identities18jjj.com

18jjj.com  时间:2021-04-06  阅读:()
15.
4SurfaceIntegrals57344ShowthatthespinfieldSdoesworkaroundeverysimpleinsideRcanbesqueezedtoapointwithoutleavingR.
Testclosedcurve.
theseregions:1.
xyplanewithout(0,O)2.
xyzspacewithout(0,0,O)45ForF=f(x)jandR=unitsquare0C*D*Aisnotneeded.
OnlynoticehowCaD:curlgradFisalwayszero.
ThenewestpartisD*A.
IfcurlF=0thenfFdR=0.
Butthatisnotnews.
ItisStokes'Theorem.
Theinterestingproblemistosolvethethreeequationsforf,whentestDispassed.
Theexampleabovehaddf/dx=2xyf=52xydx=x2yplusanyfunctionC(y,z)dfldy=x2+z=x2+dC/dyC=yzplusanyfunctionC(Z)df/dz=y=y+dcldzc(z)canbezero.
ThefirststepleavesanarbitraryC(y,z)tofixthesecondstep.
Thesecondstepleavesanarbitraryc(z)tofixthethirdstep(notneededhere).
Assemblingthethreesteps,f=x2y+C=x2y+yz+c=x~~+yz.
Pleaserecognizethatthe"fix-up"isonlypos-siblewhencurlF=0.
TestDmustbepassed.
EXAMPLE7IsF=(Z-y)i+(x-z)j+(y-x)kthegradientofanyfTestDsaysno.
ThisFisaspinfieldaxR.
Itscurlis2a=(2,2,2),whichisnotzero.
Asearchforfisboundtofail,butwecantry.
Tomatchdf/dx=z-y,wemusthavef=zx-yx+C(y,z).
Theyderivativeis-x+dC/dy.
ThatnevermatchesN=x-z,sofcan'texist.
EXAMPLE8WhatchoiceofPmakesF=yz2i+xz2j+PkconservativeFindf:SolutionWeneedcurlF=0,bytestD.
FirstcheckdM/dy=z2=dNjdx.
AlsodP/dx=aM/dz=2yzanddP/dy=dN/az=~XZ.
P=2xyzpassesalltests.
Tofindfwecansolvethethreeequations,ornoticethatf=xyz2isSUCC~SS~U~.
ItsgradientisF.
Athirdmethoddefinesf(x,y,z)astheworktoreach(x,y,z)from(0,0,O).
Thepathdoesn'tmatter.
ForpracticeweintegrateFdR=Mdx+Ndy+Pdzalongthestraightline(xt,yt,So1zt):f(~,y,Z)=(yt)(~t)~(xdt)+(xt)(~t)~(ydt)+2(xt)(yt)(zt)(zdl)=xyz2.
EXAMPLE9Whyisdivcurlgradfautomaticallyzero(intwoways)SolutionFirst,curlgradfiszero(always).
Second,divcurlFiszero(always).
Thosearethekeyidentitiesofvectorcalculus.
Weendwithareview.
Green'sTheorem:(2N/x-2Ml2y)dxdy$Fndr=jj(ZM/dr+dN/Fy)dxdy15.
6Stokes'TheoremandtheCurlofFDivergenceTheorem:Stokes'Theorem:F-dR=jcurlF*ndS.
ThefirstformofGreen'sTheoremleadstoStokes'Theorem.
ThesecondformbecomestheDivergenceTheorem.
Youmayask,whynotgotothreedimensionsinthefistplaceThelasttwotheoremscontainthefirsttwo(takeP=0andaflatsurface).
Wecouldhavereducedthischaptertotwotheorems,notfour.
Iadmitthat,butafundamentalprincipleisinvolved:"Itiseasiertogeneralizethantospecialize.
"Forthesamereasondfldxcamebeforepartialderivativesandthegradient.
15.
6EXERCISESRead-throughquestionsIn11-14,computecurlFandfind$,F0dRbyStokes'Theorem.
ThecurlofMi+Nj+Pk.
isthevectora.
Itequalsthe3by3determinantb.
Thecurlofx2i+z2kisc.
ForS=yi-(x+z)j+ykthecurlisd.
ThisSisae12F=ixR,C=circlex2+z2=1,y=0.
fieldaxR=+(curlF)xR,withaxisvectora=f.
Foranygradientfieldfxi+f,j+fzkthecurlis9.
Thatisthe13F=(i+j)xR,C=circley2+z2=1,x=0.
importantidentitycurlgradf=h.
Itisbasedonf,,=f,,14F.
=(yi-xj)x(xiandiandiThetwinidentityisk.
+yj),C=circlex2+y2=1,z=0.
15(important)SupposetwosurfacesSandThavethesameThecurlmeasurestheIofavectorfield.
Apad-boundaryC,andthedirectionaroundCisthesame.
dlewheelinthefieldwithitsaxisalongnhasturningspeedm.
(a)ProvecurlFndScurlFndS.
ThespinisgreatestwhennisinthedirectionofJJ,.
=flT.
n.
(b)Secondproof:ThedifferencebetweenthoseintegralsisThentheangularvelocityis0.
JJJdiv(cur1F)NBywhatTheoremWhatregionisI/Stokes'TheoremisP=q.
ThecurveCistheWhyisthisintegralzerorofthesS.
ThisistTheoremextendedtoudimensions.
BothsidesarezerowhenFisagradient16In15,supposeSisthetophalfoftheearth(ngoesout)fieldbecausev.
andTisthebottomhalf(ncomesin).
WhatareCandIr!
ShowbyexamplethatIS,FndS=11,FndSisnotgenerallyThefourpropertiesofaconservativefieldareA=w,true.
B=x,C=Y,D=.
Thefieldy2z2i+2xy2zk17ExplainwhycurlFndS0overtheclosedboundary(passes)(fails)testD.
Thisfieldisthegradientoff==A.
i[TheworkJFBofanysolid.
dRfrom(O,0,0)to(1,1,1)is(onwhichV.
path).
Foreveryfield17,JJcurlFondsisthesameout18SupposecurlF=0anddivF=0.
(a)WhyisFthegradi-throughapyramidandulpthroughitsbasebecausec.
entofapotential(b)WhydoesthepotentialsatisfyLaplace'sequationf,,+f,,+f,,=OProblems1-6findcurlF.
F=zi+xj+yk2F=grad(xeYsinz)In19-22,findapotentialfifitexists.
F=(x+y+z)(i+j+k)4F=(x+y)i-(x+y)kF=pn(xi+yj+zk)6F=(i+j)xR21F=ex-zi-ex-zk22F=yzi+xzj+(XY+z2)kFindapotentialfforthefieldinProblem3.
23FindafieldwithcurlF=(1,0,O).
FindapotentialfforthefieldinProblem5.
24FindallfieldswithcurlF=(1,0,O).
Whendothefieldsxmiiandxnjhavezerocurl25S=axRisaspinfield.
ComputeF=bxS(constantWhendoes(a,x+a2y+a,z)khavezerocurlvectorb)andfinditscurl.
59615VectorCalculus26HowfastisapaddlewheelturnedbythefieldF=yi-xkMaxwellallowsvaryingcurrentswhichbringsintheelectric(a)ifitsaxisdirectionisn=j(b)ifitsaxisislinedupwithfield.
curlF(c)ifitsaxisisperpendiculartocurlF41ForF=(x2+y2)i,computecurl(curlF)andgrad(divF)27HowiscurlFrelatedtotheangularvelocityointhespinandF,,+F,,+F,,.
fieldF=a(-yi+xj)Howfastdoesawheelspin,ifitisin++42ForF=v(x,y,z)i,provetheseusefulidentities:theplanexyz=l(a)curl(cur1F)=grad(divF)-(F,,+F,,+F,,).
28FindavectorfieldFwhosecurlisS=yi-xj.
(b)curl(fF)=fcurlF+(gradf)xF.
29FindavectorfieldFwhosecurlisS=axR.
43IfB=acost(constantdirectiona),findcurlEfromFara-30Trueorfalse:whentwovectorfieldshavethesamecurlday'sLaw.
ThenfindthealternatingspinfieldE.
atallpoints:(a)theirdifferenceisaconstantfield(b)their44WithG(x,y,z)=mi+nj+pk,writeoutFxGandtakedifferenceisagradientfield(c)theyhavethesamedivergence.
itsdivergence.
MatchtheanswerwithGcurlF-F.
curlG.
45WritedownGreen'sTheoreminthexzplanefromStokes'Theorem.
In31-34,compute11curlFndSoverthetophalfofthespherex2+y2+z2=1and(separately)$F.
dRaroundtheequator.
Trueorfalse:VxFisperpendiculartoF.
(a)ThesecondproofofStokes'TheoremtookM*(x,y))+=M(x,y,fP(x,y,f(x,y))af/axastheMinGreen'sTheorem.
ComputedM*/dyfromthechainruleandpro-35ThecircleCintheplanex+y+z=6hasradiusrandductrule(therearefiveterms).
centerat(1,2,3).
ThefieldFis3zj+2yk.
Compute$FdR(b)SimilarlyN*=N(x,y,f)+P(x,y,f)df/dyhasthexaroundC.
derivativeN,+N,f,+P,f,+Pzf,f,+Pf,,.
Checkthat++N,*-M,*matchestherightsideofequation(S),asneeded36SisthetophalfoftheunitsphereandF=zixjxyzk.
intheproof.
Find11curlF.
ndS.
"Theshadowoftheboundaryistheboundaryofthe37Findg(x,y)sothatcurlgk=yi+x2j.
Whatisthenameshadow.
"ThisfactwasusedinthesecondproofofStokes'forginSection15.
3Itexistsbecauseyi+x2jhaszeroTheorem,goingtoGreen'sTheoremontheshadow.
GivetwoexamplesofSandCandtheirshadows.
38ConstructFsothatcurlF=2xi+3yj-5zk(whichhas49WhichintegralsareequalwhenCofSorSzerodivergence).
=boundary=boundaryofV39SplitthefieldF=xyiintoV+WwithcurlV=0anddivW=$FdR$(curlF)dR$(curlF)ndsFnd~0.
.
.
1111divFdS11(curlF)ndS11(graddivF).
ndS111divFdV40Ampere'slawforasteadymagneticfieldBiscurlB=pJ(J=currentdensity,p=constant).
FindtheworkdonebyB50DrawthefieldV=-xkspinningawheelinthexzplane.
aroundaspacecurveCfromthecurrentpassingthroughit.
WhatwheelswouldnotspinMITOpenCourseWarehttp://ocw.
mit.
eduResource:CalculusOnlineTextbookGilbertStrangThefollowingmaynotcorrespondtoaparticularcourseonMITOpenCourseWare,buthasbeenprovidedbytheauthorasanindividuallearningresource.
ForinformationaboutcitingthesematerialsorourTermsofUse,visit:http://ocw.
mit.
edu/terms.

韩国服务器租用优惠点评大全

韩国服务器怎么样?韩国云服务器租用推荐?韩国服务器距离中国近,有天然的地域优势,韩国服务器速度快而且非常稳定!有不少有亚洲市场的外贸公司选择韩国服务器开拓业务,韩国服务器因自身的优势也受到不少用户的青睐。目前的IDC市场上,韩国、香港、美国三个地方的服务器几乎占据了海外服务器的百分之九十以上。韩国服务器相比美国服务器来说速度更快,而相比香港机房来说则带宽更充足,占用市场份额非常大。那么,韩国服务器...

RAKsmartCloud服务器,可自定义配置月$7.59

RAKsmart商家一直以来在独立服务器、站群服务器和G口和10G口大端口流量服务器上下功夫比较大,但是在VPS主机业务上仅仅是顺带,尤其是我们看到大部分主流商家都做云服务器,而RAKsmart商家终于开始做云服务器,这次试探性的新增美国硅谷机房一个方案。月付7.59美元起,支持自定义配置,KVM虚拟化,美国硅谷机房,VPC网络/经典网络,大陆优化/精品网线路,支持Linux或者Windows操作...

萤光云(13.25元)香港CN2 新购首月6.5折

萤光云怎么样?萤光云是一家国人云厂商,总部位于福建福州。其成立于2002年,主打高防云服务器产品,主要提供福州、北京、上海BGP和香港CN2节点。萤光云的高防云服务器自带50G防御,适合高防建站、游戏高防等业务。目前萤光云推出北京云服务器优惠活动,机房为北京BGP机房,购买北京云服务器可享受6.5折优惠+51元代金券(折扣和代金券可叠加使用)。活动期间还支持申请免费试用,需提交工单开通免费试用体验...

18jjj.com为你推荐
12306崩溃为什么12306进不去今日油条油条每周最多能吃多少百度商城百度积分有什么用?关键字关键字和一般标识符的区别百度关键词价格查询百度关键词排名价格是多少冯媛甑夏如芝是康熙来了的第几期?rawtoolsTF卡被写保护了怎么办?51sese.com谁有免费电影网站百度指数词百度指数是指,词不管通过什么样的搜索引擎进行搜索,都会被算成百度指数吗?广告法新修订的《广告法》有哪些内容
云服务器租用 hkbn kdata 哈喽图床 外国空间 godaddy lighttpd 云主机51web hnyd 最好的空间 qingyun 空间论坛 刀片服务器是什么 秒杀预告 699美元 91vps ca187 优酷黄金会员账号共享 云营销系统 免费的asp空间 更多