amined38ab.com

38ab.com  时间:2021-03-21  阅读:()
RESEARCHARTICLEOpenAccessExperimentaldesignapproachtotheoptimizationofPAHsbioremediationfromartificiallycontaminatedsoil:applicationofvariablesscreeningdevelopmentMasoumehRavanipour1,RoshanakRezaeiKalantary2,AnoushiravanMohseni-Bandpi3*,AliEsrafili2,MahdiFarzadkia2andSamirehHashemi-Najafabadi4AbstractBackground:TheeffectivenessofbioremediationsystemsforPAH-contaminatedsoilmaybeconstrainedbyphysicochemicalpropertiesofcontaminantsandenvironmentalfactors.
Informationonwhatisthemosteffectivefactorinbioremediationprocessisessentialinthedecisionofwhatstimulationscanbetakentoassistthebiodegradationefficacy.
Methods:Inthisstudy,fourfactorsofsurfactant(Tween80),humicacid(HA),salinityandnutrientsina24fullfactorialdesignwerescreenedinbioremediationofphenanthrenecontaminatedsoilbyusingaconsortiumofbacteria.
Results:Betweentheemployedlevelsofthefactorsonlysalinityhadnotsignificanteffect.
Optimalconcentrationsofsurfactant,HAandnutrientwereobtainedbyaresponsesurfacedesign.
Forphenanthrenebiodegradation,acentralcompositefacecentreddesign(CCFD)showedthatnutrient,surfactantandHAconcentrationshadhighlysignificant,significantandinsignificanteffects,respectively.
Thebestconditionswith87.
1%phenanthrenebiodegradationwere150mgHA/Kgsoil,12.
68μg/Lsurfactant,andnutrientsasK2HPO4,0.
8;KH2PO4,0.
2andKNO3,1g/L.
Ahighsimilaritywasbetweenthemodelpredictionandexperimentalresults.
Conclusions:Thisstudyshowedthatnutrientwith81.
27%efficiencycouldbeconsideredasthemosteffectivefactorforpracticalimplicationsofbioremediationprocessforPAHscontaminatedsoilcleanupstrategies.
Keywords:Bioremediation,PolycyclicAromaticHydrocarbons,ResponseSurfaceMethod,Nutrient,Tween80BackgroundPetroleumderivativesareintroducedintotheenviron-mentthroughdifferentwayssuchasanthropogenicac-tivities,incompletecombustionofpetroleumproducts,woodandcoal,undesirabledischargingofoiltankers,spillsaroundpetroleumrefineriesandgasplantfacilities[1].
PolycyclicAromaticHydrocarbons(PAHs)areagroupofthesecompoundswithcarcinogenicandtoxicpotentially[2,3]whichcontributetoenvironmentalcontaminationandhealthhazards.
SoilandsedimentsarethemostimportantenvironmentalreservoirforPAHs.
Atpresent,employingbiologicaltreatmentisthemostpopularandcost–effectivestrategyamongthedifferentmethodstoremovethesepollutantsfromthesoil[4].
However,successfulapplicationofbioremediationisoftenlimitedbyenvironmental,physicalandchemicalfactors[5]suchasavailabilityofpollutantstoundergobiologicaltransformations[6]toxicityandcomplexstructuresofPAHsderivatives,limitationfornitrogen,phosphorusorothernutrients,pHandtemperature[7].
OneofthemainfactorslimitingbioavailabilityisthelowaqueoussolubilityofPAHs.
Additionofsurfactant*Correspondence:a.
mohseni8@yahoo.
com3DepartmentofEnvironmentalHealthEngineering,SchoolofPublicHealth,ShahidBeheshtiUniversityofMedicalSciences,Tehran,IranFulllistofauthorinformationisavailableattheendofthearticleJOURNALOFENVIRONMENTALHEALTHSCIENCE&ENGINEERING2015Ravanipouretal.
;licenseeBioMedCentral.
ThisisanOpenAccessarticledistributedunderthetermsoftheCreativeCommonsAttributionLicense(http://creativecommons.
org/licenses/by/4.
0),whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedtheoriginalworkisproperlycredited.
TheCreativeCommonsPublicDomainDedicationwaiver(http://creativecommons.
org/publicdomain/zero/1.
0/)appliestothedatamadeavailableinthisarticle,unlessotherwisestated.
Ravanipouretal.
JournalofEnvironmentalHealthScienceandEngineering(2015)13:22DOI10.
1186/s40201-015-0178-ycanbeusedforincreasingthephasepartitioningofor-ganiccompoundsandtheirbioavailability.
Ontheotherhandbioavailabilitymaybedecreasedbyuptakingofcontaminantsintothesurfactantmicelle[8].
Thus,theconcentrationofsurfactantplaysanimportantroleinbiodegradationofPAHs.
Manystudieshavebeenconductedtoovercomeprob-lemsrelatedtothepoorbioavailabilityofPAHsbyusingorganicmatter.
BorresenandRike[9]haveshownthathumicsubstances(HS)canincreasethesolubilityofPAHsleadsinincreasingthebioavailabilityofPAHsinsoil.
Nutrientsuchasnitrogenandphosphorusaretheotherimportantfactorsonbiodegradation.
Microorgan-ismsneedfornutrientssimilartotheircompositionofcells[10,11].
Betancur-GalvisLAetal.
[12]usedbiosolidandinorganicfertilizerinbioremediationofphenan-threne.
Theyfoundthattheremovalofphenanthreneinthesoilwithfertilizationwas25foldmorethantheothersoils.
Thereisarelationbetweenmineralizationratesofphenanthreneandtheinitialconcentrationsofnitrogenandphosphorusinthesoils[13].
Themarinesoilandsedimentisoneofthemostpet-roleumcontaminantssites,sothesalinityisanimport-antfactorwhichmustbeinvestigated.
Minai-TehraniD.
etal.
[14]showedthatincreasingsalinitycontentofsoilhaddecreasingeffectonthebiodegradationoftotalcrudeoilandPAHs.
Thebioremediationstrategyisdependentontheopti-mizingthefactorswhichaffectonthemicrobialgrowthandbiodegradationofpollutant[15].
Incombinationofseveralfactors,theeffectofanyonemaybeinfluencedbytheothersandinteractionsamongthemmaybeoc-curredtoo.
Theexperimentaldesigncanbeusedforoptimizingoperationalconditionsforthemultivariablesystem[16]andtheinteractionbetweenvariableswouldbeconsid-eredtoo[17].
Thenumberofexperiment'srunswouldbereducedbystatisticaldesignofexperiments[17,18].
Inthisstudynumerousfactors,involvingsurfactant(Tween80(Su.
)),salinity(Sal.
),soilnutrients(N,P(Nu.
))andorganicmatters(humicacid(HA)),individu-allyandincombination,havebeenstudiedtoremedyPAHartificiallycontaminatedsoils.
Theaimofthisstudywastoinvestigatetheeffectofphysicochemicalfactors;HA,surfactant(Tween80),salinityandnutrient(N,P)togetheronthebioremediationofphenanthreneathree-ringPAH,anappropriatemodelcompound,insoilslurry.
Inordertofindoutthemosteffectivefactorandthesequenceimportanceoftheminbiodegradationofphenanthreneathree-ringPAHinthesoilslurry,thestudywasconductedintwophase:1)Screeningthefactorsbyusingfullfactorialexperimentaldesign,and2)Optimizationofthephenanthrene-contaminatedsoilbiodegradationbyusingacentralcompositefacecentereddesign(CCFD)underresponsesurfacemeth-odology(RSM).
Thentheoptimizedconditionwasex-aminedinPAHsrealcontaminatedsoil.
MethodsChemicalsAcetoneinHPLCgradewaspurchasedfromROMILCompany.
Phenanthrene(Purity>98%),NaClandchem-icalmaterialsformineralsaltmedium(MSM)werepur-chasedfromMerckCompany.
HAandTween80weresuppliedbySigmaAldridgeandFluka,respectively.
TheformulaofHAwasC17H17BrN2O5.
NutrientBrothandR2AAgarwerepurchasedfromBIOMARKCompany.
PhenanthrenebiodegradationCleansoilwascollectedfromadepthof5–20cmofground'ssurface,Tehran,Iran.
Itwasairdriedandpassedthrougha2-mmsieve.
Thesoilwasclassifiedassand(consistedof89%sand,11.
9%siltand5%clay)bytheuseofstandardsieves.
Totalnitrogenandphosphoruswere0.
025%and0.
0012%,respectively.
Totalorganiccarbonwas0.
18%.
ThepHandelectricalconductivity(EC)were7.
4and3.
2ds/m,respectively.
Twogramsofdrysoilwasplacedinto50mLErlen-meyerflaskasnon-continuousbioreactors.
Thebioreac-torscontainingcleansoilwereautoclaved.
Then,itwasspikedwithdissolvedphenanthreneinacetonetohave500mgphenanthrene/kgdrysoil.
Thebioreactorscon-tainingspikedsoilwereplacedinashaker(Heidolph,ProMax2020model)atthevelocityof180rpminroomtemperatureanddarkconditiontohaveauniformdis-persionofphenanthreneandevaporationofacetone.
ThesoilwasinoculatedwithaconsortiumofbacteriaindifferentconcentrationofMSMwithanopticaldens-ityof1at630nm[5]usingCECILUV/Visspectropho-tometer(model7100).
ThebacterialconsortiumwasconsistedofBacillussporogenes,Bacilluslicheniformis,Capnocytophagaochracea(presumably),AcinetobactersporogenesandStaphylococcusxylosus.
Enrichmentoftheconsortiumandthepotentialofitinbioremediationofphenanthrenecontaminatedsoilshadbeenprovedinourpreviousstudy[6].
ThebaseofMSMwascontainedofthefollowing(perliter):0.
2gMgSO4.
7H2O,0.
1gCaCl2.
2H2O,0.
1gNaCl,0.
01gFeCl3.
6H2Oand1mLtraceelementsolution.
Thetraceelementsolutioncon-tainedthefollowing(perliter):23mgMnCl2.
2H2O,30mgMnCl4,32mgH3BO3,39mgCoCl2.
2H2O,50mgZnCl2,30mgNaMnO4.
2H2Oand20mgNiCl2[5].
ThentheamountofK2HPO4,KH2PO4,KNO3,HA,Sur-factantandNaClwereaddedaccordingtoTables1and2forphase1and2respectively.
ThepHwasadjustedto6.
8±0.
2usingapHmeter(HACH40dmodel).
Attheend,theslurryofsoilliquidratiowas10%w:v[6].
AllthesamplesandtheirsimilarblankswereputintheRavanipouretal.
JournalofEnvironmentalHealthScience&Engineering(2015)13:22Page2of10Table1Actualvaluescodedandofvariablesusedinthefullfactorial(24)designRunActualvalue/codedLevelsSalinity(Sal.
)%W/VSurfactant(Su.
)L/LμHumicAcid(HA)mg/KgNutrient(N,P)(Nu.
)g/LKNO3KH2PO4K2HPO4R10(1)0(1)0(1)0.
000132(1)0.
000103(1)0.
0017(1)R2200(1)0(1)0(1)0.
000132(1)0.
000103(1)0.
0017(1)R30(1)13(1)0(1)0.
000132(1)0.
000103(1)0.
0017(1)R4200(1)13(1)0(1)0.
000132(1)0.
000103(1)0.
0017(1)R50(1)0(1)2(1)0.
000132(1)0.
000103(1)0.
0017(1)R6200(1)0(1)2(1)0.
000132(1)0.
000103(1)0.
0017(1)R70(1)13(1)2(1)0.
000132(1)0.
000103(1)0.
0017(1)R8200(1)13(1)2(1)0.
000132(1)0.
000103(1)0.
0017(1)R90(1)0(1)0(1)0.
8(1)0.
2(1)1(1)R10200(1)0(1)0(1)0.
8(1)0.
2(1)1(1)R110(1)13(1)0(1)0.
8(1)0.
2(1)1(1)R12200(1)13(1)0(1)0.
8(1)0.
2(1)1(1)R130(1)0(1)2(1)0.
8(1)0.
2(1)1(1)R14200(1)0(1)2(1)0.
8(1)0.
2(1)1(1)R150(1)13(1)2(1)0.
8(1)0.
2(1)1(1)R16200(1)13(1)2(1)0.
8(1)0.
2(1)1(1)Table2ExperimentalmatrixforcentralcompositedesignforoptimizationRunActualvalue/codedlevelsRemovedamountofphenanthrene(mg/Kg)HA(mg/Kg)Su.
(μg/L)Nu.
(N,P)(g/L)K2HPO4KH2PO4KNO3ExperimentedvaluePredictedvalueR10(1)*5(1)0.
4(1)0.
1(1)0.
5(1)196.
4190.
67R2150(+1)*5(1)0.
4(1)0.
1(1)0.
5(1)222213.
63R30(1)13(+1)0.
4(1)0.
1(1)0.
5(1)208.
4214.
23R4150(+1)13(+1)0.
4(1)0.
1(1)0.
5(1)275.
7274.
69R50(1)5(1)0.
8(+1)0.
2(+1)1(+1)332.
1331.
61R6150(+1)5(1)0.
8(+1)0.
2(+1)1(+1)342.
8335.
47R70(1)13(+1)0.
8(+1)0.
2(+1)1(+1)380.
8387.
67R8150(+1)13(+1)0.
8(+1)0.
2(+1)1(+1)424.
8429.
03R90(1)9(0)0.
6(0)0.
15(0)0.
75(0)247.
6281.
05R10150(+1)9(0)0.
6(0)0.
15(0)0.
75(0)260.
8313.
21R1175(0)*5(1)0.
6(0)0.
15(0)0.
75(0)283.
6267.
85R1275(0)13(+1)0.
6(0)0.
15(0)0.
75(0)380326.
41R1375(0)9(0)0.
4(1)0.
1(1)0.
5(1)234.
2223.
31R1475(0)9(0)0.
8(+1)0.
2(+1)1(+1)394.
41370.
95R1575(0)9(0)0.
6(0)0.
15(0)0.
75(0)340297.
13R1675(0)9(0)0.
6(0)0.
15(0)0.
75(0)279297.
13R1775(0)9(0)0.
6(0)0.
15(0)0.
75(0)285.
2297.
13R1875(0)9(0)0.
6(0)0.
15(0)0.
75(0)260.
5297.
13*LowLevel:(1);Middle:(0);HighLevel:(1).
Ravanipouretal.
JournalofEnvironmentalHealthScience&Engineering(2015)13:22Page3of10shakeratthevelocityof180rpminroomtemperature(22±3°C)for8weeks.
ExperimentaldesignsTheexperimentwasaccomplishedintwophases;screeningofimportantvariablesandthelevelsofthemthatsignificantlyinfluencedphenanthrenedegradation,followedbyoptimizationofvariableslevelsbyusingre-sponsesurfacemethodology.
ScreeningofvariablesScreeningstepwasusedforidentifyingtheimportantoffourfactorsbasedonfullfactorialdesign(24).
TheserelevantfactorswereTween80,asanon-ionicsurfac-tant(Su),HA,NutrientandSalinityintwolevelsofhigh(+1)andlow(1).
Theimportanceofthefactorswasonthebaseofthelargesteffectonthebiodegradationofphenanthreneincontaminatedsoil.
Inthisphase16-runwasappliedtoevaluatefactors(variables).
Table1illus-tratesthevariablesandtheircorrespondinglevels.
ThelevelsofthefactorswereonthebaseofpreviousstudiesinliteratureforPAHsbioremediation[14,19-21].
Alltheexperimentrunswereperformedintriplicatesandtheaverageofthemwastakenastheresult.
Eachofexperimentrunhadthesimilarchemicalcontrolwithoutanyinoculation.
ThestatisticalsoftwareDesignExpertV.
7,(Stat-Ease,USA)wasusedtoevaluatetheanalysisofvariance(PSurfactant>Humicacid>Salinity.
Thebiodeg-radationrateatoptimumconditionwas7.
78mgphenan-threne/kgsoil/day.
CompetinginterestsTheauthorsdeclarethattheyhavenocompetinginterests.
Authors'contributionsMR,RRK,AM,AE,MFandSHNcarriedoutthearticlewiththetitleofExperimentaldesignapproachtotheoptimizationofPAHsbioremediationfromartificiallycontaminatedsoil:Applicationofvariablesscreeningdevelopmentparticipatedinthesequencealignmentanddraftedthemanuscript.
Allauthorsreadandapprovedthefinalmanuscript.
AcknowledgmentTheauthorssincerelythanktheDepartmentofEnvironmentalHealthEngineering,TehranUniversityofmedicalSciencesforfinancialsupportofthisproject.
Authordetails1DepartmentofEnvironmentalHealthEngineering,SchoolofPublicHealth,TehranUniversityofMedicalSciences,Tehran,Iran.
2DepartmentofEnvironmentalHealthEngineering,SchoolofPublicHealth,IranUniversityofMedicalSciences,Tehran,Iran.
3DepartmentofEnvironmentalHealthEngineering,SchoolofPublicHealth,ShahidBeheshtiUniversityofMedicalSciences,Tehran,Iran.
4DepartmentofChemicalEngineering,BiotechnologyGroup,TarbiatModaresUniversity,Tehran,Iran.
Received:4October2014Accepted:3March2015References1.
MahviAH,MalekiA,AlimohamadiM,GhasriA.
Photo-oxidationofphenolinaqueoussolution:toxicityofintermediates.
KoreanJChemEng.
2007;24:79–82.
2.
MohseniBandpiA,RezaeiKalantaryR,AmeliAEA,ZinatizadehAA,JonidiJafariA.
ApplicationofresponsesurfacemethodologyforoptimizationofFentonprocessforphenanthreneremovalfromsoil.
EnvironEngManagJ.
2013,inpress.
3.
NadimF,HoagGE,LiuS,CarleyRJ,ZackP.
Detectionandremediationofsoilandaquifersystemscontaminatedwithpetroleumproducts:anoverview.
JPetSciEng.
2000;26:169–78.
4.
NasseriS,KalantaryR,NouriehN,NaddafiK,MahviA,BaradaranN.
InfluenceofbioaugmentationinbiodegradationofPAHs-contaminatedsoilinbio-slurryphasereactor.
IranianJEnvironHealthSciEng.
2010;7:199–208.
5.
ResslerBP,KneifelH,WinterJ.
Bioavailabilityofpolycyclicaromatichydrocarbonsandformationofhumicacid-likeresiduesduringbacterialPAHdegradation.
ApplMicrobiolBiotechnol.
1999;53:85–91.
6.
RezaeiKR,BadkoubiA,Mohseni-BandpiA,EsrafiliA,JorfiS,DehghanifardE,etal.
ModificationofPAHsbiodegradationwithhumiccompounds,soilandsedimentcontamination.
AnIntJ.
2013;22:185–98.
7.
ChenJ,WongMH,WongYS,TamNFY.
Multi-factorsonbiodegradationkineticsofpolycyclicaromatichydrocarbons(PAHs)bySphingomonassp.
abacterialstrainisolatedfrommangrovesediment.
MarPollutBull.
2008;57:695–702.
8.
AvramovaT,SotirovaA,GalabovaD,KarpenkoE.
EffectofTritonX-100andrhamnolipidPS-17onthemineralizationofphenanthrenebyPseudomonassp.
cells.
IntBiodeteriorBiodegrad.
2008;62:415–20.
9.
BorresenMH,RikeAG.
Effectsofnutrientcontent,moisturecontentandsalinityonmineralizationofhexadecaneinanArcticsoil.
ColdRegSciTechnol.
2007;48:129–38.
10.
DeviMP,ReddyMV,JuwarkarA,SarmaPN,MohanSRV.
Effectofco-cultureandnutrientssupplementationonbioremediationofcrudepetroleumsludge.
CLEANSoil,AirWater.
2011;39:900–7.
11.
LiebegEW,CutrightTJ.
TheinvestigationofenhancedbioremediationthroughtheadditionofmacroandmicronutrientsinaPAHcontaminatedsoil.
IntBiodeteriorBiodegrad.
1999;44:55–64.
12.
Betancur-GalvisLA,Alvarez-BernalD,Ramos-ValdiviaAC,DendoovenL.
Bioremediationofpolycyclicaromatichydrocarbon-contaminatedsaline–alkalinesoilsoftheformerLakeTexcoco.
Chemosphere.
2006;62:1749–60.
13.
TengY,LuoY,PingL,ZouD,LiZ,ChristieP.
EffectsofsoilamendmentwithdifferentcarbonsourcesandotherfactorsonthebioremediationofanagedPAH-contaminatedsoil.
Biodegradation.
2010;21:167–78.
14.
Minai-TehraniD,MinouiS,HerfatmaneshA.
EffectofsalinityonbiodegradationofPolycyclicAromaticHydrocarbons(PAHs)ofheavycrudeoilinsoil.
BullEnvironContamToxicol.
2009;82:179–84.
15.
SempleKT,ReidBJ,FermorTR.
Impactofcompostingstrategiesonthetreatmentofsoilscontaminatedwithorganicpollutants.
EnvironPollut.
2001;112:269–83.
16.
MontgomeryDC,WileyJ.
DesignandAnalysisofEngineeringExperiments.
In:BookDesignandAnalysisofEngineeringExperiments.
NewYork:Wiley;2001.
17.
KhajvandT,ChaichiMJ,NazariOL,GolchoubianH.
ApplicationofBox–Behnkendesignintheoptimizationofcatalyticbehaviorofanewmixedchelateofcopper()complexinchemiluminescencereactionofluminol.
JLumin.
2011;131:838–42.
18.
LuM,YuanD,LiQ,OuyangT.
Applicationofresponsesurfacemethodologytoanalyzetheeffectsofsoil/liquidratio,pH,andincubationtimeonthebioaccessibilityofPAHsfromsoilininvitromethod.
WaterAirSoilPollut.
2009;200:387–97.
19.
LiangY,SorensenDL,McLeanJE,SimsRC.
Pyrenefateaffectedbyhumicacidamendmentinsoilslurrysystems.
JBiolEng.
2008;2:11.
20.
MaierRM,PepperIL,GerbaCP.
EnvironmentalMicrobiology.
Canada:AcademicPress;2009.
21.
PiskonenR,ItaevaaraM.
EvaluationofchemicalpretreatmentofcontaminatedsoilforimprovedPAHbioremediation.
ApplMicrobiolBiotechnol.
2004;65:627–34.
22.
USEPA.
Ultrasonicextraction.
Centerforenvironmentalresearchinformation.
EPA,3550B.
1996;2:1–14.
23.
KstnerM,Breuer-JammaliM,MahroB.
Impactofinoculationprotocols,salinity,andpHonthedegradationofpolycyclicaromatichydrocarbons(PAHs)andsurvivalofPAH-degradingbacteriaintroducedintosoil.
ApplEnvironMicrobiol.
1998;64:359–62.
24.
JacquesRJS,OkekeBC,BentoFM,TeixeiraAS,PeralbaMCR,CamargoFAO.
Microbialconsortiumbioaugmentationofapolycyclicaromatichydrocarbonscontaminatedsoil.
BioresourTechnol.
2008;99:2637–43.
25.
daSilvaAC,deOliveiraFJS,BernardesDS,deFranaFP.
Bioremediationofmarinesedimentsimpactedbypetroleum.
ApplBiochemBiotechnol.
2009;153:58–66.
26.
GrassoD,SubramaniamK,PignatelloJ,YangY,RatteD.
Micellardesorptionofpolynucleararomatichydrocarbonsfromcontaminatedsoil.
ColloidsSurfAPhysicochemEngAsp.
2001;194:65–74.
27.
VanStempvoortDR,LesageS,NovakowskiKS,MillarK,BrownS,LawrenceJR.
Humicacidenhancedremediationofanemplaceddieselsourceingroundwater.
:1.
Laboratory-basedpilotscaletest.
JContamHydrol.
2002;54:249–76.
28.
HeywoodE,WrightJ,WienburgCL,BlackHIJ,SaraM,OsbornD,etal.
FactorsinfluencingthenationaldistributionofpolycyclicaromatichydrocarbonsandpolychlorinatedbiphenylsinBritishsoils.
EnvironSciTechnol.
2006;40:7629–35.
29.
PlazaC,XingB,FernándezJM,SenesiN,PoloA.
Bindingofpolycyclicaromatichydrocarbonsbyhumicacidsformedduringcomposting.
EnvironPollut.
2009;157:257–63.
30.
MacleodCJA,SempleKT.
Theadaptationoftwosimilarsoilstopyrenecatabolism.
EnvironPollut.
2002;119:357–64.
31.
AhnCK,WooSH,ParkJM.
Enhancedsorptionofphenanthreneonactivatedcarboninsurfactantsolution.
Carbon.
2008;46:1401–10.
Ravanipouretal.
JournalofEnvironmentalHealthScience&Engineering(2015)13:22Page9of1032.
BreedveldGD,SparrevikM.
Nutrient-limitedbiodegradationofPAHinvarioussoilstrataatacreosotecontaminatedsite.
Biodegradation.
2000;11:391–9.
33.
CoulonF,PelletierE,GourhantL,DelilleD.
Effectsofnutrientandtemperatureondegradationofpetroleumhydrocarbonsincontaminatedsub-Antarcticsoil.
Chemosphere.
2005;58:1439–48.
34.
YuKSH,WongAHY,YauKWY,WongYS,TamNFY.
Naturalattenuation,biostimulationandbioaugmentationonbiodegradationofpolycyclicaromatichydrocarbons(PAHs)inmangrovesediments.
MarPollutBull.
2005;51:1071–7.
35.
MohajeriL,AzizHA,IsaMH,ZahedMA.
Astatisticalexperimentdesignapproachforoptimizingbiodegradationofweatheredcrudeoilincoastalsediments.
BioresourTechnol.
2010;101:893–900.
SubmityournextmanuscripttoBioMedCentralandtakefulladvantageof:ConvenientonlinesubmissionThoroughpeerreviewNospaceconstraintsorcolorgurechargesImmediatepublicationonacceptanceInclusioninPubMed,CAS,ScopusandGoogleScholarResearchwhichisfreelyavailableforredistributionSubmityourmanuscriptatwww.
biomedcentral.
com/submitRavanipouretal.
JournalofEnvironmentalHealthScience&Engineering(2015)13:22Page10of10

王小玉网-美国洛杉矶2核4G 20元/月,香港日本CN2 2核2G/119元/季,美国300G高防/80元/月!

 活动方案:美国洛杉矶 E5 2696V2 2核4G20M带宽100G流量20元/月美国洛杉矶E5 2696V2 2核4G100M带宽1000G流量99元/季香港CN2 E5 2660V2 2核2G30M CN2500G流量119元/季日本CN2E5 2660 2核2G30M CN2 500G流量119元/季美国300G高防 真实防御E5 2696V2 2核2G30M...

ZJI(月付480元),香港阿里云专线服务器

ZJI是成立于2011年原Wordpress圈知名主机商—维翔主机,2018年9月更名为ZJI,主要提供香港、日本、美国独立服务器(自营/数据中心直营)租用及VDS、虚拟主机空间、域名注册业务。本月商家针对香港阿里云线路独立服务器提供月付立减270-400元优惠码,优惠后香港独立服务器(阿里云专线)E3或者E5 CPU,SSD硬盘,最低每月仅480元起。阿里一型CPU:Intel E5-2630L...

美国多IP站群VPS商家选择考虑因素和可选商家推荐

如今我们很多朋友做网站都比较多的采用站群模式,但是用站群模式我们很多人都知道要拆分到不同IP段。比如我们会选择不同的服务商,不同的机房,至少和我们每个服务器的IP地址差异化。于是,我们很多朋友会选择美国多IP站群VPS商家的产品。美国站群VPS主机商和我们普通的云服务器、VPS还是有区别的,比如站群服务器的IP分布情况,配置技术难度,以及我们成本是比普通的高,商家选择要靠谱的。我们在选择美国多IP...

38ab.com为你推荐
沙滩捡12块石头价值近百万捡块石头价值一亿 到底是什么石头能价值一亿哈利波特罗恩升级当爸哈利波特 13年前的晚上发生了什么?固态硬盘是什么固态硬盘是什么?与普通硬盘有什么区别?移动硬盘与u盘有什么区别?openeuleropen opening opens opened有什么区别特朗普取消访问丹麦特朗普专机抵达日本安保警力情形如何?www.4411b.com难道那www真的4411B坏了,还是4411b梗换com鑫域明了比肩工场比肩夺财,行官杀制比是什么意思?psbc.comwww.psbc.com怎样注册www.44ri.comwww.yydcsjw.comwww.765.com哪里有免费的电影网站
长春域名注册 域名备案中心 国外免费域名网站 a5域名交易 lunarpages asp.net主机 godaddy支付宝 12306抢票攻略 主机屋免费空间 网站保姆 个人免费空间 100x100头像 日本bb瘦 秒杀预告 域名和空间 最漂亮的qq空间 美国独立日 免费的asp空间 韩国代理ip lamp是什么意思 更多