desiredmimiai.net

mimiai.net  时间:2021-04-07  阅读:()
6.
034fNeuralNetNotesOctober28,2010Thesenotesareasupplementtomaterialpresentedinlecture.
Ilayoutthemathematicsmoreprettilyandextendtheanalysistohandlemultiple-neuronsperlayer.
Also,Idevelopthebackpropagationrule,whichisoftenneededonquizzes.
IuseanotationthatIthinkimprovesonpreviousexplanations.
Thereasonisthatthenotationhereplainlyassociateseachinput,output,andweightwithareadilyidentifiedneuron,aleft-sideoneandaright-sideone.
Whenyouarriveattheupdateformulas,youwillhavelesstroublerelatingthevariablesintheformulastothevariablesinadiagram.
Onetheotherhand,seeingyetanothernotationmayconfuseyou,soifyoualreadyfeelcomfortablewithasetofupdateformulas,youwillnotgainbyreadingthesenotes.
ThesigmoidfunctionThesigmoidfunction,y=1/(1+ex),isusedinsteadofastepfunctioninartificialneuralnetsbecausethesigmoidiscontinuous,whereasastepfunctionisnot,andyouneedcontinuitywheneveryouwanttousegradientascent.
Also,thesigmoidfunctionhasseveraldesirablequalities.
Forexample,thesigmoidfunction'svalue,y,approaches1asxbecomeshighlypositive;0asxbecomeshighlynegative;andequals1/2whenx=0.
Betteryet,thesigmoidfunctionfeaturesaremarkablysimplederivativeoftheoutput,y,withrespecttotheinput,x:dyd1=()dxdx1+exd=(1+ex)1dx=1*(1+ex)2*ex*11ex=*1+ex1+ex11+ex1=*1+ex1+ex11+ex11+ex1+ex1+ex=y(1y)Thus,remarkably,thederivativeoftheoutputwithrespecttotheinputisexpressedasasimplefunctionoftheoutput.
TheperformancefunctionThestandardperformancefunctionforgauginghowwellaneuralnetisdoingisgivenbythefollowing:1P=(dsampleosample)222wherePistheperformancefunction,dsampleisthedesiredoutputforsomespecificsampleandosampleistheobservedoutputforthatsample.
Fromthispointforward,assumethatdandoarethedesiredandobservedoutputsforaspecificsamplesothatweneednotdragasubscriptaroundasweworkthroughthealgebra.
ThereasonforchoosingthegivenformulaforPisthattheformulahasconvenientproperties.
Theformulayieldsamaximumato=dandmonotonicallydecreasesasodeviatesfromd.
Moreover,thederivativeofPwithrespecttooissimple:dPd1=[(do)2]dodo2=2*(do)1*12=doGradientascentBackpropagationisaspecializationoftheideaofgradientascent.
YouaretryingtofindthemaximumofaperformancefunctionP,bychangingtheweightsassociatedwithneurons,soyoumoveinthedirectionofthegradientinaspacethatgivesPasafunctionoftheweights,w.
Thatis,youmoveinthedirectionofmostrapidascentifwetakeastepinthedirectionwithcomponentsgovernedbythefollowingformula,whichshowshowmuchtochangeaweight,w,intermsofapartialderivative:PΔw∝wTheactualchangeisinuencedbyarateconstant,α;accordingly,thenewweight,w,isgivenbythefollowing:w=w+α*PwGradientdescentIftheperformancefunctionwere12(dsampleosample)2insteadof12(dsampleosample)2,thenyouwouldbesearchingfortheminimumratherthanthemaximumofP,andthechangeinwwouldbesubtractedfromwinsteadofadded,sowwouldbewα*wPinsteadofw+α*wP.
Thetwosignchanges,oneintheperformancefunctionandtheotherintheupdateformulacancel,sointheend,yougetthesameresultwhetheryouusegradientascent,asIprefer,orgradientdescent.
ThesimplestneuralnetConsiderthesimplestpossibleneuralnet:oneinput,oneoutput,andtwoneurons,theleftneuronandtherightneuron.
Anetwithtwoneuronsisthesmallestthatillustrateshowthederivativescanbecomputedlayerbylayer.
3xSigmoidWlplilolxSigmoidWrprorirLeftneuronRightneuronNotethatthesubscriptsindicatelayer.
Thus,il,wl,pl,andolaretheinput,weight,product,andoutputassociatedwiththeneuronontheleftwhileir,wr,pr,andoraretheinput,weight,product,andoutputassociatedwiththeneuronontheright.
Ofcourse,ol=ir.
Supposethattheoutputoftherightneuron,or,isthevaluethatdeterminesperformanceP.
TocomputethepartialderivativeofPwithrespecttotheweightintherightneuron,wr,youneedthechainrule,whichallowsyoutocomputepartialderivativesofonevariablewithrespecttoanotherintermsofanintermediatevariable.
Inparticular,forwr,youhavethefollowing,takingortobetheintermediatevariable:PPor=*wrorwrNow,youcanrepeat,usingthechain-ruletoturnworrintooprr*wprr:PPorpr=**wrorprwrConveniently,youhaveseentwoofthederivativesalready,andthethird,wprr=(wrw*rol),iseasytocompute:P=[(dor)]*[or(1or)]*[ir]wrRepeatingtheanalysisforwlyieldsthefollowing.
Eachlineisthesameasthepreviously,exceptthatonemorepartialderivativeisexpandedusingthechainrule:P=P*orwlorwl=P*or*prorprwl=P*or*pr*olorprolwl=P*or*pr*ol*plorprolplwl=[(dor)]*[or(1or)]*[wr]*[ol(1ol)]*[il]4Thus,thederivativeconsistsofproductsoftermsthathavealreadybeencomputedandtermsinthevicinityofwl.
Thisisclearerifyouwritethetwoderivativesnexttooneanother:P=(dor)*or(1or)*irwrP=(dor)*or(1or)*wr*ol(1ol)*ilwlYoucansimplifytheequationsbydefiningδsasfollows,whereeachdeltaisassociatedwitheithertheleftorrightneuron:δr=or(1or)*(dor)δl=ol(1ol)*wr*δrThen,youcanwritethepartialderivativeswiththeδs:P=ir*δrwrP=il*δlwlIfyouaddmorelayerstothefrontofthenetwork,eachweighthasapartialderivativesthatiscomputedlikethepartialderivativeoftheweightoftheleftneuron.
Thatis,eachhasapartialderivativedeterminedbyitsinputanditsdelta,whereitsdeltainturnisdeterminedbyitsoutput,theweighttoitsright,andthedeltatoitsright.
Thus,fortheweightsinthefinallayer,youcomputethechangeasfollows,whereIusefasthesubscriptinsteadofrtoemphasizethatthecomputationisfortheneuroninthefinallayer:Δwf=α*if*δfwhereδf=of(1of)*(dof)Forallotherlayers,youcomputethechangeasfollows:Δwl=α*il*δlwhereδl=ol(1ol)*wr*δrMoreneuronsperlayersOfcourse,youreallywantbackpropagationformulasfornotonlyanynumberoflayersbutalsoforanynumberofneuronsperlayer,eachofwhichcanhavemultipleinputs,eachwithitsownweight.
Accordingly,youneedtogeneralizeinanotherdirection,allowingmultipleneuronsineachlayerandmultipleweightsattachedtoeachneuron.
Thegeneralizationisanadventureinsummations,withlotsofsubscriptstokeepstraight,butintheend,theresultmatchesintuition.
Forthefinallayer,theremaybemanyneurons,sotheformula'sneedanindex,k,indicatingwhichfinalnodeneuronisinplay.
Foranyweightcontained5inthefinal-layerneuron,fk,youcomputethechangeasfollowsfromtheinputcorrespondingtotheweightandfromtheδassociatedwiththeneuron:Δw=α*i*δfkδfk=ofk(1ofk)*(dkofk)Notethattheoutputofeachfinal-layerneuronoutputissubtractedfromtheoutputdesiredforthatneuron.
Forotherlayers,theremayalsobemanyneurons,andtheoutputofeachmayinuencealltheneuronsinthenextlayertotheright.
Thechangeinweighthastoaccountforwhathappenstoallofthoseneuronstotheright,soasummationappears,butotherwiseyoucomputethechange,asbefore,fromtheinputcorrespondingtotheweightandfromtheδassociatedwiththeneuron:Δw=α*i*δliδli=oli(1oli)*wli→rj*δrjjNotethatwli→rjistheweightthatconnectsthejthright-sideneurontotheoutputoftheithleft-sideneuron.
SummaryOnceyouunderstoodhowtoderivetheformulas,youcancombineandsimplifytheminpreparationforsolvingproblems.
Foreachweight,youcomputetheweight'schangefromtheinputcorrespondingtotheweightandfromtheδassociatedwiththeneuron.
Assumingthatδisthedeltaassociatedwiththatneuron,youhavethefollowing,wherew→rjistheweightconnectingtheoutputoftheneuronyouareworkingon,theithleft-sideneuron,tothejthright-sideneuron,andδrjistheδassociatedwiththatright-sideneuron.
δo=o(1o)*(do)forthefinallayerδli=oli(1oli)*wli→rj*δrjotherwisejThatis,youcomputedchangeinaneuron'sw,ineverylayer,bymultiplyingαtimestheneuron'sinputtimesitsδ.
Theδisdeterminedforallbutthefinallayerintermsoftheneuron'soutputandalltheweightsthatconnectthatoutputtoneuronsinthelayertotherightandtheδsassociatedwiththoseright-sideneurons.
Theδforeachneuroninthefinallayerisdeterminedonlybytheoutputofthatneuronandbythedifferencebetweenthedesiredoutputandtheactualoutputofthatneuron.
6WeightsanddeltasinlayertotherightNeuronwithweighttobeadjustedw→r1wxoixxΣ∫w→rNWeighttobeadjustedxxxΣ∫δ1xxxΣ∫δΝMITOpenCourseWarehttp://ocw.
mit.
edu6.
034ArtificialIntelligenceFall2010ForinformationaboutcitingthesematerialsorourTermsofUse,visit:http://ocw.
mit.
edu/terms.

MineServer:洛杉矶CN2 GIA VPS/512MB内存/20GB NVME/800GB流量/200Mbps/KVM,58元/季

mineserver怎么样?mineserver是一家国人商家,主要提供香港CN2 KVM VPS、香港CMI KVM VPS、日本CN2 KVM VPS、洛杉矶cn2 gia端口转发等服务,之前介绍过几次,最近比较活跃。这家新推出了洛杉矶CN2 GIA VPS,512MB内存/20GB NVME/800GB流量/200Mbps/KVM,58元/季,并且进行了带宽升级,同时IP更改为美国IP。点击...

Sharktech$129/月,1Gbps不限流量,E5-2678v3(24核48线程)

Sharktech最近洛杉矶和丹佛低价配置大部分都无货了,只有荷兰机房还有少量库存,商家又提供了两款洛杉矶特价独立服务器,价格不错,CPU/内存/硬盘都是高配,1-10Gbps带宽不限流量最低129美元/月起。鲨鱼机房(Sharktech)我们也叫它SK机房,是一家成立于2003年的老牌国外主机商,提供的产品包括独立服务器租用、VPS主机等,自营机房在美国洛杉矶、丹佛、芝加哥和荷兰阿姆斯特丹等,主...

Friendhosting,美国迈阿密机房新上线,全场45折特价优惠,100Mbps带宽不限流量,美国/荷兰/波兰/乌兰克/瑞士等可选,7.18欧元/半年

近日Friendhosting发布了最新的消息,新上线了美国迈阿密的云产品,之前的夏季优惠活动还在进行中,全场一次性45折优惠,最高可购买半年,超过半年优惠力度就不高了,Friendhosting商家的优势就是100Mbps带宽不限流量,有需要的朋友可以尝试一下。Friendhosting怎么样?Friendhosting服务器好不好?Friendhosting服务器值不值得购买?Friendho...

mimiai.net为你推荐
neworientalbecoming什么么意思中老铁路老挝磨丁经济特区的前景如何?关键字关键字和一般标识符的区别比肩工场比肩接踵的意思月神谭给点人妖。变身类得小说。同一服务器网站服务器建设:一个服务器有多个网站该如何设置?ip在线查询我要用eclipse做个ip在线查询功能,用QQwry数据库,可是我不知道怎么把这个数据库放到我的程序里面去,高手帮忙指点下,小弟在这谢谢了javmoo.comjavbus上不去.怎么办www.zjs.com.cn我的信用卡已经申请成功了,显示正在寄卡,怎么查询寄卡信息?ww.66bobo.com这个www.中国应急救援网.com查询证件是真是假?
备案域名 美国域名注册 lamp安装 联通c套餐 电影服务器 gomezpeer 777te gg广告 河南移动邮件系统 宁波服务器 gspeed 网站木马检测工具 网通服务器托管 1美金 100mbps shopex主机 备案空间 河南移动梦网 vul 免费的域名 更多