identities18jjj.com

18jjj.com  时间:2021-04-06  阅读:()
15.
4SurfaceIntegrals57344ShowthatthespinfieldSdoesworkaroundeverysimpleinsideRcanbesqueezedtoapointwithoutleavingR.
Testclosedcurve.
theseregions:1.
xyplanewithout(0,O)2.
xyzspacewithout(0,0,O)45ForF=f(x)jandR=unitsquare0C*D*Aisnotneeded.
OnlynoticehowCaD:curlgradFisalwayszero.
ThenewestpartisD*A.
IfcurlF=0thenfFdR=0.
Butthatisnotnews.
ItisStokes'Theorem.
Theinterestingproblemistosolvethethreeequationsforf,whentestDispassed.
Theexampleabovehaddf/dx=2xyf=52xydx=x2yplusanyfunctionC(y,z)dfldy=x2+z=x2+dC/dyC=yzplusanyfunctionC(Z)df/dz=y=y+dcldzc(z)canbezero.
ThefirststepleavesanarbitraryC(y,z)tofixthesecondstep.
Thesecondstepleavesanarbitraryc(z)tofixthethirdstep(notneededhere).
Assemblingthethreesteps,f=x2y+C=x2y+yz+c=x~~+yz.
Pleaserecognizethatthe"fix-up"isonlypos-siblewhencurlF=0.
TestDmustbepassed.
EXAMPLE7IsF=(Z-y)i+(x-z)j+(y-x)kthegradientofanyfTestDsaysno.
ThisFisaspinfieldaxR.
Itscurlis2a=(2,2,2),whichisnotzero.
Asearchforfisboundtofail,butwecantry.
Tomatchdf/dx=z-y,wemusthavef=zx-yx+C(y,z).
Theyderivativeis-x+dC/dy.
ThatnevermatchesN=x-z,sofcan'texist.
EXAMPLE8WhatchoiceofPmakesF=yz2i+xz2j+PkconservativeFindf:SolutionWeneedcurlF=0,bytestD.
FirstcheckdM/dy=z2=dNjdx.
AlsodP/dx=aM/dz=2yzanddP/dy=dN/az=~XZ.
P=2xyzpassesalltests.
Tofindfwecansolvethethreeequations,ornoticethatf=xyz2isSUCC~SS~U~.
ItsgradientisF.
Athirdmethoddefinesf(x,y,z)astheworktoreach(x,y,z)from(0,0,O).
Thepathdoesn'tmatter.
ForpracticeweintegrateFdR=Mdx+Ndy+Pdzalongthestraightline(xt,yt,So1zt):f(~,y,Z)=(yt)(~t)~(xdt)+(xt)(~t)~(ydt)+2(xt)(yt)(zt)(zdl)=xyz2.
EXAMPLE9Whyisdivcurlgradfautomaticallyzero(intwoways)SolutionFirst,curlgradfiszero(always).
Second,divcurlFiszero(always).
Thosearethekeyidentitiesofvectorcalculus.
Weendwithareview.
Green'sTheorem:(2N/x-2Ml2y)dxdy$Fndr=jj(ZM/dr+dN/Fy)dxdy15.
6Stokes'TheoremandtheCurlofFDivergenceTheorem:Stokes'Theorem:F-dR=jcurlF*ndS.
ThefirstformofGreen'sTheoremleadstoStokes'Theorem.
ThesecondformbecomestheDivergenceTheorem.
Youmayask,whynotgotothreedimensionsinthefistplaceThelasttwotheoremscontainthefirsttwo(takeP=0andaflatsurface).
Wecouldhavereducedthischaptertotwotheorems,notfour.
Iadmitthat,butafundamentalprincipleisinvolved:"Itiseasiertogeneralizethantospecialize.
"Forthesamereasondfldxcamebeforepartialderivativesandthegradient.
15.
6EXERCISESRead-throughquestionsIn11-14,computecurlFandfind$,F0dRbyStokes'Theorem.
ThecurlofMi+Nj+Pk.
isthevectora.
Itequalsthe3by3determinantb.
Thecurlofx2i+z2kisc.
ForS=yi-(x+z)j+ykthecurlisd.
ThisSisae12F=ixR,C=circlex2+z2=1,y=0.
fieldaxR=+(curlF)xR,withaxisvectora=f.
Foranygradientfieldfxi+f,j+fzkthecurlis9.
Thatisthe13F=(i+j)xR,C=circley2+z2=1,x=0.
importantidentitycurlgradf=h.
Itisbasedonf,,=f,,14F.
=(yi-xj)x(xiandiandiThetwinidentityisk.
+yj),C=circlex2+y2=1,z=0.
15(important)SupposetwosurfacesSandThavethesameThecurlmeasurestheIofavectorfield.
Apad-boundaryC,andthedirectionaroundCisthesame.
dlewheelinthefieldwithitsaxisalongnhasturningspeedm.
(a)ProvecurlFndScurlFndS.
ThespinisgreatestwhennisinthedirectionofJJ,.
=flT.
n.
(b)Secondproof:ThedifferencebetweenthoseintegralsisThentheangularvelocityis0.
JJJdiv(cur1F)NBywhatTheoremWhatregionisI/Stokes'TheoremisP=q.
ThecurveCistheWhyisthisintegralzerorofthesS.
ThisistTheoremextendedtoudimensions.
BothsidesarezerowhenFisagradient16In15,supposeSisthetophalfoftheearth(ngoesout)fieldbecausev.
andTisthebottomhalf(ncomesin).
WhatareCandIr!
ShowbyexamplethatIS,FndS=11,FndSisnotgenerallyThefourpropertiesofaconservativefieldareA=w,true.
B=x,C=Y,D=.
Thefieldy2z2i+2xy2zk17ExplainwhycurlFndS0overtheclosedboundary(passes)(fails)testD.
Thisfieldisthegradientoff==A.
i[TheworkJFBofanysolid.
dRfrom(O,0,0)to(1,1,1)is(onwhichV.
path).
Foreveryfield17,JJcurlFondsisthesameout18SupposecurlF=0anddivF=0.
(a)WhyisFthegradi-throughapyramidandulpthroughitsbasebecausec.
entofapotential(b)WhydoesthepotentialsatisfyLaplace'sequationf,,+f,,+f,,=OProblems1-6findcurlF.
F=zi+xj+yk2F=grad(xeYsinz)In19-22,findapotentialfifitexists.
F=(x+y+z)(i+j+k)4F=(x+y)i-(x+y)kF=pn(xi+yj+zk)6F=(i+j)xR21F=ex-zi-ex-zk22F=yzi+xzj+(XY+z2)kFindapotentialfforthefieldinProblem3.
23FindafieldwithcurlF=(1,0,O).
FindapotentialfforthefieldinProblem5.
24FindallfieldswithcurlF=(1,0,O).
Whendothefieldsxmiiandxnjhavezerocurl25S=axRisaspinfield.
ComputeF=bxS(constantWhendoes(a,x+a2y+a,z)khavezerocurlvectorb)andfinditscurl.
59615VectorCalculus26HowfastisapaddlewheelturnedbythefieldF=yi-xkMaxwellallowsvaryingcurrentswhichbringsintheelectric(a)ifitsaxisdirectionisn=j(b)ifitsaxisislinedupwithfield.
curlF(c)ifitsaxisisperpendiculartocurlF41ForF=(x2+y2)i,computecurl(curlF)andgrad(divF)27HowiscurlFrelatedtotheangularvelocityointhespinandF,,+F,,+F,,.
fieldF=a(-yi+xj)Howfastdoesawheelspin,ifitisin++42ForF=v(x,y,z)i,provetheseusefulidentities:theplanexyz=l(a)curl(cur1F)=grad(divF)-(F,,+F,,+F,,).
28FindavectorfieldFwhosecurlisS=yi-xj.
(b)curl(fF)=fcurlF+(gradf)xF.
29FindavectorfieldFwhosecurlisS=axR.
43IfB=acost(constantdirectiona),findcurlEfromFara-30Trueorfalse:whentwovectorfieldshavethesamecurlday'sLaw.
ThenfindthealternatingspinfieldE.
atallpoints:(a)theirdifferenceisaconstantfield(b)their44WithG(x,y,z)=mi+nj+pk,writeoutFxGandtakedifferenceisagradientfield(c)theyhavethesamedivergence.
itsdivergence.
MatchtheanswerwithGcurlF-F.
curlG.
45WritedownGreen'sTheoreminthexzplanefromStokes'Theorem.
In31-34,compute11curlFndSoverthetophalfofthespherex2+y2+z2=1and(separately)$F.
dRaroundtheequator.
Trueorfalse:VxFisperpendiculartoF.
(a)ThesecondproofofStokes'TheoremtookM*(x,y))+=M(x,y,fP(x,y,f(x,y))af/axastheMinGreen'sTheorem.
ComputedM*/dyfromthechainruleandpro-35ThecircleCintheplanex+y+z=6hasradiusrandductrule(therearefiveterms).
centerat(1,2,3).
ThefieldFis3zj+2yk.
Compute$FdR(b)SimilarlyN*=N(x,y,f)+P(x,y,f)df/dyhasthexaroundC.
derivativeN,+N,f,+P,f,+Pzf,f,+Pf,,.
Checkthat++N,*-M,*matchestherightsideofequation(S),asneeded36SisthetophalfoftheunitsphereandF=zixjxyzk.
intheproof.
Find11curlF.
ndS.
"Theshadowoftheboundaryistheboundaryofthe37Findg(x,y)sothatcurlgk=yi+x2j.
Whatisthenameshadow.
"ThisfactwasusedinthesecondproofofStokes'forginSection15.
3Itexistsbecauseyi+x2jhaszeroTheorem,goingtoGreen'sTheoremontheshadow.
GivetwoexamplesofSandCandtheirshadows.
38ConstructFsothatcurlF=2xi+3yj-5zk(whichhas49WhichintegralsareequalwhenCofSorSzerodivergence).
=boundary=boundaryofV39SplitthefieldF=xyiintoV+WwithcurlV=0anddivW=$FdR$(curlF)dR$(curlF)ndsFnd~0.
.
.
1111divFdS11(curlF)ndS11(graddivF).
ndS111divFdV40Ampere'slawforasteadymagneticfieldBiscurlB=pJ(J=currentdensity,p=constant).
FindtheworkdonebyB50DrawthefieldV=-xkspinningawheelinthexzplane.
aroundaspacecurveCfromthecurrentpassingthroughit.
WhatwheelswouldnotspinMITOpenCourseWarehttp://ocw.
mit.
eduResource:CalculusOnlineTextbookGilbertStrangThefollowingmaynotcorrespondtoaparticularcourseonMITOpenCourseWare,buthasbeenprovidedbytheauthorasanindividuallearningresource.
ForinformationaboutcitingthesematerialsorourTermsofUse,visit:http://ocw.
mit.
edu/terms.

hypervmart:英国/荷兰vps,2核/3GB内存/25GB NVMe空间/不限流量/1Gbps端口/Hyper-V,$10.97/季

hypervmart怎么样?hypervmart是一家国外主机商,成立于2011年,提供虚拟主机、VPS等,vps基于Hyper-V 2012 R2,宣称不超售,支持linux和windows,有荷兰和英国2个数据中心,特色是1Gbps带宽、不限流量。现在配置提高,价格不变,性价比提高了很多。(数据中心不太清楚,按以前的记录,应该是欧洲),支持Paypal付款。点击进入:hypervmart官方网...

这几个Vultr VPS主机商家的优点造就商家的用户驱动力

目前云服务器市场竞争是相当的大的,比如我们在年中活动中看到各大服务商都找准这个噱头的活动发布各种活动,有的甚至就是平时的活动价格,只是换一个说法而已。可见这个行业确实竞争很大,当然我们也可以看到很多主机商几个月就消失,也有看到很多个人商家捣鼓几个品牌然后忽悠一圈跑路的。当然,个人建议在选择服务商的时候尽量选择老牌商家,这样性能更为稳定一些。近期可能会准备重新整理Vultr商家的一些信息和教程。以前...

百星数据(60元/月,600元/年)日本/韩国/香港cn2 gia云服务器,2核2G/40G/5M带宽

百星数据(baixidc),2012年开始运作至今,主要提供境外自营云服务器和独立服务器出租业务,根据网络线路的不同划分为:美国cera 9929、美国cn2 gia、香港cn2 gia、韩国cn2 gia、日本cn2 gia等云服务器及物理服务器业务。目前,百星数据 推出的日本、韩国、香港cn2 gia云服务器,2核2G/40G/5M带宽低至60元/月,600元/年。百星数据优惠码:优惠码:30...

18jjj.com为你推荐
neworiental上海新东方有几个校区,分别是那几个?京沪高铁上市首秀我能买京沪高铁股票吗今日油条联通大王卡看今日头条免流量吗?xyq.163.cbg.com梦幻CBG的网站是什么。百度关键词工具如何利用百度关键词推荐工具选取关键词郭泊雄郭佰雄最后一次出现是什么时候?lcoc.topeagle solder stop mask top是什么层33tutu.com33gan.com改成什么了www.diediao.com谁知道台湾的拼音怎么拼啊?有具体的对照表最好!www.mfav.org邪恶动态图587期 www.zqzj.org
深圳域名注册 韩国服务器租用 泛域名绑定 securitycenter ddos winhost 163网 表单样式 hnyd 炎黄盛世 工信部icp备案号 新家坡 世界测速 isp服务商 idc查询 个人免费主页 彩虹云 登陆空间 美国凤凰城 云营销系统 更多