desiredmimiai.net

mimiai.net  时间:2021-04-07  阅读:()
6.
034fNeuralNetNotesOctober28,2010Thesenotesareasupplementtomaterialpresentedinlecture.
Ilayoutthemathematicsmoreprettilyandextendtheanalysistohandlemultiple-neuronsperlayer.
Also,Idevelopthebackpropagationrule,whichisoftenneededonquizzes.
IuseanotationthatIthinkimprovesonpreviousexplanations.
Thereasonisthatthenotationhereplainlyassociateseachinput,output,andweightwithareadilyidentifiedneuron,aleft-sideoneandaright-sideone.
Whenyouarriveattheupdateformulas,youwillhavelesstroublerelatingthevariablesintheformulastothevariablesinadiagram.
Onetheotherhand,seeingyetanothernotationmayconfuseyou,soifyoualreadyfeelcomfortablewithasetofupdateformulas,youwillnotgainbyreadingthesenotes.
ThesigmoidfunctionThesigmoidfunction,y=1/(1+ex),isusedinsteadofastepfunctioninartificialneuralnetsbecausethesigmoidiscontinuous,whereasastepfunctionisnot,andyouneedcontinuitywheneveryouwanttousegradientascent.
Also,thesigmoidfunctionhasseveraldesirablequalities.
Forexample,thesigmoidfunction'svalue,y,approaches1asxbecomeshighlypositive;0asxbecomeshighlynegative;andequals1/2whenx=0.
Betteryet,thesigmoidfunctionfeaturesaremarkablysimplederivativeoftheoutput,y,withrespecttotheinput,x:dyd1=()dxdx1+exd=(1+ex)1dx=1*(1+ex)2*ex*11ex=*1+ex1+ex11+ex1=*1+ex1+ex11+ex11+ex1+ex1+ex=y(1y)Thus,remarkably,thederivativeoftheoutputwithrespecttotheinputisexpressedasasimplefunctionoftheoutput.
TheperformancefunctionThestandardperformancefunctionforgauginghowwellaneuralnetisdoingisgivenbythefollowing:1P=(dsampleosample)222wherePistheperformancefunction,dsampleisthedesiredoutputforsomespecificsampleandosampleistheobservedoutputforthatsample.
Fromthispointforward,assumethatdandoarethedesiredandobservedoutputsforaspecificsamplesothatweneednotdragasubscriptaroundasweworkthroughthealgebra.
ThereasonforchoosingthegivenformulaforPisthattheformulahasconvenientproperties.
Theformulayieldsamaximumato=dandmonotonicallydecreasesasodeviatesfromd.
Moreover,thederivativeofPwithrespecttooissimple:dPd1=[(do)2]dodo2=2*(do)1*12=doGradientascentBackpropagationisaspecializationoftheideaofgradientascent.
YouaretryingtofindthemaximumofaperformancefunctionP,bychangingtheweightsassociatedwithneurons,soyoumoveinthedirectionofthegradientinaspacethatgivesPasafunctionoftheweights,w.
Thatis,youmoveinthedirectionofmostrapidascentifwetakeastepinthedirectionwithcomponentsgovernedbythefollowingformula,whichshowshowmuchtochangeaweight,w,intermsofapartialderivative:PΔw∝wTheactualchangeisinuencedbyarateconstant,α;accordingly,thenewweight,w,isgivenbythefollowing:w=w+α*PwGradientdescentIftheperformancefunctionwere12(dsampleosample)2insteadof12(dsampleosample)2,thenyouwouldbesearchingfortheminimumratherthanthemaximumofP,andthechangeinwwouldbesubtractedfromwinsteadofadded,sowwouldbewα*wPinsteadofw+α*wP.
Thetwosignchanges,oneintheperformancefunctionandtheotherintheupdateformulacancel,sointheend,yougetthesameresultwhetheryouusegradientascent,asIprefer,orgradientdescent.
ThesimplestneuralnetConsiderthesimplestpossibleneuralnet:oneinput,oneoutput,andtwoneurons,theleftneuronandtherightneuron.
Anetwithtwoneuronsisthesmallestthatillustrateshowthederivativescanbecomputedlayerbylayer.
3xSigmoidWlplilolxSigmoidWrprorirLeftneuronRightneuronNotethatthesubscriptsindicatelayer.
Thus,il,wl,pl,andolaretheinput,weight,product,andoutputassociatedwiththeneuronontheleftwhileir,wr,pr,andoraretheinput,weight,product,andoutputassociatedwiththeneuronontheright.
Ofcourse,ol=ir.
Supposethattheoutputoftherightneuron,or,isthevaluethatdeterminesperformanceP.
TocomputethepartialderivativeofPwithrespecttotheweightintherightneuron,wr,youneedthechainrule,whichallowsyoutocomputepartialderivativesofonevariablewithrespecttoanotherintermsofanintermediatevariable.
Inparticular,forwr,youhavethefollowing,takingortobetheintermediatevariable:PPor=*wrorwrNow,youcanrepeat,usingthechain-ruletoturnworrintooprr*wprr:PPorpr=**wrorprwrConveniently,youhaveseentwoofthederivativesalready,andthethird,wprr=(wrw*rol),iseasytocompute:P=[(dor)]*[or(1or)]*[ir]wrRepeatingtheanalysisforwlyieldsthefollowing.
Eachlineisthesameasthepreviously,exceptthatonemorepartialderivativeisexpandedusingthechainrule:P=P*orwlorwl=P*or*prorprwl=P*or*pr*olorprolwl=P*or*pr*ol*plorprolplwl=[(dor)]*[or(1or)]*[wr]*[ol(1ol)]*[il]4Thus,thederivativeconsistsofproductsoftermsthathavealreadybeencomputedandtermsinthevicinityofwl.
Thisisclearerifyouwritethetwoderivativesnexttooneanother:P=(dor)*or(1or)*irwrP=(dor)*or(1or)*wr*ol(1ol)*ilwlYoucansimplifytheequationsbydefiningδsasfollows,whereeachdeltaisassociatedwitheithertheleftorrightneuron:δr=or(1or)*(dor)δl=ol(1ol)*wr*δrThen,youcanwritethepartialderivativeswiththeδs:P=ir*δrwrP=il*δlwlIfyouaddmorelayerstothefrontofthenetwork,eachweighthasapartialderivativesthatiscomputedlikethepartialderivativeoftheweightoftheleftneuron.
Thatis,eachhasapartialderivativedeterminedbyitsinputanditsdelta,whereitsdeltainturnisdeterminedbyitsoutput,theweighttoitsright,andthedeltatoitsright.
Thus,fortheweightsinthefinallayer,youcomputethechangeasfollows,whereIusefasthesubscriptinsteadofrtoemphasizethatthecomputationisfortheneuroninthefinallayer:Δwf=α*if*δfwhereδf=of(1of)*(dof)Forallotherlayers,youcomputethechangeasfollows:Δwl=α*il*δlwhereδl=ol(1ol)*wr*δrMoreneuronsperlayersOfcourse,youreallywantbackpropagationformulasfornotonlyanynumberoflayersbutalsoforanynumberofneuronsperlayer,eachofwhichcanhavemultipleinputs,eachwithitsownweight.
Accordingly,youneedtogeneralizeinanotherdirection,allowingmultipleneuronsineachlayerandmultipleweightsattachedtoeachneuron.
Thegeneralizationisanadventureinsummations,withlotsofsubscriptstokeepstraight,butintheend,theresultmatchesintuition.
Forthefinallayer,theremaybemanyneurons,sotheformula'sneedanindex,k,indicatingwhichfinalnodeneuronisinplay.
Foranyweightcontained5inthefinal-layerneuron,fk,youcomputethechangeasfollowsfromtheinputcorrespondingtotheweightandfromtheδassociatedwiththeneuron:Δw=α*i*δfkδfk=ofk(1ofk)*(dkofk)Notethattheoutputofeachfinal-layerneuronoutputissubtractedfromtheoutputdesiredforthatneuron.
Forotherlayers,theremayalsobemanyneurons,andtheoutputofeachmayinuencealltheneuronsinthenextlayertotheright.
Thechangeinweighthastoaccountforwhathappenstoallofthoseneuronstotheright,soasummationappears,butotherwiseyoucomputethechange,asbefore,fromtheinputcorrespondingtotheweightandfromtheδassociatedwiththeneuron:Δw=α*i*δliδli=oli(1oli)*wli→rj*δrjjNotethatwli→rjistheweightthatconnectsthejthright-sideneurontotheoutputoftheithleft-sideneuron.
SummaryOnceyouunderstoodhowtoderivetheformulas,youcancombineandsimplifytheminpreparationforsolvingproblems.
Foreachweight,youcomputetheweight'schangefromtheinputcorrespondingtotheweightandfromtheδassociatedwiththeneuron.
Assumingthatδisthedeltaassociatedwiththatneuron,youhavethefollowing,wherew→rjistheweightconnectingtheoutputoftheneuronyouareworkingon,theithleft-sideneuron,tothejthright-sideneuron,andδrjistheδassociatedwiththatright-sideneuron.
δo=o(1o)*(do)forthefinallayerδli=oli(1oli)*wli→rj*δrjotherwisejThatis,youcomputedchangeinaneuron'sw,ineverylayer,bymultiplyingαtimestheneuron'sinputtimesitsδ.
Theδisdeterminedforallbutthefinallayerintermsoftheneuron'soutputandalltheweightsthatconnectthatoutputtoneuronsinthelayertotherightandtheδsassociatedwiththoseright-sideneurons.
Theδforeachneuroninthefinallayerisdeterminedonlybytheoutputofthatneuronandbythedifferencebetweenthedesiredoutputandtheactualoutputofthatneuron.
6WeightsanddeltasinlayertotherightNeuronwithweighttobeadjustedw→r1wxoixxΣ∫w→rNWeighttobeadjustedxxxΣ∫δ1xxxΣ∫δΝMITOpenCourseWarehttp://ocw.
mit.
edu6.
034ArtificialIntelligenceFall2010ForinformationaboutcitingthesematerialsorourTermsofUse,visit:http://ocw.
mit.
edu/terms.

Virtono:€23.7/年,KVM-2GB/25GB/2TB/洛杉矶&达拉斯&纽约&罗马尼亚等

Virtono最近推出了夏季促销活动,为月付、季付、半年付等提供9折优惠码,年付已直接5折,而且下单后在LET回复订单号还能获得双倍内存,不限制付款周期。这是一家成立于2014年的国外VPS主机商,提供VPS和服务器租用等产品,商家支持PayPal、信用卡、支付宝等国内外付款方式,可选数据中心包括罗马尼亚、美国洛杉矶、达拉斯、迈阿密、英国和德国等。下面列出几款VPS主机配置信息,请留意,下列配置中...

pacificrack:2021年七夕VPS特别促销,$13.14/年,2G内存/2核/60gSSD/1T流量,支持Windows

pacificrack官方在搞2021年七夕促销,两款便宜vps给的配置都是挺不错的,依旧是接入1Gbps带宽,KVM虚拟、纯SSD raid10阵列,支持包括Linux、Windows 7、10、server2003、2008、2012、2016、2019在内多种操作系统。本次促销的VPS请特别注意限制条件,见本文末尾!官方网站:https://pacificrack.com支持PayPal、支...

2021年国内/国外便宜VPS主机/云服务器商家推荐整理

2021年各大云服务商竞争尤为激烈,因为云服务商家的竞争我们可以选择更加便宜的VPS或云服务器,这样成本更低,选择空间更大。但是,如果我们是建站用途或者是稳定项目的,不要太过于追求便宜VPS或便宜云服务器,更需要追求稳定和服务。不同的商家有不同的特点,而且任何商家和线路不可能一直稳定,我们需要做的就是定期观察和数据定期备份。下面,请跟云服务器网(yuntue.com)小编来看一下2021年国内/国...

mimiai.net为你推荐
数码资讯数字资源是什么原代码求数字代码大全?www.7160.com电影网站有那些陈嘉垣反黑阿欣是谁演的 扮演者介绍杰景新特美国杰尼.巴尼特的资料月神谭有没有什么好看的小说?拒绝言情小说!javmoo.comjavbus上不去.怎么办103838.com39052.com这电影网支持网页观看吗?m.kan84.net经常使用http://www.feikan.cc看电影的进来帮我下啊partnersonline国内有哪些知名的ACCA培训机构
网通服务器租用 国际域名抢注 什么是二级域名 日本软银 a2hosting koss 外国域名 服务器日志分析 12306抢票助手 windows2003iso 国外php空间 服务器架设 免费网站申请 193邮箱 爱奇艺vip免费试用7天 hdd 万网空间购买 电信托管 免费asp空间 免费的域名 更多