desiredmimiai.net

mimiai.net  时间:2021-04-07  阅读:()
6.
034fNeuralNetNotesOctober28,2010Thesenotesareasupplementtomaterialpresentedinlecture.
Ilayoutthemathematicsmoreprettilyandextendtheanalysistohandlemultiple-neuronsperlayer.
Also,Idevelopthebackpropagationrule,whichisoftenneededonquizzes.
IuseanotationthatIthinkimprovesonpreviousexplanations.
Thereasonisthatthenotationhereplainlyassociateseachinput,output,andweightwithareadilyidentifiedneuron,aleft-sideoneandaright-sideone.
Whenyouarriveattheupdateformulas,youwillhavelesstroublerelatingthevariablesintheformulastothevariablesinadiagram.
Onetheotherhand,seeingyetanothernotationmayconfuseyou,soifyoualreadyfeelcomfortablewithasetofupdateformulas,youwillnotgainbyreadingthesenotes.
ThesigmoidfunctionThesigmoidfunction,y=1/(1+ex),isusedinsteadofastepfunctioninartificialneuralnetsbecausethesigmoidiscontinuous,whereasastepfunctionisnot,andyouneedcontinuitywheneveryouwanttousegradientascent.
Also,thesigmoidfunctionhasseveraldesirablequalities.
Forexample,thesigmoidfunction'svalue,y,approaches1asxbecomeshighlypositive;0asxbecomeshighlynegative;andequals1/2whenx=0.
Betteryet,thesigmoidfunctionfeaturesaremarkablysimplederivativeoftheoutput,y,withrespecttotheinput,x:dyd1=()dxdx1+exd=(1+ex)1dx=1*(1+ex)2*ex*11ex=*1+ex1+ex11+ex1=*1+ex1+ex11+ex11+ex1+ex1+ex=y(1y)Thus,remarkably,thederivativeoftheoutputwithrespecttotheinputisexpressedasasimplefunctionoftheoutput.
TheperformancefunctionThestandardperformancefunctionforgauginghowwellaneuralnetisdoingisgivenbythefollowing:1P=(dsampleosample)222wherePistheperformancefunction,dsampleisthedesiredoutputforsomespecificsampleandosampleistheobservedoutputforthatsample.
Fromthispointforward,assumethatdandoarethedesiredandobservedoutputsforaspecificsamplesothatweneednotdragasubscriptaroundasweworkthroughthealgebra.
ThereasonforchoosingthegivenformulaforPisthattheformulahasconvenientproperties.
Theformulayieldsamaximumato=dandmonotonicallydecreasesasodeviatesfromd.
Moreover,thederivativeofPwithrespecttooissimple:dPd1=[(do)2]dodo2=2*(do)1*12=doGradientascentBackpropagationisaspecializationoftheideaofgradientascent.
YouaretryingtofindthemaximumofaperformancefunctionP,bychangingtheweightsassociatedwithneurons,soyoumoveinthedirectionofthegradientinaspacethatgivesPasafunctionoftheweights,w.
Thatis,youmoveinthedirectionofmostrapidascentifwetakeastepinthedirectionwithcomponentsgovernedbythefollowingformula,whichshowshowmuchtochangeaweight,w,intermsofapartialderivative:PΔw∝wTheactualchangeisinuencedbyarateconstant,α;accordingly,thenewweight,w,isgivenbythefollowing:w=w+α*PwGradientdescentIftheperformancefunctionwere12(dsampleosample)2insteadof12(dsampleosample)2,thenyouwouldbesearchingfortheminimumratherthanthemaximumofP,andthechangeinwwouldbesubtractedfromwinsteadofadded,sowwouldbewα*wPinsteadofw+α*wP.
Thetwosignchanges,oneintheperformancefunctionandtheotherintheupdateformulacancel,sointheend,yougetthesameresultwhetheryouusegradientascent,asIprefer,orgradientdescent.
ThesimplestneuralnetConsiderthesimplestpossibleneuralnet:oneinput,oneoutput,andtwoneurons,theleftneuronandtherightneuron.
Anetwithtwoneuronsisthesmallestthatillustrateshowthederivativescanbecomputedlayerbylayer.
3xSigmoidWlplilolxSigmoidWrprorirLeftneuronRightneuronNotethatthesubscriptsindicatelayer.
Thus,il,wl,pl,andolaretheinput,weight,product,andoutputassociatedwiththeneuronontheleftwhileir,wr,pr,andoraretheinput,weight,product,andoutputassociatedwiththeneuronontheright.
Ofcourse,ol=ir.
Supposethattheoutputoftherightneuron,or,isthevaluethatdeterminesperformanceP.
TocomputethepartialderivativeofPwithrespecttotheweightintherightneuron,wr,youneedthechainrule,whichallowsyoutocomputepartialderivativesofonevariablewithrespecttoanotherintermsofanintermediatevariable.
Inparticular,forwr,youhavethefollowing,takingortobetheintermediatevariable:PPor=*wrorwrNow,youcanrepeat,usingthechain-ruletoturnworrintooprr*wprr:PPorpr=**wrorprwrConveniently,youhaveseentwoofthederivativesalready,andthethird,wprr=(wrw*rol),iseasytocompute:P=[(dor)]*[or(1or)]*[ir]wrRepeatingtheanalysisforwlyieldsthefollowing.
Eachlineisthesameasthepreviously,exceptthatonemorepartialderivativeisexpandedusingthechainrule:P=P*orwlorwl=P*or*prorprwl=P*or*pr*olorprolwl=P*or*pr*ol*plorprolplwl=[(dor)]*[or(1or)]*[wr]*[ol(1ol)]*[il]4Thus,thederivativeconsistsofproductsoftermsthathavealreadybeencomputedandtermsinthevicinityofwl.
Thisisclearerifyouwritethetwoderivativesnexttooneanother:P=(dor)*or(1or)*irwrP=(dor)*or(1or)*wr*ol(1ol)*ilwlYoucansimplifytheequationsbydefiningδsasfollows,whereeachdeltaisassociatedwitheithertheleftorrightneuron:δr=or(1or)*(dor)δl=ol(1ol)*wr*δrThen,youcanwritethepartialderivativeswiththeδs:P=ir*δrwrP=il*δlwlIfyouaddmorelayerstothefrontofthenetwork,eachweighthasapartialderivativesthatiscomputedlikethepartialderivativeoftheweightoftheleftneuron.
Thatis,eachhasapartialderivativedeterminedbyitsinputanditsdelta,whereitsdeltainturnisdeterminedbyitsoutput,theweighttoitsright,andthedeltatoitsright.
Thus,fortheweightsinthefinallayer,youcomputethechangeasfollows,whereIusefasthesubscriptinsteadofrtoemphasizethatthecomputationisfortheneuroninthefinallayer:Δwf=α*if*δfwhereδf=of(1of)*(dof)Forallotherlayers,youcomputethechangeasfollows:Δwl=α*il*δlwhereδl=ol(1ol)*wr*δrMoreneuronsperlayersOfcourse,youreallywantbackpropagationformulasfornotonlyanynumberoflayersbutalsoforanynumberofneuronsperlayer,eachofwhichcanhavemultipleinputs,eachwithitsownweight.
Accordingly,youneedtogeneralizeinanotherdirection,allowingmultipleneuronsineachlayerandmultipleweightsattachedtoeachneuron.
Thegeneralizationisanadventureinsummations,withlotsofsubscriptstokeepstraight,butintheend,theresultmatchesintuition.
Forthefinallayer,theremaybemanyneurons,sotheformula'sneedanindex,k,indicatingwhichfinalnodeneuronisinplay.
Foranyweightcontained5inthefinal-layerneuron,fk,youcomputethechangeasfollowsfromtheinputcorrespondingtotheweightandfromtheδassociatedwiththeneuron:Δw=α*i*δfkδfk=ofk(1ofk)*(dkofk)Notethattheoutputofeachfinal-layerneuronoutputissubtractedfromtheoutputdesiredforthatneuron.
Forotherlayers,theremayalsobemanyneurons,andtheoutputofeachmayinuencealltheneuronsinthenextlayertotheright.
Thechangeinweighthastoaccountforwhathappenstoallofthoseneuronstotheright,soasummationappears,butotherwiseyoucomputethechange,asbefore,fromtheinputcorrespondingtotheweightandfromtheδassociatedwiththeneuron:Δw=α*i*δliδli=oli(1oli)*wli→rj*δrjjNotethatwli→rjistheweightthatconnectsthejthright-sideneurontotheoutputoftheithleft-sideneuron.
SummaryOnceyouunderstoodhowtoderivetheformulas,youcancombineandsimplifytheminpreparationforsolvingproblems.
Foreachweight,youcomputetheweight'schangefromtheinputcorrespondingtotheweightandfromtheδassociatedwiththeneuron.
Assumingthatδisthedeltaassociatedwiththatneuron,youhavethefollowing,wherew→rjistheweightconnectingtheoutputoftheneuronyouareworkingon,theithleft-sideneuron,tothejthright-sideneuron,andδrjistheδassociatedwiththatright-sideneuron.
δo=o(1o)*(do)forthefinallayerδli=oli(1oli)*wli→rj*δrjotherwisejThatis,youcomputedchangeinaneuron'sw,ineverylayer,bymultiplyingαtimestheneuron'sinputtimesitsδ.
Theδisdeterminedforallbutthefinallayerintermsoftheneuron'soutputandalltheweightsthatconnectthatoutputtoneuronsinthelayertotherightandtheδsassociatedwiththoseright-sideneurons.
Theδforeachneuroninthefinallayerisdeterminedonlybytheoutputofthatneuronandbythedifferencebetweenthedesiredoutputandtheactualoutputofthatneuron.
6WeightsanddeltasinlayertotherightNeuronwithweighttobeadjustedw→r1wxoixxΣ∫w→rNWeighttobeadjustedxxxΣ∫δ1xxxΣ∫δΝMITOpenCourseWarehttp://ocw.
mit.
edu6.
034ArtificialIntelligenceFall2010ForinformationaboutcitingthesematerialsorourTermsofUse,visit:http://ocw.
mit.
edu/terms.

Megalayer美国服务器CN2优化线路30M带宽3独立IP限时月299元

Megalayer 商家算是比较新晋的国内主机商,主要方向是美国、香港、菲律宾等机房的独立服务器为主,以及站群服务器和显卡服务器。同时也有新增价格并不是特别优惠的VPS云服务器。上午的时候有网友问问有没有CN2线路的美国独立服务器的,这里我推荐他选择Megalayer看看,目前也是有活动截止到月底的。Megalayer 商家创办2年左右时间,如果我们初次使用建议月付体验。目前在进行且可能截止到6月...

CloudCone($82/月)15-100M不限流量,洛杉矶CN2 GIA线路服务器

之前分享过很多次CloudCone的信息,主要是VPS主机,其实商家也提供独立服务器租用,同样在洛杉矶MC机房,分为两种线路:普通优化线路及CN2 GIA,今天来分享下商家的CN2 GIA线路独立服务器产品,提供15-100Mbps带宽,不限制流量,可购买额外的DDoS高防IP,最低每月82美元起,支持使用PayPal或者支付宝等付款方式。下面分享几款洛杉矶CN2 GIA线路独立服务器配置信息。配...

标准互联(450元)襄阳电信100G防御服务器 10M独立带宽

目前在标准互联这边有两台香港云服务器产品,这不看到有通知到期提醒才关注到。平时我还是很少去登录这个服务商的,这个服务商最近一年的促销信息比较少,这个和他们的运营策略有关系。已经从开始的倾向低价和个人用户云服务器市场,开始转型到中高端个人和企业用户的独立服务器。在这篇文章中,有看到标准互联有推出襄阳电信高防服务器100GB防御。有三款促销方案我们有需要可以看看。我们看看几款方案配置。型号内存硬盘IP...

mimiai.net为你推荐
sherylsandberg这个文章什么意思 给个翻译好吗 谢谢了原代码求数字代码大全?psbc.com邮政储蓄卡如何激活51sese.comwww.51xuanh.com这是什么网站是骗人的吗?partnersonline我家Internet Explorer为什么开不起来www.hyyan.comDOTA6.51新手选什么英雄为好,请详细讲述出装备顺序,加点顺序,以及注意事项。谢谢hao.rising.cn如何解除瑞星主页锁定(hao.rising.cn). 不想用瑞星安全助手hao.rising.cn我一打开网页就是瑞星安全网站导航,怎么修改?888300.com请问GXG客服电话号码是多少?4399宠物连连看2.5我怎么找不到QQ里面的宠物连连看呢
注册国际域名 网站域名备案查询 最便宜的vps 景安vps 美国独立服务器 主机点评 圣迭戈 mediafire下载 名片模板psd http500内部服务器错误 debian7 国外免费空间 镇江联通宽带 hnyd asp免费空间申请 免费防火墙 什么是服务器托管 1g空间 免费phpmysql空间 服务器监测 更多