desiredmimiai.net

mimiai.net  时间:2021-04-07  阅读:()
6.
034fNeuralNetNotesOctober28,2010Thesenotesareasupplementtomaterialpresentedinlecture.
Ilayoutthemathematicsmoreprettilyandextendtheanalysistohandlemultiple-neuronsperlayer.
Also,Idevelopthebackpropagationrule,whichisoftenneededonquizzes.
IuseanotationthatIthinkimprovesonpreviousexplanations.
Thereasonisthatthenotationhereplainlyassociateseachinput,output,andweightwithareadilyidentifiedneuron,aleft-sideoneandaright-sideone.
Whenyouarriveattheupdateformulas,youwillhavelesstroublerelatingthevariablesintheformulastothevariablesinadiagram.
Onetheotherhand,seeingyetanothernotationmayconfuseyou,soifyoualreadyfeelcomfortablewithasetofupdateformulas,youwillnotgainbyreadingthesenotes.
ThesigmoidfunctionThesigmoidfunction,y=1/(1+ex),isusedinsteadofastepfunctioninartificialneuralnetsbecausethesigmoidiscontinuous,whereasastepfunctionisnot,andyouneedcontinuitywheneveryouwanttousegradientascent.
Also,thesigmoidfunctionhasseveraldesirablequalities.
Forexample,thesigmoidfunction'svalue,y,approaches1asxbecomeshighlypositive;0asxbecomeshighlynegative;andequals1/2whenx=0.
Betteryet,thesigmoidfunctionfeaturesaremarkablysimplederivativeoftheoutput,y,withrespecttotheinput,x:dyd1=()dxdx1+exd=(1+ex)1dx=1*(1+ex)2*ex*11ex=*1+ex1+ex11+ex1=*1+ex1+ex11+ex11+ex1+ex1+ex=y(1y)Thus,remarkably,thederivativeoftheoutputwithrespecttotheinputisexpressedasasimplefunctionoftheoutput.
TheperformancefunctionThestandardperformancefunctionforgauginghowwellaneuralnetisdoingisgivenbythefollowing:1P=(dsampleosample)222wherePistheperformancefunction,dsampleisthedesiredoutputforsomespecificsampleandosampleistheobservedoutputforthatsample.
Fromthispointforward,assumethatdandoarethedesiredandobservedoutputsforaspecificsamplesothatweneednotdragasubscriptaroundasweworkthroughthealgebra.
ThereasonforchoosingthegivenformulaforPisthattheformulahasconvenientproperties.
Theformulayieldsamaximumato=dandmonotonicallydecreasesasodeviatesfromd.
Moreover,thederivativeofPwithrespecttooissimple:dPd1=[(do)2]dodo2=2*(do)1*12=doGradientascentBackpropagationisaspecializationoftheideaofgradientascent.
YouaretryingtofindthemaximumofaperformancefunctionP,bychangingtheweightsassociatedwithneurons,soyoumoveinthedirectionofthegradientinaspacethatgivesPasafunctionoftheweights,w.
Thatis,youmoveinthedirectionofmostrapidascentifwetakeastepinthedirectionwithcomponentsgovernedbythefollowingformula,whichshowshowmuchtochangeaweight,w,intermsofapartialderivative:PΔw∝wTheactualchangeisinuencedbyarateconstant,α;accordingly,thenewweight,w,isgivenbythefollowing:w=w+α*PwGradientdescentIftheperformancefunctionwere12(dsampleosample)2insteadof12(dsampleosample)2,thenyouwouldbesearchingfortheminimumratherthanthemaximumofP,andthechangeinwwouldbesubtractedfromwinsteadofadded,sowwouldbewα*wPinsteadofw+α*wP.
Thetwosignchanges,oneintheperformancefunctionandtheotherintheupdateformulacancel,sointheend,yougetthesameresultwhetheryouusegradientascent,asIprefer,orgradientdescent.
ThesimplestneuralnetConsiderthesimplestpossibleneuralnet:oneinput,oneoutput,andtwoneurons,theleftneuronandtherightneuron.
Anetwithtwoneuronsisthesmallestthatillustrateshowthederivativescanbecomputedlayerbylayer.
3xSigmoidWlplilolxSigmoidWrprorirLeftneuronRightneuronNotethatthesubscriptsindicatelayer.
Thus,il,wl,pl,andolaretheinput,weight,product,andoutputassociatedwiththeneuronontheleftwhileir,wr,pr,andoraretheinput,weight,product,andoutputassociatedwiththeneuronontheright.
Ofcourse,ol=ir.
Supposethattheoutputoftherightneuron,or,isthevaluethatdeterminesperformanceP.
TocomputethepartialderivativeofPwithrespecttotheweightintherightneuron,wr,youneedthechainrule,whichallowsyoutocomputepartialderivativesofonevariablewithrespecttoanotherintermsofanintermediatevariable.
Inparticular,forwr,youhavethefollowing,takingortobetheintermediatevariable:PPor=*wrorwrNow,youcanrepeat,usingthechain-ruletoturnworrintooprr*wprr:PPorpr=**wrorprwrConveniently,youhaveseentwoofthederivativesalready,andthethird,wprr=(wrw*rol),iseasytocompute:P=[(dor)]*[or(1or)]*[ir]wrRepeatingtheanalysisforwlyieldsthefollowing.
Eachlineisthesameasthepreviously,exceptthatonemorepartialderivativeisexpandedusingthechainrule:P=P*orwlorwl=P*or*prorprwl=P*or*pr*olorprolwl=P*or*pr*ol*plorprolplwl=[(dor)]*[or(1or)]*[wr]*[ol(1ol)]*[il]4Thus,thederivativeconsistsofproductsoftermsthathavealreadybeencomputedandtermsinthevicinityofwl.
Thisisclearerifyouwritethetwoderivativesnexttooneanother:P=(dor)*or(1or)*irwrP=(dor)*or(1or)*wr*ol(1ol)*ilwlYoucansimplifytheequationsbydefiningδsasfollows,whereeachdeltaisassociatedwitheithertheleftorrightneuron:δr=or(1or)*(dor)δl=ol(1ol)*wr*δrThen,youcanwritethepartialderivativeswiththeδs:P=ir*δrwrP=il*δlwlIfyouaddmorelayerstothefrontofthenetwork,eachweighthasapartialderivativesthatiscomputedlikethepartialderivativeoftheweightoftheleftneuron.
Thatis,eachhasapartialderivativedeterminedbyitsinputanditsdelta,whereitsdeltainturnisdeterminedbyitsoutput,theweighttoitsright,andthedeltatoitsright.
Thus,fortheweightsinthefinallayer,youcomputethechangeasfollows,whereIusefasthesubscriptinsteadofrtoemphasizethatthecomputationisfortheneuroninthefinallayer:Δwf=α*if*δfwhereδf=of(1of)*(dof)Forallotherlayers,youcomputethechangeasfollows:Δwl=α*il*δlwhereδl=ol(1ol)*wr*δrMoreneuronsperlayersOfcourse,youreallywantbackpropagationformulasfornotonlyanynumberoflayersbutalsoforanynumberofneuronsperlayer,eachofwhichcanhavemultipleinputs,eachwithitsownweight.
Accordingly,youneedtogeneralizeinanotherdirection,allowingmultipleneuronsineachlayerandmultipleweightsattachedtoeachneuron.
Thegeneralizationisanadventureinsummations,withlotsofsubscriptstokeepstraight,butintheend,theresultmatchesintuition.
Forthefinallayer,theremaybemanyneurons,sotheformula'sneedanindex,k,indicatingwhichfinalnodeneuronisinplay.
Foranyweightcontained5inthefinal-layerneuron,fk,youcomputethechangeasfollowsfromtheinputcorrespondingtotheweightandfromtheδassociatedwiththeneuron:Δw=α*i*δfkδfk=ofk(1ofk)*(dkofk)Notethattheoutputofeachfinal-layerneuronoutputissubtractedfromtheoutputdesiredforthatneuron.
Forotherlayers,theremayalsobemanyneurons,andtheoutputofeachmayinuencealltheneuronsinthenextlayertotheright.
Thechangeinweighthastoaccountforwhathappenstoallofthoseneuronstotheright,soasummationappears,butotherwiseyoucomputethechange,asbefore,fromtheinputcorrespondingtotheweightandfromtheδassociatedwiththeneuron:Δw=α*i*δliδli=oli(1oli)*wli→rj*δrjjNotethatwli→rjistheweightthatconnectsthejthright-sideneurontotheoutputoftheithleft-sideneuron.
SummaryOnceyouunderstoodhowtoderivetheformulas,youcancombineandsimplifytheminpreparationforsolvingproblems.
Foreachweight,youcomputetheweight'schangefromtheinputcorrespondingtotheweightandfromtheδassociatedwiththeneuron.
Assumingthatδisthedeltaassociatedwiththatneuron,youhavethefollowing,wherew→rjistheweightconnectingtheoutputoftheneuronyouareworkingon,theithleft-sideneuron,tothejthright-sideneuron,andδrjistheδassociatedwiththatright-sideneuron.
δo=o(1o)*(do)forthefinallayerδli=oli(1oli)*wli→rj*δrjotherwisejThatis,youcomputedchangeinaneuron'sw,ineverylayer,bymultiplyingαtimestheneuron'sinputtimesitsδ.
Theδisdeterminedforallbutthefinallayerintermsoftheneuron'soutputandalltheweightsthatconnectthatoutputtoneuronsinthelayertotherightandtheδsassociatedwiththoseright-sideneurons.
Theδforeachneuroninthefinallayerisdeterminedonlybytheoutputofthatneuronandbythedifferencebetweenthedesiredoutputandtheactualoutputofthatneuron.
6WeightsanddeltasinlayertotherightNeuronwithweighttobeadjustedw→r1wxoixxΣ∫w→rNWeighttobeadjustedxxxΣ∫δ1xxxΣ∫δΝMITOpenCourseWarehttp://ocw.
mit.
edu6.
034ArtificialIntelligenceFall2010ForinformationaboutcitingthesematerialsorourTermsofUse,visit:http://ocw.
mit.
edu/terms.

HostKvm5.95美元起,香港、韩国可选

HostKvm发布了夏季特别促销活动,针对香港国际/韩国机房VPS主机提供7折优惠码,其他机房全场8折,优惠后2GB内存套餐月付仅5.95美元起。这是一家成立于2013年的国外主机服务商,主要提供基于KVM架构的VPS主机,可选数据中心包括日本、新加坡、韩国、美国、中国香港等多个地区机房,均为国内直连或优化线路,延迟较低,适合建站或者远程办公等。下面分享几款香港VPS和韩国VPS的配置和价格信息。...

DiyVM:香港VPS五折月付50元起,2核/2G内存/50G硬盘/2M带宽/CN2线路

diyvm怎么样?diyvm这是一家低调国人VPS主机商,成立于2009年,提供的产品包括VPS主机和独立服务器租用等,数据中心包括香港沙田、美国洛杉矶、日本大阪等,VPS主机基于XEN架构,均为国内直连线路,主机支持异地备份与自定义镜像,可提供内网IP。最近,DiyVM商家对香港机房VPS提供5折优惠码,最低2GB内存起优惠后仅需50元/月。点击进入:diyvm官方网站地址DiyVM香港机房CN...

v5server:香港+美国机房,优质CN2网络云服务器,7折优惠,低至35元/月

v5net当前对香港和美国机房的走优质BGP+CN2网络的云服务器进行7折终身优惠促销,每个客户进线使用优惠码一次,额外有不限使用次数的终身9折优惠一枚!V5.NET Server提供的都是高端网络线路的机器,特别优化接驳全世界骨干网络,适合远程办公、跨境贸易、网站建设等用途。 官方网站:https://v5.net/cloud.html 7折优惠码:new,仅限新客户,每人仅限使用一次 9...

mimiai.net为你推荐
摩拜超15分钟加钱首次 微信扫 摩拜单车 需要 付压金吗12306崩溃12306是不是瘫痪了?百度关键词价格查询百度关键字如何设定竟价价格?巫正刚阿迪三叶草彩虹板鞋的鞋带怎么穿?详细点,最后有图解。高分求haole018.comse.haole004.com为什么手机不能放?网站检测请问论文检测网站好的有那些?www.hhh258comwww.tx88d.com 有这个网站吗?www.diediao.com这是什么电影www.qqq147.comhttp://www.qq国风商讯国风塑钢质量怎么样
域名出售 花生壳免费域名 已经备案域名 edis 创宇云 免费静态空间 91vps 共享主机 域名和空间 idc查询 厦门电信 游戏服务器出租 德讯 防cc攻击 万网注册 域名和主机 免备案cdn加速 睿云 广州服务器托管 windowssever2008 更多