Mirandaylmfos4.0

ylmfos4.0  时间:2021-03-28  阅读:()
1DissectingtheRe-OsmolybdenitegeochronometerFernandoBarra1,ArturDeditius2,MartinReich1,MattR.
Kilburn3,PaulGuagliardo3&MalcolmP.
Roberts3Rheniumandosmiumisotopeshavebeenusedfordecadestodatetheformationofmolybdenite(MoS2),acommonmineralinoredepositsandtheworld'smainsourceofmolybdenumandrhenium.
Understandingthedistributionofparent187Reandradiogenicdaughter187Osisotopesinmolybdeniteiscriticalininterpretingisotopicmeasurementsbecauseitcancompromisetheaccuratedeterminationandinterpretationofmineralizationages.
Inordertoresolvethecontrolsonthedistributionoftheseelements,chemicalandisotopemappingofMoS2grainsfromrepresentativeporphyrycopper-molybdenumdepositswereperformedusingelectronmicroprobeandnano-scalesecondaryionmassspectrometry.
Ourresultsshowaheterogeneousdistributionof185,187Reand192OsisotopesinMoS2,andthatboth187Reand187Osisotopesarenotdecoupledaspreviouslythought.
WeconcludethatReandOsarestructurallyboundorpresentasnanoparticlesinornexttomolybdenitegrains,recordingacomplexformationhistoryandhinderingtheuseofmicrobeamtechniquesforRe-Osmolybdenitedating.
Ourstudyopensnewavenuestoexploretheeffectsofisotopenuggetingingeochronometers.
Oredepositsarethemainsourceofmetalsforsociety,andtheirefficientandsustainableexplorationrequiresapreciseunderstandingofthefactorsthatcontroltheirdistributionwithintheuppercrust.
ApplicationoftheRe-Osisotopicsystemhasrevolutionizedoredepositresearchsincethe1990'sbyaddressingtwoofthemostcriticalissuesinthedevelopmentofgeneticmodelsandstrategicexplorationplans:thesourceofmetalsandtheageofmineralization1–5.
Rhenium187isradioactiveanddecaystoradiogenic187Osbybetaemission.
TheRe-Ossystemfollowsthelawofradioactivitywherethetotalnumberof187Osatomsinthesampleatthepresenttimeisequaltothenum-berofatomsof187Osincorporatedinthesampleatthetimeofmineralformationandthe187Osatomsproducedbydecayofthe187Reparentradionuclide.
Duetotheirchalcophileaffinityandbehaviorduringpartialmeltingofthemantle,ReandOswillbeconcentratedinsulphidephasesusuallyatlowppbandpptlevels,respectively.
However,molybdenite(MoS2)themostcommonmolybdenumoremineralconstitutesaparticularcasewithinsulphidemineralsbecauseitcontainshighRe(intheppmrange)and187Os(atppblevels),butalmostnoinitialorcommon187Os,henceall187Osinmolybdeniteisofradiogenicorigin(i.
e.
producedfromdecayof187Re)1,2,5.
TheseuniquecharacteristicsexplainwhyRe-Osmolybdenitedatingusingthewholemineralapproachiscurrentlythemostwidelyusedsinglemineralgeochronometerinoredeposits,wherereliablecrystallizationageshavebeenobtainedbythedirectmeasurementof187Reand187Osconcentrationsinthemineral.
Althoughthepotentialofmolybdeniteasasingle-mineralgeochronometerwasrecognizedyearsago6,7,initialstudieswerehamperedbyspuriousagesthatwereinterpretedasopensystembehavioroftheisotopicsystem8,9.
Furthermore,someresearchershavesuggestedthat187Reand187Osisotopesarenotspatiallylinkedatthemicro-scaleinmolybdeniteprecludingtheuseofmicrobeammethodsforRe-Osdating10–12.
IthasbeenarguedthatthisisotopicdecouplingofReandOsiscausedbyradiogenic187Osdiffusionwhichmayaccumulateincrystaldeformationsites11.
Hence,toobtainaccurateandreliableages,wholemolybdenitecrystalsshouldbeanalyzedinordertoovercometheinferreddecoupling11,12.
HereweinvestigatethedistributionofReandOsinmolybdenite,thedegreeofisotopicandchemicalzoningoftheseelements,theformationofRe-,Os-richdomainsandparticlesinornexttomolybdenite,andthepro-cessesresponsibleforintracrystalline/intragrainfractionation.
UnderstandingthecontrolsonReandOsisotope1DepartmentofGeologyandAndeanGeothermalCenterofExcellence(CEGA),FCFM,UniversidaddeChile,PlazaErcilla803,Santiago,Chile.
2SchoolofEngineeringandInformationTechnology,MurdochUniversity,90SouthStreet,Murdoch,WesternAustralia,6150,Australia.
3CentreforMicroscopy,CharacterisationandAnalysis,TheUniversityofWesternAustralia,35StirlingHighway,Perth,WesternAustralia,6009,Australia.
CorrespondenceandrequestsformaterialsshouldbeaddressedtoF.
B.
(email:fbarrapantoja@ing.
uchile.
cl)Received:15September2017Accepted:6November2017Published:xxxxxxxxOPEN2distributioniscriticalininterpretingtheaccuracyofisotopicmeasurements,andthusexplainspuriousRe-Osagesobtainedbymicrobeamtechniques.
Tounderstandthemineralogicalformofincorporation(i.
e.
,nanoparticlesvs.
solidsolution)andtheparame-tersthatcontrolthedistributionandabundancesofReandOsinmolybdenite,weinvestigatedasuiteofsamplesfromtwoporphyryCu-Modeposits,ElAlacrán(Mexico)2,13andMiranda(Chile)14.
High-resolutionimaging,wavelength-dispersivespectroscopy(WDS)elementalandNanoSIMSisotopicmappingprovidethefirstviewofthedistributionoftheReandOselementsandtheirrespectiveisotopesatthemicrotonanometerscale.
ThesampleswerepreviouslyanalyzedforReandOsusingN-TIMS2,14andwereselectedbecauseoftheirhighReandOscontent(SupplementaryTable1),whichfacilitatetheirdetectionbyEMPAandNanoSIMS.
ResultsElementaldistributioninmolybdenite.
Quantitative,wavelength-dispersive(WDS)X-raycomposi-tionalmapsofMo,Fe,S,Re,andOsshowhomogeneousdistributionofSandMo,whereasReandOsareheter-ogeneouslydistributedwithinmolybdenitecrystals(Fig.
1andSupplementaryFig.
1).
SampleMiranda2569displaysalternating,parallelRe-rich(7,000–9,000ppm)andRe-poor(1,800–5,000ppm)zonesperpendiculartothegrowthdirectionofthec-axis(0001)ofmolybdenite(hexagonal,spacegroupP63/mmc).
Thehighest(upto15,000ppm)relativelyhomogenousReconcentrationsoccurasanovergrowthFigure1.
WDSmapsforsulfur(right)andrhenium(left)inmolybdenitegrains.
Sulfurdistributionishomogeneousinthemolybdenitecrystal,whereasrheniumshowsdifferentpatternsofdistribution.
Warmercolorsrepresenthigherconcentrations.
3overtheprimarymolybdeniteindicatingasecondRe-richeventofcrystallization(Fig.
1B).
Thisovergrowthwasformedbyalaterhydrothermaleventandisnotevidentfromroutineopticalinspection.
Rheniuminmolyb-denitefromElAlacránhasabimodaldistribution.
InsampleAlacrán-B6,Re(700–7,200ppm)accumulatesindiscretemicro-tonano-inclusionsandorsubmicronzones(Fig.
1D),whereasinsampleAlacrán-B9rheniumpartitionsintooscillatoryzoningsimilartosampleMiranda2569,withprimarymolybdenitedepletedinRe(4,000–8,000ppm),andsecondarymolybdeniteenrichedintheelement(10,000–21,500ppm;SupplementaryData1).
Additionally,highReconcentrationsareobservedattheedgesofthecentralcrystal,indicatingover-growths(Fig.
1F).
Thepatternisundisturbedbydeformationandfragmentation.
TheamountsofOs,whichweredetectedinseveralEMPAanalysesinallsamples,varyfrom400–700ppm.
ThisparticulatedistributioncombinedwithsinglespotmaximaontheOselementalmapsuggeststhepresenceofsubmicronOs-bearinginclusions(SupplementaryFig.
1andSupplementaryData1).
Rheniumandosmiumisotopesinmolybdenite.
Highspatialresolutionisotopicmappingofselectedareas(50*50μm)included98Mo,185Re,192Os,andmass187,whichrepresentsthecombinationofthetwounre-solvableisotopes187Osand187Re(Fig.
2).
Iron-(56),63Cu,107Agisotopeswerealsomonitoredinsomeareasinordertodeterminemineralogical/isotopicassociationswithReandOs.
Rhenium-185isotopemaprevealedoscil-latoryzoninginmolybdenite,whichispresentinallanalyzedsamples,includinghighly-deformedgrains(Fig.
2).
AllsamplesshowzoneswithrelativelyhighRecontent.
SampleAlacrán-B9hostsRe-richnano-inclusions(1*1017ions/cm2.
Duetothegeometryofthemassspectrometer,itwasnotpossibletocollectalltherelevantisotopessimultane-ously,thuseachareawasmappedtwiceusingtwodifferentconfigurationsofthemulticollectionsystem.
Themagneticfieldwasfixed,andtheelectronmultiplier(EM)detectorswerepositionedtocollectsignalfrom56Fe,63Cu,98Mo,107Ag,185Re,190Osduringthefirstrun,andthenthelasttwodetectorsweremovedtocollect187Reand192Osduringthesecondrun.
ThepeakpositionswerecalibratedusingpureReandOsmetalstandards.
Assensi-tivitywasakeyissueandtherewerenosignificantmassinterferences,noslitswereusedinthemassspectrometer.
Imageswereacquiredwitharastersizeof45or50μm2,ataresolutionof512*512pixels,withadwelltimesof25or30ms/pixel.
Mapswerecorrectedfor44nsdeadtimeoneachindividualpixel.
ImageswereprocessedusingtheOpenMIMSpluginforFIJI/ImageJ(https://github.
com/BWHCNI/OpenMIMS).
References1.
McCandless,T.
E.
&Ruiz,J.
Rhenium-OsmiumevidenceforregionalmineralizationinsouthwesternNorth-America.
Science261,1282–1286(1993).
2.
Barra,F.
etal.
LaramidePorphyryCu-MomineralizationinnorthernMexico:AgeconstraintsfromRe-Osgeochronologyinmolybdenite.
Econ.
Geol.
100,1605–1616(2005).
3.
Kirk,J.
,Ruiz,J.
,Chesley,J.
,Walshe,J.
&England,G.
AmajorArchean,gold-andcrust-formingeventintheKaapvaalcraton,SouthAfrica.
Science297,1856–1858(2002).
4.
Mathur,R.
,Ruiz,J.
&Munizaga,F.
RelationshipbetweencoppertonnageofChileanbase-metalporphyrydepositsandOsisotoperatios.
Geology28,555–558(2000).
5.
Stein,H.
,Markey,R.
J.
,Morgan,J.
W.
,Hannah,J.
L.
&Scherstén,A.
TheremarkableRe-Oschronometerinmolybdenite:howandwhyitworks.
TerraNova13,479–486(2001).
6.
Herr,W.
,H.
Hintenberg,H.
&Voshage,H.
Half-lifeofrhenium.
Phys.
Rev.
95,1691(1954).
7.
Luck,J.
M.
&Allegre,C.
J.
Thestudyofmolybdenitesthroughthe187Re–187Oschronometer.
EarthPlanet.
Sci.
Lett.
61,291–296(1982).
8.
McCandless,T.
E.
,Ruiz,J.
&Campbell,A.
R.
Rheniumbehaviorinmolybdeniteinhypogeneandnear-surfaceenvironments:implicationsforRe-Osgeochronology.
Geochim.
Cosmochim.
Acta57,889–905(1993).
9.
Suzuki,K.
,Kagi,H.
,Nara,M.
,Takano,B.
&Nozaki,Y.
Experimentalalterationofmolybdenite:evaluationoftheRe-Ossystem,infraredspectroscopicprofileandpolytype.
GeochimCosmochimActa64,223–232(2000).
10.
Koler,J.
etal.
LaserablationICP-MSmeasurementsofRe/OsinmolybdeniteandimplicationsforRe-Osgeochronology.
Can.
Mineral.
41,307–320(2003).
11.
Stein,H.
,Scherstén,A.
,Hannah,J.
&Markey,R.
Subgrain-scaledecouplingofReand187OsandassessmentoflaserablationICP-MSspotdatinginmolybdenite.
Geochim.
Cosmochim.
Acta67,3673–3686(2003).
12.
Selby,D.
&Creaser,R.
A.
MacroscaleNTIMSandmicroscaleLA-MC-ICP-MSRe-Osisotopicanalysisofmolybdenite:TestingspatialrestrictionsforreliableRe-Osagedeterminations,andimplicationsforthedecouplingofReandOswithinmolybdenite.
Geochim.
Cosmochim.
Acta68,3897–3908(2004).
13.
Dean,D.
A.
Geology,alteration,andmineralizationoftheElAlacránarea,NorthernSonora,Mexico:UnpublishedM.
S.
Thesis,UniversityofArizona,TucsonArizona,222pp.
14.
Barra,F.
etal.
TimingandformationofporphyryCu–MomineralizationintheChuquicamatadistrict,northernChile:newconstraintsfromtheTokicluster.
Miner.
Deposita48,629–651(2013).
15.
Voudoris,P.
C.
etal.
Rhenium-richmolybdeniteandrheniiteinthePagoniRachiMo-Cu-Te-Ag-Auprospect,northernGreece:ImplicationsfortheRegeochemistryofporphyry-styleCu-MoandMomineralization.
Can.
Mineral.
47,1013–1036(2009).
16.
Ciobanu,C.
L.
etal.
Traceelementheterogeneityinmolybdenitefingerprintsstagesofmineralization.
Chem.
Geol.
347,175–189(2013).
17.
Grabezhev,A.
I.
&Voudoris,P.
G.
RheniumdistributioninmolybdenitefromtheVosnesenskporphyryCu±(Mo,Au)deposit(southernUrals,Russia).
Can.
Mineral.
52,671–686(2014).
18.
Shore,M.
&Fowler,A.
D.
Oscillatoryzoninginminerals:acommonphenomenon.
Can.
Mineral.
34,1111–1126(1996).
19.
Watson,E.
B.
Surfaceenrichmentandtrace-elementuptakeduringcrystalgrowth.
Geochim.
Cosmochim.
Acta60,5013–5020(1996).
20.
Holten,T.
,Jamtveit,B.
&Meakin,P.
Noiseandoscillatoryzoningofmineral.
Geochim.
Cosmochim.
Acta64,1893–1904(2000).
21.
O'Driscoll,B.
&González-Jiménez,J.
M.
"Petrogenesisofplatinum-groupelements"inHighlySiderophileandStronglyChalcophileElementsinHigh-TemperatureGeochemistryandCosmochemistry(eds.
Harvey,J.
&DayM.
D.
)489–578(MSA2016).
22.
González-Jiménez,J.
M.
&Reich,M.
Anoverviewoftheplatinum-groupelementnanoparticlesinmantle-hostedchromitedeposits.
OreGeol.
Rev.
81,1236–1248(2017).
23.
Reich,M.
etal.
Thermalbehaviorofmetalnanoparticlesingeologicmaterials.
Geology.
34,1033–1036(2006).
24.
Barker,S.
L.
L.
etal.
Uncloaking"invisible"gold:useofNanoSIMStomeasuregold,traceelementandsulfurisotopesinpyritefromCarlin-typegolddeposits.
Econ.
Geol.
104,897–904(2009).
25.
Reich,M.
etal.
"Invisible"silverandgoldinsupergenechalcocite.
Geochim.
Cosmochim.
Acta74,6157–6173(2010).
26.
Xiong,Y.
&Wood,S.
A.
ExperimentaldeterminationofthesolubilityofReO2andthedominantoxidationstateofrheniuminhydrothermalsolutions.
Chem.
Geol.
158,245–256(1999).
27.
Berzina,A.
N.
,Sotnikova,V.
I.
,Economou-Eliopoulos,M.
&Eliopoulos,D.
G.
DistributionofrheniuminmolybdenitefromporphyryCu–MoandMo–CudepositsofRussia(Siberia)andMongolia.
OreGeol.
Rev.
26,91–113(2005).
28.
Kusiak,M.
A.
,Whitehouse,M.
J.
,Wilde,S.
A.
,Nemchin,A.
A.
&Clark,C.
MobilizationofradiogenicPbinzirconrevealedbyionimaging:ImplicationsforearlyEarthgeochronology.
Geology41,291–294(2013).
29.
Valley,J.
W.
etal.
Hadeanageforapost-magma-oceanzirconconfirmedbyatom-probetomography.
Nat.
Geosci.
7,219–223(2014).
30.
Kusiak,M.
A.
etal.
Metallicleadnanospheresdiscoveredinancientzircons.
Proc.
Natl.
Acad.
Sci.
USA112,4958–4963(2015).
31.
Donovan,J.
J.
&Tingle,T.
N.
Animprovedmeanatomicnumbercorrectionforquantitativemicroanalysis.
JMicros2,1–7(1996).
32.
Armstrong,J.
T.
Quantitativeanalysisofsilicatesandoxideminerals:ComparisonofMonte-Carlo,ZAFandPhi-Rho-ZproceduresinMicrobeamanalysis(ed.
Newberry,D.
E.
)239–246(SanFranciscoPress,1988).
33.
Donovan,J.
J.
,Snyder,D.
A.
&Rivers,M.
L.
Animprovedinterferencecorrectionfortraceelementanalysis.
MicrobeamAnalysis2,23–28(1993).
7AcknowledgementsThisworkwasfundedbyProjectFondecyt#1140780toF.
B.
andM.
R.
TheauthorsalsoacknowledgethesupportofMilleniumNucleusNC130065andCEGAFondap-Conicyt15090013.
AuthorContributionsF.
B.
designedthestudy.
A.
D.
andM.
P.
R.
performedtheEMPAanalysis,M.
R.
K.
andP.
G.
conductedthenanoSIMSanalysis.
F.
B.
,A.
D.
,M.
R.
andM.
R.
K.
discussedtheresults.
F.
B.
,A.
D.
andM.
R.
wrotethepaper.
M.
R.
K.
andM.
P.
R.
providedcommentsonthepaperbeforesubmission.
AdditionalInformationSupplementaryinformationaccompaniesthispaperathttps://doi.
org/10.
1038/s41598-017-16380-8.
CompetingInterests:Theauthorsdeclarethattheyhavenocompetinginterests.
Publisher'snote:SpringerNatureremainsneutralwithregardtojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations.
OpenAccessThisarticleislicensedunderaCreativeCommonsAttribution4.
0InternationalLicense,whichpermitsuse,sharing,adaptation,distributionandreproductioninanymediumorformat,aslongasyougiveappropriatecredittotheoriginalauthor(s)andthesource,providealinktotheCre-ativeCommonslicense,andindicateifchangesweremade.
Theimagesorotherthirdpartymaterialinthisarticleareincludedinthearticle'sCreativeCommonslicense,unlessindicatedotherwiseinacreditlinetothematerial.
Ifmaterialisnotincludedinthearticle'sCreativeCommonslicenseandyourintendeduseisnotper-mittedbystatutoryregulationorexceedsthepermitteduse,youwillneedtoobtainpermissiondirectlyfromthecopyrightholder.
Toviewacopyofthislicense,visithttp://creativecommons.
org/licenses/by/4.
0/.
TheAuthor(s)2017

随风云-内蒙古三线BGP 2-2 5M 25/月 ,香港CN2 25/月 ,美国CERA 25/月 所有云服务器均支持5天无理由退款

公司成立于2021年,专注为用户提供低价高性能云计算产品,致力于云计算应用的易用性开发,面向全球客户提供基于云计算的IT解决方案与客户服务,拥有丰富的国内BGP、三线高防、香港等优质的IDC资源。公司一直秉承”以人为本、客户为尊、永续创新”的价值观,坚持”以微笑收获友善, 以尊重收获理解,以责任收获支持,以谦卑收获成长”的行为观向客户提供全面优质的互...

RackNerd:特价美国服务器促销,高配低价,美国多机房可选择,双E526**+AMD3700+NVMe

racknerd怎么样?racknerd今天发布了几款美国特价独立服务器的促销,本次商家主推高配置的服务器,各个配置给的都比较高,有Intel和AMD两种,硬盘也有NVMe和SSD等多咱组合可以选择,机房目前有夏洛特、洛杉矶、犹他州可以选择,性价比很高,有需要独服的朋友可以看看。点击进入:racknerd官方网站RackNerd暑假独服促销:CPU:双E5-2680v3 (24核心,48线程)内存...

A400互联37.8元/季,香港节点cn2,cmi线路云服务器,1核/1G/10M/300G

A400互联怎么样?A400互联是一家成立于2020年的商家,A400互联是云服务器网(yuntue.com)首次发布的云主机商家。本次A400互联给大家带来的是,全新上线的香港节点,cmi+cn2线路,全场香港产品7折优惠,优惠码0711,A400互联,只为给你提供更快,更稳,更实惠的套餐,香港节点上线cn2+cmi线路云服务器,37.8元/季/1H/1G/10M/300G,云上日子,你我共享。...

ylmfos4.0为你推荐
汇通物流请大家千万不要使用汇通快递!!mathplayerjavascript 如何判断document.body.innerHTML是否为空广东GDP破10万亿广东省城市经济排名比肩工场比肩之意是什么意思www.22zizi.com乐乐电影天堂 http://www.leleooo.com 这个网站怎么样?www.kaspersky.com.cn卡巴斯基中国总部设立在?www.toutoulu.com外链方案到底应该怎么弄呢www.1diaocha.com请问网络上可以做兼职赚钱吗?现在骗子比较多,不敢盲目相信。请大家推荐下www.cn12365.orgwww.12365china.net是可靠的网站吗?还是骗子拿出来忽悠人的www.bbbb.com二级域名怎么申请?看URL怎么分辨出二级域名、三级域名
便宜的虚拟主机 php主机空间 北京租服务器 awardspace 好看的桌面背景图片 dux 静态空间 中国电信测速网 河南移动m值兑换 免费dns解析 爱奇艺会员免费试用 服务器是干什么用的 上海电信测速网站 vul 阿里云免费邮箱 游戏服务器出租 主机返佣 江苏双线 国外代理服务器 服务器防御 更多