hydroxybutyryl77vcd.com
77vcd.com 时间:2021-03-20 阅读:(
)
UCLAUCLAPreviouslyPublishedWorksTitleEngineeringmetabolicsystemsforproductionofadvancedfuelsPermalinkhttps://escholarship.
org/uc/item/8bn1w585JournalJournalofIndustrialMicrobiology&Biotechnology:OfficialJournaloftheSocietyforIndustrialMicrobiology,36(4)ISSN1476-5535AuthorsYan,YajunLiao,JamesC.
PublicationDate2009-04-01DOI10.
1007/s10295-009-0532-0PeerreviewedeScholarship.
orgPoweredbytheCaliforniaDigitalLibraryUniversityofCaliforniaJIndMicrobiolBiotechnol(2009)36:471–479DOI10.
1007/s10295-009-0532-0123REVIEWEngineeringmetabolicsystemsforproductionofadvancedfuelsYajunYan·JamesC.
LiaoReceived:7December2008/Accepted:14January2009/Publishedonline:7February2009TheAuthor(s)2009.
ThisarticleispublishedwithopenaccessatSpringerlink.
comAbstractThedepletingpetroleumstorageandincreasingenvironmentaldeteriorationarethreateningthesustainabledevelopmentofhumansocieties.
Assuch,biofuelsandchemicalfeedstocksgeneratedfromrenewablesourcesarebecomingincreasinglyimportant.
AlthoughpreviouseVortsledtogreatsuccessinbio-ethanolproduction,higheralco-hols,fattyacidderivativesincludingbiodiesels,alkanes,andalkenesoVeradditionaladvantagesbecauseoftheircompatibilitywithexistinginfrastructure.
Inaddition,someofthesecompoundsareusefulchemicalfeedstocks.
Sincenativeorganismsdonotnaturallyproducethesecom-poundsinhighquantities,metabolicengineeringbecomesessentialinconstructingproducingorganisms.
Inthisarti-cle,webrieXyreviewthefourmajormetabolicsystems,thecoenzyme-Amediatedpathways,theketoacidpathways,thefattyacidpathway,andtheisoprenoidpathways,thatallowproductionofthesefuel-gradechemicals.
IntroductionThedepletingpetroleumreserve,recurringenergycrisis,andglobalclimatechangearereignitingtheenthusiasmforseekingsustainabletechnologiesforreplacingpetroleumasasourceoffuelandchemicals.
Inthepastfewdecades,eVortsinthedevelopmentofbio-ethanolasanalternativefuelhaveledtosigniWcantsuccess[14–16,19].
In2007,6.
5billiongallonsofbio-ethanolwasproducedintheUnitedState[5].
However,bio-ethanolexhibitssomelimitations,suchaslowenergydensity,highvaporpressure,andcorrosiveness,whichpreventitswidespreadutilizationgiventheexistinginfrastructure.
Higheralcohols(withmorethantwocarbons),biodie-sels,andfattyacidderivativesarethoughttobemoresuit-ablefuels.
Theirphysicochemicalpropertiesaremorecompatiblewithgasoline-basedfuelsandallowdirectutili-zationofexistinginfrastructureforstorageanddistribution.
Furthermore,someofthesefuelmoleculesalsoserveasimportantchemicalfeedstocks.
Althoughtheindividualbiochemicalstepsforsynthesizingthesecompoundsinmicrobeshavebeendescribedpreviously,eVortsinputtingtogetherhighlyproductivemetabolicsystemshaveonlybegunrecently.
Inthisarticle,weWrstsummarizethemeta-bolicnetworksforproducingthesecompoundsandthenrevieweVortsinengineeringthenon-nativeproducingorganism,Escherichiacoli.
Themetabolicnetworksdis-cussedincludethetraditionalbutanolpathwayinClostrid-iumspecies,theketoacidpathwaysforhigheralcohols,theisoprenoidpathways,andthefattyacidbiosynthesis.
Thecoenzyme-A-dependentfermentativepathwaysAmongthehigheralcohols,n-butanolandisopropanolaretheonlytwothatareoverproducedinnaturebyClostrid-iumspecies.
n-ButanolhasbeenproducedbyClostridiuminacetone–butanol–ethanol(ABE)fermentation.
Thefer-mentativepathway(Fig.
1)inthisorganismstartsfromacetyl-CoA.
Theenzymeacetyl-CoAacetyltransferase,alsoknownasthiolase,condensestwomoleculesofacetyl-CoAtoonemoleculeofacetoacetyl-CoA.
Fromthismolecule,thepathwaybranchesintoisopropanolandn-butanol.
Fortheisopropanolbiosynthesis,anacetoace-tyl-CoAtransferase(ACoAT)transferstheCoAgroupY.
Yan·J.
C.
Liao(&)DepartmentofChemicalandBiomolecularEngineering,UniversityofCaliforniaatLosAngeles,5531BoelterHall,420WestwoodPlaza,LosAngeles,CA90095,USAe-mail:Liaoj@ucla.
edu472JIndMicrobiolBiotechnol(2009)36:471–479123awayfromacetoacetyl-CoAtoacetateorbutyrate,form-ingacetoacetate.
Theacetyl-CoAisrecycledbacktoace-tatebythecombinedphosphotransacetylaseandacetatekinasereaction.
Further,acetoacetateisdecarboxylatedtoacetonebyanacetoacetatedecarboxylase(ADC).
ThenacetoneisreducedtoisopropanolbyaNADPH-depen-dentsecondaryalcoholdehydrogenase(SADH)[12].
Forn-butanolbiosynthesis,acetoacetatehastogothroughfourstepsofNADH-dependentreductionandonestepofdehydration.
AcetoacetateisWrstreducedto3-hydroxybutyryl-CoAby3-hydroxybutyryl-CoAdehydro-genase(HBD).
Then,3-hydroxybutyryl-CoAisdehydratedtocrotonyl-CoAbyacrotonase(CRT).
Third,abutyryl-CoAdehydrogenase(BCD)catalyzesthereductionofcrotonyl-CoAtobutyryl-CoA.
Finally,analdehyde/alcoholdehydrogenase(AADH)convertsbutyryl-CoAton-butanolthroughtwoconsecutivereductionreactions.
IsopropanolproductioninEscherichiacoliThesecondaryalcohol,isopropanol,isbothadesirablefuelandanimportantchemicalfeedstockinthepetrochemicalindustry.
Itsdehydratedproduct,propylene,servesasthemonomerformakingpolypropylene.
Inaddition,itcanbeusedasanadditivetopetroleum-basedfuels.
Replacingmeth-anolwithisopropanolintheesteriWcationprocessoffatandoilcouldgeneratecrystallization-resistantbiodiesels[12].
Asdescribedabove,isopropanolisproducedbyClos-tridiumspeciesinnature.
However,asanativemetabolite,itcanonlybeproducedinalimitedamountforthehosts'ownbeneWtsasadetoxiWcationresponsetolowpHcondi-tions.
Themaximumtiterreportedinitsnativeproducer,Clostridium,was1.
8g/l[9].
Toimprovetheproductionofisopropanol,thefullycharacterizedisopropanolbiosyn-theticpathway(Fig.
1)wasreconstructedinthegenetictractablehostE.
coli[12].
Escherichiacolihasbeenreportedtoproduceacetone[6],theimmediateprecursorofisopropanol,byexpressingtheintactpathwayfromClostridiumacetobutylicumATCC824consistingoftheacetyl-CoAacyltransferase,ACoAT,ADCencodedbythethl,ctfAB,andadcgenes,respectively.
Thereportedtiterwasaround5.
4g/l,similartotheyieldofnativehostforacetone.
Furthermore,withaSADHco-expressedwiththeacetonepathwayinE.
coli,theisopropanolproductionwasachieved[12].
ThepathwayeYciencywastunedbyusinggenesfromdiVerentorgan-isms,abio-prospectingapproach.
SincethegenesfromClostridiumusuallyhavealowGCcontent,whichmayleadtopoorexpression,theE.
colinativegenesatoBandatoAD,encodingacetyl-CoAacyltransferaseandACoAT,werealsotestedaspathwaycomponents.
Additionally,twogenesfromC.
beijerinckiiNRRLB593andThermoanae-robacterbrockiiHTD4,encodingSADHs,weretotallysynthesizedwithcodonoptimizationandinstalledintothepathwaytotestforproduction.
WiththeseeVorts,thestrainwithacombinationofC.
acetobutylicumthl,E.
coliatoAD,C.
acetobutylicumadc,andC.
beijerinckiiadhachievedthehighesttiter(5.
0g/l).
Theresultispromising,sinceitdemonstrates43.
5%(mol/mol)conversionratio.
Thetheo-reticalyieldis1molisopropanolpermoleglucose.
Theproductionofisopropanolfromglucoseisnotredox-balanced.
FourmolesofNADHisproduced,whileFig.
1Metabolicpathwaysforisopropanoland1-butanolproductioninengineeredE.
coli.
Thedashedlineindicatesomittedsteps.
Isopropanolpathwayconsistsoffourenzymaticstepsfromacetyl-CoA.
1-Butanolpathwayconsistsofsixenzymaticsteps.
aceEFandlpdencodepyruvatedehydrogenase;atoB/thlencodesacetyl-CoAacetyltransferase;ctfAB/atoADencodesacetoacetyl-CoAtransferase;adc,acetoacetatedecarboxylase;sadhencodessecondaryalcoholdehydrogenase;hbdencodes3-hydroxybutyryl-CoAdehydrogenase;crtencodescrotonase;bcdencodesbutyryl-CoAdehydrogenase;etfencodeselectrontransferXavoprotein;adhE2encodesaldehyde/alcoholdehydrogenaseGlucose2Acetyl-CoAAcetoacetyl-CoAAcetoacetateAcetoneIsopropanol3-Hydroxybutyryl-CoACrotonyl-CoAButyryl-CoAButyraldehyden-Butanol2NAD+2NADH2Pyruvate2NAD+2NADH2CO2CoAAcetateAcetyl-CoACO2NADPHNADP+aceEFlpdatoB/thlctfAB/atoADadcsadhNADHNAD+hbdcrtH2ObcdetfNADHNADHNADHNAD+NAD+NAD+adhE2adhE2JIndMicrobiolBiotechnol(2009)36:471–4794731231molofNADPHisconsumedpermoleofisopropanol.
Therefore,anexternalelectronacceptorisrequiredorabyproductisservedasanelectronacceptor.
n-ButanolproductioninE.
colin-Butanolwasproposedtobeoneofthebettersubstitutesforgasoline-basedtransportationfuel,becauseofitshighenergydensityandhydrophobicity.
Itsenergycontent(27MJ/l)issimilartothatofgasoline(32MJ/l).
ThehighhydrophobicityenablesitstransportationandstorageusingexistingpetrochemicalinfrastructurewithminimalmodiW-cation.
Inaddition,n-butanolhasalowvaporpressureof4mmHgat20°C,whichallowsitsmixingwithgasolineatanyratiowithoutexceedingairqualityspeciWcations.
Themicrobialproductionofn-butanolhasahistoryofover100years.
Traditionally,n-butanolisproducedbyClostridiumspeciesthroughtheABEfermentation.
How-ever,n-butanolproductionviathisprocedureisdiYculttocontrolandoptimize,particularlybecauseClostridiumexhibitscomplexphysiologicalfeatures,suchasoxygensensitivity,slowgrowthrate,andspore-forminglifecycles.
Thus,itisdesirabletocreatenewn-butanolproducingorganismsusingmetabolicengineeringtechniques.
Recently,n-butanolproductioninaheterologoushost,E.
coli,usingthetraditionalCoA-dependentpathwayorigi-natedfromC.
acetobutylicum(Fig.
1)wasreportedfortheWrsttime[2].
Atsumietal.
createdtwosyntheticoperonscarryingalltheessentialgenes(thl,hbd,crt,bcd,etfAB,andadhE2)involvedinthepathway.
Co-expressionofthetwooperonsinE.
coliledtotheinitialproductionofn-butanolat14mg/lanaerobicallyusingglucoseassolecar-bonsource.
Tooptimizethepathway,alternativeenzymesofdiVerentoriginswereevaluated.
MorespeciWcally,withE.
coliatoBgeneinplaceofC.
acetobutylicumthl,amorethanthreefoldincreaseofn-butanolproductionwasobserved.
However,replacingtheoriginalenzymesforconversionfromcrotonyl-CoAtobutyryl-CoAwithhomologuesandisoenzymefromMegasphaeraelsdeniiorStreptomycescoelicolorresultedinamuchloweryieldofn-butanolinE.
coli.
Nevertheless,thisresultdoesnotexcludethepossibilityoftheexistenceofothergenesthatmightimproven-butanolproductioninE.
coli.
Furthermore,n-butanolproductiondoesnotsimplyrelyontheenzymeactivities.
TheproductformationalsoneedssuYcientcarbonprecursor,acetyl-CoA,andreducingpower,NADH.
Tofurtherimprovedn-butanolproduction,thehostE.
colistrainwasengineeredbydeletingthenativepathwaycompetingforbothcarbonXuxandreducingpower.
Thebeststraincandidate,namedJCL88,withthedeletionofldhA,adhE,frdBC,pta,andfnr,allowedamorethantwofoldincreaseinn-butanolproduction,accompa-niedbythedramaticdropintheformationoflactate,acetate,ethanol,andsuccinate.
Thehighesttiterof552mg/lwasreportedwithoptimizedpathwayandimprovedstrain.
Althoughtheyieldwasstilllow,thisworkdemonstratedthefeasibilityofheterologousn-butanolproductionandproposedtheprinciplesforfurtheroptimization.
TheketoacidpathwaysImportinganon-nativepathwayinaheterologoushostsuchasE.
coliunavoidablyintroducesnon-nativemetabolitesandpotentialtoxicity,inadditiontodiYcultiesinexpress-ingheterologousenzymes.
Theresultingmetabolicimbal-anceandcytotoxicityposeabarrierforlargequantityproduction.
Inthiscontext,itisdesirabletoseekforthepathwayscompatibletothehost.
Aminoacidbiosynthesisgeneratesmanyketoacidintermediates.
Theseketoacidscanbeconvertedtoalcoholsbyintroducingsequentialdecarboxylationandreductioncatalyzedbybroad-sub-strate-rangeketoaciddecarboxylase(KDC)andalcoholdehydrogenase(ADH)(Fig.
2).
Forexample,theisoleucinebiosynthesispathwaygenerates2-ketobutyrateand2-keto-3-methyl-valerate(KMV),whichcanbeconvertedton-propanoland2-methyl-1-butanol(2MB),respectively.
Thevalinebiosynthesispathwayproduces2-ketoisovalerate(KIV),whichistheprecursorforisobutanol.
Theleucinebiosynthesispathwaygenerates2-keto-4-methyl-pentano-ate,whichisthesubstratefor3-methyl-1-butanol(3MB).
Thephenylalaninebiosynthesispathwayproducesphenyl-pyruvate,whichcanleadto2-phenylethanol.
Thenorvalinebiosynthesispathway,whichisnormallyatoxicside-reactionoftheleucinebiosynthesis,producesasubstrateforn-butanol,2-ketovalerate(KV)[3].
Thesepathwaysrecentlyhavebeenexploredforproductionofthecorre-spondingalcoholsinE.
coliwithencouragingresults.
IsobutanolproductioninE.
coliIsobutanolisanisomerofbutanol.
Ithassimilarphysico-chemicalpropertieston-butanol,whilehavingahigheroctanenumberthann-butanol.
Isobutanolhasbeenidenti-Wedasaminorfermentationproduct,butitshighlevelpro-ductionhasnotbeenreporteduntilrecently[3].
Toachieveisobutanolproductioninalargequantity,thenativeilvIHCDoperonfromE.
coliwasWrstoverexpressedtodivertthecarbonXuxfrompyruvatetoKIV(Fig.
3),whichledtoisobutanolproductionat1.
7g/l,aboutaWvefoldincreaseoverthestrainwithoutilvIHCDoverexpression.
Topreventcarbonleakageandreducepowerwaste,thepreviouslygeneratedknockoutstrainJCL88(adhE,ldhA,frdAB,fnr,pta)wasusedashost;aslightincreaseinisobutanolproduction(2.
2g/l)wasobserved.
Further,alsSfromBacillussubtiliswasusedtoreplace474JIndMicrobiolBiotechnol(2009)36:471–479123E.
coliilvIHforitshighaYnitytowardspyruvate,whichledtotheisobutanolproductionat3.
7g/l.
Inaddition,pXBwasdeletedinstrainJCL88toconservethepyruvateavail-abilityforKIVformation.
WiththecombinationoftheseoverexpressionsandgenomicmodiWcations,theengineeredstrainwasabletoproduceisobutanolatatiterof20g/land86%oftheoreticalyield(Fig.
4)[3].
NotethatisobutanolistoxictoE.
coliataconcentration>10g/l.
Howevertheproductionofisobutanoloccursmainlyinthenon-growingphase(Fig.
4)[3].
Thisresultindicatesthateventhoughthecellscannotgrowatthehigherconcentration,theynonethelesscontinuetoproduceandexcreteisobutanol.
Thus,eventhoughisobutanoltoxic-ityposesachallenge,theproductionlevelcanexceedthetoxicitylevelsigniWcantly.
Mutantswithhigherisobutanoltolerancehavebeenisolated[3],whichalsoimprovestheproductivity.
Suchahigh-yieldproductiondemonstratestheversatilityinexploringtheketoacidpathwaysforbio-fuelproduction.
Theproductionofisobutanol(3.
0.
CO;2-C16.
JarboeLR,GrabarTB,YomanoLP,ShanmuganKT,IngramLO(2007)Developmentofethanologenicbacteria.
AdvBiochemEngBiotechnol108:237–26117.
KalscheuerR,StoltingT,SteinbuchelA(2006)Microdiesel:Escherichiacoliengineeredforfuelproduction.
Microbiology152:2529–2536.
doi:10.
1099/mic.
0.
29028-018.
MagnusonK,JackowskiS,RockCO,CronanJEJr(1993)RegulationoffattyacidbiosynthesisinEscherichiacoli.
Micro-biolRev57:522–54219.
PetersonJD,IngramLO(2008)Anaerobicrespirationinengi-neeredEscherichiacoliwithaninternalelectronacceptortoproducefuelethanol.
AnnNYAcadSci1125:363–372.
doi:10.
1196/annals.
1419.
02020.
RiendeauD,MeighenE(1985)Enzymaticreductionoffattyacidsandacyl-CoAstolongchainaldehydesandalcohols.
Experientia41:707–713.
doi:10.
1007/BF0201256421.
RoDK,ParadiseEM,OuelletM,FisherKJ,NewmanKL,NdunguJM,HoKA,EachusRA,HamTS,KirbyJ,ChangMC,WithersST,ShibaY,SarpongR,KeaslingJD(2006)Productionoftheantimalarialdrugprecursorartemisinicacidinengineeredyeast.
Nature440:940–943.
doi:10.
1038/nature0464022.
SacchettiniJC,PoulterCD(1997)Creatingisoprenoiddiversity.
Science277:1788–1789.
doi:10.
1126/science.
277.
5333.
178823.
ShenCR,LiaoJC(2008)MetabolicengineeringofEscherichiacolifor1-butanoland1-propanolproductionviatheketo-acidpathways.
MetabEng10:312–320.
doi:10.
1016/j.
ymben.
2008.
08.
00124.
WangX,KolattukudyPE(1995)SolubilizationandpuriWcationofaldehyde-generatingfattyacyl-CoAreductasefromgreenalgaBotryococcusbraunii.
FEBSLett370:15–18.
doi:10.
1016/0014-5793(95)00781-425.
WithersST,GottliebSS,LieuB,NewmanJD,KeaslingJD(2007)IdentiWcationofisopentenolbiosyntheticgenesfromBacillussub-tilisbyascreeningmethodbasedonisoprenoidprecursortoxicity.
ApplEnvironMicrobiol73:6277–6283.
doi:10.
1128/AEM.
00861-07
RAKsmart 商家八月份的促销活动今天更新。基本上和上个月的产品套餐活动差不多的,不过也是有简单的微调。对于RAKsmart商家还是比较了解的,他们家产品虽然这两年增加多个机房,以及在VPS主机方案上有丰富的机房和调整到一些自营机房,他们家的策划能力还是有限,基本上每个月的套餐活动都差不多。RAKsmart 在八月份看到有新增香港高防服务器可选,最高100GB防御。同时原来上个月缺货的日本独立...
提速啦的来历提速啦是 网站 本着“良心 便宜 稳定”的初衷 为小白用户避免被坑 由赣州王成璟网络科技有限公司旗下赣州提速啦网络科技有限公司运营 投资1000万人民币 在美国Cera 香港CTG 香港Cera 国内 杭州 宿迁 浙江 赣州 南昌 大连 辽宁 扬州 等地区建立数据中心 正规持有IDC ISP CDN 云牌照 公司。公司购买产品支持3天内退款 超过3天步退款政策。提速啦的市场定位提速啦主...
WHloud Official Notice(鲸云官方通知)(鲸落 梦之终章)]WHloud RouMu Cloud Hosting若木产品线云主机-香港节点上新预售本次线路均为电信CN2 GIA+移动联通BGP,此机型为正常常规机,建站推荐。本次预售定为国庆后开通,据销售状况决定,照以往经验或有咕咕的可能性,但是大多等待时间不长。均赠送2个快照 2个备份,1个默认ipv4官方网站:https:/...
77vcd.com为你推荐
sherylsandbergLean In是一个怎样的组织中老铁路中长铁路的铁路的新中国历史西部妈妈网加入新疆妈妈网如何通过验证?bbs.99nets.com怎么制作RO单机罗伦佐娜维洛娜毛周角化修复液治疗毛周角化有用吗?谁用过?能告诉我吗?百度关键词工具常见的关键词挖掘工具有哪些同一服务器网站一个服务器能运行多少个网站se95se.comwww.sea8.com这个网站是用什么做的 需要多少钱www.diediao.com谁知道台湾的拼音怎么拼啊?有具体的对照表最好!干支论坛查天干地支
域名注册服务 themeforest 商家促销 500m空间 河南移动邮件系统 有奖调查 699美元 免费活动 美国网站服务器 重庆双线服务器托管 web服务器搭建 联通网站 重庆电信服务器托管 监控服务器 lamp是什么意思 金主 阿里dns 免备案cdn加速 winds sonya 更多