(whitecircle),uL22(magenta),uL31(red),helix24(H24)ofthe25SribosomalRNA(rRNA)in60Ssubunit(orange),andhelix44(H44)ofexpansionsegment12of18SrRNAin40Ssubunit(cyan).
S.
cerevisiae,Saccharomycescerevisiae.
E.
Deuerlingetal.
10AdvancedOnlineArticle.
CitethisarticleasColdSpringHarbPerspectBioldoi:10.
1101/cshperspect.
a033977onMarch8,2019-PublishedbyColdSpringHarborLaboratoryPresshttp://cshperspectives.
cshlp.
org/Downloadedfromsuppressedbyexpressionoftheprokaryoticri-bosome-associatedchaperoneTF(Rauchetal.
2005).
Inaddition,cellsdevoidofSsbshowcaseanincreasedaggregationofnewlysynthesizedproteins,aswellasofribosomalproteinsandribosomebiogenesisfactors(Koplinetal.
2010;Willmundetal.
2013).
ThesendingsindicatethatalossofSsbnotonlynegativelyimpactsonfoldingofcytosolicproteinsbutalsoonribo-somebiogenesis.
Interestingly,theRAC–Hsp70systemisalsoimportantformaintainingtrans-lationaldelity(RakwalskaandRospert2004;Muldoon-JacobsandDinman2006;Leeetal.
2016;Zhangetal.
2017).
Recentstructuralworksignicantlyexpand-edourunderstandingofthefungalRAC–Ssbsystemontheribosome(Leidigetal.
2013;Zhangetal.
2014,2017;Leeetal.
2016).
Ribo-somebindingoftheRACcomplexismediatedsolelybytheZuo1subunit,whichcontactstheribosomalproteineL31closetothetunnelexitviaaconservedchargedregion(Yanetal.
1998;Peiskeretal.
2008).
Moreover,recentcryo-EMstudiesunveiledamuchmoreintricateinterac-tionbetweenZuo1andtheribosome.
Zuo1notonlycontactsthe60Ssubunitbutalsothe40Ssubunitandspans190acrossthesubunits(Fig.
5A,C)(Zhangetal.
2014;Leeetal.
2016).
WhilethecentralZuo1homologydomain(ZHD)bindsthe60Ssubunit(Leidigetal.
2013;Zhangetal.
2014;Kaschneretal.
2015;Leeetal.
2016),afour-helixbundle(4HB)atthecarboxylterminusofZuo1bindstothe40Ssubunit,andthemiddledomain(MD)formsahingebetweenthetwodomains(Zhangetal.
2014;Leeetal.
2016).
TheuniquebindingmodeofRACtotrans-latingribosomeshasseveralmechanisticimpli-cations.
Acommunicationbetweentheribo-somaltunnelandchaperoneactivityatthetunnelexithasbeenanticipatedgiventhatZuo1contactshelix24(H24)ofthe25SrRNAinthe60Ssubunit,andH24inturnisincontactwithribosomalproteinuL22,whichextendsintotheribosomaltunnelandmakescontactwithnascentchainsegmentsattheconstrictionsite.
Conceivably,thenatureofthenascentchaininthetunnelissensedattheconstrictionsitebyuL22andtheinformationmightberelayedviaH24andtheZHDtotheZuo1Jdomain,whichmayinuenceJdomainpositioningwithrespecttoSsbandhenceultimatelyregulateSsbactivityatthetunnelexit(Leeetal.
2016;Zhangetal.
2017).
Moreover,Zuo1interactsviaapositivelychargedsurfacewithhelix44(H44)ofextensionsegment12(ES12)of18SrRNAinthe40Ssub-unit(Zhangetal.
2014;Leeetal.
2016).
BecausetheextendedH44formsthecoreofthedecodingcenter(DC)andmutationswithinH44affecttranslationaldelity(Leeetal.
2016),bindingofZuo1tothetipofH44mightexplainhowRACinuencestranslationaldelity(Leeetal.
2016;Zhangetal.
2017).
AnunusualattributeofRACisthestableinteractionoftheHsp40Zuo1andthedegener-atedHsp70Ssz1,becauseHsp40–Hsp70inter-actionsarenormallytransient(MayerandKityk2015).
Firstbiochemicalinsightsintothesta-bleinteractionofthetwoproteinscamefromhydrogen–deuteriumexchangeexperiments,whichshowedthattheZuo1amino-terminaldomain(ND)bindsstablytoSsz1,makingdi-rectcontactswithboththesubstrate-bindingdomain(SBD)andthenucleotide-bindingdo-main(NBD)ofSsz1(Fiauxetal.
2010).
Therecentcrystalstructureoffull-lengthSsz1incomplexwiththeZuo1ND(bothfromthether-mophilicascomyceteChaetomiumthermophi-lum)fullyconrmedthesendingsandfurtherrevealeduniquefeaturesoftheinteractionofthetwoproteins(Weyeretal.
2017;Zhangetal.
2017).
IncontrasttocanonicalHsp70s,thelink-erbetweenNBDandSBDislongerinSsz1,andisdetachedfromATP-boundNBDallowingZuo1NDtobindthissiteintransinstead.
Inaddition,partsoftheZuo1NDcomplementtheβ-sandwichofSsz1SBDβtherebymimickingSBDβofcanonicalADP-boundHsp70s(despitehavingATPbound).
Overall,theconformationofSsz1intheRACheterodimerlookslikeahybridbetweenADP-andATP-boundHsp70(Weyeretal.
2017).
Ssz1representsinseveralaspectsanatypicalHsp70:First,itbindsATPbutisnotabletohydrolyzeit(atleastatadetectablerate),andATPbindingisnotstrictlyrequiredforitsfunc-tion(Huangetal.
2005;Conzetal.
2007).
Sec-ond,itlackstheliddomainoftheSBDandnoChaperoneInteractionsattheRibosomeAdvancedOnlineArticle.
CitethisarticleasColdSpringHarbPerspectBioldoi:10.
1101/cshperspect.
a03397711onMarch8,2019-PublishedbyColdSpringHarborLaboratoryPresshttp://cshperspectives.
cshlp.
org/Downloadedfrombindingtoasubstratecouldbedetected(Hund-leyetal.
2002;Huangetal.
2005).
AnSsz1trun-cationvariantlackingtheentireSBDfullycom-plementsgrowthdefectsofanssz1Δstrain(Hundleyetal.
2002;Conzetal.
2007).
Zuo1canonlyefcientlystimulateATPhydrolysisbySsbinthepresenceofSsz1(Huangetal.
2005).
Consequently,itwasproposedthatSsz1'spre-dominantfunctionistofacilitateZuo1'sabilitytofunctionasaJproteinpartnerofSsbontheribosome(Huangetal.
2005).
Itwasalsospec-ulatedthatSsz1mightfulllregulatoryfunc-tionsbyintroducingstructuralrearrangementswithinintheZuo1Jdomain,whichmightstrengthenthecontacttoSsb(Fiauxetal.
2010),andthatSsz1mightplayaroleinre-cruitmentofsubstratesbySsb(Leidigetal.
2013).
Regardless,despitetheimmensepro-gressonthestructuralsite,thefunctionoftheuniqueRACSBDβconformation,aswellasthemechanisticroleofSsz1remainhithertolargelyenigmatic.
Inyeast,twoSsbhomologsexist,Ssb1andSsb2,whichdifferonlyinfouraminoacids(here,collectivelyreferredtoasSsb).
ThestructureofSsbissimilartocanonicalHsp70proteins,ex-ceptthatitcontainsinadditionanuclearexportsequence(NES)atitscarboxylterminus,whichlikelyfacilitatesshuttlingbetweenthenucleusandcytosol(Shulgaetal.
1999).
AsforcanonicalHsp70s,theSsbreactioncycleisdrivenbyco-chaperones(PreisslerandDeuerling2012;MayerandKityk2015).
ATPhydrolysis,whichresultsintightsubstratebinding,isstimulatedbyRAC(Gautschietal.
2002;Hundleyetal.
2002),andnucleotideexchangefactorsforSsbareSse1,Sln1,andFes1(Peiskeretal.
2010).
ThehighlyabundantSsbinteractsindependentofRACwithribosomes,andinwild-typecells50%ofSsbisfoundassociatedwithribosomes(Nelsonetal.
1992;Yanetal.
1998;Peiskeretal.
2010).
Apos-itivelychargedregionclosetotheendofthecarboxy-terminalSBDαisessentialforribosomebinding(Gumieroetal.
2016;Hanebuthetal.
2016).
Likely,thisregionmediatesribosomeas-sociationofSsbviaelectrostaticinteractionswithexpansionsegmentES24and/orES41withinthe25SrRNA(Gumieroetal.
2016),consistentwithasalt-sensitivebindingofSsbtovacantribo-somes(Pfundetal.
1998).
Incontrast,Ssbbind-ingtoribosomesexposinganascentchain(RNCs)isresistanttohighsaltconcentrations,presumablybecauseofhydrophobicSsb–na-scentchaininteractions(PowersandWalter1996;Pfundetal.
1998;Raueetal.
2007).
Asec-ondpositivelychargedregionwithintheSsbSBDβinadditioncontributestoribosomebind-ing(Hanebuthetal.
2016).
Cross-linkingexper-imentsrevealedthatSsbcontactsribosomalpro-teinsuL29,eL39,andeL19incloseproximityofthetunnelexit(Gumieroetal.
2016).
Togetherwiththecrystalstructureoffull-lengthC.
ther-mophilumSsb(intheATP-boundstate),apic-tureemergesinwhichanexactpositioningofSsbontheribosomeclosetotheexittunneliscriticalforitsfunction(Gumieroetal.
2016;Hanebuthetal.
2016).
ThepositioningofSsbontheribo-someismodulatedbyRAC(aswellasthenucle-otide-statusofSsbitself)indicatingdynamicchangesofSsbontheribosomeonATPhydro-lysis(Gumieroetal.
2016).
Intriguingly,inthepresenceofRAC,autonomousribosomebind-ingofSsbisnotessentialforproteinfolding,suggestingaRAC-mediatedinteractionofSsbwithRNCs(Gumieroetal.
2016;Hanebuthetal.
2016).
Thisismostlyconsistentwiththesituationinorganismsotherthanfungi,inwhichnodedicatedautonomouslyribosome-anchoredHsp70existsandRACcollaborateswithacyto-solicHsp70instead(Fig.
1;Nelsonetal.
1992;Gautschietal.
2002).
Tworecentstudiesinvestigatedthecotrans-lationalsubstratesofSsbonaglobalscale(Will-mundetal.
2013;Dringetal.
2017).
IntherststudybyWillmundandcolleagues,ribosome–Ssbcomplexeswereisolatedandtheribosome-associatedmRNAanalyzedusinggenome-widemicroarrays.
Thisstudyrevealedthatthena-scentchainsubstratepoolofSsbisverybroad,encompassing80%ofcytosolicandnuclearproteins.
GeneralfeaturesoftheSsb-boundpro-teinswerethepresenceoflargerdomainsandagenerallylargesize.
Ssbsubstrateswerealsoen-richedforsubunitsofoligomericcomplexes(e.
g.
,TRiC/CCT,proteasome,andribosomalparticle),whichinmostcasesdonotrepresentlargeproteins,butusuallyinteractwithseveralothersubunitswithinthecomplex.
Furtherfea-E.
Deuerlingetal.
12AdvancedOnlineArticle.
CitethisarticleasColdSpringHarbPerspectBioldoi:10.
1101/cshperspect.
a033977onMarch8,2019-PublishedbyColdSpringHarborLaboratoryPresshttp://cshperspectives.
cshlp.
org/DownloadedfromturescommontomostSsbsubstrateswereagenerallowtranslationrate,andanenrichmentofβ-sheets,andshortlinearhydrophobicele-ments.
Together,thesedatasuggestthatSsbas-sistscotranslationalfoldingoflargerproteinsharboringcomplicatedstructuresorthatrequirebindingpartnersfortheirstability(Willmundetal.
2013).
Inthesecondanalysis,SeRP(Beckeretal.
2013)wasusedtoanalyzeSsbinteractionwithnascentchainsonaproteome-widescaleatnear-codonresolution(Dringetal.
2017).
ConsistentwithWillmundetal.
(2013),Ssbboundto80%ofcytosolicandnuclearproteinsintheSeRPstudy.
Furthermore,andindissentwithWillmundetal.
(2013),80%ofnascentmitochondrialproteinsandmorethan40%ofER-targetedproteinswerefoundassociatedwithSsb,suggestingafunctionofSsbintargeting/translocationoftheseproteins(Dringetal.
2017).
BecauseSsbwasfoundtobindnascentmitochondrialproteinspreferentiallyatlengthsof100residues,ithasbeenspeculatedthatSsbmightincreasethetargetingefciencyoftheseproteinsbypreventingprematurefoldingandmisfolding(Dringetal.
2017).
Suchascenarioissupportedbythefactthatasubsetofnuclear-encodedmitochondrialproteinsaggregatedintheabsenceofSsb(Willmundetal.
2013).
TheSeRPstudyfurthershowedthatSsbbindsposi-tivelycharged,degeneratesequencesclosetotheribosomalsurface,whenthesubstraterecogni-tionmotifextends5aafromthetunnelexit,wherebydisorderedregionsseemtobedisfa-vored.
Ssbnascentchainbindingclosetothetunnelexitisingoodagreementwithawealthofpreviousbiochemicalandstructuraldata(Pfundetal.
1998;Gautschietal.
2002;Hundleyetal.
2002;Gumieroetal.
2016).
Notably,Ssbengagesmostsubstratesbymultiplebinding-re-leasecycles(Dringetal.
2017).
AsSsbbindspreferentiallysegmentsthatwillbesurfaceex-posedorformthehydrophobiccoreofthefold-edprotein,Ssblikelyassistsdomain-wisefoldingbyretardingpremature/unproductivefolding(Dringetal.
2017).
ChallengingthecommonviewthatSRPistherstandonlycytosolicinteractorofnascentchainsofthecotranslationaltranslocationpath-waybeforedockingtothetranslocon,atleastforasubsetofSRP-targetednascentchains,Ssben-gagementbeforeSRPbindinghasbeenobserved(Dringetal.
2017).
WhetherthisimpliesahandoverofnascentchainsfromSsb–RACtoSRPand/ortheexistenceofanalternativetar-getingroutetotheERmembraneiscurrentlyunknown(Dringetal.
2017).
AninuenceofRAConthesubstratespeci-cityofSsbwasobservedinbothstudies(Will-mundetal.
2013;Dringetal.
2017).
Theab-senceofRACseverelyimpairedSsbbindingtoemergingrecognitionmotifsanddelayedRNCengagementofSsb(Dringetal.
2017).
Inaddition,deletionofRACwasfoundtorelaxthespecicityofSsb(Willmundetal.
2013).
Intriguingly,SsbbindingtoRNCscoincideswithanincreasedtranslationspeed,whichcanbeattributedtobothmRNAfeaturesaswellasnascentchainfeatures(Dringetal.
2017).
Ithasbeenspeculatedthatfastertrans-lationcouldreducethenumberofribosomesrequiredtomaintainproteinsynthesisandmaythereforerepresentastrategytoeconomizeproteinsynthesis(Dringetal.
2017).
Eitherway,thisndinghighlightstheclosecoordina-tionofproteinsynthesisandcotranslationalproteinfolding.
WhereasSsbisuniquetofungi,homologsofRACarepresentinmammalsaswell(Hundleyetal.
2005;Ottoetal.
2005).
ThisindicatesthatthepresenceofHsp70/40chaperonesonribo-somesiscommonintheeukaryoticworld.
Zuo1homologsinmammals(MPP11)containtwoadditionalSANTdomainsattheircarboxylter-minus(Hundleyetal.
2005;Ottoetal.
2005;Chenetal.
2014).
SANTdomainsarenormallyinvolvedinDNAbindingandchromatinre-modeling(Boyeretal.
2004),theirexactroleinMPP11howeveriscurrentlyunknown.
Knock-downofhumanMPP11inHeLacellsresultsingrowthdefectsandsensitivitytowarddrugssim-ilartowhatwasobservedforyeastcellslackingRAC(Jaiswaletal.
2011),suggestingthatRACfulllssimilarfunctionsinyeastaswellasinmetazoans.
However,becausehighereukaryoteslackadedicatedribosome-anchoredHsp70-likeSsb,itwassuggestedthatcytosolicHsp70sactasfunctionalpartnersforRACinhighereukary-ChaperoneInteractionsattheRibosomeAdvancedOnlineArticle.
CitethisarticleasColdSpringHarbPerspectBioldoi:10.
1101/cshperspect.
a03397713onMarch8,2019-PublishedbyColdSpringHarborLaboratoryPresshttp://cshperspectives.
cshlp.
org/Downloadedfromotes(Jaiswaletal.
2011).
Interestingly,althoughZuohomologsarefoundinalleukaryoticspe-ciesinwhichthewholegenomeissequenced,notallofthemalsorevealanSsz-likeHsp70(e.
g.
,thereisnoSszhomologfoundinplants),suggestingthattheRACsystemmayhaveamoreversatilesettingthantheyeastandmammalianversionscharacterizedsofar.
INTERPLAYWITHOTHERRIBOSOME-ASSOCIATEDFACTORS:SRP,PDF,MAP,ANDNATTheribosome-associatedchaperonesystemspresentedinthisreviewareintegralandessentialpartsofagreatercotranslationalproteostasismachinerythatcontrolsthequalityandlocali-zationofnewlysynthesizedproteins.
Numerousothercytosolicproteinbiogenesisfactors,in-cludingpeptidedeformylase(PDF),methionineaminopeptidases(MAPs),NATs,andtheSRPalsobindincloseproximitytotheribosomeexitsite,andmanyofthesefactorsusepartiallyoverlappingbindingsurfacesonribosomes.
Anemergingquestionishowthesefactorsgainreg-ulatedaccesstonascentpolypeptidesandwheth-ertheycompeteand/orcollaborateattheribo-someexitsite(GamerdingerandDeuerling2014;Glogeetal.
2014).
Theonlytunnelexit-bindingfactorsthatareatleastasabundantasribosomesareTFinbac-teriaandNACineukaryotes(Merzetal.
2006;Raueetal.
2007).
Thesemajorcotranslationalsystemsaresupposedtoplayanimportantroleinorchestratingnascentchain-processingeventsattheribosomeexitsite.
AmolecularinterplaybetweenTFandSRPiswelldocumentedinvitro.
TFgenerallypreventsSRPbindingtoribosomes,excepttothoseRNCspresentingsignalse-quences(Bornemannetal.
2014).
ThisRNCprelterfunctionbyTFcouldexplainwhyasmallamountofSRP(ratioofSRPtoribosomeabout1:100)issufcientforeffectivetargetingofmembraneproteins(JensenandPedersen1994).
Moreover,TFalsoenhancesthespecicityofSRP-dependentproteintargeting.
Bothfactorscanbindsimultaneouslytosignalsequence-containingRNCs,andTFregulatesSRPfunctionatmultipletargetingsteps,includinginitialbinding,targetingofRNCtothemembraneviaSRP–SRPreceptor(FtsY)assembly,andremovalofSRPfromRNCsexposingnascentchainsexceedingacriticallengththatcompromisescotranslationaltranslocation(Buskiewiczetal.
2004;Bornemannetal.
2014;Ariosaetal.
2015).
Together,theseactivitiesenhancethe-delityofsubstrateselectionbySRPandpromotetheefciencyofmembraneproteintransportinthecell.
IncontrasttoSRP,TFseemsnottomodulatedirectlyPDFandMAPbindingtotranslatingribosomes,indicatingthattheseen-zymescanprocesstheirnascentsubstratesbe-foreorinparallelwithTFbinding(Bornemannetal.
2014).
TheregulatoryfunctionofTFincotransla-tionalproteintransportpartiallyresemblesthatofNACineukaryotes.
Asoutlinedabove,NACiscriticalforaccuratesubstrateselectionbytheSec61translocon,butalsomodulatesthebind-ingspecicityofSRP(delAlamoetal.
2011;Gamerdingeretal.
2015).
Thepresenceofanot-yet-exposedsignalanchorsequenceinsidetheribosomaltunnelincreasestheafnityofSRPforribosomes,andtheearlybindingofSRPtothoseRNCsdependsonNAC(Berndtetal.
2009;Zhangetal.
2012).
ThisearlySRPrecruitmentislikelymediatedbysubtlestruc-turalalterationsoftheribosomeandNACattheexitsitesuchthatSRPbindingisfavored.
More-over,intheabsenceofNAC,SRPpartiallybindstononsecretoryRNCstherebyperturbingtheaccuratesubstrateselectionofMAP1byblock-ingitsribosomalaccess(delAlamoetal.
2011;NyathiandPool2015).
Thus,althoughNACandMAP1canbindsimultaneouslytoribo-somesanddonotdirectlymodulateeachother'sbindingproperties(NyathiandPool2015),uncontrolledbindingofathirdfactorcancauseunforeseenproblemsinproteinbiogenesis.
Thisexampleshowsthedelicatenessofthemolecularinterplayatthetunnelexitandhighlightsthedynamicbindingandreleaseofribosome-asso-ciatedproteinbiogenesisfactorsthroughacon-certedaction.
However,weareonlybeginningtounderstandthecomplexinterdependencyofthesefactorsandhowthisaffectsthespecicandtimelytargetingofnascentchainsintothecorrectproteinbiogenesispathway.
E.
Deuerlingetal.
14AdvancedOnlineArticle.
CitethisarticleasColdSpringHarbPerspectBioldoi:10.
1101/cshperspect.
a033977onMarch8,2019-PublishedbyColdSpringHarborLaboratoryPresshttp://cshperspectives.
cshlp.
org/DownloadedfromCONCLUDINGREMARKSThemyriadofrecentlyaccumulateddataontheinvivonascentsubstrates,structures,andmech-anismsofribosome-associatedchaperonesfromprokaryoticandeukaryotickingdomssuggeststhattheyareversatileandvitalelementsofthechaperonenetworkcrucialtocontrolthequalityandtransportofnewlysynthesizedproteins.
Inaddition,notdiscussedhereatall,thereiscul-minatingevidencethatthesechaperonesmaydisplayadditionalfunctionsofftheribosome,forexample,TFandRAC–Ssbhavebeensug-gestedtopromotetheassemblyofribosomalparticlesandNACwasfoundtoenhancetherefoldingofaggregatedluciferaseinC.
elegans(Martinez-HackertandHendrickson2009;Koplinetal.
2010;Kirstein-Milesetal.
2013).
Thefuturechallengewillbetodissecttheirindi-vidualrolesduringproteinbiogenesisandgainadeeperstructuralandmechanisticunderstandingoftheirribosomalandnonribosomalactivities.
ACKNOWLEDGMENTSWeapologizethatwecouldnotdiscussallas-pectsofdenovofoldingandchaperonefunc-tionsindepth.
Moreover,weapologizetoallourcolleagueswhoseresearchwasnotoronlyverybrieydiscussedornotcited.
WethankDr.
ChristinaSchlatterforassistanceingureprep-arationandSandraFriesforproofreadingthemanuscript.
M.
G.
,S.
G.
K.
,andE.
D.
aresupport-edbytheDeutscheForschungsgemeinschaft(DFG)-fundedcollaborativeresearchcenterSFB969onthe"ChemicalandBiologicalPrin-ciplesofCellularProteostasis.
"REFERENCESAgasheVR,GuhaS,ChangHC,GenevauxP,Hayer-HartlM,StempM,GeorgopoulosC,HartlFU,BarralJM.
2004.
FunctionoftriggerfactorandDnaKinmultidomainpro-teinfolding:Increaseinyieldattheexpenseoffoldingspeed.
Cell117:199–209.
doi:10.
1016/S0092-8674(04)00299-5AriosaA,LeeJH,WangS,SaraogiI,ShanSO.
2015.
Regu-lationbyachaperoneimprovessubstrateselectivitydur-ingcotranslationalproteintargeting.
ProcNatlAcadSci112:E3169–E3178.
doi:10.
1073/pnas.
1422594112ArsenovicPT,MaldonadoAT,ColleluoriVD,BlossTA.
2012.
DepletionoftheC.
elegansNACengagestheun-foldedproteinresponse,resultinginincreasedchaperoneexpressionandapoptosis.
PLoSONE7:e44038.
doi:10.
1371/journal.
pone.
0044038BalchinD,Hayer-HartlM,HartlFU.
2016.
Invivoaspectsofproteinfoldingandqualitycontrol.
Science353:aac4354.
doi:10.
1126/science.
aac4354BeckerAH,OhE,WeissmanJS,KramerG,BukauB.
2013.
Selectiveribosomeprolingasatoolforstudyingtheinteractionofchaperonesandtargetingfactorswithna-scentpolypeptidechainsandribosomes.
NatProtoc8:2212–2239.
doi:10.
1038/nprot.
2013.
133BerndtU,OellererS,ZhangY,JohnsonAE,RospertS.
2009.
Asignal-anchorsequencestimulatessignalrecognitionparticlebindingtoribosomesfrominsidetheexittunnel.
ProcNatlAcadSci106:1398–1403.
doi:10.
1073/pnas.
0808584106BlossTA,WitzeES,RothmanJH.
2003.
SuppressionofCED-3-independentapoptosisbymitochondrialβNACinCaenorhabditiselegans.
Nature424:1066–1071.
doi:10.
1038/nature01920BorgeseN,MokW,KreibichG,SabatiniDD.
1974.
Ribosomal–membraneinteraction:Invitrobindingofri-bosomestomicrosomalmembranes.
JMolBiol88:559–580.
doi:10.
1016/0022-2836(74)90408-2BornemannT,HoltkampW,WintermeyerW.
2014.
Inter-playbetweentriggerfactorandotherproteinbiogenesisfactorsontheribosome.
NatCommun5:4180.
doi:10.
1038/ncomms5180BoyerLA,LatekRR,PetersonCL.
2004.
TheSANTdomain:Auniquehistone-tail-bindingmoduleNatRevMolCellBiol5:158–163.
doi:10.
1038/nrm1314BuskiewiczI,DeuerlingE,GuSQ,JockelJ,RodninaMV,BukauB,WintermeyerW.
2004.
Triggerfactorbindstoribosome-signal-recognitionparticle(SRP)complexesandisexcludedbybindingoftheSRPreceptor.
ProcNatlAcadSci101:7902–7906.
doi:10.
1073/pnas.
0402231101ChenDH,HuangY,LiuC,RuanY,ShenWH.
2014.
Func-tionalconservationanddivergenceofJ-domain-contain-ingZUO1/ZRForthologsthroughoutevolution.
Planta239:1159–1173.
doi:10.
1007/s00425-014-2058-6ConzC,OttoH,PeiskerK,GautschiM,WoleT,MayerMP,RospertS.
2007.
FunctionalcharacterizationoftheatypicalHsp70subunitofyeastribosome-associatedcomplex.
JBiolChem282:33977–33984.
doi:10.
1074/jbc.
M706737200CrookeE,WicknerW.
1987.
Triggerfactor:asolubleproteinthatfoldspro-OmpAintoamembrane-assembly-com-petentform.
ProcNatlAcadSci84:5216–5220.
doi:10.
1073/pnas.
84.
15.
5216delAlamoM,HoganDJ,PechmannS,AlbaneseV,BrownPO,FrydmanJ.
2011.
Deningthespecicityofcotrans-lationallyactingchaperonesbysystematicanalysisofmRNAsassociatedwithribosome-nascentchaincom-plexes.
PLoSBiol9:e1001100.
doi:10.
1371/journal.
pbio.
1001100DengJM,BehringerRR.
1995.
AninsertionalmutationintheBTF3transcriptionfactorgeneleadstoanearlypost-implantationlethalityinmice.
TransgenicRes4:264–269.
doi:10.
1007/BF01969120DeuerlingE,BukauB.
2004.
Chaperone-assistedfoldingofnewlysynthesizedproteinsinthecytosol.
CritRevBio-ChaperoneInteractionsattheRibosomeAdvancedOnlineArticle.
CitethisarticleasColdSpringHarbPerspectBioldoi:10.
1101/cshperspect.
a03397715onMarch8,2019-PublishedbyColdSpringHarborLaboratoryPresshttp://cshperspectives.
cshlp.
org/DownloadedfromchemMolBiol39:261–277.
doi:10.
1080/10409230490892496DeuerlingE,Schulze-SpeckingA,TomoyasuT,MogkA,BukauB.
1999.
TriggerfactorandDnaKcooperateinfoldingofnewlysynthesizedproteins.
Nature400:693–696.
doi:10.
1038/23301DeuerlingE,PatzeltH,VorderwülbeckeS,RauchT,KramerG,SchaftzelE,MogkA,Schulze-SpeckingA,LangenH,BukauB.
2003.
TriggerfactorandDnaKpossessover-lappingsubstratepoolsandbindingspecicities.
MolMicrobiol47:1317–1328.
doi:10.
1046/j.
1365-2958.
2003.
03370.
xDringK,AhmedN,RiemerT,SureshHG,VainshteinY,HabichM,RiemerJ,MayerMP,O'BrienEP,KramerG,etal.
2017.
ProlingSsb-nascentchaininteractionsrevealsprinciplesofHsp70-assistedfolding.
Cell170:298–311.
e20.
doi:10.
1016/j.
cell.
2017.
06.
038DuttlerS,PechmannS,FrydmanJ.
2013.
Principlesofco-translationalubiquitinationandqualitycontrolattheri-bosome.
MolCell50:379–393.
doi:10.
1016/j.
molcel.
2013.
03.
010FerbitzL,MaierT,PatzeltH,BukauB,DeuerlingE,BanN.
2004.
Triggerfactorincomplexwiththeribosomeformsamolecularcradlefornascentproteins.
Nature431:590–596.
doi:10.
1038/nature02899FiauxJ,HorstJ,SciorA,PreisslerS,KoplinA,BukauB,DeuerlingE.
2010.
Structuralanalysisoftheribosome-associatedcomplex(RAC)revealsanunusualHsp70/Hsp40interaction.
JBiolChem285:3227–3234.
doi:10.
1074/jbc.
M109.
075804FünfschillingU,RospertS.
1999.
Nascentpolypeptide-asso-ciatedcomplexstimulatesproteinimportintoyeastmi-tochondria.
MolBiolCell10:3289–3299.
doi:10.
1091/mbc.
10.
10.
3289GamerdingerM.
2016.
Proteinqualitycontrolattheribo-some:focusonRAC,NACandRQC.
EssaysBiochem60:203–212.
doi:10.
1042/EBC20160011GamerdingerM,DeuerlingE.
2014.
Biochemistry.
Triggerfactorexibility.
Science344:590–591.
doi:10.
1126/science.
1254064GamerdingerM,HanebuthMA,FrickeyT,DeuerlingE.
2015.
Theprincipleofantagonismensuresproteintar-getingspecicityattheendoplasmicreticulum.
Science348:201–207.
doi:10.
1126/science.
aaa5335GautschiM,LilieH,FunfschillingU,MunA,RossS,Lith-gowT,RucknagelP,RospertS.
2001.
RAC,astableribo-some-associatedcomplexinyeastformedbytheDnaK-DnaJhomologsSsz1pandzuotin.
ProcNatlAcadSci98:3762–3767.
doi:10.
1073/pnas.
071057198GautschiM,MunA,RossS,RospertS.
2002.
Afunctionalchaperonetriadontheyeastribosome.
ProcNatlAcadSci99:4209–4214.
doi:10.
1073/pnas.
062048599GeorgeR,BeddoeT,LandlK,LithgowT.
1998.
Theyeastnascentpolypeptide-associatedcomplexinitiatesproteintargetingtomitochondriainvivo.
ProcNatlAcadSci95:2296–2301.
doi:10.
1073/pnas.
95.
5.
2296GeorgeR,WalshP,BeddoeT,LithgowT.
2002.
Thenascentpolypeptide-associatedcomplex(NAC)promotesinter-actionofribosomeswiththemitochondrialsurfaceinvivo.
FEBSLett516:213–216.
doi:10.
1016/S0014-5793(02)02528-0GlogeF,BeckerAH,KramerG,BukauB.
2014.
Co-transla-tionalmechanismsofproteinmaturation.
CurrOpinStructBiol24:24–33.
doi:10.
1016/j.
sbi.
2013.
11.
004GumieroA,ConzC,GeseGV,ZhangY,WeyerFA,LapougeK,KappesJ,vonPlehweU,SchermannG,FitzkeE,etal.
2016.
InteractionofthecotranslationalHsp70SsbwithribosomalproteinsandrRNAdependsonitsliddomain.
NatCommun7:13563.
doi:10.
1038/ncomms13563HanebuthMA,KitykR,FriesSJ,JainA,KrielA,AlbaneseV,FrickeyT,PeterC,MayerMP,FrydmanJ,etal.
2016.
MultivalentcontactsoftheHsp70Ssbcontributetoitsarchitectureonribosomesandnascentchaininter-action.
NatCommun7:13695.
doi:10.
1038/ncomms13695HartlFU,BracherA,Hayer-HartlM.
2011.
Molecularchap-eronesinproteinfoldingandproteostasis.
Nature475:324–332.
doi:10.
1038/nature10317HoffmannA,BeckerAH,Zachmann-BrandB,DeuerlingE,BukauB,KramerG.
2012.
Concertedactionoftheribo-someandtheassociatedchaperonetriggerfactorconnesnascentpolypeptidefolding.
MolCell48:63–74.
doi:10.
1016/j.
molcel.
2012.
07.
018HotokezakaY,vanLeyenK,LoEH,BeatrixB,KatayamaI,JinG,NakamuraT.
2009.
αNACdepletionasaninitiatorofERstress-inducedapoptosisinhypoxia.
CellDeathDiffer16:1505–1514.
doi:10.
1038/cdd.
2009.
90HuangP,GautschiM,WalterW,RospertS,CraigEA.
2005.
TheHsp70Ssz1modulatesthefunctionoftheribosome-associatedJ-proteinZuo1.
NatStructMolBiol12:497–504.
doi:10.
1038/nsmb942HundleyH,EisenmanH,WalterW,EvansT,HotokezakaY,WiedmannM,CraigE.
2002.
Theinvivofunctionoftheribosome-associatedHsp70,Ssz1,doesnotrequireitsputativepeptide-bindingdomain.
ProcNatlAcadSci99:4203–4208.
doi:10.
1073/pnas.
062048399HundleyHA,WalterW,BairstowS,CraigEA.
2005.
HumanMpp11Jprotein:Ribosome-tetheredmolecularchaper-onesareubiquitous.
Science308:1032–1034.
doi:10.
1126/science.
1109247JaiswalH,ConzC,OttoH,WoleT,FitzkeE,MayerMP,RospertS.
2011.
Thechaperonenetworkconnectedtohumanribosome-associatedcomplex.
MolCellBiol31:1160–1173.
doi:10.
1128/MCB.
00986-10JennerL,MelnikovS,GarreaudeLoubresseN,Ben-ShemA,IskakovaM,UrzhumtsevA,MeskauskasA,DinmanJ,YusupovaG,YusupovM.
2012.
Crystalstructureofthe80Syeastribosome.
CurrOpinStructBiol22:759–767.
doi:10.
1016/j.
sbi.
2012.
07.
013JensenCG,PedersenS.
1994.
Concentrationsof4.
5SRNAandFfhproteininEscherichiacoli:ThestabilityofFfhproteinisdependentontheconcentrationof4.
5SRNA.
JBacteriol176:7148–7154.
doi:10.
1128/jb.
176.
23.
7148-7154.
1994JungnickelB,RapoportTA.
1995.
Aposttargetingsignalsequencerecognitioneventintheendoplasmicreticulummembrane.
Cell82:261–270.
doi:10.
1016/0092-8674(95)90313-5KaiserCM,ChangHC,AgasheVR,LakshmipathySK,EtchellsSA,Hayer-HartlM,HartlFU,BarralJM.
2006.
Real-timeobservationoftriggerfactorfunctionontrans-latingribosomes.
Nature444:455–460.
doi:10.
1038/nature05225E.
Deuerlingetal.
16AdvancedOnlineArticle.
CitethisarticleasColdSpringHarbPerspectBioldoi:10.
1101/cshperspect.
a033977onMarch8,2019-PublishedbyColdSpringHarborLaboratoryPresshttp://cshperspectives.
cshlp.
org/DownloadedfromKaschnerLA,SharmaR,ShresthaOK,MeyerAE,CraigEA.
2015.
AconserveddomainimportantforassociationofeukaryoticJ-proteinco-chaperonesJjj1andZuo1withtheribosome.
BiochimBiophysActa1853:1035–1045.
doi:10.
1016/j.
bbamcr.
2015.
01.
014KeenanRJ,FreymannDM,StroudRM,WalterP.
2001.
Thesignalrecognitionparticle.
AnnuRevBiochem70:755–775.
doi:10.
1146/annurev.
biochem.
70.
1.
755Kirstein-MilesJ,SciorA,DeuerlingE,MorimotoRI.
2013.
Thenascentpolypeptide-associatedcomplexisakeyreg-ulatorofproteostasis.
EMBOJ32:1451–1468.
doi:10.
1038/emboj.
2013.
87KlingeS,Voigts-HoffmannF,LeibundgutM,BanN.
2012.
Atomicstructuresoftheeukaryoticribosome.
TrendsBi-ochemSci37:189–198.
doi:10.
1016/j.
tibs.
2012.
02.
007KoplinA,PreisslerS,IlinaY,KochM,SciorA,ErhardtM,DeuerlingE.
2010.
AdualfunctionforchaperonesSSB–RACandtheNACnascentpolypeptide-associatedcom-plexonribosomes.
JCellBiol189:57–68.
doi:10.
1083/jcb.
200910074KramerG,RauchT,RistW,VorderwülbeckeS,PatzeltH,Schulze-SpeckingA,BanN,DeuerlingE,BukauB.
2002.
L23proteinfunctionsasachaperonedockingsiteontheribosome.
Nature419:171–174.
doi:10.
1038/nature01047KramerG,BoehringerD,BanN,BukauB.
2009.
Theribo-someasaplatformforco-translationalprocessing,fold-ingandtargetingofnewlysynthesizedproteins.
NatStructMolBiol16:589–597.
doi:10.
1038/nsmb.
1614LeeK,SharmaR,ShresthaOK,BingmanCA,CraigEA.
2016.
DualinteractionoftheHsp70J-proteincochaper-oneZuotinwiththe40Sand60Sribosomalsubunits.
NatStructMolBiol23:1003–1010.
doi:10.
1038/nsmb.
3299LeidigC,BangeG,KoppJ,AmlacherS,AravindA,WicklesS,WitteG,HurtE,BeckmannR,SinningI.
2013.
Struc-turalcharacterizationofaeukaryoticchaperone—Theribosome-associatedcomplex.
NatStructMolBiol20:23–28.
doi:10.
1038/nsmb.
2447LesnikC,CohenY,Atir-LandeA,SchuldinerM,AravaY.
2014.
OM14isamitochondrialreceptorforcytosolicribosomesthatsupportsco-translationalimportintomitochondria.
NatCommun5:5711.
doi:10.
1038/ncomms6711LiuY,HuY,LiX,NiuL,TengM.
2010.
Thecrystalstructureofthehumannascentpolypeptide-associatedcomplexdomainrevealsanucleicacid-bindingregionontheNACAsubunit.
Biochemistry49:2890–2896.
doi:10.
1021/bi902050pMarkesichDC,GajewskiKM,NazimiecME,BeckinghamK.
2000.
bicaudalencodestheDrosophilaβNAChomolog,acomponentoftheribosomaltranslationalmachinery.
De-velopment127:559–572.
MartinEM,JacksonMP,GamerdingerM,GenseK,Kara-monosTK,HumesJR,DeuerlingE,AshcroftAE,RadfordSE.
2018.
Conformationalexibilitywithinthenascentpolypeptide-associatedcomplexenablesitsinteractionswithstructurallydiverseclientproteins.
JBiolChem293:8554–8568.
doi:10.
1074/jbc.
RA117.
001568Martinez-HackertE,HendricksonWA.
2009.
Promiscuoussubstraterecognitioninfoldingandassemblyactivitiesofthetriggerfactorchaperone.
Cell138:923–934.
doi:10.
1016/j.
cell.
2009.
07.
044MashaghiA,KramerG,BechtluftP,Zachmann-BrandB,DriessenAJ,BukauB,TansSJ.
2013.
Reshapingoftheconformationalsearchofaproteinbythechaperonetriggerfactor.
Nature500:98–101.
doi:10.
1038/nature12293MayerMP,KitykR.
2015.
Insightsintothemolecularmech-anismofallosteryinHsp70s.
FrontMolBiosci2:58.
doi:10.
3389/fmolb.
2015.
00058MerzF,HoffmannA,RutkowskaA,Zachmann-BrandB,BukauB,DeuerlingE.
2006.
TheC-terminaldomainofEscherichiacolitriggerfactorrepresentsthecentralmod-uleofitschaperoneactivity.
JBiolChem281:31963–31971.
doi:10.
1074/jbc.
M605164200MollerI,JungM,BeatrixB,LevyR,KreibichG,Zimmer-mannR,WiedmannM,LauringB.
1998.
Ageneralmechanismforregulationofaccesstothetranslocon:Competitionforamembraneattachmentsiteonribo-somes.
ProcNatlAcadSci95:13425–13430.
doi:10.
1073/pnas.
95.
23.
13425Muldoon-JacobsKL,DinmanJD.
2006.
Speciceffectsofribosome-tetheredmolecularchaperonesonpro-grammed–1ribosomalframeshifting.
EukaryotCell5:762–770.
doi:10.
1128/EC.
5.
4.
762-770.
2006MurayamaE,SarrisM,ReddM,LeGuyaderD,VivierC,HorsleyW,TredeN,HerbomelP.
2015.
NACAdeciencyrevealsthecrucialroleofsomite-derivedstromalcellsinhaematopoieticnicheformation.
NatCommun6:8375.
doi:10.
1038/ncomms9375NelsonRJ,ZiegelhofferT,NicoletC,Werner-WashburneM,CraigEA.
1992.
Thetranslationmachineryand70kdheatshockproteincooperateinproteinsynthesis.
Cell71:97–105.
doi:10.
1016/0092-8674(92)90269-INeuhofA,RollsMM,JungnickelB,KaliesKU,RapoportTA.
1998.
Bindingofsignalrecognitionparticlegivesribo-some/nascentchaincomplexesacompetitiveadvantageinendoplasmicreticulummembraneinteraction.
MolBiolCell9:103–115.
doi:10.
1091/mbc.
9.
1.
103NyathiY,PoolMR.
2015.
AnalysisoftheinterplayofproteinbiogenesisfactorsattheribosomeexitsiterevealsnewroleforNAC.
JCellBiol210:287–301.
doi:10.
1083/jcb.
201410086OhE,BeckerAH,SandikciA,HuberD,ChabaR,GlogeF,NicholsRJ,TypasA,GrossCA,KramerG,etal.
2011.
Selectiveribosomeprolingrevealsthecotranslationalchaperoneactionoftriggerfactorinvivo.
Cell147:1295–1308.
doi:10.
1016/j.
cell.
2011.
10.
044OttAK,LocherL,KochM,DeuerlingE.
2015.
Func-tionaldissectionofthenascentpolypeptide-associatedcomplexinSaccharomycescerevisiae.
PLoSONE10:e0143457.
OttoH,ConzC,MaierP,WoleT,SuzukiCK,JenoP,RucknagelP,StahlJ,RospertS.
2005.
ThechaperonesMPP11andHsp70L1formthemammalianribosome-associatedcomplex.
ProcNatlAcadSci102:10064–10069.
doi:10.
1073/pnas.
0504400102PechM,SpreterT,BeckmannR,BeatrixB.
2010.
Dualbind-ingmodeofthenascentpolypeptide-associatedcomplexrevealsanoveluniversaladaptersiteontheribosome.
JBiolChem285:19679–19687.
doi:10.
1074/jbc.
M109.
092536PeiskerK,BraunD,WoleT,HentschelJ,FunfschillingU,FischerG,SickmannA,RospertS.
2008.
Ribosome-asso-ChaperoneInteractionsattheRibosomeAdvancedOnlineArticle.
CitethisarticleasColdSpringHarbPerspectBioldoi:10.
1101/cshperspect.
a03397717onMarch8,2019-PublishedbyColdSpringHarborLaboratoryPresshttp://cshperspectives.
cshlp.
org/DownloadedfromciatedcomplexbindstoribosomesincloseproximityofRpl31attheexitofthepolypeptidetunnelinyeast.
MolBiolCell19:5279–5288.
doi:10.
1091/mbc.
e08-06-0661PeiskerK,ChiabudiniM,RospertS.
2010.
Theribosome-boundHsp70homologSsbofSaccharomycescerevisiae.
BiochimBiophysActa1803:662–672.
doi:10.
1016/j.
bbamcr.
2010.
03.
005PfundC,Lopez-HoyoN,ZiegelhofferT,SchilkeBA,Lopez-BuesaP,WalterWA,WiedmannM,CraigEA.
1998.
ThemolecularchaperoneSsbfromSaccharomycescere-visiaeisacomponentoftheribosome-nascentchaincomplex.
EMBOJ17:3981–3989.
doi:10.
1093/emboj/17.
14.
3981PolevodaB,BrownS,CardilloTS,RigbyS,ShermanF.
2008.
YeastNα-terminalacetyltransferasesareassociatedwithribosomes.
JCellBiochem103:492–508.
doi:10.
1002/jcb.
21418PoolMR,StummJ,FulgaTA,SinningI,DobbersteinB.
2002.
Distinctmodesofsignalrecognitionparticleinter-actionwiththeribosome.
Science297:1345–1348.
doi:10.
1126/science.
1072366PowersT,WalterP.
1996.
Thenascentpolypeptide-associ-atedcomplexmodulatesinteractionsbetweenthesignalrecognitionparticleandtheribosome.
CurrBiol6:331–338.
doi:10.
1016/S0960-9822(02)00484-0PreisslerS,DeuerlingE.
2012.
Ribosome-associatedchaper-onesaskeyplayersinproteostasis.
TrendsBiochemSci37:274–283.
doi:10.
1016/j.
tibs.
2012.
03.
002RadenD,GilmoreR.
1998.
Signalrecognitionparticle-de-pendenttargetingofribosomestotheroughendoplasmicreticulumintheabsenceandpresenceofthenascentpolypeptide-associatedcomplex.
MolBiolCell9:117–130.
doi:10.
1091/mbc.
9.
1.
117RakwalskaM,RospertS.
2004.
Theribosome-boundchaperonesRACandSsb1/2parerequiredforaccu-ratetranslationinSaccharomycescerevisiae.
MolCellBiol24:9186–9197.
doi:10.
1128/MCB.
24.
20.
9186-9197.
2004RauchT,HundleyHA,PfundC,WegrzynRD,WalterW,KramerG,KimSY,CraigEA,DeuerlingE.
2005.
Dissect-ingfunctionalsimilaritiesofribosome-associatedchap-eronesfromSaccharomycescerevisiaeandEscherichiacoli.
MolMicrobiol57:357–365.
doi:10.
1111/j.
1365-2958.
2005.
04690.
xRaueU,OellererS,RospertS.
2007.
Associationofproteinbiogenesisfactorsattheyeastribosomaltunnelexitisaffectedbythetranslationalstatusandnascentpolypep-tidesequence.
JBiolChem282:7809–7816.
doi:10.
1074/jbc.
M611436200SaioT,GuanX,RossiP,EconomouA,KalodimosCG.
2014.
Structuralbasisforproteinantiaggregationactivityofthetriggerfactorchaperone.
Science344:1250494.
doi:10.
1126/science.
1250494SchmeingTM,RamakrishnanV.
2009.
Whatrecentribo-somestructureshaverevealedaboutthemechanismoftranslation.
Nature461:1234–1242.
doi:10.
1038/nature08403ShulgaN,JamesP,CraigEA,GoldfarbDS.
1999.
AnuclearexportsignalpreventsSaccharomycescerevisiaeHsp70Ssb1pfromstimulatingnuclearlocalizationsignal-direct-ednucleartransport.
JBiolChem274:16501–16507.
doi:10.
1074/jbc.
274.
23.
16501SinghalK,VreedeJ,MashaghiA,TansSJ,BolhuisPG.
2015.
Thetriggerfactorchaperoneencapsulatesandsta-bilizespartialfoldsofsubstrateproteins.
PLoSComputBiol11:e1004444.
doi:10.
1371/journal.
pcbi.
1004444SpreterT,PechM,BeatrixB.
2005.
Thecrystalstructureofarchaealnascentpolypeptide-associatedcomplex(NAC)revealsauniquefoldandthepresenceofaubiquitin-associateddomain.
JBiolChem280:15849–15854.
doi:10.
1074/jbc.
M500160200SteitzTA.
2008.
Astructuralunderstandingofthedynamicribosomemachine.
NatRevMolCellBiol9:242–253.
doi:10.
1038/nrm2352TeterSA,HouryWA,AngD,TradlerT,RockabrandD,FischerG,BlumP,GeorgopoulosC,HartlFU.
1999.
PolypeptideuxthroughbacterialHsp70:DnaKco-operateswithtriggerfactorinchaperoningnascentchains.
Cell97:755–765.
doi:10.
1016/S0092-8674(00)80787-4WangL,ZhangW,WangL,ZhangXC,LiX,RaoZ.
2010.
CrystalstructuresofNACdomainsofhumannascentpolypeptide-associatedcomplex(NAC)anditsαNACsubunit.
ProteinCell1:406–416.
doi:10.
1007/s13238-010-0049-3WangF,DurfeeLA,HuibregtseJM.
2013.
Acotranslationalubiquitinationpathwayforqualitycontrolofmisfoldedproteins.
MolCell50:368–378.
doi:10.
1016/j.
molcel.
2013.
03.
009WegrzynRD,HofmannD,MerzF,NikolayR,RauchT,GrafC,DeuerlingE.
2006.
AconservedmotifisprerequisitefortheinteractionofNACwithribosomalproteinL23andnascentchains.
JBiolChem281:2847–2857.
doi:10.
1074/jbc.
M511420200WeyerFA,GumieroA,GeséGV,LapougeK,SinningI.
2017.
StructuralinsightsintoauniqueHsp70-Hsp40interactionintheeukaryoticribosome-associatedcom-plex.
NatStructMolBiol24:144–151.
doi:10.
1038/nsmb.
3349WiedmannB,SakaiH,DavisTA,WiedmannM.
1994.
Aproteincomplexrequiredforsignal-sequence-specicsortingandtranslocation.
Nature370:434–440.
doi:10.
1038/370434a0WilliamsCC,JanCH,WeissmanJS.
2014.
Targetingandplasticityofmitochondrialproteinsrevealedbyproxim-ity-specicribosomeproling.
Science346:748–751.
doi:10.
1126/science.
1257522WillmundF,delAlamoM,PechmannS,ChenT,AlbaneseV,DammerEB,PengJ,FrydmanJ.
2013.
Thecotransla-tionalfunctionofribosome-associatedHsp70ineukary-oticproteinhomeostasis.
Cell152:196–209.
doi:10.
1016/j.
cell.
2012.
12.
001WilsonDN,BeckmannR.
2011.
Theribosomaltunnelasafunctionalenvironmentfornascentpolypeptidefoldingandtranslationalstalling.
CurrOpinStructBiol21:274–282.
doi:10.
1016/j.
sbi.
2011.
01.
007WruckF,AvellanedaMJ,KoersEJ,MindeDP,MayerMP,KramerG,MashaghiA,TansSJ.
2018.
ProteinfoldingmediatedbytriggerfactorandHsp70:Newinsightsfromsingle-moleculeapproaches.
JMolBiol430:438–449.
doi:10.
1016/j.
jmb.
2017.
09.
004E.
Deuerlingetal.
18AdvancedOnlineArticle.
CitethisarticleasColdSpringHarbPerspectBioldoi:10.
1101/cshperspect.
a033977onMarch8,2019-PublishedbyColdSpringHarborLaboratoryPresshttp://cshperspectives.
cshlp.
org/DownloadedfromYanW,SchilkeB,PfundC,WalterW,KimS,CraigEA.
1998.
Zuotin,aribosome-associatedDnaJmolecularchaperone.
EMBOJ17:4809–4817.
doi:10.
1093/emboj/17.
16.
4809ZhangY,BerndtU,GlzH,TaisA,OellererS,WleT,FitzkeE,RospertS.
2012.
NACfunctionsasamodulatorofSRPduringtheearlystepsofproteintargetingtotheendoplasmicreticulum.
MolBiolCell23:3027–3040.
doi:10.
1091/mbc.
e12-02-0112ZhangY,MaC,YuanY,ZhuJ,LiN,ChenC,WuS,YuL,LeiJ,GaoN.
2014.
Structuralbasisforinteractionofaco-translationalchaperonewiththeeukaryoticribosome.
NatStructMolBiol21:1042–1046.
doi:10.
1038/nsmb.
2908ZhangY,SinningI,RospertS.
2017.
Twochaperoneslockedinanembrace:Structureandfunctionoftheribosome-associatedcomplexRAC.
NatStructMolBiol24:611–619.
doi:10.
1038/nsmb.
3435ChaperoneInteractionsattheRibosomeAdvancedOnlineArticle.
CitethisarticleasColdSpringHarbPerspectBioldoi:10.
1101/cshperspect.
a03397719onMarch8,2019-PublishedbyColdSpringHarborLaboratoryPresshttp://cshperspectives.
cshlp.
org/DownloadedfrompublishedonlineMarch4,2019ColdSpringHarbPerspectBiolElkeDeuerling,MartinGamerdingerandStefanG.
KreftChaperoneInteractionsattheRibosomeSubjectCollectionProteinHomeostasisMechanismsofSmallHeatShockProteinsChristopherN.
Woods,etal.
MariaK.
Janowska,HannahE.
R.
Baughman,AdaptabilityTheProteasomeandItsNetwork:EngineeringforDanielFinleyandMiguelA.
PradoChaperoneInteractionsattheRibosomeKreftElkeDeuerling,MartinGamerdingerandStefanG.
FunctionalModulesoftheProteostasisNetworkGopalG.
Jayaraj,MarkS.
HippandF.
UlrichHartlProteinsinHealthandDiseaseRecognitionandDegradationofMislocalizedRamanujanS.
HegdeandEszterZavodszkyMethodintheStudyofProteinHomeostasisProteinSolubilityPredictionsUsingtheCamSolPietroSormanniandMicheleVendruscoloChaperonesModulationofAmyloidStatesbyMolecularBerndBukauAnneWentink,CarmenNussbaum-KrammerandoftheHsp104DisaggregaseSpiralinginControl:StructuresandMechanismsJamesShorterandDanielR.
SouthworthMachineryStructure,Function,andRegulationoftheHsp90MaximilianM.
BieblandJohannesBuchnerChaperoneNetworkTheNuclearandDNA-AssociatedMolecularFreemanZlataGvozdenov,JanhaviKolheandBrianC.
MitochondrialProteolysisandMetabolicControlSofiaAhola,ThomasLangerandThomasMacVicarDiseasesDegradation(ERAD)andProteinConformationalAssociatedChaperoningEndoplasmicReticulumJeffreyL.
BrodskyPatrickG.
Needham,ChristopherJ.
GuerrieroandCapacityoftheEndoplasmicReticulumProtein-FoldingRespondingtoFluctuationsintheTheUnfoldedProteinResponse:DetectingandWalterG.
ElifKaragz,DiegoAcosta-AlvearandPeterStrategyProteinPhaseSeparationasaStressSurvivalTitusM.
FranzmannandSimonAlbertihttp://cshperspectives.
cshlp.
org/cgi/collection/Foradditionalarticlesinthiscollection,seeCopyright2019ColdSpringHarborLaboratoryPress;allrightsreservedonMarch8,2019-PublishedbyColdSpringHarborLaboratoryPresshttp://cshperspectives.
cshlp.
org/DownloadedfromProcessesRoleofPolyphosphateinAmyloidogenicJustineLempartandUrsulaJakobUnfoldedProteinResponseSignalingandRegulationoftheMitochondrialNandhithaUmaNareshandColeM.
Hayneshttp://cshperspectives.
cshlp.
org/cgi/collection/Foradditionalarticlesinthiscollection,seeCopyright2019ColdSpringHarborLaboratoryPress;allrightsreservedonMarch8,2019-PublishedbyColdSpringHarborLaboratoryPresshttp://cshperspectives.
cshlp.
org/Downloadedfrom

Sharktech云服务器35折年付33美元起,2G内存/40G硬盘/4TB流量/多机房可选

Sharktech又称SK或者鲨鱼机房,是一家主打高防产品的国外商家,成立于2003年,提供的产品包括独立服务器租用、VPS云服务器等,自营机房在美国洛杉矶、丹佛、芝加哥和荷兰阿姆斯特丹等。之前我们经常分享商家提供的独立服务器产品,近期主机商针对云虚拟服务器(CVS)提供优惠码,优惠后XS套餐年付最低仅33.39美元起,支持使用支付宝、PayPal、信用卡等付款方式。下面以XS套餐为例,分享产品配...

Virtono:圣何塞VPS七五折月付2.2欧元起,免费双倍内存

Virtono是一家成立于2014年的国外VPS主机商,提供VPS和服务器租用等产品,商家支持PayPal、信用卡、支付宝等国内外付款方式,可选数据中心共7个:罗马尼亚2个,美国3个(圣何塞、达拉斯、迈阿密),英国和德国各1个。目前,商家针对美国圣何塞机房VPS提供75折优惠码,同时,下单后在LET回复订单号还能获得双倍内存的升级。下面以圣何塞为例,分享几款VPS主机配置信息。Cloud VPSC...

香港 1核1G 29元/月 美国1核 2G 36元/月 快云科技

快云科技: 11.11钜惠 美国云机2H5G年付148仅有40台,云服务器全场7折,香港云服务器年付388仅不到五折 公司介绍:快云科技是成立于2020年的新进主机商,持有IDC/ICP/ISP等证件资质齐全主营产品有:香港弹性云服务器,美国vps和日本vps,香港物理机,国内高防物理机以及美国日本高防物理机官网地址:www.345idc.com活动截止日期为2021年11月13日此次促销活动提供...

kkk755.com为你推荐
杨紫别祝我生日快乐一个人过生日的伤感说说有什么嘉兴商标注册我想注册个商标怎么注册啊?关键字什么叫关键词sss17.com为什么GAO17.COM网站打不开了www.gegeshe.comSHE个人资料www.bbb551.com100bbb网站怎样上不去了www.idanmu.com新开奇迹SF|再创发布网|奇迹SF|奇迹mu|网通奇迹|电信奇迹|www.ijinshan.com金山毒霸的网站是多少www.toutoulu.com外链方案到底应该怎么弄呢hao.rising.cn我一打开网页就是瑞星安全网站导航,怎么修改?
最新代理服务器地址 便宜域名 diahosting webhostingpad 鲨鱼机 缓存服务器 美国php主机 2017年黑色星期五 新站长网 免费ddos防火墙 最好看的qq空间 魔兽世界台湾服务器 metalink 四核服务器 美国凤凰城 上海电信测速 vul 美国盐湖城 中国电信测速网站 西安主机 更多