hydroxybutyryl77vcd.com
77vcd.com 时间:2021-03-20 阅读:(
)
UCLAUCLAPreviouslyPublishedWorksTitleEngineeringmetabolicsystemsforproductionofadvancedfuelsPermalinkhttps://escholarship.
org/uc/item/8bn1w585JournalJournalofIndustrialMicrobiology&Biotechnology:OfficialJournaloftheSocietyforIndustrialMicrobiology,36(4)ISSN1476-5535AuthorsYan,YajunLiao,JamesC.
PublicationDate2009-04-01DOI10.
1007/s10295-009-0532-0PeerreviewedeScholarship.
orgPoweredbytheCaliforniaDigitalLibraryUniversityofCaliforniaJIndMicrobiolBiotechnol(2009)36:471–479DOI10.
1007/s10295-009-0532-0123REVIEWEngineeringmetabolicsystemsforproductionofadvancedfuelsYajunYan·JamesC.
LiaoReceived:7December2008/Accepted:14January2009/Publishedonline:7February2009TheAuthor(s)2009.
ThisarticleispublishedwithopenaccessatSpringerlink.
comAbstractThedepletingpetroleumstorageandincreasingenvironmentaldeteriorationarethreateningthesustainabledevelopmentofhumansocieties.
Assuch,biofuelsandchemicalfeedstocksgeneratedfromrenewablesourcesarebecomingincreasinglyimportant.
AlthoughpreviouseVortsledtogreatsuccessinbio-ethanolproduction,higheralco-hols,fattyacidderivativesincludingbiodiesels,alkanes,andalkenesoVeradditionaladvantagesbecauseoftheircompatibilitywithexistinginfrastructure.
Inaddition,someofthesecompoundsareusefulchemicalfeedstocks.
Sincenativeorganismsdonotnaturallyproducethesecom-poundsinhighquantities,metabolicengineeringbecomesessentialinconstructingproducingorganisms.
Inthisarti-cle,webrieXyreviewthefourmajormetabolicsystems,thecoenzyme-Amediatedpathways,theketoacidpathways,thefattyacidpathway,andtheisoprenoidpathways,thatallowproductionofthesefuel-gradechemicals.
IntroductionThedepletingpetroleumreserve,recurringenergycrisis,andglobalclimatechangearereignitingtheenthusiasmforseekingsustainabletechnologiesforreplacingpetroleumasasourceoffuelandchemicals.
Inthepastfewdecades,eVortsinthedevelopmentofbio-ethanolasanalternativefuelhaveledtosigniWcantsuccess[14–16,19].
In2007,6.
5billiongallonsofbio-ethanolwasproducedintheUnitedState[5].
However,bio-ethanolexhibitssomelimitations,suchaslowenergydensity,highvaporpressure,andcorrosiveness,whichpreventitswidespreadutilizationgiventheexistinginfrastructure.
Higheralcohols(withmorethantwocarbons),biodie-sels,andfattyacidderivativesarethoughttobemoresuit-ablefuels.
Theirphysicochemicalpropertiesaremorecompatiblewithgasoline-basedfuelsandallowdirectutili-zationofexistinginfrastructureforstorageanddistribution.
Furthermore,someofthesefuelmoleculesalsoserveasimportantchemicalfeedstocks.
Althoughtheindividualbiochemicalstepsforsynthesizingthesecompoundsinmicrobeshavebeendescribedpreviously,eVortsinputtingtogetherhighlyproductivemetabolicsystemshaveonlybegunrecently.
Inthisarticle,weWrstsummarizethemeta-bolicnetworksforproducingthesecompoundsandthenrevieweVortsinengineeringthenon-nativeproducingorganism,Escherichiacoli.
Themetabolicnetworksdis-cussedincludethetraditionalbutanolpathwayinClostrid-iumspecies,theketoacidpathwaysforhigheralcohols,theisoprenoidpathways,andthefattyacidbiosynthesis.
Thecoenzyme-A-dependentfermentativepathwaysAmongthehigheralcohols,n-butanolandisopropanolaretheonlytwothatareoverproducedinnaturebyClostrid-iumspecies.
n-ButanolhasbeenproducedbyClostridiuminacetone–butanol–ethanol(ABE)fermentation.
Thefer-mentativepathway(Fig.
1)inthisorganismstartsfromacetyl-CoA.
Theenzymeacetyl-CoAacetyltransferase,alsoknownasthiolase,condensestwomoleculesofacetyl-CoAtoonemoleculeofacetoacetyl-CoA.
Fromthismolecule,thepathwaybranchesintoisopropanolandn-butanol.
Fortheisopropanolbiosynthesis,anacetoace-tyl-CoAtransferase(ACoAT)transferstheCoAgroupY.
Yan·J.
C.
Liao(&)DepartmentofChemicalandBiomolecularEngineering,UniversityofCaliforniaatLosAngeles,5531BoelterHall,420WestwoodPlaza,LosAngeles,CA90095,USAe-mail:Liaoj@ucla.
edu472JIndMicrobiolBiotechnol(2009)36:471–479123awayfromacetoacetyl-CoAtoacetateorbutyrate,form-ingacetoacetate.
Theacetyl-CoAisrecycledbacktoace-tatebythecombinedphosphotransacetylaseandacetatekinasereaction.
Further,acetoacetateisdecarboxylatedtoacetonebyanacetoacetatedecarboxylase(ADC).
ThenacetoneisreducedtoisopropanolbyaNADPH-depen-dentsecondaryalcoholdehydrogenase(SADH)[12].
Forn-butanolbiosynthesis,acetoacetatehastogothroughfourstepsofNADH-dependentreductionandonestepofdehydration.
AcetoacetateisWrstreducedto3-hydroxybutyryl-CoAby3-hydroxybutyryl-CoAdehydro-genase(HBD).
Then,3-hydroxybutyryl-CoAisdehydratedtocrotonyl-CoAbyacrotonase(CRT).
Third,abutyryl-CoAdehydrogenase(BCD)catalyzesthereductionofcrotonyl-CoAtobutyryl-CoA.
Finally,analdehyde/alcoholdehydrogenase(AADH)convertsbutyryl-CoAton-butanolthroughtwoconsecutivereductionreactions.
IsopropanolproductioninEscherichiacoliThesecondaryalcohol,isopropanol,isbothadesirablefuelandanimportantchemicalfeedstockinthepetrochemicalindustry.
Itsdehydratedproduct,propylene,servesasthemonomerformakingpolypropylene.
Inaddition,itcanbeusedasanadditivetopetroleum-basedfuels.
Replacingmeth-anolwithisopropanolintheesteriWcationprocessoffatandoilcouldgeneratecrystallization-resistantbiodiesels[12].
Asdescribedabove,isopropanolisproducedbyClos-tridiumspeciesinnature.
However,asanativemetabolite,itcanonlybeproducedinalimitedamountforthehosts'ownbeneWtsasadetoxiWcationresponsetolowpHcondi-tions.
Themaximumtiterreportedinitsnativeproducer,Clostridium,was1.
8g/l[9].
Toimprovetheproductionofisopropanol,thefullycharacterizedisopropanolbiosyn-theticpathway(Fig.
1)wasreconstructedinthegenetictractablehostE.
coli[12].
Escherichiacolihasbeenreportedtoproduceacetone[6],theimmediateprecursorofisopropanol,byexpressingtheintactpathwayfromClostridiumacetobutylicumATCC824consistingoftheacetyl-CoAacyltransferase,ACoAT,ADCencodedbythethl,ctfAB,andadcgenes,respectively.
Thereportedtiterwasaround5.
4g/l,similartotheyieldofnativehostforacetone.
Furthermore,withaSADHco-expressedwiththeacetonepathwayinE.
coli,theisopropanolproductionwasachieved[12].
ThepathwayeYciencywastunedbyusinggenesfromdiVerentorgan-isms,abio-prospectingapproach.
SincethegenesfromClostridiumusuallyhavealowGCcontent,whichmayleadtopoorexpression,theE.
colinativegenesatoBandatoAD,encodingacetyl-CoAacyltransferaseandACoAT,werealsotestedaspathwaycomponents.
Additionally,twogenesfromC.
beijerinckiiNRRLB593andThermoanae-robacterbrockiiHTD4,encodingSADHs,weretotallysynthesizedwithcodonoptimizationandinstalledintothepathwaytotestforproduction.
WiththeseeVorts,thestrainwithacombinationofC.
acetobutylicumthl,E.
coliatoAD,C.
acetobutylicumadc,andC.
beijerinckiiadhachievedthehighesttiter(5.
0g/l).
Theresultispromising,sinceitdemonstrates43.
5%(mol/mol)conversionratio.
Thetheo-reticalyieldis1molisopropanolpermoleglucose.
Theproductionofisopropanolfromglucoseisnotredox-balanced.
FourmolesofNADHisproduced,whileFig.
1Metabolicpathwaysforisopropanoland1-butanolproductioninengineeredE.
coli.
Thedashedlineindicatesomittedsteps.
Isopropanolpathwayconsistsoffourenzymaticstepsfromacetyl-CoA.
1-Butanolpathwayconsistsofsixenzymaticsteps.
aceEFandlpdencodepyruvatedehydrogenase;atoB/thlencodesacetyl-CoAacetyltransferase;ctfAB/atoADencodesacetoacetyl-CoAtransferase;adc,acetoacetatedecarboxylase;sadhencodessecondaryalcoholdehydrogenase;hbdencodes3-hydroxybutyryl-CoAdehydrogenase;crtencodescrotonase;bcdencodesbutyryl-CoAdehydrogenase;etfencodeselectrontransferXavoprotein;adhE2encodesaldehyde/alcoholdehydrogenaseGlucose2Acetyl-CoAAcetoacetyl-CoAAcetoacetateAcetoneIsopropanol3-Hydroxybutyryl-CoACrotonyl-CoAButyryl-CoAButyraldehyden-Butanol2NAD+2NADH2Pyruvate2NAD+2NADH2CO2CoAAcetateAcetyl-CoACO2NADPHNADP+aceEFlpdatoB/thlctfAB/atoADadcsadhNADHNAD+hbdcrtH2ObcdetfNADHNADHNADHNAD+NAD+NAD+adhE2adhE2JIndMicrobiolBiotechnol(2009)36:471–4794731231molofNADPHisconsumedpermoleofisopropanol.
Therefore,anexternalelectronacceptorisrequiredorabyproductisservedasanelectronacceptor.
n-ButanolproductioninE.
colin-Butanolwasproposedtobeoneofthebettersubstitutesforgasoline-basedtransportationfuel,becauseofitshighenergydensityandhydrophobicity.
Itsenergycontent(27MJ/l)issimilartothatofgasoline(32MJ/l).
ThehighhydrophobicityenablesitstransportationandstorageusingexistingpetrochemicalinfrastructurewithminimalmodiW-cation.
Inaddition,n-butanolhasalowvaporpressureof4mmHgat20°C,whichallowsitsmixingwithgasolineatanyratiowithoutexceedingairqualityspeciWcations.
Themicrobialproductionofn-butanolhasahistoryofover100years.
Traditionally,n-butanolisproducedbyClostridiumspeciesthroughtheABEfermentation.
How-ever,n-butanolproductionviathisprocedureisdiYculttocontrolandoptimize,particularlybecauseClostridiumexhibitscomplexphysiologicalfeatures,suchasoxygensensitivity,slowgrowthrate,andspore-forminglifecycles.
Thus,itisdesirabletocreatenewn-butanolproducingorganismsusingmetabolicengineeringtechniques.
Recently,n-butanolproductioninaheterologoushost,E.
coli,usingthetraditionalCoA-dependentpathwayorigi-natedfromC.
acetobutylicum(Fig.
1)wasreportedfortheWrsttime[2].
Atsumietal.
createdtwosyntheticoperonscarryingalltheessentialgenes(thl,hbd,crt,bcd,etfAB,andadhE2)involvedinthepathway.
Co-expressionofthetwooperonsinE.
coliledtotheinitialproductionofn-butanolat14mg/lanaerobicallyusingglucoseassolecar-bonsource.
Tooptimizethepathway,alternativeenzymesofdiVerentoriginswereevaluated.
MorespeciWcally,withE.
coliatoBgeneinplaceofC.
acetobutylicumthl,amorethanthreefoldincreaseofn-butanolproductionwasobserved.
However,replacingtheoriginalenzymesforconversionfromcrotonyl-CoAtobutyryl-CoAwithhomologuesandisoenzymefromMegasphaeraelsdeniiorStreptomycescoelicolorresultedinamuchloweryieldofn-butanolinE.
coli.
Nevertheless,thisresultdoesnotexcludethepossibilityoftheexistenceofothergenesthatmightimproven-butanolproductioninE.
coli.
Furthermore,n-butanolproductiondoesnotsimplyrelyontheenzymeactivities.
TheproductformationalsoneedssuYcientcarbonprecursor,acetyl-CoA,andreducingpower,NADH.
Tofurtherimprovedn-butanolproduction,thehostE.
colistrainwasengineeredbydeletingthenativepathwaycompetingforbothcarbonXuxandreducingpower.
Thebeststraincandidate,namedJCL88,withthedeletionofldhA,adhE,frdBC,pta,andfnr,allowedamorethantwofoldincreaseinn-butanolproduction,accompa-niedbythedramaticdropintheformationoflactate,acetate,ethanol,andsuccinate.
Thehighesttiterof552mg/lwasreportedwithoptimizedpathwayandimprovedstrain.
Althoughtheyieldwasstilllow,thisworkdemonstratedthefeasibilityofheterologousn-butanolproductionandproposedtheprinciplesforfurtheroptimization.
TheketoacidpathwaysImportinganon-nativepathwayinaheterologoushostsuchasE.
coliunavoidablyintroducesnon-nativemetabolitesandpotentialtoxicity,inadditiontodiYcultiesinexpress-ingheterologousenzymes.
Theresultingmetabolicimbal-anceandcytotoxicityposeabarrierforlargequantityproduction.
Inthiscontext,itisdesirabletoseekforthepathwayscompatibletothehost.
Aminoacidbiosynthesisgeneratesmanyketoacidintermediates.
Theseketoacidscanbeconvertedtoalcoholsbyintroducingsequentialdecarboxylationandreductioncatalyzedbybroad-sub-strate-rangeketoaciddecarboxylase(KDC)andalcoholdehydrogenase(ADH)(Fig.
2).
Forexample,theisoleucinebiosynthesispathwaygenerates2-ketobutyrateand2-keto-3-methyl-valerate(KMV),whichcanbeconvertedton-propanoland2-methyl-1-butanol(2MB),respectively.
Thevalinebiosynthesispathwayproduces2-ketoisovalerate(KIV),whichistheprecursorforisobutanol.
Theleucinebiosynthesispathwaygenerates2-keto-4-methyl-pentano-ate,whichisthesubstratefor3-methyl-1-butanol(3MB).
Thephenylalaninebiosynthesispathwayproducesphenyl-pyruvate,whichcanleadto2-phenylethanol.
Thenorvalinebiosynthesispathway,whichisnormallyatoxicside-reactionoftheleucinebiosynthesis,producesasubstrateforn-butanol,2-ketovalerate(KV)[3].
Thesepathwaysrecentlyhavebeenexploredforproductionofthecorre-spondingalcoholsinE.
coliwithencouragingresults.
IsobutanolproductioninE.
coliIsobutanolisanisomerofbutanol.
Ithassimilarphysico-chemicalpropertieston-butanol,whilehavingahigheroctanenumberthann-butanol.
Isobutanolhasbeenidenti-Wedasaminorfermentationproduct,butitshighlevelpro-ductionhasnotbeenreporteduntilrecently[3].
Toachieveisobutanolproductioninalargequantity,thenativeilvIHCDoperonfromE.
coliwasWrstoverexpressedtodivertthecarbonXuxfrompyruvatetoKIV(Fig.
3),whichledtoisobutanolproductionat1.
7g/l,aboutaWvefoldincreaseoverthestrainwithoutilvIHCDoverexpression.
Topreventcarbonleakageandreducepowerwaste,thepreviouslygeneratedknockoutstrainJCL88(adhE,ldhA,frdAB,fnr,pta)wasusedashost;aslightincreaseinisobutanolproduction(2.
2g/l)wasobserved.
Further,alsSfromBacillussubtiliswasusedtoreplace474JIndMicrobiolBiotechnol(2009)36:471–479123E.
coliilvIHforitshighaYnitytowardspyruvate,whichledtotheisobutanolproductionat3.
7g/l.
Inaddition,pXBwasdeletedinstrainJCL88toconservethepyruvateavail-abilityforKIVformation.
WiththecombinationoftheseoverexpressionsandgenomicmodiWcations,theengineeredstrainwasabletoproduceisobutanolatatiterof20g/land86%oftheoreticalyield(Fig.
4)[3].
NotethatisobutanolistoxictoE.
coliataconcentration>10g/l.
Howevertheproductionofisobutanoloccursmainlyinthenon-growingphase(Fig.
4)[3].
Thisresultindicatesthateventhoughthecellscannotgrowatthehigherconcentration,theynonethelesscontinuetoproduceandexcreteisobutanol.
Thus,eventhoughisobutanoltoxic-ityposesachallenge,theproductionlevelcanexceedthetoxicitylevelsigniWcantly.
Mutantswithhigherisobutanoltolerancehavebeenisolated[3],whichalsoimprovestheproductivity.
Suchahigh-yieldproductiondemonstratestheversatilityinexploringtheketoacidpathwaysforbio-fuelproduction.
Theproductionofisobutanol(3.
0.
CO;2-C16.
JarboeLR,GrabarTB,YomanoLP,ShanmuganKT,IngramLO(2007)Developmentofethanologenicbacteria.
AdvBiochemEngBiotechnol108:237–26117.
KalscheuerR,StoltingT,SteinbuchelA(2006)Microdiesel:Escherichiacoliengineeredforfuelproduction.
Microbiology152:2529–2536.
doi:10.
1099/mic.
0.
29028-018.
MagnusonK,JackowskiS,RockCO,CronanJEJr(1993)RegulationoffattyacidbiosynthesisinEscherichiacoli.
Micro-biolRev57:522–54219.
PetersonJD,IngramLO(2008)Anaerobicrespirationinengi-neeredEscherichiacoliwithaninternalelectronacceptortoproducefuelethanol.
AnnNYAcadSci1125:363–372.
doi:10.
1196/annals.
1419.
02020.
RiendeauD,MeighenE(1985)Enzymaticreductionoffattyacidsandacyl-CoAstolongchainaldehydesandalcohols.
Experientia41:707–713.
doi:10.
1007/BF0201256421.
RoDK,ParadiseEM,OuelletM,FisherKJ,NewmanKL,NdunguJM,HoKA,EachusRA,HamTS,KirbyJ,ChangMC,WithersST,ShibaY,SarpongR,KeaslingJD(2006)Productionoftheantimalarialdrugprecursorartemisinicacidinengineeredyeast.
Nature440:940–943.
doi:10.
1038/nature0464022.
SacchettiniJC,PoulterCD(1997)Creatingisoprenoiddiversity.
Science277:1788–1789.
doi:10.
1126/science.
277.
5333.
178823.
ShenCR,LiaoJC(2008)MetabolicengineeringofEscherichiacolifor1-butanoland1-propanolproductionviatheketo-acidpathways.
MetabEng10:312–320.
doi:10.
1016/j.
ymben.
2008.
08.
00124.
WangX,KolattukudyPE(1995)SolubilizationandpuriWcationofaldehyde-generatingfattyacyl-CoAreductasefromgreenalgaBotryococcusbraunii.
FEBSLett370:15–18.
doi:10.
1016/0014-5793(95)00781-425.
WithersST,GottliebSS,LieuB,NewmanJD,KeaslingJD(2007)IdentiWcationofisopentenolbiosyntheticgenesfromBacillussub-tilisbyascreeningmethodbasedonisoprenoidprecursortoxicity.
ApplEnvironMicrobiol73:6277–6283.
doi:10.
1128/AEM.
00861-07
快云科技已稳步运行进两年了 期间没出现过线路不稳 客户不满意等一系列问题 本司资质齐全 持有IDC ICP ISP等正规手续 有独特的网站设计理念 在前几天刚是参加过魔方系统举行的设计大赛拿获最佳设计奖第一名 本公司主营产品 香港弹性云服务器,美国vps和日本vps,香港物理机,国内高防物理机以及美国日本高防物理机 2020年的国庆推出过一款香港的回馈用户特惠机 已作为传家宝 稳定运行 马上又到了...
ZJI本月新上线了香港葵湾机房站群服务器,提供4个C段238个IPv4,支持使用8折优惠码,优惠后最低每月1400元起。ZJI是原Wordpress圈知名主机商家:维翔主机,成立于2011年,2018年9月更名为ZJI,提供中国香港、台湾、日本、美国独立服务器(自营/数据中心直营)租用及VDS、虚拟主机空间、域名注册等业务,所选数据中心均为国内普遍访问速度不错的机房。葵湾二型(4C站群)CPU:I...
wordpress公司网站模板,wordpresss简洁风格的高级通用自适应网站效果,完美自适应支持多终端移动屏幕设备功能,高级可视化后台自定义管理模块+规范高效的搜索优化。wordpress公司网站模板采用标准的HTML5+CSS3语言开发,兼容当下的各种主流浏览器: IE 6+(以及类似360、遨游等基于IE内核的)、Firefox、Google Chrome、Safari、Opera等;同时...
77vcd.com为你推荐
对对塔为什么不能玩天天擂台?(对对塔)同ip网站查询同ip地址站点查询 我本地怎么查询不了7788k.comwww.k6320.com 大家给我看看这网站是真是假...www.7160.com电影网站有那些同一服务器网站服务器建设:一个服务器有多个网站该如何设置?javbibitreebibi是什么牌子的33tutu.comDnf绝望100鬼泣怎么过5566.com请问如何创建网页(就是www.5566.com.cn这种格式的)www.mfav.org手机登录WWW.brcbc.org 能注册么hao.rising.cn瑞星强制篡改主页 HTTP://HAO.RISING.CN 各位有什么办法可以解决吗?
新网域名管理 草根过期域名 krypt windows主机 天猫双十一抢红包 云图标 镇江联通宽带 空间技术网 卡巴斯基免费试用 电信托管 google台湾 阿里云官方网站 supercache 免费主页空间 google搜索打不开 学生机 腾讯云平台 标准机柜 删除域名 cloudflare 更多