identities18jjj.com

18jjj.com  时间:2021-04-06  阅读:()
15.
4SurfaceIntegrals57344ShowthatthespinfieldSdoesworkaroundeverysimpleinsideRcanbesqueezedtoapointwithoutleavingR.
Testclosedcurve.
theseregions:1.
xyplanewithout(0,O)2.
xyzspacewithout(0,0,O)45ForF=f(x)jandR=unitsquare0C*D*Aisnotneeded.
OnlynoticehowCaD:curlgradFisalwayszero.
ThenewestpartisD*A.
IfcurlF=0thenfFdR=0.
Butthatisnotnews.
ItisStokes'Theorem.
Theinterestingproblemistosolvethethreeequationsforf,whentestDispassed.
Theexampleabovehaddf/dx=2xyf=52xydx=x2yplusanyfunctionC(y,z)dfldy=x2+z=x2+dC/dyC=yzplusanyfunctionC(Z)df/dz=y=y+dcldzc(z)canbezero.
ThefirststepleavesanarbitraryC(y,z)tofixthesecondstep.
Thesecondstepleavesanarbitraryc(z)tofixthethirdstep(notneededhere).
Assemblingthethreesteps,f=x2y+C=x2y+yz+c=x~~+yz.
Pleaserecognizethatthe"fix-up"isonlypos-siblewhencurlF=0.
TestDmustbepassed.
EXAMPLE7IsF=(Z-y)i+(x-z)j+(y-x)kthegradientofanyfTestDsaysno.
ThisFisaspinfieldaxR.
Itscurlis2a=(2,2,2),whichisnotzero.
Asearchforfisboundtofail,butwecantry.
Tomatchdf/dx=z-y,wemusthavef=zx-yx+C(y,z).
Theyderivativeis-x+dC/dy.
ThatnevermatchesN=x-z,sofcan'texist.
EXAMPLE8WhatchoiceofPmakesF=yz2i+xz2j+PkconservativeFindf:SolutionWeneedcurlF=0,bytestD.
FirstcheckdM/dy=z2=dNjdx.
AlsodP/dx=aM/dz=2yzanddP/dy=dN/az=~XZ.
P=2xyzpassesalltests.
Tofindfwecansolvethethreeequations,ornoticethatf=xyz2isSUCC~SS~U~.
ItsgradientisF.
Athirdmethoddefinesf(x,y,z)astheworktoreach(x,y,z)from(0,0,O).
Thepathdoesn'tmatter.
ForpracticeweintegrateFdR=Mdx+Ndy+Pdzalongthestraightline(xt,yt,So1zt):f(~,y,Z)=(yt)(~t)~(xdt)+(xt)(~t)~(ydt)+2(xt)(yt)(zt)(zdl)=xyz2.
EXAMPLE9Whyisdivcurlgradfautomaticallyzero(intwoways)SolutionFirst,curlgradfiszero(always).
Second,divcurlFiszero(always).
Thosearethekeyidentitiesofvectorcalculus.
Weendwithareview.
Green'sTheorem:(2N/x-2Ml2y)dxdy$Fndr=jj(ZM/dr+dN/Fy)dxdy15.
6Stokes'TheoremandtheCurlofFDivergenceTheorem:Stokes'Theorem:F-dR=jcurlF*ndS.
ThefirstformofGreen'sTheoremleadstoStokes'Theorem.
ThesecondformbecomestheDivergenceTheorem.
Youmayask,whynotgotothreedimensionsinthefistplaceThelasttwotheoremscontainthefirsttwo(takeP=0andaflatsurface).
Wecouldhavereducedthischaptertotwotheorems,notfour.
Iadmitthat,butafundamentalprincipleisinvolved:"Itiseasiertogeneralizethantospecialize.
"Forthesamereasondfldxcamebeforepartialderivativesandthegradient.
15.
6EXERCISESRead-throughquestionsIn11-14,computecurlFandfind$,F0dRbyStokes'Theorem.
ThecurlofMi+Nj+Pk.
isthevectora.
Itequalsthe3by3determinantb.
Thecurlofx2i+z2kisc.
ForS=yi-(x+z)j+ykthecurlisd.
ThisSisae12F=ixR,C=circlex2+z2=1,y=0.
fieldaxR=+(curlF)xR,withaxisvectora=f.
Foranygradientfieldfxi+f,j+fzkthecurlis9.
Thatisthe13F=(i+j)xR,C=circley2+z2=1,x=0.
importantidentitycurlgradf=h.
Itisbasedonf,,=f,,14F.
=(yi-xj)x(xiandiandiThetwinidentityisk.
+yj),C=circlex2+y2=1,z=0.
15(important)SupposetwosurfacesSandThavethesameThecurlmeasurestheIofavectorfield.
Apad-boundaryC,andthedirectionaroundCisthesame.
dlewheelinthefieldwithitsaxisalongnhasturningspeedm.
(a)ProvecurlFndScurlFndS.
ThespinisgreatestwhennisinthedirectionofJJ,.
=flT.
n.
(b)Secondproof:ThedifferencebetweenthoseintegralsisThentheangularvelocityis0.
JJJdiv(cur1F)NBywhatTheoremWhatregionisI/Stokes'TheoremisP=q.
ThecurveCistheWhyisthisintegralzerorofthesS.
ThisistTheoremextendedtoudimensions.
BothsidesarezerowhenFisagradient16In15,supposeSisthetophalfoftheearth(ngoesout)fieldbecausev.
andTisthebottomhalf(ncomesin).
WhatareCandIr!
ShowbyexamplethatIS,FndS=11,FndSisnotgenerallyThefourpropertiesofaconservativefieldareA=w,true.
B=x,C=Y,D=.
Thefieldy2z2i+2xy2zk17ExplainwhycurlFndS0overtheclosedboundary(passes)(fails)testD.
Thisfieldisthegradientoff==A.
i[TheworkJFBofanysolid.
dRfrom(O,0,0)to(1,1,1)is(onwhichV.
path).
Foreveryfield17,JJcurlFondsisthesameout18SupposecurlF=0anddivF=0.
(a)WhyisFthegradi-throughapyramidandulpthroughitsbasebecausec.
entofapotential(b)WhydoesthepotentialsatisfyLaplace'sequationf,,+f,,+f,,=OProblems1-6findcurlF.
F=zi+xj+yk2F=grad(xeYsinz)In19-22,findapotentialfifitexists.
F=(x+y+z)(i+j+k)4F=(x+y)i-(x+y)kF=pn(xi+yj+zk)6F=(i+j)xR21F=ex-zi-ex-zk22F=yzi+xzj+(XY+z2)kFindapotentialfforthefieldinProblem3.
23FindafieldwithcurlF=(1,0,O).
FindapotentialfforthefieldinProblem5.
24FindallfieldswithcurlF=(1,0,O).
Whendothefieldsxmiiandxnjhavezerocurl25S=axRisaspinfield.
ComputeF=bxS(constantWhendoes(a,x+a2y+a,z)khavezerocurlvectorb)andfinditscurl.
59615VectorCalculus26HowfastisapaddlewheelturnedbythefieldF=yi-xkMaxwellallowsvaryingcurrentswhichbringsintheelectric(a)ifitsaxisdirectionisn=j(b)ifitsaxisislinedupwithfield.
curlF(c)ifitsaxisisperpendiculartocurlF41ForF=(x2+y2)i,computecurl(curlF)andgrad(divF)27HowiscurlFrelatedtotheangularvelocityointhespinandF,,+F,,+F,,.
fieldF=a(-yi+xj)Howfastdoesawheelspin,ifitisin++42ForF=v(x,y,z)i,provetheseusefulidentities:theplanexyz=l(a)curl(cur1F)=grad(divF)-(F,,+F,,+F,,).
28FindavectorfieldFwhosecurlisS=yi-xj.
(b)curl(fF)=fcurlF+(gradf)xF.
29FindavectorfieldFwhosecurlisS=axR.
43IfB=acost(constantdirectiona),findcurlEfromFara-30Trueorfalse:whentwovectorfieldshavethesamecurlday'sLaw.
ThenfindthealternatingspinfieldE.
atallpoints:(a)theirdifferenceisaconstantfield(b)their44WithG(x,y,z)=mi+nj+pk,writeoutFxGandtakedifferenceisagradientfield(c)theyhavethesamedivergence.
itsdivergence.
MatchtheanswerwithGcurlF-F.
curlG.
45WritedownGreen'sTheoreminthexzplanefromStokes'Theorem.
In31-34,compute11curlFndSoverthetophalfofthespherex2+y2+z2=1and(separately)$F.
dRaroundtheequator.
Trueorfalse:VxFisperpendiculartoF.
(a)ThesecondproofofStokes'TheoremtookM*(x,y))+=M(x,y,fP(x,y,f(x,y))af/axastheMinGreen'sTheorem.
ComputedM*/dyfromthechainruleandpro-35ThecircleCintheplanex+y+z=6hasradiusrandductrule(therearefiveterms).
centerat(1,2,3).
ThefieldFis3zj+2yk.
Compute$FdR(b)SimilarlyN*=N(x,y,f)+P(x,y,f)df/dyhasthexaroundC.
derivativeN,+N,f,+P,f,+Pzf,f,+Pf,,.
Checkthat++N,*-M,*matchestherightsideofequation(S),asneeded36SisthetophalfoftheunitsphereandF=zixjxyzk.
intheproof.
Find11curlF.
ndS.
"Theshadowoftheboundaryistheboundaryofthe37Findg(x,y)sothatcurlgk=yi+x2j.
Whatisthenameshadow.
"ThisfactwasusedinthesecondproofofStokes'forginSection15.
3Itexistsbecauseyi+x2jhaszeroTheorem,goingtoGreen'sTheoremontheshadow.
GivetwoexamplesofSandCandtheirshadows.
38ConstructFsothatcurlF=2xi+3yj-5zk(whichhas49WhichintegralsareequalwhenCofSorSzerodivergence).
=boundary=boundaryofV39SplitthefieldF=xyiintoV+WwithcurlV=0anddivW=$FdR$(curlF)dR$(curlF)ndsFnd~0.
.
.
1111divFdS11(curlF)ndS11(graddivF).
ndS111divFdV40Ampere'slawforasteadymagneticfieldBiscurlB=pJ(J=currentdensity,p=constant).
FindtheworkdonebyB50DrawthefieldV=-xkspinningawheelinthexzplane.
aroundaspacecurveCfromthecurrentpassingthroughit.
WhatwheelswouldnotspinMITOpenCourseWarehttp://ocw.
mit.
eduResource:CalculusOnlineTextbookGilbertStrangThefollowingmaynotcorrespondtoaparticularcourseonMITOpenCourseWare,buthasbeenprovidedbytheauthorasanindividuallearningresource.
ForinformationaboutcitingthesematerialsorourTermsofUse,visit:http://ocw.
mit.
edu/terms.

gcorelabs:CDN业务节点分布100多个国家地区,免费版提供1T/月流量

卢森堡商家gcorelabs是个全球数据中心集大成的运营者,不但提供超过32个数据中心的VPS、13个数据中心的cloud(云服务器)、超过44个数据中心的独立服务器,还提供超过100个数据中心节点的CDN业务。CDN的总带宽容量超过50Tbps,支持免费测试! Gcorelabs根据业务分,有2套后台,分别是: CDN、流媒体平台、DDoS高防业务、块存储、cloud云服务器、裸金属服务器...

CloudCone(20美元/年)大硬盘VPS云服务器,KVM虚拟架构,1核心1G内存1Gbps带宽

近日CloudCone商家对旗下的大硬盘VPS云服务器进行了少量库存补货,也是悄悄推送了一批便宜VPS云服务器产品,此前较受欢迎的特价20美元/年、1核心1G内存1Gbps带宽的VPS云服务器也有少量库存,有需要美国便宜大硬盘VPS云服务器的朋友可以关注一下。CloudCone怎么样?CloudCone服务器好不好?CloudCone值不值得购买?CloudCone是一家成立于2017年的美国服务...

快云科技:夏季大促销,香港VPS7.5折特惠,CN2 GIA线路; 年付仅不到五折巨惠,续费永久同价

快云科技怎么样?快云科技是一家成立于2020年的新起国内主机商,资质齐全 持有IDC ICP ISP等正规商家。我们秉承着服务于客户服务于大众的理念运营,机器线路优价格低。目前已注册用户达到5000+!主营产品有:香港弹性云服务器,美国vps和日本vps,香港物理机,国内高防物理机以及美国日本高防物理机!产品特色:全配置均20M带宽,架构采用KVM虚拟化技术,全盘SSD硬盘,RAID10阵列, 国...

18jjj.com为你推荐
ip购买IP内地长途费是什么意思??8080端口8080是什么端口?广东GDP破10万亿想知道广东城市的GDP排名长尾关键词挖掘工具外贸长尾关键词挖掘工具哪个好用dadi.tvApple TV是干嘛的?怎么用?多少钱?www.toutoulu.com外链方案到底应该怎么弄呢机器蜘蛛尼尔机械纪元机械蜘蛛怎么过 机械蜘蛛打法攻略解析月风随笔关于春夏秋冬的散文国风商讯国风网络公司的福利怎么样www.38.com怎么从http://www38.ownskin.com/forum这个网站上下主题啊?
如何注册中文域名 荣耀欧洲 yardvps 免费名片模板 seovip 电子邮件服务器 qq云端 美国免费空间 网通服务器托管 七夕快乐英语 创建邮箱 阿里云邮箱登陆 如何登陆阿里云邮箱 netvigator 闪讯网 九零网络 windows2008 ncp 时间服务器 建站论坛 更多