amined38ab.com

38ab.com  时间:2021-03-21  阅读:()
RESEARCHARTICLEOpenAccessExperimentaldesignapproachtotheoptimizationofPAHsbioremediationfromartificiallycontaminatedsoil:applicationofvariablesscreeningdevelopmentMasoumehRavanipour1,RoshanakRezaeiKalantary2,AnoushiravanMohseni-Bandpi3*,AliEsrafili2,MahdiFarzadkia2andSamirehHashemi-Najafabadi4AbstractBackground:TheeffectivenessofbioremediationsystemsforPAH-contaminatedsoilmaybeconstrainedbyphysicochemicalpropertiesofcontaminantsandenvironmentalfactors.
Informationonwhatisthemosteffectivefactorinbioremediationprocessisessentialinthedecisionofwhatstimulationscanbetakentoassistthebiodegradationefficacy.
Methods:Inthisstudy,fourfactorsofsurfactant(Tween80),humicacid(HA),salinityandnutrientsina24fullfactorialdesignwerescreenedinbioremediationofphenanthrenecontaminatedsoilbyusingaconsortiumofbacteria.
Results:Betweentheemployedlevelsofthefactorsonlysalinityhadnotsignificanteffect.
Optimalconcentrationsofsurfactant,HAandnutrientwereobtainedbyaresponsesurfacedesign.
Forphenanthrenebiodegradation,acentralcompositefacecentreddesign(CCFD)showedthatnutrient,surfactantandHAconcentrationshadhighlysignificant,significantandinsignificanteffects,respectively.
Thebestconditionswith87.
1%phenanthrenebiodegradationwere150mgHA/Kgsoil,12.
68μg/Lsurfactant,andnutrientsasK2HPO4,0.
8;KH2PO4,0.
2andKNO3,1g/L.
Ahighsimilaritywasbetweenthemodelpredictionandexperimentalresults.
Conclusions:Thisstudyshowedthatnutrientwith81.
27%efficiencycouldbeconsideredasthemosteffectivefactorforpracticalimplicationsofbioremediationprocessforPAHscontaminatedsoilcleanupstrategies.
Keywords:Bioremediation,PolycyclicAromaticHydrocarbons,ResponseSurfaceMethod,Nutrient,Tween80BackgroundPetroleumderivativesareintroducedintotheenviron-mentthroughdifferentwayssuchasanthropogenicac-tivities,incompletecombustionofpetroleumproducts,woodandcoal,undesirabledischargingofoiltankers,spillsaroundpetroleumrefineriesandgasplantfacilities[1].
PolycyclicAromaticHydrocarbons(PAHs)areagroupofthesecompoundswithcarcinogenicandtoxicpotentially[2,3]whichcontributetoenvironmentalcontaminationandhealthhazards.
SoilandsedimentsarethemostimportantenvironmentalreservoirforPAHs.
Atpresent,employingbiologicaltreatmentisthemostpopularandcost–effectivestrategyamongthedifferentmethodstoremovethesepollutantsfromthesoil[4].
However,successfulapplicationofbioremediationisoftenlimitedbyenvironmental,physicalandchemicalfactors[5]suchasavailabilityofpollutantstoundergobiologicaltransformations[6]toxicityandcomplexstructuresofPAHsderivatives,limitationfornitrogen,phosphorusorothernutrients,pHandtemperature[7].
OneofthemainfactorslimitingbioavailabilityisthelowaqueoussolubilityofPAHs.
Additionofsurfactant*Correspondence:a.
mohseni8@yahoo.
com3DepartmentofEnvironmentalHealthEngineering,SchoolofPublicHealth,ShahidBeheshtiUniversityofMedicalSciences,Tehran,IranFulllistofauthorinformationisavailableattheendofthearticleJOURNALOFENVIRONMENTALHEALTHSCIENCE&ENGINEERING2015Ravanipouretal.
;licenseeBioMedCentral.
ThisisanOpenAccessarticledistributedunderthetermsoftheCreativeCommonsAttributionLicense(http://creativecommons.
org/licenses/by/4.
0),whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedtheoriginalworkisproperlycredited.
TheCreativeCommonsPublicDomainDedicationwaiver(http://creativecommons.
org/publicdomain/zero/1.
0/)appliestothedatamadeavailableinthisarticle,unlessotherwisestated.
Ravanipouretal.
JournalofEnvironmentalHealthScienceandEngineering(2015)13:22DOI10.
1186/s40201-015-0178-ycanbeusedforincreasingthephasepartitioningofor-ganiccompoundsandtheirbioavailability.
Ontheotherhandbioavailabilitymaybedecreasedbyuptakingofcontaminantsintothesurfactantmicelle[8].
Thus,theconcentrationofsurfactantplaysanimportantroleinbiodegradationofPAHs.
Manystudieshavebeenconductedtoovercomeprob-lemsrelatedtothepoorbioavailabilityofPAHsbyusingorganicmatter.
BorresenandRike[9]haveshownthathumicsubstances(HS)canincreasethesolubilityofPAHsleadsinincreasingthebioavailabilityofPAHsinsoil.
Nutrientsuchasnitrogenandphosphorusaretheotherimportantfactorsonbiodegradation.
Microorgan-ismsneedfornutrientssimilartotheircompositionofcells[10,11].
Betancur-GalvisLAetal.
[12]usedbiosolidandinorganicfertilizerinbioremediationofphenan-threne.
Theyfoundthattheremovalofphenanthreneinthesoilwithfertilizationwas25foldmorethantheothersoils.
Thereisarelationbetweenmineralizationratesofphenanthreneandtheinitialconcentrationsofnitrogenandphosphorusinthesoils[13].
Themarinesoilandsedimentisoneofthemostpet-roleumcontaminantssites,sothesalinityisanimport-antfactorwhichmustbeinvestigated.
Minai-TehraniD.
etal.
[14]showedthatincreasingsalinitycontentofsoilhaddecreasingeffectonthebiodegradationoftotalcrudeoilandPAHs.
Thebioremediationstrategyisdependentontheopti-mizingthefactorswhichaffectonthemicrobialgrowthandbiodegradationofpollutant[15].
Incombinationofseveralfactors,theeffectofanyonemaybeinfluencedbytheothersandinteractionsamongthemmaybeoc-curredtoo.
Theexperimentaldesigncanbeusedforoptimizingoperationalconditionsforthemultivariablesystem[16]andtheinteractionbetweenvariableswouldbeconsid-eredtoo[17].
Thenumberofexperiment'srunswouldbereducedbystatisticaldesignofexperiments[17,18].
Inthisstudynumerousfactors,involvingsurfactant(Tween80(Su.
)),salinity(Sal.
),soilnutrients(N,P(Nu.
))andorganicmatters(humicacid(HA)),individu-allyandincombination,havebeenstudiedtoremedyPAHartificiallycontaminatedsoils.
Theaimofthisstudywastoinvestigatetheeffectofphysicochemicalfactors;HA,surfactant(Tween80),salinityandnutrient(N,P)togetheronthebioremediationofphenanthreneathree-ringPAH,anappropriatemodelcompound,insoilslurry.
Inordertofindoutthemosteffectivefactorandthesequenceimportanceoftheminbiodegradationofphenanthreneathree-ringPAHinthesoilslurry,thestudywasconductedintwophase:1)Screeningthefactorsbyusingfullfactorialexperimentaldesign,and2)Optimizationofthephenanthrene-contaminatedsoilbiodegradationbyusingacentralcompositefacecentereddesign(CCFD)underresponsesurfacemeth-odology(RSM).
Thentheoptimizedconditionwasex-aminedinPAHsrealcontaminatedsoil.
MethodsChemicalsAcetoneinHPLCgradewaspurchasedfromROMILCompany.
Phenanthrene(Purity>98%),NaClandchem-icalmaterialsformineralsaltmedium(MSM)werepur-chasedfromMerckCompany.
HAandTween80weresuppliedbySigmaAldridgeandFluka,respectively.
TheformulaofHAwasC17H17BrN2O5.
NutrientBrothandR2AAgarwerepurchasedfromBIOMARKCompany.
PhenanthrenebiodegradationCleansoilwascollectedfromadepthof5–20cmofground'ssurface,Tehran,Iran.
Itwasairdriedandpassedthrougha2-mmsieve.
Thesoilwasclassifiedassand(consistedof89%sand,11.
9%siltand5%clay)bytheuseofstandardsieves.
Totalnitrogenandphosphoruswere0.
025%and0.
0012%,respectively.
Totalorganiccarbonwas0.
18%.
ThepHandelectricalconductivity(EC)were7.
4and3.
2ds/m,respectively.
Twogramsofdrysoilwasplacedinto50mLErlen-meyerflaskasnon-continuousbioreactors.
Thebioreac-torscontainingcleansoilwereautoclaved.
Then,itwasspikedwithdissolvedphenanthreneinacetonetohave500mgphenanthrene/kgdrysoil.
Thebioreactorscon-tainingspikedsoilwereplacedinashaker(Heidolph,ProMax2020model)atthevelocityof180rpminroomtemperatureanddarkconditiontohaveauniformdis-persionofphenanthreneandevaporationofacetone.
ThesoilwasinoculatedwithaconsortiumofbacteriaindifferentconcentrationofMSMwithanopticaldens-ityof1at630nm[5]usingCECILUV/Visspectropho-tometer(model7100).
ThebacterialconsortiumwasconsistedofBacillussporogenes,Bacilluslicheniformis,Capnocytophagaochracea(presumably),AcinetobactersporogenesandStaphylococcusxylosus.
Enrichmentoftheconsortiumandthepotentialofitinbioremediationofphenanthrenecontaminatedsoilshadbeenprovedinourpreviousstudy[6].
ThebaseofMSMwascontainedofthefollowing(perliter):0.
2gMgSO4.
7H2O,0.
1gCaCl2.
2H2O,0.
1gNaCl,0.
01gFeCl3.
6H2Oand1mLtraceelementsolution.
Thetraceelementsolutioncon-tainedthefollowing(perliter):23mgMnCl2.
2H2O,30mgMnCl4,32mgH3BO3,39mgCoCl2.
2H2O,50mgZnCl2,30mgNaMnO4.
2H2Oand20mgNiCl2[5].
ThentheamountofK2HPO4,KH2PO4,KNO3,HA,Sur-factantandNaClwereaddedaccordingtoTables1and2forphase1and2respectively.
ThepHwasadjustedto6.
8±0.
2usingapHmeter(HACH40dmodel).
Attheend,theslurryofsoilliquidratiowas10%w:v[6].
AllthesamplesandtheirsimilarblankswereputintheRavanipouretal.
JournalofEnvironmentalHealthScience&Engineering(2015)13:22Page2of10Table1Actualvaluescodedandofvariablesusedinthefullfactorial(24)designRunActualvalue/codedLevelsSalinity(Sal.
)%W/VSurfactant(Su.
)L/LμHumicAcid(HA)mg/KgNutrient(N,P)(Nu.
)g/LKNO3KH2PO4K2HPO4R10(1)0(1)0(1)0.
000132(1)0.
000103(1)0.
0017(1)R2200(1)0(1)0(1)0.
000132(1)0.
000103(1)0.
0017(1)R30(1)13(1)0(1)0.
000132(1)0.
000103(1)0.
0017(1)R4200(1)13(1)0(1)0.
000132(1)0.
000103(1)0.
0017(1)R50(1)0(1)2(1)0.
000132(1)0.
000103(1)0.
0017(1)R6200(1)0(1)2(1)0.
000132(1)0.
000103(1)0.
0017(1)R70(1)13(1)2(1)0.
000132(1)0.
000103(1)0.
0017(1)R8200(1)13(1)2(1)0.
000132(1)0.
000103(1)0.
0017(1)R90(1)0(1)0(1)0.
8(1)0.
2(1)1(1)R10200(1)0(1)0(1)0.
8(1)0.
2(1)1(1)R110(1)13(1)0(1)0.
8(1)0.
2(1)1(1)R12200(1)13(1)0(1)0.
8(1)0.
2(1)1(1)R130(1)0(1)2(1)0.
8(1)0.
2(1)1(1)R14200(1)0(1)2(1)0.
8(1)0.
2(1)1(1)R150(1)13(1)2(1)0.
8(1)0.
2(1)1(1)R16200(1)13(1)2(1)0.
8(1)0.
2(1)1(1)Table2ExperimentalmatrixforcentralcompositedesignforoptimizationRunActualvalue/codedlevelsRemovedamountofphenanthrene(mg/Kg)HA(mg/Kg)Su.
(μg/L)Nu.
(N,P)(g/L)K2HPO4KH2PO4KNO3ExperimentedvaluePredictedvalueR10(1)*5(1)0.
4(1)0.
1(1)0.
5(1)196.
4190.
67R2150(+1)*5(1)0.
4(1)0.
1(1)0.
5(1)222213.
63R30(1)13(+1)0.
4(1)0.
1(1)0.
5(1)208.
4214.
23R4150(+1)13(+1)0.
4(1)0.
1(1)0.
5(1)275.
7274.
69R50(1)5(1)0.
8(+1)0.
2(+1)1(+1)332.
1331.
61R6150(+1)5(1)0.
8(+1)0.
2(+1)1(+1)342.
8335.
47R70(1)13(+1)0.
8(+1)0.
2(+1)1(+1)380.
8387.
67R8150(+1)13(+1)0.
8(+1)0.
2(+1)1(+1)424.
8429.
03R90(1)9(0)0.
6(0)0.
15(0)0.
75(0)247.
6281.
05R10150(+1)9(0)0.
6(0)0.
15(0)0.
75(0)260.
8313.
21R1175(0)*5(1)0.
6(0)0.
15(0)0.
75(0)283.
6267.
85R1275(0)13(+1)0.
6(0)0.
15(0)0.
75(0)380326.
41R1375(0)9(0)0.
4(1)0.
1(1)0.
5(1)234.
2223.
31R1475(0)9(0)0.
8(+1)0.
2(+1)1(+1)394.
41370.
95R1575(0)9(0)0.
6(0)0.
15(0)0.
75(0)340297.
13R1675(0)9(0)0.
6(0)0.
15(0)0.
75(0)279297.
13R1775(0)9(0)0.
6(0)0.
15(0)0.
75(0)285.
2297.
13R1875(0)9(0)0.
6(0)0.
15(0)0.
75(0)260.
5297.
13*LowLevel:(1);Middle:(0);HighLevel:(1).
Ravanipouretal.
JournalofEnvironmentalHealthScience&Engineering(2015)13:22Page3of10shakeratthevelocityof180rpminroomtemperature(22±3°C)for8weeks.
ExperimentaldesignsTheexperimentwasaccomplishedintwophases;screeningofimportantvariablesandthelevelsofthemthatsignificantlyinfluencedphenanthrenedegradation,followedbyoptimizationofvariableslevelsbyusingre-sponsesurfacemethodology.
ScreeningofvariablesScreeningstepwasusedforidentifyingtheimportantoffourfactorsbasedonfullfactorialdesign(24).
TheserelevantfactorswereTween80,asanon-ionicsurfac-tant(Su),HA,NutrientandSalinityintwolevelsofhigh(+1)andlow(1).
Theimportanceofthefactorswasonthebaseofthelargesteffectonthebiodegradationofphenanthreneincontaminatedsoil.
Inthisphase16-runwasappliedtoevaluatefactors(variables).
Table1illus-tratesthevariablesandtheircorrespondinglevels.
ThelevelsofthefactorswereonthebaseofpreviousstudiesinliteratureforPAHsbioremediation[14,19-21].
Alltheexperimentrunswereperformedintriplicatesandtheaverageofthemwastakenastheresult.
Eachofexperimentrunhadthesimilarchemicalcontrolwithoutanyinoculation.
ThestatisticalsoftwareDesignExpertV.
7,(Stat-Ease,USA)wasusedtoevaluatetheanalysisofvariance(PSurfactant>Humicacid>Salinity.
Thebiodeg-radationrateatoptimumconditionwas7.
78mgphenan-threne/kgsoil/day.
CompetinginterestsTheauthorsdeclarethattheyhavenocompetinginterests.
Authors'contributionsMR,RRK,AM,AE,MFandSHNcarriedoutthearticlewiththetitleofExperimentaldesignapproachtotheoptimizationofPAHsbioremediationfromartificiallycontaminatedsoil:Applicationofvariablesscreeningdevelopmentparticipatedinthesequencealignmentanddraftedthemanuscript.
Allauthorsreadandapprovedthefinalmanuscript.
AcknowledgmentTheauthorssincerelythanktheDepartmentofEnvironmentalHealthEngineering,TehranUniversityofmedicalSciencesforfinancialsupportofthisproject.
Authordetails1DepartmentofEnvironmentalHealthEngineering,SchoolofPublicHealth,TehranUniversityofMedicalSciences,Tehran,Iran.
2DepartmentofEnvironmentalHealthEngineering,SchoolofPublicHealth,IranUniversityofMedicalSciences,Tehran,Iran.
3DepartmentofEnvironmentalHealthEngineering,SchoolofPublicHealth,ShahidBeheshtiUniversityofMedicalSciences,Tehran,Iran.
4DepartmentofChemicalEngineering,BiotechnologyGroup,TarbiatModaresUniversity,Tehran,Iran.
Received:4October2014Accepted:3March2015References1.
MahviAH,MalekiA,AlimohamadiM,GhasriA.
Photo-oxidationofphenolinaqueoussolution:toxicityofintermediates.
KoreanJChemEng.
2007;24:79–82.
2.
MohseniBandpiA,RezaeiKalantaryR,AmeliAEA,ZinatizadehAA,JonidiJafariA.
ApplicationofresponsesurfacemethodologyforoptimizationofFentonprocessforphenanthreneremovalfromsoil.
EnvironEngManagJ.
2013,inpress.
3.
NadimF,HoagGE,LiuS,CarleyRJ,ZackP.
Detectionandremediationofsoilandaquifersystemscontaminatedwithpetroleumproducts:anoverview.
JPetSciEng.
2000;26:169–78.
4.
NasseriS,KalantaryR,NouriehN,NaddafiK,MahviA,BaradaranN.
InfluenceofbioaugmentationinbiodegradationofPAHs-contaminatedsoilinbio-slurryphasereactor.
IranianJEnvironHealthSciEng.
2010;7:199–208.
5.
ResslerBP,KneifelH,WinterJ.
Bioavailabilityofpolycyclicaromatichydrocarbonsandformationofhumicacid-likeresiduesduringbacterialPAHdegradation.
ApplMicrobiolBiotechnol.
1999;53:85–91.
6.
RezaeiKR,BadkoubiA,Mohseni-BandpiA,EsrafiliA,JorfiS,DehghanifardE,etal.
ModificationofPAHsbiodegradationwithhumiccompounds,soilandsedimentcontamination.
AnIntJ.
2013;22:185–98.
7.
ChenJ,WongMH,WongYS,TamNFY.
Multi-factorsonbiodegradationkineticsofpolycyclicaromatichydrocarbons(PAHs)bySphingomonassp.
abacterialstrainisolatedfrommangrovesediment.
MarPollutBull.
2008;57:695–702.
8.
AvramovaT,SotirovaA,GalabovaD,KarpenkoE.
EffectofTritonX-100andrhamnolipidPS-17onthemineralizationofphenanthrenebyPseudomonassp.
cells.
IntBiodeteriorBiodegrad.
2008;62:415–20.
9.
BorresenMH,RikeAG.
Effectsofnutrientcontent,moisturecontentandsalinityonmineralizationofhexadecaneinanArcticsoil.
ColdRegSciTechnol.
2007;48:129–38.
10.
DeviMP,ReddyMV,JuwarkarA,SarmaPN,MohanSRV.
Effectofco-cultureandnutrientssupplementationonbioremediationofcrudepetroleumsludge.
CLEANSoil,AirWater.
2011;39:900–7.
11.
LiebegEW,CutrightTJ.
TheinvestigationofenhancedbioremediationthroughtheadditionofmacroandmicronutrientsinaPAHcontaminatedsoil.
IntBiodeteriorBiodegrad.
1999;44:55–64.
12.
Betancur-GalvisLA,Alvarez-BernalD,Ramos-ValdiviaAC,DendoovenL.
Bioremediationofpolycyclicaromatichydrocarbon-contaminatedsaline–alkalinesoilsoftheformerLakeTexcoco.
Chemosphere.
2006;62:1749–60.
13.
TengY,LuoY,PingL,ZouD,LiZ,ChristieP.
EffectsofsoilamendmentwithdifferentcarbonsourcesandotherfactorsonthebioremediationofanagedPAH-contaminatedsoil.
Biodegradation.
2010;21:167–78.
14.
Minai-TehraniD,MinouiS,HerfatmaneshA.
EffectofsalinityonbiodegradationofPolycyclicAromaticHydrocarbons(PAHs)ofheavycrudeoilinsoil.
BullEnvironContamToxicol.
2009;82:179–84.
15.
SempleKT,ReidBJ,FermorTR.
Impactofcompostingstrategiesonthetreatmentofsoilscontaminatedwithorganicpollutants.
EnvironPollut.
2001;112:269–83.
16.
MontgomeryDC,WileyJ.
DesignandAnalysisofEngineeringExperiments.
In:BookDesignandAnalysisofEngineeringExperiments.
NewYork:Wiley;2001.
17.
KhajvandT,ChaichiMJ,NazariOL,GolchoubianH.
ApplicationofBox–Behnkendesignintheoptimizationofcatalyticbehaviorofanewmixedchelateofcopper()complexinchemiluminescencereactionofluminol.
JLumin.
2011;131:838–42.
18.
LuM,YuanD,LiQ,OuyangT.
Applicationofresponsesurfacemethodologytoanalyzetheeffectsofsoil/liquidratio,pH,andincubationtimeonthebioaccessibilityofPAHsfromsoilininvitromethod.
WaterAirSoilPollut.
2009;200:387–97.
19.
LiangY,SorensenDL,McLeanJE,SimsRC.
Pyrenefateaffectedbyhumicacidamendmentinsoilslurrysystems.
JBiolEng.
2008;2:11.
20.
MaierRM,PepperIL,GerbaCP.
EnvironmentalMicrobiology.
Canada:AcademicPress;2009.
21.
PiskonenR,ItaevaaraM.
EvaluationofchemicalpretreatmentofcontaminatedsoilforimprovedPAHbioremediation.
ApplMicrobiolBiotechnol.
2004;65:627–34.
22.
USEPA.
Ultrasonicextraction.
Centerforenvironmentalresearchinformation.
EPA,3550B.
1996;2:1–14.
23.
KstnerM,Breuer-JammaliM,MahroB.
Impactofinoculationprotocols,salinity,andpHonthedegradationofpolycyclicaromatichydrocarbons(PAHs)andsurvivalofPAH-degradingbacteriaintroducedintosoil.
ApplEnvironMicrobiol.
1998;64:359–62.
24.
JacquesRJS,OkekeBC,BentoFM,TeixeiraAS,PeralbaMCR,CamargoFAO.
Microbialconsortiumbioaugmentationofapolycyclicaromatichydrocarbonscontaminatedsoil.
BioresourTechnol.
2008;99:2637–43.
25.
daSilvaAC,deOliveiraFJS,BernardesDS,deFranaFP.
Bioremediationofmarinesedimentsimpactedbypetroleum.
ApplBiochemBiotechnol.
2009;153:58–66.
26.
GrassoD,SubramaniamK,PignatelloJ,YangY,RatteD.
Micellardesorptionofpolynucleararomatichydrocarbonsfromcontaminatedsoil.
ColloidsSurfAPhysicochemEngAsp.
2001;194:65–74.
27.
VanStempvoortDR,LesageS,NovakowskiKS,MillarK,BrownS,LawrenceJR.
Humicacidenhancedremediationofanemplaceddieselsourceingroundwater.
:1.
Laboratory-basedpilotscaletest.
JContamHydrol.
2002;54:249–76.
28.
HeywoodE,WrightJ,WienburgCL,BlackHIJ,SaraM,OsbornD,etal.
FactorsinfluencingthenationaldistributionofpolycyclicaromatichydrocarbonsandpolychlorinatedbiphenylsinBritishsoils.
EnvironSciTechnol.
2006;40:7629–35.
29.
PlazaC,XingB,FernándezJM,SenesiN,PoloA.
Bindingofpolycyclicaromatichydrocarbonsbyhumicacidsformedduringcomposting.
EnvironPollut.
2009;157:257–63.
30.
MacleodCJA,SempleKT.
Theadaptationoftwosimilarsoilstopyrenecatabolism.
EnvironPollut.
2002;119:357–64.
31.
AhnCK,WooSH,ParkJM.
Enhancedsorptionofphenanthreneonactivatedcarboninsurfactantsolution.
Carbon.
2008;46:1401–10.
Ravanipouretal.
JournalofEnvironmentalHealthScience&Engineering(2015)13:22Page9of1032.
BreedveldGD,SparrevikM.
Nutrient-limitedbiodegradationofPAHinvarioussoilstrataatacreosotecontaminatedsite.
Biodegradation.
2000;11:391–9.
33.
CoulonF,PelletierE,GourhantL,DelilleD.
Effectsofnutrientandtemperatureondegradationofpetroleumhydrocarbonsincontaminatedsub-Antarcticsoil.
Chemosphere.
2005;58:1439–48.
34.
YuKSH,WongAHY,YauKWY,WongYS,TamNFY.
Naturalattenuation,biostimulationandbioaugmentationonbiodegradationofpolycyclicaromatichydrocarbons(PAHs)inmangrovesediments.
MarPollutBull.
2005;51:1071–7.
35.
MohajeriL,AzizHA,IsaMH,ZahedMA.
Astatisticalexperimentdesignapproachforoptimizingbiodegradationofweatheredcrudeoilincoastalsediments.
BioresourTechnol.
2010;101:893–900.
SubmityournextmanuscripttoBioMedCentralandtakefulladvantageof:ConvenientonlinesubmissionThoroughpeerreviewNospaceconstraintsorcolorgurechargesImmediatepublicationonacceptanceInclusioninPubMed,CAS,ScopusandGoogleScholarResearchwhichisfreelyavailableforredistributionSubmityourmanuscriptatwww.
biomedcentral.
com/submitRavanipouretal.
JournalofEnvironmentalHealthScience&Engineering(2015)13:22Page10of10

HTTPS加密协议端口默认是多少且是否支持更换端口访问

看到群里网友们在讨论由于不清楚的原因,有同学的网站无法访问。他的网站是没有用HTTPS的,直接访问他的HTTP是无法访问的,通过PING测试可以看到解析地址已经比较乱,应该是所谓的DNS污染。其中有网友提到采用HTTPS加密证书试试。因为HTTP和HTTPS走的不是一个端口,之前有网友这样测试过是可以缓解这样的问题。这样通过将网站绑定设置HTTPS之后,是可以打开的,看来网站的80端口出现问题,而...

弘速云香港VPSVPS线路有CN2+BGP、CN2 GIA,KVM虚拟化架构,裸金属月付564元

弘速云怎么样?弘速云是创建于2021年的品牌,运营该品牌的公司HOSU LIMITED(中文名称弘速科技有限公司)公司成立于2021年国内公司注册于2019年。HOSU LIMITED主要从事出售香港vps、美国VPS、香港独立服务器、香港站群服务器等,目前在售VPS线路有CN2+BGP、CN2 GIA,该公司旗下产品均采用KVM虚拟化架构。可联系商家代安装iso系统。点击进入:弘速云官方网站地址...

MineServer:香港CMI/洛杉矶GIA VPS,2核/2GB内存/20GB NVME/3.5TB流量/200Mbps/KVM,288元/年

mineserver怎么样?mineserver是一家国人商家,主要提供香港CN2 KVM VPS、香港CMI KVM VPS、日本CN2 KVM VPS、洛杉矶cn2 gia端口转发等服务,云服务器网(yuntue.com)介绍过几次,最近比较活跃。现在新推出了3款特价KVM VPS,性价比高,香港CMI/洛杉矶GIA VPS,2核/2GB内存/20GB NVME/3.5TB流量/200Mbps...

38ab.com为你推荐
京沪高铁上市首秀我能买京沪高铁股票吗同ip网站查询怎么查自己的服务器挂着哪些网站同ip域名什么是同主机域名porntimesexy time 本兮 MP3地址www.hhh258comwww.tx88d.com 有这个网站吗?杨丽晓博客杨丽晓哪一年出生的?鹤城勿扰非诚勿扰 怀化小伙 杨荣是哪一期国风商讯国风塑钢质量怎么样长房娇谁知道以下几种都是什么花?花期多长?长房娇女人蛮好脾气好很乖巧很听话?娇身惯养,父亲长得好看大眼睛高鼻梁樱桃小嘴瓜子脸女儿也是眼睛大大的皮肤
cc域名 域名备案网站 中国万网域名 主机点评 韩国俄罗斯 iisphpmysql 密码泄露 12306抢票助手 国内php空间 嘉洲服务器 国外代理服务器地址 isp服务商 免费cdn 免费邮件服务器 php服务器 域名和主机 wordpress空间 免费获得q币 godaddyssl websitepanel 更多