hydroxybutyryl77vcd.com
77vcd.com 时间:2021-03-20 阅读:(
)
UCLAUCLAPreviouslyPublishedWorksTitleEngineeringmetabolicsystemsforproductionofadvancedfuelsPermalinkhttps://escholarship.
org/uc/item/8bn1w585JournalJournalofIndustrialMicrobiology&Biotechnology:OfficialJournaloftheSocietyforIndustrialMicrobiology,36(4)ISSN1476-5535AuthorsYan,YajunLiao,JamesC.
PublicationDate2009-04-01DOI10.
1007/s10295-009-0532-0PeerreviewedeScholarship.
orgPoweredbytheCaliforniaDigitalLibraryUniversityofCaliforniaJIndMicrobiolBiotechnol(2009)36:471–479DOI10.
1007/s10295-009-0532-0123REVIEWEngineeringmetabolicsystemsforproductionofadvancedfuelsYajunYan·JamesC.
LiaoReceived:7December2008/Accepted:14January2009/Publishedonline:7February2009TheAuthor(s)2009.
ThisarticleispublishedwithopenaccessatSpringerlink.
comAbstractThedepletingpetroleumstorageandincreasingenvironmentaldeteriorationarethreateningthesustainabledevelopmentofhumansocieties.
Assuch,biofuelsandchemicalfeedstocksgeneratedfromrenewablesourcesarebecomingincreasinglyimportant.
AlthoughpreviouseVortsledtogreatsuccessinbio-ethanolproduction,higheralco-hols,fattyacidderivativesincludingbiodiesels,alkanes,andalkenesoVeradditionaladvantagesbecauseoftheircompatibilitywithexistinginfrastructure.
Inaddition,someofthesecompoundsareusefulchemicalfeedstocks.
Sincenativeorganismsdonotnaturallyproducethesecom-poundsinhighquantities,metabolicengineeringbecomesessentialinconstructingproducingorganisms.
Inthisarti-cle,webrieXyreviewthefourmajormetabolicsystems,thecoenzyme-Amediatedpathways,theketoacidpathways,thefattyacidpathway,andtheisoprenoidpathways,thatallowproductionofthesefuel-gradechemicals.
IntroductionThedepletingpetroleumreserve,recurringenergycrisis,andglobalclimatechangearereignitingtheenthusiasmforseekingsustainabletechnologiesforreplacingpetroleumasasourceoffuelandchemicals.
Inthepastfewdecades,eVortsinthedevelopmentofbio-ethanolasanalternativefuelhaveledtosigniWcantsuccess[14–16,19].
In2007,6.
5billiongallonsofbio-ethanolwasproducedintheUnitedState[5].
However,bio-ethanolexhibitssomelimitations,suchaslowenergydensity,highvaporpressure,andcorrosiveness,whichpreventitswidespreadutilizationgiventheexistinginfrastructure.
Higheralcohols(withmorethantwocarbons),biodie-sels,andfattyacidderivativesarethoughttobemoresuit-ablefuels.
Theirphysicochemicalpropertiesaremorecompatiblewithgasoline-basedfuelsandallowdirectutili-zationofexistinginfrastructureforstorageanddistribution.
Furthermore,someofthesefuelmoleculesalsoserveasimportantchemicalfeedstocks.
Althoughtheindividualbiochemicalstepsforsynthesizingthesecompoundsinmicrobeshavebeendescribedpreviously,eVortsinputtingtogetherhighlyproductivemetabolicsystemshaveonlybegunrecently.
Inthisarticle,weWrstsummarizethemeta-bolicnetworksforproducingthesecompoundsandthenrevieweVortsinengineeringthenon-nativeproducingorganism,Escherichiacoli.
Themetabolicnetworksdis-cussedincludethetraditionalbutanolpathwayinClostrid-iumspecies,theketoacidpathwaysforhigheralcohols,theisoprenoidpathways,andthefattyacidbiosynthesis.
Thecoenzyme-A-dependentfermentativepathwaysAmongthehigheralcohols,n-butanolandisopropanolaretheonlytwothatareoverproducedinnaturebyClostrid-iumspecies.
n-ButanolhasbeenproducedbyClostridiuminacetone–butanol–ethanol(ABE)fermentation.
Thefer-mentativepathway(Fig.
1)inthisorganismstartsfromacetyl-CoA.
Theenzymeacetyl-CoAacetyltransferase,alsoknownasthiolase,condensestwomoleculesofacetyl-CoAtoonemoleculeofacetoacetyl-CoA.
Fromthismolecule,thepathwaybranchesintoisopropanolandn-butanol.
Fortheisopropanolbiosynthesis,anacetoace-tyl-CoAtransferase(ACoAT)transferstheCoAgroupY.
Yan·J.
C.
Liao(&)DepartmentofChemicalandBiomolecularEngineering,UniversityofCaliforniaatLosAngeles,5531BoelterHall,420WestwoodPlaza,LosAngeles,CA90095,USAe-mail:Liaoj@ucla.
edu472JIndMicrobiolBiotechnol(2009)36:471–479123awayfromacetoacetyl-CoAtoacetateorbutyrate,form-ingacetoacetate.
Theacetyl-CoAisrecycledbacktoace-tatebythecombinedphosphotransacetylaseandacetatekinasereaction.
Further,acetoacetateisdecarboxylatedtoacetonebyanacetoacetatedecarboxylase(ADC).
ThenacetoneisreducedtoisopropanolbyaNADPH-depen-dentsecondaryalcoholdehydrogenase(SADH)[12].
Forn-butanolbiosynthesis,acetoacetatehastogothroughfourstepsofNADH-dependentreductionandonestepofdehydration.
AcetoacetateisWrstreducedto3-hydroxybutyryl-CoAby3-hydroxybutyryl-CoAdehydro-genase(HBD).
Then,3-hydroxybutyryl-CoAisdehydratedtocrotonyl-CoAbyacrotonase(CRT).
Third,abutyryl-CoAdehydrogenase(BCD)catalyzesthereductionofcrotonyl-CoAtobutyryl-CoA.
Finally,analdehyde/alcoholdehydrogenase(AADH)convertsbutyryl-CoAton-butanolthroughtwoconsecutivereductionreactions.
IsopropanolproductioninEscherichiacoliThesecondaryalcohol,isopropanol,isbothadesirablefuelandanimportantchemicalfeedstockinthepetrochemicalindustry.
Itsdehydratedproduct,propylene,servesasthemonomerformakingpolypropylene.
Inaddition,itcanbeusedasanadditivetopetroleum-basedfuels.
Replacingmeth-anolwithisopropanolintheesteriWcationprocessoffatandoilcouldgeneratecrystallization-resistantbiodiesels[12].
Asdescribedabove,isopropanolisproducedbyClos-tridiumspeciesinnature.
However,asanativemetabolite,itcanonlybeproducedinalimitedamountforthehosts'ownbeneWtsasadetoxiWcationresponsetolowpHcondi-tions.
Themaximumtiterreportedinitsnativeproducer,Clostridium,was1.
8g/l[9].
Toimprovetheproductionofisopropanol,thefullycharacterizedisopropanolbiosyn-theticpathway(Fig.
1)wasreconstructedinthegenetictractablehostE.
coli[12].
Escherichiacolihasbeenreportedtoproduceacetone[6],theimmediateprecursorofisopropanol,byexpressingtheintactpathwayfromClostridiumacetobutylicumATCC824consistingoftheacetyl-CoAacyltransferase,ACoAT,ADCencodedbythethl,ctfAB,andadcgenes,respectively.
Thereportedtiterwasaround5.
4g/l,similartotheyieldofnativehostforacetone.
Furthermore,withaSADHco-expressedwiththeacetonepathwayinE.
coli,theisopropanolproductionwasachieved[12].
ThepathwayeYciencywastunedbyusinggenesfromdiVerentorgan-isms,abio-prospectingapproach.
SincethegenesfromClostridiumusuallyhavealowGCcontent,whichmayleadtopoorexpression,theE.
colinativegenesatoBandatoAD,encodingacetyl-CoAacyltransferaseandACoAT,werealsotestedaspathwaycomponents.
Additionally,twogenesfromC.
beijerinckiiNRRLB593andThermoanae-robacterbrockiiHTD4,encodingSADHs,weretotallysynthesizedwithcodonoptimizationandinstalledintothepathwaytotestforproduction.
WiththeseeVorts,thestrainwithacombinationofC.
acetobutylicumthl,E.
coliatoAD,C.
acetobutylicumadc,andC.
beijerinckiiadhachievedthehighesttiter(5.
0g/l).
Theresultispromising,sinceitdemonstrates43.
5%(mol/mol)conversionratio.
Thetheo-reticalyieldis1molisopropanolpermoleglucose.
Theproductionofisopropanolfromglucoseisnotredox-balanced.
FourmolesofNADHisproduced,whileFig.
1Metabolicpathwaysforisopropanoland1-butanolproductioninengineeredE.
coli.
Thedashedlineindicatesomittedsteps.
Isopropanolpathwayconsistsoffourenzymaticstepsfromacetyl-CoA.
1-Butanolpathwayconsistsofsixenzymaticsteps.
aceEFandlpdencodepyruvatedehydrogenase;atoB/thlencodesacetyl-CoAacetyltransferase;ctfAB/atoADencodesacetoacetyl-CoAtransferase;adc,acetoacetatedecarboxylase;sadhencodessecondaryalcoholdehydrogenase;hbdencodes3-hydroxybutyryl-CoAdehydrogenase;crtencodescrotonase;bcdencodesbutyryl-CoAdehydrogenase;etfencodeselectrontransferXavoprotein;adhE2encodesaldehyde/alcoholdehydrogenaseGlucose2Acetyl-CoAAcetoacetyl-CoAAcetoacetateAcetoneIsopropanol3-Hydroxybutyryl-CoACrotonyl-CoAButyryl-CoAButyraldehyden-Butanol2NAD+2NADH2Pyruvate2NAD+2NADH2CO2CoAAcetateAcetyl-CoACO2NADPHNADP+aceEFlpdatoB/thlctfAB/atoADadcsadhNADHNAD+hbdcrtH2ObcdetfNADHNADHNADHNAD+NAD+NAD+adhE2adhE2JIndMicrobiolBiotechnol(2009)36:471–4794731231molofNADPHisconsumedpermoleofisopropanol.
Therefore,anexternalelectronacceptorisrequiredorabyproductisservedasanelectronacceptor.
n-ButanolproductioninE.
colin-Butanolwasproposedtobeoneofthebettersubstitutesforgasoline-basedtransportationfuel,becauseofitshighenergydensityandhydrophobicity.
Itsenergycontent(27MJ/l)issimilartothatofgasoline(32MJ/l).
ThehighhydrophobicityenablesitstransportationandstorageusingexistingpetrochemicalinfrastructurewithminimalmodiW-cation.
Inaddition,n-butanolhasalowvaporpressureof4mmHgat20°C,whichallowsitsmixingwithgasolineatanyratiowithoutexceedingairqualityspeciWcations.
Themicrobialproductionofn-butanolhasahistoryofover100years.
Traditionally,n-butanolisproducedbyClostridiumspeciesthroughtheABEfermentation.
How-ever,n-butanolproductionviathisprocedureisdiYculttocontrolandoptimize,particularlybecauseClostridiumexhibitscomplexphysiologicalfeatures,suchasoxygensensitivity,slowgrowthrate,andspore-forminglifecycles.
Thus,itisdesirabletocreatenewn-butanolproducingorganismsusingmetabolicengineeringtechniques.
Recently,n-butanolproductioninaheterologoushost,E.
coli,usingthetraditionalCoA-dependentpathwayorigi-natedfromC.
acetobutylicum(Fig.
1)wasreportedfortheWrsttime[2].
Atsumietal.
createdtwosyntheticoperonscarryingalltheessentialgenes(thl,hbd,crt,bcd,etfAB,andadhE2)involvedinthepathway.
Co-expressionofthetwooperonsinE.
coliledtotheinitialproductionofn-butanolat14mg/lanaerobicallyusingglucoseassolecar-bonsource.
Tooptimizethepathway,alternativeenzymesofdiVerentoriginswereevaluated.
MorespeciWcally,withE.
coliatoBgeneinplaceofC.
acetobutylicumthl,amorethanthreefoldincreaseofn-butanolproductionwasobserved.
However,replacingtheoriginalenzymesforconversionfromcrotonyl-CoAtobutyryl-CoAwithhomologuesandisoenzymefromMegasphaeraelsdeniiorStreptomycescoelicolorresultedinamuchloweryieldofn-butanolinE.
coli.
Nevertheless,thisresultdoesnotexcludethepossibilityoftheexistenceofothergenesthatmightimproven-butanolproductioninE.
coli.
Furthermore,n-butanolproductiondoesnotsimplyrelyontheenzymeactivities.
TheproductformationalsoneedssuYcientcarbonprecursor,acetyl-CoA,andreducingpower,NADH.
Tofurtherimprovedn-butanolproduction,thehostE.
colistrainwasengineeredbydeletingthenativepathwaycompetingforbothcarbonXuxandreducingpower.
Thebeststraincandidate,namedJCL88,withthedeletionofldhA,adhE,frdBC,pta,andfnr,allowedamorethantwofoldincreaseinn-butanolproduction,accompa-niedbythedramaticdropintheformationoflactate,acetate,ethanol,andsuccinate.
Thehighesttiterof552mg/lwasreportedwithoptimizedpathwayandimprovedstrain.
Althoughtheyieldwasstilllow,thisworkdemonstratedthefeasibilityofheterologousn-butanolproductionandproposedtheprinciplesforfurtheroptimization.
TheketoacidpathwaysImportinganon-nativepathwayinaheterologoushostsuchasE.
coliunavoidablyintroducesnon-nativemetabolitesandpotentialtoxicity,inadditiontodiYcultiesinexpress-ingheterologousenzymes.
Theresultingmetabolicimbal-anceandcytotoxicityposeabarrierforlargequantityproduction.
Inthiscontext,itisdesirabletoseekforthepathwayscompatibletothehost.
Aminoacidbiosynthesisgeneratesmanyketoacidintermediates.
Theseketoacidscanbeconvertedtoalcoholsbyintroducingsequentialdecarboxylationandreductioncatalyzedbybroad-sub-strate-rangeketoaciddecarboxylase(KDC)andalcoholdehydrogenase(ADH)(Fig.
2).
Forexample,theisoleucinebiosynthesispathwaygenerates2-ketobutyrateand2-keto-3-methyl-valerate(KMV),whichcanbeconvertedton-propanoland2-methyl-1-butanol(2MB),respectively.
Thevalinebiosynthesispathwayproduces2-ketoisovalerate(KIV),whichistheprecursorforisobutanol.
Theleucinebiosynthesispathwaygenerates2-keto-4-methyl-pentano-ate,whichisthesubstratefor3-methyl-1-butanol(3MB).
Thephenylalaninebiosynthesispathwayproducesphenyl-pyruvate,whichcanleadto2-phenylethanol.
Thenorvalinebiosynthesispathway,whichisnormallyatoxicside-reactionoftheleucinebiosynthesis,producesasubstrateforn-butanol,2-ketovalerate(KV)[3].
Thesepathwaysrecentlyhavebeenexploredforproductionofthecorre-spondingalcoholsinE.
coliwithencouragingresults.
IsobutanolproductioninE.
coliIsobutanolisanisomerofbutanol.
Ithassimilarphysico-chemicalpropertieston-butanol,whilehavingahigheroctanenumberthann-butanol.
Isobutanolhasbeenidenti-Wedasaminorfermentationproduct,butitshighlevelpro-ductionhasnotbeenreporteduntilrecently[3].
Toachieveisobutanolproductioninalargequantity,thenativeilvIHCDoperonfromE.
coliwasWrstoverexpressedtodivertthecarbonXuxfrompyruvatetoKIV(Fig.
3),whichledtoisobutanolproductionat1.
7g/l,aboutaWvefoldincreaseoverthestrainwithoutilvIHCDoverexpression.
Topreventcarbonleakageandreducepowerwaste,thepreviouslygeneratedknockoutstrainJCL88(adhE,ldhA,frdAB,fnr,pta)wasusedashost;aslightincreaseinisobutanolproduction(2.
2g/l)wasobserved.
Further,alsSfromBacillussubtiliswasusedtoreplace474JIndMicrobiolBiotechnol(2009)36:471–479123E.
coliilvIHforitshighaYnitytowardspyruvate,whichledtotheisobutanolproductionat3.
7g/l.
Inaddition,pXBwasdeletedinstrainJCL88toconservethepyruvateavail-abilityforKIVformation.
WiththecombinationoftheseoverexpressionsandgenomicmodiWcations,theengineeredstrainwasabletoproduceisobutanolatatiterof20g/land86%oftheoreticalyield(Fig.
4)[3].
NotethatisobutanolistoxictoE.
coliataconcentration>10g/l.
Howevertheproductionofisobutanoloccursmainlyinthenon-growingphase(Fig.
4)[3].
Thisresultindicatesthateventhoughthecellscannotgrowatthehigherconcentration,theynonethelesscontinuetoproduceandexcreteisobutanol.
Thus,eventhoughisobutanoltoxic-ityposesachallenge,theproductionlevelcanexceedthetoxicitylevelsigniWcantly.
Mutantswithhigherisobutanoltolerancehavebeenisolated[3],whichalsoimprovestheproductivity.
Suchahigh-yieldproductiondemonstratestheversatilityinexploringtheketoacidpathwaysforbio-fuelproduction.
Theproductionofisobutanol(3.
0.
CO;2-C16.
JarboeLR,GrabarTB,YomanoLP,ShanmuganKT,IngramLO(2007)Developmentofethanologenicbacteria.
AdvBiochemEngBiotechnol108:237–26117.
KalscheuerR,StoltingT,SteinbuchelA(2006)Microdiesel:Escherichiacoliengineeredforfuelproduction.
Microbiology152:2529–2536.
doi:10.
1099/mic.
0.
29028-018.
MagnusonK,JackowskiS,RockCO,CronanJEJr(1993)RegulationoffattyacidbiosynthesisinEscherichiacoli.
Micro-biolRev57:522–54219.
PetersonJD,IngramLO(2008)Anaerobicrespirationinengi-neeredEscherichiacoliwithaninternalelectronacceptortoproducefuelethanol.
AnnNYAcadSci1125:363–372.
doi:10.
1196/annals.
1419.
02020.
RiendeauD,MeighenE(1985)Enzymaticreductionoffattyacidsandacyl-CoAstolongchainaldehydesandalcohols.
Experientia41:707–713.
doi:10.
1007/BF0201256421.
RoDK,ParadiseEM,OuelletM,FisherKJ,NewmanKL,NdunguJM,HoKA,EachusRA,HamTS,KirbyJ,ChangMC,WithersST,ShibaY,SarpongR,KeaslingJD(2006)Productionoftheantimalarialdrugprecursorartemisinicacidinengineeredyeast.
Nature440:940–943.
doi:10.
1038/nature0464022.
SacchettiniJC,PoulterCD(1997)Creatingisoprenoiddiversity.
Science277:1788–1789.
doi:10.
1126/science.
277.
5333.
178823.
ShenCR,LiaoJC(2008)MetabolicengineeringofEscherichiacolifor1-butanoland1-propanolproductionviatheketo-acidpathways.
MetabEng10:312–320.
doi:10.
1016/j.
ymben.
2008.
08.
00124.
WangX,KolattukudyPE(1995)SolubilizationandpuriWcationofaldehyde-generatingfattyacyl-CoAreductasefromgreenalgaBotryococcusbraunii.
FEBSLett370:15–18.
doi:10.
1016/0014-5793(95)00781-425.
WithersST,GottliebSS,LieuB,NewmanJD,KeaslingJD(2007)IdentiWcationofisopentenolbiosyntheticgenesfromBacillussub-tilisbyascreeningmethodbasedonisoprenoidprecursortoxicity.
ApplEnvironMicrobiol73:6277–6283.
doi:10.
1128/AEM.
00861-07
酷番云怎么样?酷番云就不讲太多了,介绍过很多次,老牌商家完事,最近有不少小伙伴,一直问我台湾VPS,比较难找好的商家,台湾VPS本来就比较少,也介绍了不少商家,线路都不是很好,有些需求支持Windows是比较少的,这里我们就给大家测评下 酷番云的台湾VPS,支持多个版本Linux和Windows操作系统,提供了CN2线路,并且还是原生IP,更惊喜的是提供的是无限流量。有需求的可以试试。可以看到回程...
无忧云怎么样?无忧云是一家成立于2017年的老牌商家旗下的服务器销售品牌,现由深圳市云上无忧网络科技有限公司运营,是正规持证IDC/ISP/IRCS商家,主要销售国内、中国香港、国外服务器产品,线路有腾讯云国外线路、自营香港CN2线路等,都是中国大陆直连线路,非常适合免备案建站业务需求和各种负载较高的项目,同时国内服务器也有多个BGP以及高防节点,目前商家开启了夏日清凉补贴活动,商家的机器还是非常...
傲游主机商我们可能很多人并不陌生,实际上这个商家早年也就是个人主机商,传说是有几个个人投资创办的,不过能坚持到现在也算不错,毕竟有早年的用户积累正常情况上还是能延续的。如果是新服务商这几年确实不是特别容易,问到几个老牌的个人服务商很多都是早年的用户积累客户群。傲游主机目前有提供XEN和KVM架构的云服务器,不少还是亚洲CN2优化节点,目前数据中心包括中国香港、韩国、德国、荷兰和美国等多个地区的CN...
77vcd.com为你推荐
openeuleropen opening opens opened有什么区别2020双十一成绩单2020双十一尾款如何合并付款?7788k.comwww.k6320.com 大家给我看看这网站是真是假...原代码什么叫源代码,源代码有什么作用百花百游百花百游的五滴自游进程百度关键词工具如何通过百度官方工具提升关键词排名777k7.comwww 地址 777rv怎么打不开了,还有好看的吗>comwww.gegeshe.comSHE个人资料avtt4.comwww.51kao4.com为什么进不去啊?广告法新修订的《广告法》有哪些内容
个人域名备案 blackfriday kddi 国外bt 账号泄露 42u标准机柜尺寸 服务器日志分析 info域名 促正网秒杀 赞助 qq云端 电信虚拟主机 1美金 免费网页申请 怎么建立邮箱 四川电信商城 备案空间 lick 下载速度测试 iki 更多