identities18jjj.com

18jjj.com  时间:2021-04-06  阅读:()
15.
4SurfaceIntegrals57344ShowthatthespinfieldSdoesworkaroundeverysimpleinsideRcanbesqueezedtoapointwithoutleavingR.
Testclosedcurve.
theseregions:1.
xyplanewithout(0,O)2.
xyzspacewithout(0,0,O)45ForF=f(x)jandR=unitsquare0C*D*Aisnotneeded.
OnlynoticehowCaD:curlgradFisalwayszero.
ThenewestpartisD*A.
IfcurlF=0thenfFdR=0.
Butthatisnotnews.
ItisStokes'Theorem.
Theinterestingproblemistosolvethethreeequationsforf,whentestDispassed.
Theexampleabovehaddf/dx=2xyf=52xydx=x2yplusanyfunctionC(y,z)dfldy=x2+z=x2+dC/dyC=yzplusanyfunctionC(Z)df/dz=y=y+dcldzc(z)canbezero.
ThefirststepleavesanarbitraryC(y,z)tofixthesecondstep.
Thesecondstepleavesanarbitraryc(z)tofixthethirdstep(notneededhere).
Assemblingthethreesteps,f=x2y+C=x2y+yz+c=x~~+yz.
Pleaserecognizethatthe"fix-up"isonlypos-siblewhencurlF=0.
TestDmustbepassed.
EXAMPLE7IsF=(Z-y)i+(x-z)j+(y-x)kthegradientofanyfTestDsaysno.
ThisFisaspinfieldaxR.
Itscurlis2a=(2,2,2),whichisnotzero.
Asearchforfisboundtofail,butwecantry.
Tomatchdf/dx=z-y,wemusthavef=zx-yx+C(y,z).
Theyderivativeis-x+dC/dy.
ThatnevermatchesN=x-z,sofcan'texist.
EXAMPLE8WhatchoiceofPmakesF=yz2i+xz2j+PkconservativeFindf:SolutionWeneedcurlF=0,bytestD.
FirstcheckdM/dy=z2=dNjdx.
AlsodP/dx=aM/dz=2yzanddP/dy=dN/az=~XZ.
P=2xyzpassesalltests.
Tofindfwecansolvethethreeequations,ornoticethatf=xyz2isSUCC~SS~U~.
ItsgradientisF.
Athirdmethoddefinesf(x,y,z)astheworktoreach(x,y,z)from(0,0,O).
Thepathdoesn'tmatter.
ForpracticeweintegrateFdR=Mdx+Ndy+Pdzalongthestraightline(xt,yt,So1zt):f(~,y,Z)=(yt)(~t)~(xdt)+(xt)(~t)~(ydt)+2(xt)(yt)(zt)(zdl)=xyz2.
EXAMPLE9Whyisdivcurlgradfautomaticallyzero(intwoways)SolutionFirst,curlgradfiszero(always).
Second,divcurlFiszero(always).
Thosearethekeyidentitiesofvectorcalculus.
Weendwithareview.
Green'sTheorem:(2N/x-2Ml2y)dxdy$Fndr=jj(ZM/dr+dN/Fy)dxdy15.
6Stokes'TheoremandtheCurlofFDivergenceTheorem:Stokes'Theorem:F-dR=jcurlF*ndS.
ThefirstformofGreen'sTheoremleadstoStokes'Theorem.
ThesecondformbecomestheDivergenceTheorem.
Youmayask,whynotgotothreedimensionsinthefistplaceThelasttwotheoremscontainthefirsttwo(takeP=0andaflatsurface).
Wecouldhavereducedthischaptertotwotheorems,notfour.
Iadmitthat,butafundamentalprincipleisinvolved:"Itiseasiertogeneralizethantospecialize.
"Forthesamereasondfldxcamebeforepartialderivativesandthegradient.
15.
6EXERCISESRead-throughquestionsIn11-14,computecurlFandfind$,F0dRbyStokes'Theorem.
ThecurlofMi+Nj+Pk.
isthevectora.
Itequalsthe3by3determinantb.
Thecurlofx2i+z2kisc.
ForS=yi-(x+z)j+ykthecurlisd.
ThisSisae12F=ixR,C=circlex2+z2=1,y=0.
fieldaxR=+(curlF)xR,withaxisvectora=f.
Foranygradientfieldfxi+f,j+fzkthecurlis9.
Thatisthe13F=(i+j)xR,C=circley2+z2=1,x=0.
importantidentitycurlgradf=h.
Itisbasedonf,,=f,,14F.
=(yi-xj)x(xiandiandiThetwinidentityisk.
+yj),C=circlex2+y2=1,z=0.
15(important)SupposetwosurfacesSandThavethesameThecurlmeasurestheIofavectorfield.
Apad-boundaryC,andthedirectionaroundCisthesame.
dlewheelinthefieldwithitsaxisalongnhasturningspeedm.
(a)ProvecurlFndScurlFndS.
ThespinisgreatestwhennisinthedirectionofJJ,.
=flT.
n.
(b)Secondproof:ThedifferencebetweenthoseintegralsisThentheangularvelocityis0.
JJJdiv(cur1F)NBywhatTheoremWhatregionisI/Stokes'TheoremisP=q.
ThecurveCistheWhyisthisintegralzerorofthesS.
ThisistTheoremextendedtoudimensions.
BothsidesarezerowhenFisagradient16In15,supposeSisthetophalfoftheearth(ngoesout)fieldbecausev.
andTisthebottomhalf(ncomesin).
WhatareCandIr!
ShowbyexamplethatIS,FndS=11,FndSisnotgenerallyThefourpropertiesofaconservativefieldareA=w,true.
B=x,C=Y,D=.
Thefieldy2z2i+2xy2zk17ExplainwhycurlFndS0overtheclosedboundary(passes)(fails)testD.
Thisfieldisthegradientoff==A.
i[TheworkJFBofanysolid.
dRfrom(O,0,0)to(1,1,1)is(onwhichV.
path).
Foreveryfield17,JJcurlFondsisthesameout18SupposecurlF=0anddivF=0.
(a)WhyisFthegradi-throughapyramidandulpthroughitsbasebecausec.
entofapotential(b)WhydoesthepotentialsatisfyLaplace'sequationf,,+f,,+f,,=OProblems1-6findcurlF.
F=zi+xj+yk2F=grad(xeYsinz)In19-22,findapotentialfifitexists.
F=(x+y+z)(i+j+k)4F=(x+y)i-(x+y)kF=pn(xi+yj+zk)6F=(i+j)xR21F=ex-zi-ex-zk22F=yzi+xzj+(XY+z2)kFindapotentialfforthefieldinProblem3.
23FindafieldwithcurlF=(1,0,O).
FindapotentialfforthefieldinProblem5.
24FindallfieldswithcurlF=(1,0,O).
Whendothefieldsxmiiandxnjhavezerocurl25S=axRisaspinfield.
ComputeF=bxS(constantWhendoes(a,x+a2y+a,z)khavezerocurlvectorb)andfinditscurl.
59615VectorCalculus26HowfastisapaddlewheelturnedbythefieldF=yi-xkMaxwellallowsvaryingcurrentswhichbringsintheelectric(a)ifitsaxisdirectionisn=j(b)ifitsaxisislinedupwithfield.
curlF(c)ifitsaxisisperpendiculartocurlF41ForF=(x2+y2)i,computecurl(curlF)andgrad(divF)27HowiscurlFrelatedtotheangularvelocityointhespinandF,,+F,,+F,,.
fieldF=a(-yi+xj)Howfastdoesawheelspin,ifitisin++42ForF=v(x,y,z)i,provetheseusefulidentities:theplanexyz=l(a)curl(cur1F)=grad(divF)-(F,,+F,,+F,,).
28FindavectorfieldFwhosecurlisS=yi-xj.
(b)curl(fF)=fcurlF+(gradf)xF.
29FindavectorfieldFwhosecurlisS=axR.
43IfB=acost(constantdirectiona),findcurlEfromFara-30Trueorfalse:whentwovectorfieldshavethesamecurlday'sLaw.
ThenfindthealternatingspinfieldE.
atallpoints:(a)theirdifferenceisaconstantfield(b)their44WithG(x,y,z)=mi+nj+pk,writeoutFxGandtakedifferenceisagradientfield(c)theyhavethesamedivergence.
itsdivergence.
MatchtheanswerwithGcurlF-F.
curlG.
45WritedownGreen'sTheoreminthexzplanefromStokes'Theorem.
In31-34,compute11curlFndSoverthetophalfofthespherex2+y2+z2=1and(separately)$F.
dRaroundtheequator.
Trueorfalse:VxFisperpendiculartoF.
(a)ThesecondproofofStokes'TheoremtookM*(x,y))+=M(x,y,fP(x,y,f(x,y))af/axastheMinGreen'sTheorem.
ComputedM*/dyfromthechainruleandpro-35ThecircleCintheplanex+y+z=6hasradiusrandductrule(therearefiveterms).
centerat(1,2,3).
ThefieldFis3zj+2yk.
Compute$FdR(b)SimilarlyN*=N(x,y,f)+P(x,y,f)df/dyhasthexaroundC.
derivativeN,+N,f,+P,f,+Pzf,f,+Pf,,.
Checkthat++N,*-M,*matchestherightsideofequation(S),asneeded36SisthetophalfoftheunitsphereandF=zixjxyzk.
intheproof.
Find11curlF.
ndS.
"Theshadowoftheboundaryistheboundaryofthe37Findg(x,y)sothatcurlgk=yi+x2j.
Whatisthenameshadow.
"ThisfactwasusedinthesecondproofofStokes'forginSection15.
3Itexistsbecauseyi+x2jhaszeroTheorem,goingtoGreen'sTheoremontheshadow.
GivetwoexamplesofSandCandtheirshadows.
38ConstructFsothatcurlF=2xi+3yj-5zk(whichhas49WhichintegralsareequalwhenCofSorSzerodivergence).
=boundary=boundaryofV39SplitthefieldF=xyiintoV+WwithcurlV=0anddivW=$FdR$(curlF)dR$(curlF)ndsFnd~0.
.
.
1111divFdS11(curlF)ndS11(graddivF).
ndS111divFdV40Ampere'slawforasteadymagneticfieldBiscurlB=pJ(J=currentdensity,p=constant).
FindtheworkdonebyB50DrawthefieldV=-xkspinningawheelinthexzplane.
aroundaspacecurveCfromthecurrentpassingthroughit.
WhatwheelswouldnotspinMITOpenCourseWarehttp://ocw.
mit.
eduResource:CalculusOnlineTextbookGilbertStrangThefollowingmaynotcorrespondtoaparticularcourseonMITOpenCourseWare,buthasbeenprovidedbytheauthorasanindividuallearningresource.
ForinformationaboutcitingthesematerialsorourTermsofUse,visit:http://ocw.
mit.
edu/terms.

Dynadot COM特价新注册48元

想必我们有一些朋友应该陆续收到国内和国外的域名注册商关于域名即将涨价的信息。大概的意思是说从9月1日开始,.COM域名会涨价一点点,大约需要单个9.99美元左右一个。其实对于大部分用户来说也没多大的影响,毕竟如今什么都涨价,域名涨一点点也不要紧。如果是域名较多的话,确实增加续费成本和注册成本。今天整理看到Dynadot有发布新的八月份域名优惠活动,.COM首年注册依然是仅需48元,本次优惠活动截止...

41云,服务器8折优惠券,200G TCP防御

41云怎么样?41云是国人主机品牌,目前经营产品有国内外云服务器、CDN(高防CDN)和物理机,其中国内外云服务器又细分小类有香港限流量VPS、香港大带宽VPS、香港弹性自选VPS、香港不限流VPS、香港BGP线路VPS、香港Cera+大带宽机器、美国超防VPS、韩国原生VPS、仁川原生VPS、日本CN2 VPS、枣庄高防VPS和金华高防VPS;物理机有美国Cera服务器、香港单程CN2服务器、香...

QQ防红跳转短网址生成网站源码(91she完整源码)

使用此源码可以生成QQ自动跳转到浏览器的短链接,无视QQ报毒,任意网址均可生成。新版特色:全新界面,网站背景图采用Bing随机壁纸支持生成多种短链接兼容电脑和手机页面生成网址记录功能,域名黑名单功能网站后台可管理数据安装说明:由于此版本增加了记录和黑名单功能,所以用到了数据库。安装方法为修改config.php里面的数据库信息,导入install.sql到数据库。...

18jjj.com为你推荐
嘀动网动网和爱动网各自的优势是什么?百度关键词工具百度有关键字分析工具吗?Google AdWords有的网站检测请问,对网站进行监控检测的工具有哪些?www.niuav.com在那能找到免费高清电影网站呢 ?www.baitu.com谁有免费的动漫网站?www.45gtv.com登录农行网银首页www.abchina.com,www.123qqxx.com我的首页http://www.hao123.com被改成了http://www.669dh.cn/?yhcwww.k8k8.com谁能给我几个街污网站我去自己学月风随笔散文校园月色600字初中作文网页源代码网页源代码是什么,具体讲一下?
长沙服务器租用 西安服务器租用 域名备案流程 buyvm winscp 美国主机评论 idc测评网 softbank官网 光棍节日志 网站被封 本网站服务器在美国 美国免费空间 免费测手机号 鲁诺 支付宝扫码领红包 申请网页 shopex主机 个人免费主页 cloudlink smtp虚拟服务器 更多