desiredmimiai.net

mimiai.net  时间:2021-04-07  阅读:()
6.
034fNeuralNetNotesOctober28,2010Thesenotesareasupplementtomaterialpresentedinlecture.
Ilayoutthemathematicsmoreprettilyandextendtheanalysistohandlemultiple-neuronsperlayer.
Also,Idevelopthebackpropagationrule,whichisoftenneededonquizzes.
IuseanotationthatIthinkimprovesonpreviousexplanations.
Thereasonisthatthenotationhereplainlyassociateseachinput,output,andweightwithareadilyidentifiedneuron,aleft-sideoneandaright-sideone.
Whenyouarriveattheupdateformulas,youwillhavelesstroublerelatingthevariablesintheformulastothevariablesinadiagram.
Onetheotherhand,seeingyetanothernotationmayconfuseyou,soifyoualreadyfeelcomfortablewithasetofupdateformulas,youwillnotgainbyreadingthesenotes.
ThesigmoidfunctionThesigmoidfunction,y=1/(1+ex),isusedinsteadofastepfunctioninartificialneuralnetsbecausethesigmoidiscontinuous,whereasastepfunctionisnot,andyouneedcontinuitywheneveryouwanttousegradientascent.
Also,thesigmoidfunctionhasseveraldesirablequalities.
Forexample,thesigmoidfunction'svalue,y,approaches1asxbecomeshighlypositive;0asxbecomeshighlynegative;andequals1/2whenx=0.
Betteryet,thesigmoidfunctionfeaturesaremarkablysimplederivativeoftheoutput,y,withrespecttotheinput,x:dyd1=()dxdx1+exd=(1+ex)1dx=1*(1+ex)2*ex*11ex=*1+ex1+ex11+ex1=*1+ex1+ex11+ex11+ex1+ex1+ex=y(1y)Thus,remarkably,thederivativeoftheoutputwithrespecttotheinputisexpressedasasimplefunctionoftheoutput.
TheperformancefunctionThestandardperformancefunctionforgauginghowwellaneuralnetisdoingisgivenbythefollowing:1P=(dsampleosample)222wherePistheperformancefunction,dsampleisthedesiredoutputforsomespecificsampleandosampleistheobservedoutputforthatsample.
Fromthispointforward,assumethatdandoarethedesiredandobservedoutputsforaspecificsamplesothatweneednotdragasubscriptaroundasweworkthroughthealgebra.
ThereasonforchoosingthegivenformulaforPisthattheformulahasconvenientproperties.
Theformulayieldsamaximumato=dandmonotonicallydecreasesasodeviatesfromd.
Moreover,thederivativeofPwithrespecttooissimple:dPd1=[(do)2]dodo2=2*(do)1*12=doGradientascentBackpropagationisaspecializationoftheideaofgradientascent.
YouaretryingtofindthemaximumofaperformancefunctionP,bychangingtheweightsassociatedwithneurons,soyoumoveinthedirectionofthegradientinaspacethatgivesPasafunctionoftheweights,w.
Thatis,youmoveinthedirectionofmostrapidascentifwetakeastepinthedirectionwithcomponentsgovernedbythefollowingformula,whichshowshowmuchtochangeaweight,w,intermsofapartialderivative:PΔw∝wTheactualchangeisinuencedbyarateconstant,α;accordingly,thenewweight,w,isgivenbythefollowing:w=w+α*PwGradientdescentIftheperformancefunctionwere12(dsampleosample)2insteadof12(dsampleosample)2,thenyouwouldbesearchingfortheminimumratherthanthemaximumofP,andthechangeinwwouldbesubtractedfromwinsteadofadded,sowwouldbewα*wPinsteadofw+α*wP.
Thetwosignchanges,oneintheperformancefunctionandtheotherintheupdateformulacancel,sointheend,yougetthesameresultwhetheryouusegradientascent,asIprefer,orgradientdescent.
ThesimplestneuralnetConsiderthesimplestpossibleneuralnet:oneinput,oneoutput,andtwoneurons,theleftneuronandtherightneuron.
Anetwithtwoneuronsisthesmallestthatillustrateshowthederivativescanbecomputedlayerbylayer.
3xSigmoidWlplilolxSigmoidWrprorirLeftneuronRightneuronNotethatthesubscriptsindicatelayer.
Thus,il,wl,pl,andolaretheinput,weight,product,andoutputassociatedwiththeneuronontheleftwhileir,wr,pr,andoraretheinput,weight,product,andoutputassociatedwiththeneuronontheright.
Ofcourse,ol=ir.
Supposethattheoutputoftherightneuron,or,isthevaluethatdeterminesperformanceP.
TocomputethepartialderivativeofPwithrespecttotheweightintherightneuron,wr,youneedthechainrule,whichallowsyoutocomputepartialderivativesofonevariablewithrespecttoanotherintermsofanintermediatevariable.
Inparticular,forwr,youhavethefollowing,takingortobetheintermediatevariable:PPor=*wrorwrNow,youcanrepeat,usingthechain-ruletoturnworrintooprr*wprr:PPorpr=**wrorprwrConveniently,youhaveseentwoofthederivativesalready,andthethird,wprr=(wrw*rol),iseasytocompute:P=[(dor)]*[or(1or)]*[ir]wrRepeatingtheanalysisforwlyieldsthefollowing.
Eachlineisthesameasthepreviously,exceptthatonemorepartialderivativeisexpandedusingthechainrule:P=P*orwlorwl=P*or*prorprwl=P*or*pr*olorprolwl=P*or*pr*ol*plorprolplwl=[(dor)]*[or(1or)]*[wr]*[ol(1ol)]*[il]4Thus,thederivativeconsistsofproductsoftermsthathavealreadybeencomputedandtermsinthevicinityofwl.
Thisisclearerifyouwritethetwoderivativesnexttooneanother:P=(dor)*or(1or)*irwrP=(dor)*or(1or)*wr*ol(1ol)*ilwlYoucansimplifytheequationsbydefiningδsasfollows,whereeachdeltaisassociatedwitheithertheleftorrightneuron:δr=or(1or)*(dor)δl=ol(1ol)*wr*δrThen,youcanwritethepartialderivativeswiththeδs:P=ir*δrwrP=il*δlwlIfyouaddmorelayerstothefrontofthenetwork,eachweighthasapartialderivativesthatiscomputedlikethepartialderivativeoftheweightoftheleftneuron.
Thatis,eachhasapartialderivativedeterminedbyitsinputanditsdelta,whereitsdeltainturnisdeterminedbyitsoutput,theweighttoitsright,andthedeltatoitsright.
Thus,fortheweightsinthefinallayer,youcomputethechangeasfollows,whereIusefasthesubscriptinsteadofrtoemphasizethatthecomputationisfortheneuroninthefinallayer:Δwf=α*if*δfwhereδf=of(1of)*(dof)Forallotherlayers,youcomputethechangeasfollows:Δwl=α*il*δlwhereδl=ol(1ol)*wr*δrMoreneuronsperlayersOfcourse,youreallywantbackpropagationformulasfornotonlyanynumberoflayersbutalsoforanynumberofneuronsperlayer,eachofwhichcanhavemultipleinputs,eachwithitsownweight.
Accordingly,youneedtogeneralizeinanotherdirection,allowingmultipleneuronsineachlayerandmultipleweightsattachedtoeachneuron.
Thegeneralizationisanadventureinsummations,withlotsofsubscriptstokeepstraight,butintheend,theresultmatchesintuition.
Forthefinallayer,theremaybemanyneurons,sotheformula'sneedanindex,k,indicatingwhichfinalnodeneuronisinplay.
Foranyweightcontained5inthefinal-layerneuron,fk,youcomputethechangeasfollowsfromtheinputcorrespondingtotheweightandfromtheδassociatedwiththeneuron:Δw=α*i*δfkδfk=ofk(1ofk)*(dkofk)Notethattheoutputofeachfinal-layerneuronoutputissubtractedfromtheoutputdesiredforthatneuron.
Forotherlayers,theremayalsobemanyneurons,andtheoutputofeachmayinuencealltheneuronsinthenextlayertotheright.
Thechangeinweighthastoaccountforwhathappenstoallofthoseneuronstotheright,soasummationappears,butotherwiseyoucomputethechange,asbefore,fromtheinputcorrespondingtotheweightandfromtheδassociatedwiththeneuron:Δw=α*i*δliδli=oli(1oli)*wli→rj*δrjjNotethatwli→rjistheweightthatconnectsthejthright-sideneurontotheoutputoftheithleft-sideneuron.
SummaryOnceyouunderstoodhowtoderivetheformulas,youcancombineandsimplifytheminpreparationforsolvingproblems.
Foreachweight,youcomputetheweight'schangefromtheinputcorrespondingtotheweightandfromtheδassociatedwiththeneuron.
Assumingthatδisthedeltaassociatedwiththatneuron,youhavethefollowing,wherew→rjistheweightconnectingtheoutputoftheneuronyouareworkingon,theithleft-sideneuron,tothejthright-sideneuron,andδrjistheδassociatedwiththatright-sideneuron.
δo=o(1o)*(do)forthefinallayerδli=oli(1oli)*wli→rj*δrjotherwisejThatis,youcomputedchangeinaneuron'sw,ineverylayer,bymultiplyingαtimestheneuron'sinputtimesitsδ.
Theδisdeterminedforallbutthefinallayerintermsoftheneuron'soutputandalltheweightsthatconnectthatoutputtoneuronsinthelayertotherightandtheδsassociatedwiththoseright-sideneurons.
Theδforeachneuroninthefinallayerisdeterminedonlybytheoutputofthatneuronandbythedifferencebetweenthedesiredoutputandtheactualoutputofthatneuron.
6WeightsanddeltasinlayertotherightNeuronwithweighttobeadjustedw→r1wxoixxΣ∫w→rNWeighttobeadjustedxxxΣ∫δ1xxxΣ∫δΝMITOpenCourseWarehttp://ocw.
mit.
edu6.
034ArtificialIntelligenceFall2010ForinformationaboutcitingthesematerialsorourTermsofUse,visit:http://ocw.
mit.
edu/terms.

腾讯云CVM云服务器大硬盘方案400GB和800GB数据盘方案

最近看到群里的不少网友在搭建大数据内容网站,内容量有百万篇幅,包括图片可能有超过50GB,如果一台服务器有需要多个站点的话,那肯定默认的服务器50GB存储空间是不够用的。如果单独在购买数据盘会成本提高不少。这里我们看到腾讯云促销活动中有2款带大数据盘的套餐还是比较实惠的,一台是400GB数据盘,一台是800GB数据盘,适合他们的大数据网站。 直达链接 - 腾讯云 大数据盘套餐服务器这里我们看到当前...

HostDare($33.79/年)CKVM和QKVM套餐 可选CN2 GIA线路

关于HostDare服务商在之前的文章中有介绍过几次,算是比较老牌的服务商,但是商家背景财力不是特别雄厚,算是比较小众的个人服务商。目前主流提供CKVM和QKVM套餐。前者是电信CN2 GIA,不过库存储备也不是很足,这不九月份发布新的补货库存活动,有提供九折优惠CN2 GIA,以及六五折优惠QKVM普通线路方案。这次活动截止到9月30日,不清楚商家这次库存补货多少。比如 QKVM基础的五个方案都...

SoftShellWeb:台湾(台北)VPS年付49美元起,荷兰VPS年付24美元起

SoftShellWeb是一家2019年成立的国外主机商,商家在英格兰注册,提供的产品包括虚拟主机和VPS,其中VPS基于KVM架构,采用SSD硬盘,提供IPv4+IPv6,可选美国(圣何塞)、荷兰(阿姆斯特丹)和台湾(台北)等机房。商家近期推出台湾和荷兰年付特价VPS主机,其中台湾VPS最低年付49美元,荷兰VPS年付24美元起。台湾VPSCPU:1core内存:2GB硬盘:20GB SSD流量...

mimiai.net为你推荐
云爆发云瀑现象多发生在山地的什么坡?netlife熊猫烧香是怎么制作的西部妈妈网我爸妈在云南做非法集资了,钱肯定交了很多,我不恨她们。他们叫我明天去看,让我用心的看,,说是什么...bbs.99nets.com怎么把电脑的IP设置和路由器一个网段www.jjwxc.net在哪个网站看小说?罗伦佐娜罗拉芳娜 (西班牙小姐)谁可以简单的介绍以下同一服务器网站一个服务器放多个网站怎么设置?www.haole012.com012qq.com真的假的www.niuav.com在那能找到免费高清电影网站呢 ?www.baitu.com谁有免费的动漫网站?
VPS之家 科迈动态域名 budgetvm 唯品秀 hostmaster 新加坡服务器 美国翻墙 香港cdn koss ibox官网 合租空间 100m独享 电信主机 域名dns 域名与空间 海外空间 cxz 全能空间 免费个人主页 黑科云 更多