binnedfedora17
fedora17 时间:2021-03-26 阅读:(
)
SetDistanceFunctionsfor3DObjectRecognitionLusA.
AlexandreInstitutodeTelecomunicacoes,Univ.
BeiraInterior,Covilha,PortugalAbstract.
Oneofthekeystepsin3Dobjectrecognitionisthematch-ingbetweenaninputcloudandacloudinadatabaseofknownobjects.
Thisisusuallydoneusingadistancefunctionbetweensetsofdescrip-tors.
Inthispaperweproposetostudyhowseveraldistancefunctions(somealreadyavailableandothernewproposals)behaveexperimentallyusingalargefreelyavailablehouseholdobjectdatabasecontaining1421pointcloudsfrom48objectsand10categories.
Wepresentexperimentsillustratingtheaccuracyofthedistancesbothforobjectandcategoryrecognitionandndthatsimpledistancesgivecompetitiveresultsbothintermsofaccuracyandspeed.
1IntroductionThereisagrowinginterestintheuseof3Dpointcloudimagesformanytasks,sincetherecentintroductionofcheapsensorsthatproduceRGBplusdepthimages,suchastheMicrosoftKinectortheAsusXtion.
Oneofthemostchallengingtaskstobeachievedwithsuchdataistorecognizeobjectsinascene.
Animportantpartoftheprocessofrecognitionistobeabletocomparetherepresentationsoftheinput(testorprobe)dataagainststored(trainorgallery)data.
Theobjectsareusuallyrepresentedbysetsofdescriptors.
Severaldistancesexistthatareabletoworkwithsetsofdescriptors,notablythePyramidMatchKernel[1],forobjectrecognitionfromimages.
Itisimportanttoobtainaquantitativenotionoftheperformanceofsuchdistancefunctions.
Inthispaperwepresentacomparisonbetween8distancefunctionsfor3Dobjectrecognitionfrompointclouds.
Twotypesofdescriptorsareusedandtherelativedistanceperformanceissimilarinbothcases.
Weshowboththeobjectandcategoryaccuraciesthatcanbeobtainedfromthesedistancesandalsothecomputationalcostintermsofthetimeittakestoprocessthetestsetused.
Fromtheexperimentsweconcludethatgoodperformancecanbeobtainedusingquitesimpledistancefunctions,bothintermsofaccuracyandspeed.
Therestofthepaperisorganizedasfollows:thenextsectionpresentsanoverviewofthe3Dobjectrecognitionpipelineusedinthispaper,thefollow-ingsectionexplainsthedescriptorsused;section4presentsthedistancesthatareevaluated;section5containstheexperimentsandthepaperendswiththeconclusionsinsection6.
WeacknowledgethenancialsupportofprojectPEst-OE/EEI/LA0008/2013.
J.
Ruiz-ShulcloperandG.
SannitidiBaja(Eds.
):CIARP2013,PartI,LNCS8258,pp.
57–64,2013.
cSpringer-VerlagBerlinHeidelberg201358L.
A.
Alexandre2The3DObjectRecognitionPipelineTheinputcloudgoesthroughakeypointextractionalgorithm,theHarris3DkeypointdetectorimplementedinPCL[2].
Thecovariancematrixofthesurfacenormalsonapointneighborhoodisusedtondthepoint'sresponsetothedetector.
Thendescriptorsareobtainedontheextractedkeypointsandtheseformasetthatisusedtorepresenttheinputcloud.
Thissetismatchedagainstsetsalreadypresentintheobjectdatabaseandtheonewithlargestsimilarity(smallestdistance)isconsideredthematchfortheinputcloud.
3DescriptorsInthispaperweusethetwodescriptorsthatproducedthebestresultsinthecomparativeevaluationperformedin[3].
Theybothusecolorinformation.
TherstoneisthePointFeatureHistograms(PFH)[4].
Thisdescriptor'sgoalistogeneralizeboththesurfacenormalsandthecurvatureestimates.
Giventwopoints,pandq,axedreferenceframe,consistingofthethreeunitvectors(u,v,w),isbuiltcenteredonpusingthefollowingprocedure:1)thevectoruisthesurfacenormalatp;2)v=u*pqd3)w=u*v;whered=pq2.
Usingthisreferenceframe,thedierencebetweenthenormalsatp(np)andq(nq),canberepresentedby:1)α=arccos(v·nq);2)φ=arccos(u·(pq)/d);3)θ=arctan(w·np,u·np).
Theanglesα,φ,θandthedistancedarecomputedforallpairsinthek-neighborhoodofpointp.
Infact,usuallythedistancedisdroppedasitchangeswiththeviewpoint,keepingonlythe3angles.
Thesearebinnedintoan125-binhistogrambyconsideringthateachofthemcanfallinto5distinctbins,andthenalhistogramencodesineachbinauniquecombinationofthedistinctvaluesforeachoftheangles.
Oneofthese125-binhistogramsisproducedforeachinputpoint.
TheversionofPFHusedinthispaperincludescolorinformationandiscalledPFHRGB.
Thisvariantincludesthreeadditionalhistograms,onefortheratiobetweeneachcolorchannelofpandthesamechannelofq.
Thesehistogramsarebinnedasthe3anglesofPFHandhenceproduceanother125oatvalues,givingthetotalsizeof250valuesforthePFHRGBdescriptor.
TheseconddescriptorusedistheSHOTCOLOR[5].
ThisdescriptorisbasedontheSHOTdescriptor[6],thatobtainsarepeatablelocalreferenceframeusingtheeigenvaluedecompositionaroundaninputpoint.
Giventhisreferenceframe,asphericalgridcenteredonthepointdividestheneighborhoodsothatineachgridbinaweightedhistogramofnormalsisobtained.
Thedescriptorconcatenatesallsuchhistogramsintothenalsignature.
Ituses9valuestoencodethereferenceframeandtheauthorsproposetheuseof11shapebinsand32divisionsofthesphericalgrid,whichgivesanadditional352values.
Thedescriptorisnormalizedtosum1.
TheSHOTCOLORaddscolorinformation(basedontheCIELabcolorspace)totheSHOTdescriptor.
Ituses31binseachwith32divisionsyielding992values,plusthe352fromtheSHOTwhichgivesSetDistanceFunctionsfor3DObjectRecognition59thetotalof1344values(plus9valuestodescribethelocalreferenceframe).
ThehistogramsinthiscasestoretheL1distancebetweentheCIELabcolorofapointandthecolorofitsneighbors.
4SetDistancesThefocusofthispaperisonthedistancefunctionthatshouldbeusedwhencomparingtwopointcloudsthatarerepresentedbysetsofdescriptors.
Notethattheword"distance"shouldbeinterpretedlooselysincesomeofthefunctionspresentedbelowdonotverifyalltheconditionsofanorm(forinstance,D4andD5canproduceavalueofzeroevenifthetwoinputcloudsarenotthesame).
AdescriptorcanbeseenasapointinXRn.
Weinvestigatetheperformanceoffunctionsthatreceivetwosetsofdescriptors,AXandBX,withapossibledierentnumberofelements,|A|=|B|,andreturna(distance)valueinR.
Wewillusebelowthefollowingdistancesbetweendescriptors(notsets)x,y∈X:Lp(x,y)=ni=1|x(i)y(i)|p1/p,p=1,2dχ2(x,y)=12ni=1(x(i)y(i))2x(i)+y(i).
WewillassignacodetoeachsetdistanceintheformDz,wherezisanintegertomakeiteasiertorefertotheseveraldistancesthroughoutthepaper.
4.
1HausdorDistanceConsiderS(X)tobethesetofsubsetsofXthatareclosed,boundedandnon-empty.
LetA,B∈S(X).
TheHausdordistance,D1,betweensetsAandBisdenedasD1(A,B)=max{sup{d(a,B)|a∈A},sup{d(b,A)|b∈B}}whered(a,B)isadistancebetweenapointaandasetB,denedbyd(a,B)=min{d(a,bi),i=1,B|}andd(a,bi)isthedistancebetweentwopointsaandbiinRn.
InourcaseweusetheL1distancebetweentwopoints.
4.
2PyramidMatchKernelThepyramidmatchkernel(D2)[1]usesahierarchicalapproachtomatchingthesets.
Itndsthesimilaritybetweentwosetsastheweightedsumofthenumberoffeaturematchingsfoundateachlevelofapyramid.
60L.
A.
AlexandreConsidertheinputspaceXofsetsofn-dimensionalvectorsboundedbyasphereofdiameterD.
ThefeatureextractionfunctionisΨ(x)=[H1(x),H0(x)HL(x)]whereL=log2D+1,x∈X,Hi(x)isahistogramvectorformedoverdataxusingn-dimensionalbinsofsidelength2i.
Then,thepyramidreferredaboveisgivenby:KΔ(Ψ(y),Ψ(z))=Li=0Ni/2iwhereNiisthenumberofnewlymatchedpairsatleveli.
Anewmatchatleveliisdenedasapairoffeaturesthatwerenotincorrespondenceatannerlevel(jTobecomeincorrespondencemeansthatbothfallinthesamehistogrambin.
4.
3OtherSetDistancesWeproposetoevaluatealsothefollowingsetdistances,thatareallvariationsaroundthesametheme:usestatisticalmeasureslikethemean,standardvaria-tion,maximumandminimumofthepointsineachsettodevelopsimplerepre-sentationsfortheset.
Thegoalistosearchforasimplesetdistancethatproducesaccurateresultsandatthesametimeisfast,suchthat,otherthingspermitting(thetimethekeypointstaketobedetectedplusthetimethedescriptortakestoextract)wouldallowforrealtimecloudprocessing.
Belowweuseaj(i)torefertothecoordinateiofthedescriptorj.
ThedistanceD3isobtainedbyndingtheminimumandmaximumvaluesforeachcoordinateineachsetandsumtheL1distancesbetweenthemD3=L1(minA,minB)+L1(maxA,maxB)whereminA(i)=minj=1,.
.
.
,|A|{aj(i)},i=1,nandmaxA(i)=maxj=1,.
.
.
,|A|{aj(i)},i=1,nandlikewiseforminB(i)andmaxB(i).
Thenexttwodistancesaresimplythedistancebetweenthecentroidsofeachset,cAandcBrespectively,usingthedescriptordistancesL1andL2:D4=L1(cA,cB)andD5=L2(cA,cB).
DistanceD6isthesumofD4withtheL1distancebetweenthestandarddeviationforeachdimension(coordinate)ofeachset:D6=D4+L1(stdA,stdB)SetDistanceFunctionsfor3DObjectRecognition61wherestdA(i)=1|A|1|A|j=1(aj(i)cA(i))2,i=1,nandlikewiseforstdB.
DistanceD7issimilartoD6butinsteadofusingtheL1distanceusesthedχ2distancebetweentwovectors:D7=dχ2(cA,cB)+dχ2(stdA,stdB).
ThenaldistancetobeevaluatedconsistsontheaverageL1distancebetweenallpointsinonesettoallthepointsintheother(thenormalizedaveragelinkagesetdistance):D8=1|A||B||A|i=1|B|j=1L1(ai,bj).
5Experiments5.
1DatasetWeusedasubsetofthelargedatasetof3Dpointcloudsfrom[7].
Theoriginaldatasetcontains300objectsfrom51dierentcategoriescapturedonaturntablefrom3dierentcameraposes.
Weused48objectsrepresenting10categories.
Thetrainingdatacontaincloudscapturedfromtwodierentcameraviews,andthetestdatacontainscloudscapturedusingathirddierentview.
Thetrainingsethasatotalof946cloudswhilethetestsetcontains475clouds.
Sinceforeachtestcloudwedoanexhaustivesearchthroughthecompletetrainingsettondthebestmatch,thisamountstoatotalof449.
350cloudcomparisonsforeachoftheevaluateddescriptorsandeachofthedistancefunctionsused.
5.
2SetupThecodeusedintheexperimentswasdevelopedinC++usingthePCLlibrary[2]onalinuxmachine.
ThecodeusedforD2wasfrom[8].
WeusedtheUni-formPyramidMakerwiththefollowingparametersobtainedfromexperimentswitha10%subsetoftheoneusedinthenalevaluation:finest_side_length=(1/250,104),discretize_order=(3,3)andside_length_factor=(2,2)for(PFHRGB,SHOTCOLOR),respectively.
Tomakeafaircomparisonbetweenthedistances,allstepsinthepipelineareequal.
ThedescriptorsarefoundonthekeypointsobtainedusingtheHarris3Dkey-pointdetectorwiththefollowingparameters:theradiusfornormalestimationandnon-maximasupression(Radius)wassetto0.
01andthesphereradiusthatistobeusedfordeterminingthenearestneighborsusedforthekeypointdetec-tion(RadiusSearch)wasalsosetto0.
01.
Theonlyparameterneededforthedescriptorcalculationisthesphereradiusthatistobeusedfordeterminingthenearestneighborsusedinitscalculation.
Itwassetat0.
05forbothdescriptors.
62L.
A.
AlexandreTable1.
Categoryandobjectrecognitionaccuracyandthetimeusedforevaluatingthetestsetinseconds,forthedierentdistancesanddescriptorsPFHRGBSHOTCOLORAccuracy[%]Accuracy[%]DistanceCategoryObjectTime[s]CategoryObjectTime[s]D191.
1470.
04191467.
7244.
09175D263.
9242.
19219726.
5817.
931510D388.
8267.
93188988.
8267.
72132D490.
9375.
95187687.
9769.
20137D582.
7067.
72188679.
7555.
49134D693.
8878.
06189187.
7665.
82134D794.
7379.
96189488.
1965.
82127D877.
6460.
13191471.
7341.
351745.
3ResultsTable1andgure1containtheresultsoftheexperimentsdone.
Anobjectisconsideredtoberecognizedwhenaninputcloudismatchedbyoneoftheviewsofthesameobjectinthedatabase,whereasacategoryisconsideredtoberecognizedwhentheinputcloudismatchedtoaviewofanyoftheobjectsthatareinthesamecategoryastheinputobject.
So,categoryrecognitionisaneasiertaskthanthatofobjectrecognition,sinceinthelattercasethesystemneedstodistinguishbetweenthe(similar)objectswithinagivencategory.
Thatcategoryrecognitioniseasierthanobjectrecognitioncanbeseenintable1.
Foralldistancefunctions,categoryaccuracyisalwayshigherthanobjectrecognition.
Regardingtheaccuraciesobtained,theseresultsshowtheimportanceofchoos-ingagooddistancefunction.
Foragivendescriptorthereareconsiderablevari-ationsintermsofaccuracy:intermsofobjectrecognitiontheresultsforthePFHRGBvaryfromaround42%toalmost80%whereasfortheSHOTCOLORdescriptortheresultsvaryfromaround18%toover69%.
ThebestresultsareobtainedforthePFHRGBwithdistanceD7andfortheSHOTCOLORwithdistanceD3forcategoryrecognitionandD4forobjectrecognition.
Fromtherecall*(1-precision)curvesingure1,wenotethattheresultscanbegroupedintothreesets:thebestresultsforbothdescriptors,andwithsimilarcurves,areobtainedwithdistancesD4,D6andD7(forSHOTCOLOR,D3isalsoonthisrstgroup).
ThesecondgroupcontainsthedistancesD1,D5andD8(D3isinthissecondgroupforPFHRGB)thatshowadecreaseinperformancewhencomparedwiththerstgroup.
Thedierenceinperformancefromgroup1togroup2islargerwithSHOTCOLORthanwithPFHRGB.
ThismighthavetodowiththefactthatSHOTCOLORworksonamuchhigherdimensionalspace(1344)thanPFHRGB(250).
DistanceD2isthesolememberofthethirdgroupwithapoorperformance.
Webelievethismighthavetodowithapoorchoiceofparameters.
Buthavingtochoose3parametersforadistancethatisveryheavySetDistanceFunctionsfor3DObjectRecognition6300.
20.
40.
60.
810.
20.
30.
40.
50.
60.
70.
80.
91Recall1-PrecisionD1D2D3D4D5D6D7D800.
20.
40.
60.
810.
20.
30.
40.
50.
60.
70.
80.
91Recall1-PrecisionD1D2D3D4D5D6D7D8Fig.
1.
Recall*(1-Precision)curvesfortheobjectrecognitionexperimentsusingthePFHRGB(top)andSHOTCOLOR(bottom)descriptors(bestviewedincolor)fromacomputationalpointofviewisnotaneasytaskandwemightneededtospentmoretimesearchingfortheoptimalparameterstoobtainabetterresult.
DistanceD4isbetterthanD5(thesearesimplytheL1andL2distancesbetweencloudcentroids)forbothdescriptors,conrmingthefactthattheEu-clidiandistanceisnotappropriateforthesehighdimensionalspaces.
Thefthandseventhcolumnsoftable1containthetimeinsecondsthattooktoruntheevaluation(testset)ona12threadversionusingai7-3930K@3.
2GHz64L.
A.
AlexandreCPUonFedora17.
ThePFHRGBismuchmoredemandingintermsofcompu-tationalcomplexitythantheSHOTCOLOR,hencethetimeittakesisaround10timesmorethanthetimeusedbytheSHOTCOLOR.
Intermsoftimetakentocompletethetests,D2ismuchslowerthantherest.
Givenitstimeoverhead,D2shouldonlybeusedifitcouldprovideanimprovedaccuracywhencomparedtotheremainingdistances,butthatwasnotthecase.
6ConclusionsAnimportantpartofa3Dobjectrecognitionsetupisthedistancefunctionusedtocompareinputdataagainststoreddata.
Sincetherearemanypossibledistancefunctionsthatcanbeusedinthisscenario,theuserisfacedwithatoughdecisionregardingwhichdistancetochoose.
Theobviouswayistomakeexperimentscomparingthesefunctionsfortheirparticulardescriptoranddata,butthiscanbeatimeconsumingtask.
Thispaperpresentsanevaluationof8distancefunctionsonalargepointclouddatasetusingtwodescriptors.
Fromtheresultsoftheexperimentsmadeweconcludethatsimpledistances(suchasD3,D4,D6andD7)canbeagoodchoicesincetheirperformancebothintermsofaccuracyasintermsofspeedsurpassesothermorecommonusedonessuchasD1andD2.
Theformerdistancesalsobenetbynotrequiringtheadjustmentofparameters.
References1.
Grauman,K.
,Darrell,T.
:Thepyramidmatchkernel:Ecientlearningwithsetsoffeatures.
JournalofMachineLearningResearch8,725–760(2007)2.
Rusu,R.
,Cousins,S.
:3Dishere:PointCloudLibrary(PCL).
In:IEEEInternationalConferenceonRoboticsandAutomation(ICRA),Shanghai,China(2011)3.
Alexandre,L.
A.
:3Ddescriptorsforobjectandcategoryrecognition:acompara-tiveevaluation.
In:WorkshoponColor-DepthCameraFusioninRoboticsattheIEEE/RSJInternationalConferenceonIntelligentRobotsandSystems(IROS),Vilamoura,Portugal(2012)4.
Rusu,R.
,Blodow,N.
,Marton,Z.
,Beetz,M.
:Aligningpointcloudviewsusingpersistentfeaturehistograms.
In:InternationalConferenceonIntelligentRobotsandSystems(IROS),Nice,France(2008)5.
Tombari,F.
,Salti,S.
,DiStefano,L.
:Acombinedtexture-shapedescriptorforen-hanced3Dfeaturematching.
In:IEEEInternationalConferenceonImageProcessing(2011)6.
Tombari,F.
,Salti,S.
,DiStefano,L.
:Uniquesignaturesofhistogramsforlocalsurfacedescription.
In:Daniilidis,K.
,Maragos,P.
,Paragios,N.
(eds.
)ECCV2010,PartIII.
LNCS,vol.
6313,pp.
356–369.
Springer,Heidelberg(2010)7.
Lai,K.
,Bo,L.
,Ren,X.
,Fox,D.
:ALarge-ScalehierarchicalMulti-ViewRGB-Dobjectdataset.
In:Proc.
oftheIEEEInternationalConferenceonRobotics&Automation,ICRA(2011)8.
Lee,J.
J.
:Libpmk:Apyramidmatchtoolkit.
TechnicalReportMIT-CSAIL-TR-2008-17,MITComputerScienceandArticialIntelligenceLaboratory(2008)
关于HostYun主机商在之前也有几次分享,这个前身是我们可能熟悉的小众的HostShare商家,主要就是提供廉价主机,那时候官方还声称选择这个品牌的机器不要用于正式生产项目,如今这个品牌重新转变成Hostyun。目前提供的VPS主机包括KVM和XEN架构,数据中心可选日本、韩国、香港和美国的多个地区机房,电信双程CN2 GIA线路,香港和日本机房,均为国内直连线路,访问质量不错。今天和大家分享下...
快云科技怎么样?快云科技是一家成立于2020年的新起国内主机商,资质齐全 持有IDC ICP ISP等正规商家。我们秉承着服务于客户服务于大众的理念运营,机器线路优价格低。目前已注册用户达到5000+!主营产品有:香港弹性云服务器,美国vps和日本vps,香港物理机,国内高防物理机以及美国日本高防物理机!产品特色:全配置均20M带宽,架构采用KVM虚拟化技术,全盘SSD硬盘,RAID10阵列, 国...
傲游主机商我们可能很多人并不陌生,实际上这个商家早年也就是个人主机商,传说是有几个个人投资创办的,不过能坚持到现在也算不错,毕竟有早年的用户积累正常情况上还是能延续的。如果是新服务商这几年确实不是特别容易,问到几个老牌的个人服务商很多都是早年的用户积累客户群。傲游主机目前有提供XEN和KVM架构的云服务器,不少还是亚洲CN2优化节点,目前数据中心包括中国香港、韩国、德国、荷兰和美国等多个地区的CN...
fedora17为你推荐
淘宝门户淘宝电脑端登录首页梦之队官网梦之队是什么呢?是那个国家的呢?他们又是参加那个项目的呢?得了几块金牌呢?百度商城百度积分有什么用?陈嘉垣反黑阿欣是谁演的 扮演者介绍haole16.com高手们帮我看看我的新网站WWW.16mngt.com怎么不被收录啊?ip查询器怎么样查看自己电脑上的IP地址dadi.tvapple TV 功能介绍官人放题SBNS-088 中年男の夢を叶えるセックス やりたい放題! 4(中文字幕)种子下载地址有么?好人一生平安xyq.cbg.163.com这俩号哪个号值得买 价钱合适吗?多少合适!再续前缘区的http://xyq.cbg.163.com/cgi-bin/equipquery.py?server_id=149&equip_id=404113&act=buy_show_equip_infohttp://xyq.cb国风商讯说下,郑州国风艺考画室有人了解吗?
vps服务器租用 北京vps主机 主机评测 主机测评网 fastdomain 512av payoneer 账号泄露 万网优惠券 qq数据库下载 域名转向 刀片服务器是什么 服务器维护方案 河南m值兑换 鲁诺 电信托管 畅行云 免费个人主页 国内空间 北京主机托管 更多