Completewww.k8k8.com

www.k8k8.com  时间:2021-03-20  阅读:()
ARTICLEOPENDegradationintermediatesofpolyhydroxybutyrateinhibitsphenotypicexpressionofvirulencefactorsandbiolmformationinluminescentVibriosp.
PUGSK8GeorgeSeghalKiran1,SethuPriyadharshini1,AlanDWDobson2,3,ElumalaiGnanamani4andJosephSelvin5Luminescentvibriosareubiquitousinthemarineenvironmentandarethecausativeagentsofvibriosisandmassmortalityinmanyaquaticanimals.
Inaquaticenvironments,treatmentscannotbelimitedtothediseasedpopulationalone,thereforetreatmentoftheentireaquaticsystemistheonlypossibleapproach.
Thus,theuseofantibioticstotreatpartoftheinfectedanimalsrequiresadosebasedontheentirebiomass,whichresultsinthetreatmentofuninfectedanimalsaswellasnon-targetnormalmicrobialora.
Atreatmentmethodbasedonanti-virulenceorquorumquenchinghasrecentlybeenproposedasaneffectivetreatmentstrategyforaquaticanimals.
Polyhydroxybutyrates(PHB)arebacterialstoragemolecules,whichaccumulateincellsundernutritionalstress.
ThedegradationofPHBreleasesshort-chainβ-hydroxybutyricacid,whichmayactasanti-infectivemolecule.
Todate,thereisverylimitedinformationonthepotentialanti-infectiveandanti-virulencemechanismsinvolvingPHB.
Inthisstudy,weaimtoexaminetheeffectofPHBoninhibitionofthevirulencecascadeofVibriosuchasbiolmformation,luminescence,motilitybehaviour,haemolysinandquorumsensing.
AluminescentVibrioPUGSK8,tentativelyidentiedasVibriocampbelliiPUGSK8wastestedinvitroforproductionofextracellularvirulencefactorsandthenestablishedasapotentialshrimppathogenbasedoninvivochallengeexperiments.
TheabilityofVibrioPUGSK8toformbiolmsandtheeffectofPHBonbiolmformationwastestedina96-wellmicrotitre-plateassaysystem.
ThemotilitybehaviourofVibrioPUGSK8wasevaluatedusingtwitching,swimmingandswarmingplateassays.
ReporterstrainssuchasChromobacteriumviolaceumCV026andAgrobacteriumtumefacienswereusedtodetectquorum-sensingmolecules.
Gaschromatography–massspectrometryspectralanalysiswasperformedtoelucidatethefragmentationpatternandstructureofN-hexanoylhomoserinelactone.
PHBdepolymeraseactivityinVibrioPUGSK8wasquantiedastheamountoftheenzymesolutiontohydrolyse1μgofPHBpermin.
AninvivochallengeexperimentwasperformedusingagnotobioticArtemiaassay.
Ofthe27isolatestested,theVibrioPUGSK8strainwasselectedfortarget-specicassaysbasedonthehighintensityofluminescenceandproductionofvirulencefactors.
ThevirulencecascadedetectedinVibrioPUGSK8includeluminescence,motilitybehaviour,biolmformation,quorumsensingandhaemolysinproduction.
Thusinhibition/degradationofthevirulencecascadewouldbeaneffectiveapproachtocontainVibrioinfectionsinaquaticanimals.
Inthisreport,wedemonstratethatthedegradationintermediateofPHBeffectivelyinhibitsbiolmformation,luminescence,motilitybehaviour,haemolysinproductionandtheN-acyl-homoserinelactone(AHL)-mediatedquorum-sensingpathwayinPUGSK8.
Interestingly,thegrowthofVibrioPUGSK8remainsunaffectedinthepresenceofPHB,withPHBdegradationbeingdetectedinthemedia.
PHBdepolymeraseactivityinVibrioPUGSK8resultsinthereleaseofdegradationintermediatesincludeashort-chainβ-hydroxybutyricacid,whichinhibitsthevirulencecascadeinVibrioPUGSK8.
Thus,amoleculethattargetsquorumsensingandthevirulencecascadeandwhichisspecies/strain-speciccouldprovetobeaneffectivealternativetoantimicrobialagentstocontrolthepathogenesisofVibrio,andtherebyhelptocontainVibriooutbreaksinaquaticsystems.
npjBiolmsandMicrobiomes(2016)2,16002;doi:10.
1038/npjbiolms.
2016.
2;publishedonline15June2016INTRODUCTIONMemberoftheVibriogenusarecommoninhabitantsofvariousaquaticenvironments.
Theytypicallyexisteitherasfree-livingorganismsorassociatedwithhostssuchaszooplankton,whichareknowntoprotecttheVibriofromavarietyofdifferentenvironmentalstresses.
Vibriohavealsobeenreportedtobeassociatedwithmanyhigherorganismsinmarineenvironmentsincludingcorals,crabs,molluscsandshamongothers.
Althoughthemajorityoftheseassociationsarenotharmfultothehost,thereareexampleswhereVibriospp.
arepathogenicwithVibriocoralliilyticusandVibriotubiashiibeingthecausativeagentsofdiseaseincommerciallyimportantorganismssuchasoystersandcorals,respectively.
OthersincludetheluminescentstrainVibrioharveyi,whichisthepotentialcausativeagentofmassmortalityinshrimpaquacultureworldwide,1togetherwithVibrioharveyiandVibrioalginolyticuswhicharethemostcommonpathogensofgiantblacktigershrimpPenaeusmonodoninAsiaandposetheprincipalthreatfacedbyshrimphatcheriesallovertheworld.
1DepartmentofFoodScienceandTechnology,PondicherryUniversity,Puducherry,India;2SchoolofMicrobiology,UniversityCollegeCork,Cork,Ireland;3EnvironmentalResearchInstitute,UniversityCollegeCork,Cork,Ireland;4DepartmentofChemistry,StanfordUniversity,Stanford,CA,USAand5DepartmentofMicrobiology,SchoolofLifeSciences,PondicherryUniversity,Puducherry,India.
Correspondence:JSelvin(jselvin.
mib@pondiuni.
edu.
in)Received9October2015;revised28January2016;accepted8March2016www.
nature.
com/npjbiolmsPublishedinpartnershipwiththeNanyangTechnologicalUniversityVibrioparahaemolyticusisbelievedtobetheprimarycausativeagentoftherecentmassmortalityinshrimpduetoearly-mortalitysyndrome.
2Thebiolm-formingcapacityofV.
choleraeiswelldocumented,bothinnaturalhabitatsandunderlaboratoryconditions.
3–5AmongtheshrimpVibriopathogens,thebiolm-formingcapacityofV.
harveyihasbeenestablishedoncementslab,plasticandsteelcouponsurfaces.
6Adhesionandprolifera-tionwithinthebiolmisanestablishedmechanismofpathogen-esisandinfectionofV.
harveyiinP.
monodon.
7Inadditionseveralstudieshavesuggestedthatbiolmsareimportantforsurvival,virulenceandstressresistanceinVibriospp.
,4,8–12withbiolmformationbeingcommonlyassociatedwithcolonisationandsubsequentpathogenesisinhostsbyvibriosinmarineenvironments.
13Todate,onlyafewstudieshavebeencarriedoutonbiolminhibitioninVibriospp.
14–16Bacteriainbiolmsaresurroundedbyanextracellularmatrixthatcanrestrictdiffusionofantimicrobialagents.
17Inadditionchangesinthemembranesterolcompositioninbacteriaduringbiolmdevelopmentcanalsoincreasethemicrobialcell'sresistanttoantibiotics.
18,19Quorumsensingisacell-to-cellcommunicationprocessinbacteriathatinvolvestheproduction,release,detectionandcollectiveresponsetoextracellularsignalmoleculescalledautoinducers,whichcontrolthephenotypicexpressionofbioluminescence,biomassdevelopment,ecologicalsuccession,competence,biolmformation,motilityandtheproductionofvirulencefactors.
20,21Gram-negativequorum-sensingcircuitsrelyonLuxIdependentacylhomoserinelactones(AHL)andaLuxR-typeautoinducerbindingtranscriptionalregulatorprotein.
Thequorum-sensingcircuitofV.
harveyiisknowntoconsistofathree-channelmodelsignaltransductionpathway.
Therstchannelismediatedbyacylatedhomoserinelactone-autoinducer1(HAI-1),thesecondchannelbyafuranosylboratediester—autoinducer-2andthethirdbyacholeraautoinducer-1(CAI-1).
22–24UpdatesonthetaxonomicrevisionsofVibriocladesarestillinconclusive,andrequirecomprehensiverevisionsparticularlywithrespecttoluminescentVibrioclades.
ForinstanceluminescentV.
campbelliibelongingtotheV.
harveyicladeareknowntousethequorum-sensingmoleculeN-hexanoylhomo-serinelactone.
25,26Thequorum-sensingmoleculesidentiedinluminescentvibriosincludeC6homoserinelactoneinV.
scheriandC4homoserinelactoneinV.
harveyi.
Butthereislittleconclusiveinformationonquorum-sensingmoleculesproducedinvariousotherspeciesintheV.
harveyiclade.
Giventhatquorumsensingisamolecularmechanisminvolvedintheexpressionofvirulencefactorsinmanypathogenicbacteria,theninterferencewithquorumsensingandalterationofquorumsensingcircuitscaneffectivelyregulatevirulenceexpressionandpathogenicity.
Polyhydroxybutyrate(PHB)isacommonbacterialintracellularbiopolymerthatappearasgranulesandareproducedinbacterialcellsundernutritionallimitationorwhentheyareinenviron-ments,whichareunsuitableforcellgrowth.
ThePHBpolymercanbehydrolysedtoshort-chainβ-hydroxybutyricacid,whichhasbeenshowntobeaneffectiveanti-infectivemoleculeinthegastrointestinaltractoftheshrimpproviding73%protectiontotreatedanimal.
27,28PHBcanalsoactasaninducerofHSP70,whichprovideprotectionagainstV.
campbelliinfectioninArtemia.
29However,themechanismofactionofPHBandanypotentialeffectthatitmayexertonquorumsensing/quenchinghastodatenotbeenfullyestablished.
Onthebasisofcurrentreportsintheliterature,potentialmechanismsfortheanti-infectiveeffectofPHBmayoccurasaresultofeither(i)PHBbeinghydrolysedto3-hydroxybutyricacidbythedigestiveenzymespresentinthegastrointestinaltractofthetreatedanimalor(ii)owingtothePHBdepolymeraseactivityofresidentbacteriainthegut.
Inthispaper,wereportthatthedegradationintermediatesofPHBincludeβ-hydroxybutyricacidwhichexhibitsantibacterialactivityagainstVibrioPUGSK8inbothinvitroplateassayandinvivochallengeexperimentsinagnotobioticArtemiamodel.
TheshrimppathogenVibrioPUGSK8showedPHBdepolymeraseactivity,resultingintheproductionofaPHBdegradationintermediate,whicheffectivelyshutsdownthephenotypicexpressionofvirulencefactorsandbiolmformation.
Interest-ingly,thePHBdegradationintermediatedoesnotappeartohaveadetrimentaleffectonthegrowthofVibrioPUGSK8resultinginthemicrobialbiomassremainingunaffected.
Inthisstudy,wereportontheanti-infectiveeffectofPHB,whichinhibitsthevirulencecascadeinVibrioPUGSK8.
ThedegradationintermediateofPHBreducesmotilitymediatedbyagellarandpiliadhesionfactorsresultinginthedisruptionofbiolmformation,andinhibitedphenotypicexpressionofbioluminescence,haemolysinandquorum-sensingmediatedthroughAHL.
RESULTSIdenticationandcharacterisationofpathogenicVibrioPUGSK8BacterialisolateswereobtainedfromdiseasedshrimpsamplescollectedfromashrimphatcherylocatedonthesoutheastcoastofIndia.
Amongthe68colonies,theisolatesweregroupedintoluminescentandnon-luminescentbacteria.
All27luminescentcoloniesshowedinvitroexpressionofvirulencefactorssuchasphospholipaseandhaemolysin(SupplementaryTableS1).
Amongthese,thestrainPUGSK8waschosenasitdisplayedveryhighlevelsofluminescenceanindirectfactor,whichisproducedaspartofthevirulencecascade.
StrainPUGSK8wastentativelyidentiedasVibriocampbellibasedonbiochemicalandphyloge-neticanalysis.
ThestrainPUGSK8wassensitivetoO/129andtestedpositiveforanumberofextracellularvirulencefactorsincludingphospholipase,haemolysin,elastase,chitinaseandcellsurfacehydrophobicity.
PhylogeneticanalysisofthePUGSK816SribosomalRNA(rRNA)sequenceshowedclosetmatchesof99%withVibriocampbellibelongingtotheVibrioharveyiclade(Figure1a).
ThesequencedataweresubmittedtoGenbankwiththeaccessionnumberKR024645.
V.
campbelliiPUGSK8formedbiolmgrowthonvarioussurfacessuchasglass,polystyreneandplastic(SupplementaryFigureS1).
Thestrainwasfurthertestedinvivotoestablishitspathogenicitytocauseshelldiseaseinhealthychallengedshrimps.
StrainPUGSK8wasestablishedasapotentialshrimppathogenbasedonchallengeexperiments(SupplementaryFigureS2).
BacterialgrowthandluminescenceGiventhatbioluminescenceinVibriospeciesisoneofthephenotypeswhichiscontrolledbyquorumsensing,weexaminedthepossibilitythatPHBmayaffectbioluminescenceinVibrioPUGSK8.
InitialexperimentswereconductedtodeterminethattheadditionofPHB(50μg/ml)toVibrioPUGSK8culturesdidnothaveadetrimentaleffectoncellgrowth(Figure1b).
ThegrowthprolesforPUGSK8growninthepresenceandabsenceofPHBweresimilar,withculturesenteringlogarithmicphaseafter9h,withdecreasedgrowthbeingobservedafter17h.
Thus,nodetrimentaleffectonthegrowthofVibrioPUGSK8wasapparent.
However,whenbioluminescencewasmeasuredbetween13and15hfollowingincubationhighlevelsofbioluminescencewereobservedinthecontrol,whereasinthePHB-treated(50μg/ml)asksreducedlevelsofbioluminescencewereobserved,inbothPHB-treatedculturessuchasPHBMSI04andPHBstandard(Sigma-AldrichCorporation,Bangalore,India)(Figure2).
At16h,bioluminescenceinthecontrolVibrioPUGSK8cultureshaddecreasedmarkedly,whilenobioluminescencewasobservedinthePHBcultures.
Thus,giventhatPHBappearstoinhibitbioluminescenceinVibrioPUGSK8cultures,wethenexaminedthepossibilitythatthisinhibitionmayaffecttheproductionofvariousvirulencefactors,whichlikebioluminescenceareknowntoberegulatedbyquorumsensinginVibrio.
DegradationintermediatesofPHBGSeghalKiranetal2npjBiolmsandMicrobiomes(2016)16002PublishedinpartnershipwiththeNanyangTechnologicalUniversityInhibitionofmotilityandbiolmformationMotilityisanimportantvirulencefactorinthevirulencecascadeofV.
campbelli,asitcontributestobiolmformation.
VibrioPUGSK8displayedpronouncedagellarandpilimediatedmotilityasevidentbythetwitching,swimmingandswarmingassays(Figure3A).
TheadditionofPHB(50μg/ml),however,inhibitedthemotilityofPUGSK8whichinturnreducedthecolonisationcapacityofthestrainonvarioustestedsurfaces.
PHBcompletelyinhibitedtheswimming,swarmingandtwitchingmotilityofVibrioPUGSK8,whereasacleareffectonbiolmformationwasalsoevidentfromthemicrotitre-plateassayandconfocallaserscanningmicroscopy(CLSM)imageanalysis(Figure3B),withaconcentrationof150μgPHBbeingthemosteffectiveinreducingthebiolmformation.
GiventhatPUGSK8caneffectivelycolonisevarioussurfacessuchasglass,polystyreneandplastic(Figure1c),itappearslikelythattheobservedinhibitionofmotilitymayresultinreducingtheadhesion,andcolonisationcapacityofVibrioPUGSK08.
HaemolyticandPHBdepolymeraseactivityofVibrioPUGSK8ProductionofthevirulencefactorhaemolysinwasinhibitedaroundthewellsofPHB-treatedcell-freesupernatant(CFS)ofVibrioPUGSK8.
ThehaemolysinactivitywasreducedintheplatestowhichCFScollectedfrom24-hculturesofVibrioPUGSK8treatedwithPHBhadbeenadded(Figure3B).
CompleteinhibitionofhaemolysinproductionwasobservedinplatestowhichCFScollectedfrom48-hculturesofVibrioPUGSK8treatedwithPHBhadbeenadded(Figure3C).
Thisinhibitionofhaemolyticactivity(Figure3C),providesdirectevidentthatPHBcontrolsthephenotypicexpressionofthisvirulencefactorinthestrain.
PHBdepolymeraseactivityinVibrioPUGSK8couldbeclearvisualisedonPHBagarplates(Figure4).
DegradationofPHBoccurredinbothminimalagarandZobellmarineagar(ZMA,Himedia,Mumbai,India)indicatingthatPHBdepolymeraseactivityinVibrioPUGSK8doesnotappeartobedependentonthenutritionalavailabilityinthemedium.
TheturbidometricassayshowedthatVibrioPUGSK8producedamaximumactivityof25.
72U/mlofPHBdepolymeraseat48h,withproductionofdepolymeraseincreas-ingattheonsetofstationaryphase.
ESI-HRMSanalysisofenzymehydrolysedPHBproducesapeakatm/z105.
05,correspondingtothemassofbutyricacids(SupplementaryFigureS3).
N-acyl-homoserinelactonedegradationVibrioPUGSK8appearstopossesstheabilitytodegradeAHLasevidencedbyalossinpurplecolourinthereporterstrainChromobacteriumviolaceumCV026inthepresenceofextractsfromPUGSK8growninthepresenceof50μg/mlPHB(Figure5,b);withtheeffectbeingobservedevenafter72h(Figure5,b3).
PurplecolourwasobservedinCV026inthepresenceofextractsfromPUGSK8,whichwasnotgrowninthepresencePHB(Figure5,a1–3).
TofurtherstudythisapparentAHLdegradation,followingextractionoftheAHLthefragmentationpatternanalysisfollowingTLCplatesidentiedauniquefractionwithanRfvalueof0.
67,whichwhencomparedwithanAHLstandard(sigma)indicatedthatthefractionmaycontainaN-hexanoylhomoserinelactonesignallingmolecule.
ToconrmthechemicalidentityoftheTLCfraction,massspectralanalysiswasperformed.
Themassspectrum(MS)oftheVibrioPUGSK8fractioncloselymatchedthespectrumfromastandardC6-AHL(Figure6a),conrmingthepresenceofaC6HSL(N-hexanoylhomoserinelactone)compound(Figure6b).
FurtheranalysisofsomeoftheseselectedfragmentsindicatethatFigure2.
TheintensityofluminescenceduringthegrowthcycleofVibrioPUGSK8.
(a)TheintensityofluminescencedecreasedinthemediasupplementedwithPHB(MSI04)andPHB(sigma).
Theluminescencereacheddetectablelevelsatthe13thhofincubationandproductionbecameundetectableafter16thofincubation.
(b)LuminescenceinVibrioPUGSK8following13hincubation.
Figure1.
PhylogeneticandgrowthcharacteristicsofVibrioPUGSK8.
(a)PhylogenetictreeofVibriosp.
PUGSK8.
MaximumparsimonyconsensusphylogenetictreeconstructedusingMEGA6.
0basedon16SrRNAgenesequenceofVibriosp.
PUGSK8showingrepresentativesofotherrelatedtaxa.
Thephylogeneticanalysisshowed99%toVibrioharveyiandVibriocampbellii.
OnthebasisoftheAHLmoleculeproducedbythestrainPUSK8,itwastentativelyidentiedasVibriocampbelliistrainPUGSK8.
(b)TheeffectofPHBongrowthofVibrioPUGSK8.
ThegrowthwasrecordedatOD600nm.
Theisolate(control)enteredlogarithmicphaseafter9hofgrowthandstartedtodeclineafter17h.
ThetrendofgrowthpatternwasnotaffectedinthemediasupplementedwithPHB(50μg/ml).
DegradationintermediatesofPHBGSeghalKiranetal3PublishedinpartnershipwiththeNanyangTechnologicalUniversitynpjBiolmsandMicrobiomes(2016)16002thefragmentionatm/z143maybeduetoaMcLaffertyrearrangement,whichisatypicalcarbonylgrouphavingahydrogenatomintheγ-position(Figure6d).
Thisrearrangementwouldgiverisetoanenolicfragmentandanolenlossofwaterfromtheiongivingrisetoanm/z143.
ThelossofthecharacteristicAHLpeakintheGC-MSspectrainPHB-treatedVibrioPUGSK8culturesisindicativeofAHLdegradation,whichaccompaniedthelossinquorum-sensingsignallingasevidencedbythelossinpurplecolourinthereporterstrainC.
violaceumCV026(Figure6c).
PHBinhibitionofVibriovirulenceinArtemiaPHBappearstoexhibitanti-virulenceeffectsinvivoandmayregulatethephenotypicexpressionofvirulencefactorsinvolvedintheinvasionofArtemiaduringVibrioinfections.
PHBitselfisnottoxictoArtemiawiththesurvivalratebeingunaffectedatPHBconcentrationsbetween50and200μg/ml.
IninvivochallengeexperimentsthetreatmentofArtemiawithPHBatconcentrations50μg/mlappearssufcienttoelicitcompleteprotectionagainstinfectionscausedbypathogenicVibrio,withprotectionbeingmaintainedupto48hpostchallenge.
LowersurvivalrateswereFigure3.
TheeffectofdegradationintermediatesofPHBonthephenotypicexpressionofvirulencefactors.
(A)TheeffectofPHBonthemotilitybehaviourofVibrioPUGSK8.
ThePHBtreatmenteffectedthelossoftwitching,swarmingandswimmingbehaviours.
TheeffectofPHBontwitching(a–control,d—treated),swarming(b—control,e—treated)andswimming(c—control,f—treated).
(B)CLSMimagesshowstheeffectPHBonbiolmformationbyVibrioPUGSK8.
Theaiscontrolandb,canddisshowingtheeffectofPHBonbiolmformationatconcentrationsof50,100and150μg/ml,respectively.
(C)HaemolyticactivityofVibrioPUGSK8onbloodagarplate.
(a)Thecell-freesupernatant(CFS)ofuntreatedVibrioPUGSK8showinghaemolyticactivity(b)HaemolyticactivityofCFScollectedfromPHB-treatedVibrio(24h)(c)CompleteinactivationofhaemolyticactivityofCFScollectedfromPHB-treatedVibrio(48h).
DegradationintermediatesofPHBGSeghalKiranetal4npjBiolmsandMicrobiomes(2016)16002PublishedinpartnershipwiththeNanyangTechnologicalUniversityobservedatlowerPHBconcentrations(10and25μg/ml),with60%and80%survival,respectively,indicatingthatPHBataconcentrationof50μg/mlwasmosteffectiveintheArtemiamodelexperiments(Figure7).
ConverselyintheabsenceofPHB,survivalratesinchallengedArtemiastartedtodeclineafter6hwithmortalityratesreaching95%at24h,postchallengewithVibrio.
DISCUSSIONInthisstudy,27luminescentVibrioswereisolatedfromthehepatopancreasofinfectedshrimpsamplescollectedfromshrimpfarmslocatedinsoutheastcoastofIndia.
Fromthese27strains,thestrainPUGSK8wasselectedfortarget-specicassaysbasedonitsabilitytoproducehigh-intensityluminescence,whichunlikesomeoftheotherisolatescontinuedtobeluminescentevenafteranumberofsub-culturingsteps.
Luminescenceisapartofthequorum-sensingsystemofV.
harveyiandV.
campbellithatisinvolvedintheestablishmentofthepathogeninthehost.
30,31ThoughbacteriafromtheV.
harveyicladeandrelatedbacteriaareoftenreferredtoasluminescentVibrios,alargedifferencebetweendifferentstrainswithrespecttoluminescencehasbeenreported.
32,33Thenon-luminescenceweobservedintheotherstrainsmaybeduetodefectsintheautoregulationofthegenesinvolvedintheluxoperon.
24BiochemicalandmorphologicalanalysisofPUGSK8indicatedthatitwasfromtheVibriogenus,whilephylogeneticanalysisshoweda99%matchwithVibriocampbelliistrains.
VibrioPUGSK8exhibitedagellarandpilimediatedmotility,haemolyticactivity,luminescence,togetherwiththeabilitytoformbiolmsonglass,polystyreneandplastic.
Pathogenicvibriosarethecausativeagentofvibriosisandaresuspectedtobeinvolvedinearly-mortalitysyndromeoracutehepatopancreaticnecrosissyndrome(EMS/AHPNS),whichisamajorthreadtotheshrimpaquacultureindustry;causing100%mortality,leadingtothelossof41billionUSdollarsinrecentoutbreaksinmanycountries.
CurrenttreatmentforVibrioinfectionsinshrimpinvolvereactivetreatmentwithantibioticsandaswiththeuseofmanyantibioticsposesthethreatoftheemergenceofdrug-resistantinvibrios.
Indeed,antibioticsarebecomingincreasinglyineffectiveinthecontrolofpathogenicvibriosandthiscoupledwiththefactthattheuseofantibioticsinanimalhusbandryisbannedinmanycountries;hasresultedinanincreasedinterestintheuseofalternatetreatmentmethodstotreatVibriooutbreaksinshrimpaquaculture.
Withthisinmindwetargetedtheidenticationofanti-infectiveagents,whichwouldinterferewiththequorum-sensingsysteminluminescentVibrioPUGSK8,whichhadbeenisolatedfromhepatopancreasoftheinfectedshrimpP.
monodon.
Thenon-specicsurfaceadhesionbehaviourofVibrioPUGSK8wasevidentanditexhibitedastrongbiolm-formingpotential.
Inthisstudy,weusedPHBproducedbyBrevibacteriumcaseiMSI04asapotentialanti-infectivemoleculeagainstluminescentVibrioPUGSK8,aswehadpreviouslyshownthatPHBmoleculesareeffectiveinthecontrolofbiolmformationbyvibrios.
17Themicrotitre-plateassaysystemcoupledwiththeconfocallaserscanningmicroscopyimagesrevealedthatPHBwasveryeffectiveinthecontrol/disruptionofbothbiolmformationandpreformedbiolms.
AsinotherVibriospeciesthevirulencecascadeinVibrioPUGSK8includesmotilitybehaviour,biolmformation,quorum-sensingsystemsandhaemolysinproduction.
Thus,interferingwiththisvirulencecascadeinanywaycouldproveaneffectiveapproachtohelpcontainVibrioinfectionsinaquaticsystems.
Thequorum-sensingsystemofVibrioPUGSK8ishighlyactiveandislikelytoinvolveAHLmolecules,giventhattheMSdatashowedcharacteristicpeaks34inextractsfromthestrain,whicharesimilartomassfragmentsofN-hexanoylhomoserinelactoneinNitrosomonaseuropaea.
35PHBeffectivelycontrolsbiolmforma-tioninVibrioPUGSK8,theexpressionofbioluminescence,Figure4.
PHBdepolymeraseproduedbyVibrioPUGSK8atvarioustimeintervals.
(a)isshowingPHBdepolymeraseactivityinU/ml.
ThePHBdepolymeraseactivityonminimalmediasupplementedwith100mg/lPHB(b),200mg/lPHB(c)and250mg/lPHB(d).
Figure5.
EffectofPHBonthedegradationofAHLproducedbyVibrioPUGSK8.
TheassaywasperformedonCV026withAHLextractofVibrioPUGSK8.
a1,a2anda3showpurplecolourasanindicatorofAHLexpressionaroundthewellslledwithAHLextractofVibrioPUGSK8.
b1,b2andb3areshowinglossofpurplecolourindicatingAHLdegradationbyPHB(50μg/ml)treatedVibrioPUGSK8extract.
DegradationintermediatesofPHBGSeghalKiranetal5PublishedinpartnershipwiththeNanyangTechnologicalUniversitynpjBiolmsandMicrobiomes(2016)16002colonisationcapacityandvirulencecascadeincludingmotilityandhaemolysin,therebyreducingpathogenicity,andindoingsodisruptsAHL-mediatedquorum-sensingpathway.
GiventhatthegrowthofVibrioPUGSK8remainunaffectedbyPHB,itappearslikelythattheobservedeffectsmaybeasaresultofPHBmetabolism.
AsimilargrowthindependentinhibitionofquorumsensinghasrecentlybeenreportedforcoumarininPseudomonasaeruginosa.
36Figure6.
GC-MSanalysisofAHLsignallingmoleculesproducedbyVibrioPUGSK8.
(a)isshowingGC-MScharacteristicpeaksofstandardAHL.
(b)CharacteristicpeaksofAHLproducedbyVibrioPUGSK8evidencesthecellsignallingmoleculeasN-hexanoylhomoserinelactone.
(c)AbsenceofcharacteristicGC-MSpeaksofAHLindicatingthePHBshutsoffPHBmediatedcellsignallinginVibrio.
(d).
ThefragmentationpatternelucidatedbasedontheMSspectraofAHLproducedbyVibrioPUGSK8showedconformitywithCataldietal.
(2008).
DegradationintermediatesofPHBGSeghalKiranetal6npjBiolmsandMicrobiomes(2016)16002PublishedinpartnershipwiththeNanyangTechnologicalUniversityItiswellestablishedthatswarmingmotilityandquorumsensingisnecessarytodevelopcolonialbacterialpopulationbothinside/outsidethehost.
37Motilitybehaviourandquorum-sensingmoleculesareimportantforcelldifferentiation,proliferationandsensinginbacterialpopulations.
ButinourndingsitappearsthatinthePHB-treatedVibrioPUGSK8themotilitybehaviourwascompletelyreducedindicatingthequorum-quenchingnatureofPHB.
Recently,ithasbeenreportedthatmotilitybehaviourinV.
harveyiisregulatedthroughquorumsensing.
38MotilityisalsowellestablishedasafactorinthevirulencecascadeofpathogenicV.
harveyi.
Aswehavealsodemonstratedhereinthisstudy,inhibitionofmotilitycansignicantlyreducevirulenceofV.
harveyi.
38Bacteriawithinbiolmsarehighlyresistanttowardsantibiotics.
39Whenthebiolm-formingcapacityofbacteriaisreduced,theresistancetowardsantibioticsandpotentialofpathogenesisisalsoreducedinthefree-livingVibriopopulation.
TheexperimentaldatageneratedhereindicatethatPHBmayaffectthepathogenicityofVibriobyinterferingwiththesignallingmolecules.
Thequorum-quenchingactivitywasrevealedinthegaschromatographydata,whichshowednocharacteristicpeaks/masswithrespecttotheAHLmolecule.
ThereporterstrainplateassayshowedlossofcharacteristiccolourformationinthePHB-treatedplatesofAgrobacteriumtumefaciensandCV026.
Thequorum-quenchingeffectofPHBmaybeduetothehydrolysisofthePHBbyPUGSK8bysecretingPHBdepolymerase,whichdegradesthePHBintoβ-hydroxybutyricacid.
ThisistherstreportonluminescentVibriosecretingPHBdepolymerase,whichwasevidentasaclearzoneformationonthePHBplates.
IthasrecentlybeenreportedthatPHBataconcentrationof100mg/lprovidescompleteprotectiontotheArtemiaagainstV.
campbelliiinfection.
29However,wereportherethatPHBataconcentrationof50mg/lwaseffectiveinprovidingcompleteprotectiontoArtemiaagainstinfectionbyVibrioPUGSK8inchallengeexperiments.
Thebacteriostaticeffectofshort-chainfattyacidsonEnterobacteria40haspreviouslybeenreportedandmayhavepromisingeffectsonthecontrolofbacterialdiseasesinaquaculture.
41PHBhaspreviouslybeensuccessfullyusedasananti-infectiveingnotobioticstudieswithArtemiafranciscana.
25,42ThepolymerPHBisnotwatersoluble,andneedstobedegradedintoβ-hydroxybutyratemonomersandoligomersinthegastrointestinaltractofthetreatedanimals.
PreviousreportsrevealedthatpretreatmentofPHBwithNaOHfollowedbydigestionwithgutenzymesincreasesthedegradationofPHB.
43,44DegradationofPHBcanalsobeachievedbyPHAdepolymeraseproducingbacteriaandfungi.
45ThemechanismofPHBdegradationintreatedanimals,however,stillremainsunclear.
IthasbeensuggestedthatPHBmayprovideadditionalenergytoactasanimmunostimulantinthetreatedanimals,28orthatPHBanditsdegradationproductsmaylowerthepHintheArtemiagutthroughnon-ionicdiffusioncausingcellularacidica-tiontherebyinhibitingthevirulenceorpathogenesisofVibrio.
Incontrasttothis,thedatapresentedhereappeartoindicatethatthedegradationintermediateofPHBregulatesthephenotypicexpressionofthevirulencecascadeinluminescentVibrioPUGSK8.
DegradationofPHBbyVibrioPUGSK8wasobservedonthemediaindicatingthatPHBdepolymeraseactivitycaninhibitthevirulencecascadeofVibrio.
ThedegradationintermediateofPHBwaseffectiveininhibitingpathogencolonisationthroughbiolmformationandphenotypicexpressionofvirulencefactors.
PHBexhibitedaprotectiveeffectonArtemiaagainstVibrioinfections.
Disruptionofthequorum-sensingsystemsinVibriowouldbeaneffectiveandenvironmentallyfriendlieralternatetoantimicrobialagentstocontrolthepathogen.
Thus,PHBtreatmentscouldbeaneco-friendlynon-invasiveeffectivelystrategytocontainVibrioinfectioninshrimpaquaculture.
Itiswellestablishedthatthetreatmentofindividualinfectedaquaticanimalsisneitherfeasiblenorpossible,withentiresystemtreatmentapproachesinvolvingantibioticsculminatinginresistantandresidualimpacts.
ThePHB-basedtreatmentwouldbeaneffectiveanti-infectivestrategytoachieveaquaticsystemtreatmentapproachestocontainVibriooutbreaksinshrimpaquaculture.
Althoughhalogenatedfura-noneshavebeenshowntobeeffectiveindisruptingsignallingmoleculesinGram-negativebacteria,46,47theadministrationofhigherdosesoffuranonestoshrimplarvaeisbothhighlytoxicandnoteffectiveinallthespeciesandstrainsofVibrioisolatedfrombrineshrimp;thus,alternatemoleculesfortreatmentsarerequired.
48Anaddedadvantageisthatanti-infectivestargetingquorum-sensingsystemscanbegenerated,whicharetarget-specicandwhicharespeciesorstrain-specic,thereforeminimisingthepossibledevelopmentofresistanceoraandthekillingofuntargetedmicrobialora.
MATERIALSANDMETHODSIsolationandselectionofpathogenicVibriocampbelliThepathogenicbacteriausedinthisstudywereisolatedfromthehepatopancreasofaninfectedshrimpcollectedfromashrimphatcheryinKollam(8°54′N76°38′E),whichislocatedonthesouthwestcoastofIndia.
ZMAandnutrientagarwith2%NaClwasusedforbacterialisolation,withpureculturesbeingobtainedfollowingincubationat28°Cfor24h.
SelectiveisolationofVibriowasperformedonthiosulfate-citrate-bilesalts-sucroseagar(Himedia).
Vibriocultureswereexaminedforcolonyluminescenceandintensityusingaspectrourometer(Fluorolog-FL3–11,Kyoto,Japan).
DNAwasisolatedfromPUGSK8andPCRamplicationofthe16SrRNAwasperformedusingtheprimers27F5′-AGAGTTTGATCMTGGCTCAG-3′and1492R5′-CGGTTACCTTGTTACGACTT-3′,generatinga1,500-bpsizefragment.
TheampliedDNAwasclonedusingtheTOPOTAcloningkit(Invitrogen,Carlsbad,CA,USA)forsequencing(Macrogen,Seoul,Korea).
TheforwardandreversesequenceswereobtainedandcomparedfortheirpairwisesimilarityusingtheNCBIBLAST.
MultiplealignmentsofthesesequenceswerecarriedoutbyClustalW1.
83versionofEBI(www.
ebi.
ac.
uk/cgi-bin/clustalw/)withatransitionweightof0.
5.
PhylogenetictreeswereconstructedusingMEGA5.
0version(www.
megasoftware.
net)bymeansoftheneighbourjoining(NJ)andtheunweightedpairgroupmethodalongwiththearithmeticmean(UPGMA)algorithms.
ThenucleotidesequencesweredepositedinGenbankwiththeaccessionnumberKR024645.
SourcesofPHBThestrainB.
caseiMSI04(GenbankaccessionnumberKU510053)usedforPHBproductioninthisstudywasisolatedfromthemarinespongeDendrillanigra,withitsproduction,structuralcharacterisation,anti-adhesiveactivityagainstVibriohavingpreviouslybeingreported.
17StandardPHB(Sigma)wasusedforefcacycomparisoninthepreliminaryexperiments.
Figure7.
EffectofPHBandVibrioonsurvivalofArtemia.
PositivecontrolincludesArtemiachallengedwithVibrio.
NegativecontrolwasArtemiawithoutPHBtreatment/Vibriochallenge.
DegradationintermediatesofPHBGSeghalKiranetal7PublishedinpartnershipwiththeNanyangTechnologicalUniversitynpjBiolmsandMicrobiomes(2016)16002Biolmformation/disruptionassayTheeffectofPHBonbiolmformationinPUGSK8wasassessedina96-wellmicrotitre-plateassay.
Briey,anovernightcultureofVibrioPUGSK8wasinoculatedin200μlofZobellmarinebrothinpolystyrenemicrotitreplates.
ThetestwellscontainedPHBatconcentrationsrangingfrom50–150μg/mlwithwellswithoutPHBandinoculumactingaspositiveandnegativecontrolsrespectively.
After48-hincubationat28°C,thewellswerewashedtwicewithphosphate-bufferedsaline(pH7.
0)andadheredcellsstainedwith0.
1%crystalvioletandtheamountofbiolmformationwasquantiedinamicroplatereader(Labnics,Mumbai,India)at590nm.
17Thebiolm-formingabilityofVibrioPUGSK8wasassessedwithbiolmsbeingallowedtodeveloponvarioussurfacessuchasglass,stainlesssteel,aluminiumandpolystyrene.
Biolmswerestainedwithcrystalvioletandexaminedunderalightmicroscopeat*40magnication(Optika,Ponteranica,Italy).
TovisualisetheeffectofPHBonthebiolm-formingabilityofVibrioPUGSK8,biolmwasallowedtoformoncoverslipsimmersedinZobellmarinebrothcontainingvaryingconcentrationsofPHB(50–150μg/ml)andincubatedat28°Cfor24h,withbrothnotcontainingPHBactingasacontrol.
ThecoverslipswerethenwashedwithPBS,stainedwith0.
1%acridineorangeandobservedunderconfocallaserscanningmicroscopy(LSM710,CarlZeiss,Oberkochen,Germany).
MotilityassayThemotilitybehaviourofVibrioPUGSK8wasevaluatedusingtwitching,swimmingandswarmingplateassays.
49,50Swarmplateswerepreparedbyadding0.
7%bactoagartonutrientbroth(Himedia),supplementedwith0.
5%glucoseand100μgPHB.
Swimmingassayswereperformedusingtryptoneswimagarplatescontaining1%tryptone,0.
5%NaCland0.
3%bactoagarsupplementedwith100μgPHB.
Twitchagarplateswerepreparedbyadding1%tryptonebroth,5%yeastextractand1%NaCltoLBbrothsupplementedwith1%bactoagarand100μgPHB.
PlateswithoutPHBadditionservedascontrolsandallplateswereallowedtodryovernightatroomtemperature.
Twitchingplateswerestabinoculatedusingasteriletoothpickatadepthof3mmtothebottomofthepetridish.
Swarmplateswerespot-inoculatedontheagarsurface.
Swimmingplateswereseededbelowtheagarsurfaceusingasterileinoculationneedle.
Theplateswereincubatedat37°Cforbetween18and48h.
Thediametersofswimming,swarmingandtwitchingzonesweremeasuredandimageswerecapturedonadigitalcamera.
(Nikon,Tokyo,Japan)Screeningofquorum-sensingmoleculesecretedbyVibrioPUGSK8Preparationofcell-freelysateforTLC.
ReporterstrainswereculturedinLBbrothcontainingkanamycin20μg/mlforC.
violaceumCV026,andtetracycline20μg/mlforA.
tumefaciens.
VibrioPUGSK8wasinoculatedinZMB,andallstrainswereincubatedat28°Cfor24h.
Brothcultureswerecentrifugedat10,640gfor5min.
Thesupernatantswerethenpassedthrough0.
1-μmMilliporelters(Merck)andtheltratewasextractedtwicewithanequalvolumeofacidiedethylacetate.
Pooledextractsweredriedoveranhydrousmagnesiumsulphate,evaporatedtodrynessandre-suspendedin50–100μlofHPLCgradeethylacetate.
ThepresenceofAHLsintheextractswasevaluatedbyC18reverse-phaseTLCplates(Merck)51followedbyuorescenceemissionusingaultraviolettransillu-minator.
AHLswereidentiedbycomparingtheretentionofsyntheticstandardAHLs(Sigma)andrespectivetestAHLspots.
DetectionofAHLbyGC-MS.
ExtractsfromVibrioPUGSK8andAHLstandards(sigma)wereanalysedbygaschromatography–massspectro-metry(PerkinElmer-Clarus680model,Shelton,CT,USA)usingtheElite5MScolumn(PerkinElmer)(30m*0.
25mmIDand250-μmlmthickness)operatinginanelectronimpactmodeat70eVwithheliumasthecarriergasataowrateof1ml/min.
ThemassspectralanalysiswasperformedbycomparingthemassvaluesofAHLstandardswiththeAHLofV.
campbellii.
AssessmentofcellregulationandactivityassaysBacterialgrowthandluminescence.
AnovernightcultureofVibrioPUGSK8wasdilutedtoanOD600of0.
1nmandinoculatedintofreshZMBcontaining5mg/100mlPHBandincubatedat28°Cfor24h.
FlaskswithouttheadditionofPHBwereusedascontrols.
ThegrowthandluminescenceofVibrioPUGSK8wasrecordedafter6h(OD600nm)at1-htimeintervalsfor20husingaspectrophotometerandspectrourometer(Fluorolog-FL3–11).
GrowthandluminescenceofVibrioPUGSK8inthepresenceofPHBproducedbyB.
caseiMSI04wascomparedwiththatobservedwiththestandardPHB(sigma).
HaemolyticactivityFifty-microlitreovernightVibrioculturesgrowninthepresenceof0.
5μgPHBfor24and48h,respectively,wascentrifugedat10,621gfor10minandtheCFSwasltredusing0.
45-micronltre.
TheassaywasperformedasdescribedbyBeecherandWong52withsuitablemodications.
Briey,theCFS(75μl)wasaddedtowellinabloodagarcontaining5%(v/v)humanbloodandincubatedat37°Cfor24h.
Afterincubation,theplateswereobservedfortheappearanceofzonesofhaemolysisaroundthewell.
TheCFSofculturesgrownintheabsenceofPHBwasusedasacontrol.
Detectionofquorum-quenchingactivityusingreporterstrainsandGCTheAHLinactivationassaywasperformedasdescribedbyBaruahetal.
53withnecessarymodications.
PUGSK8wasgrownovernightin100mlZMBsupplementedwith50μg/mlPHBandincubatedat28°Cfor48h,54withaskswithoutPHBadditionservingasacontrol.
Followingcentrifugationat10,640gfor5minthecell-freesupernatantwasseparatedandAHLwasextracted,acidiedwithethylacetateandsolventevaporatedtodryness.
ReporterstrainC.
violaceumCV026wasgrownovernightonLBbrothand100μlofCV026wasswabbedontothesurfaceofLBagarplates.
Wellsweremadeusingasterilecorkborer(0.
6mmdiameter)onagarplates,and10mg/μlofextractedandair-driedN-hexanoylhomoserinelactonefromPUGSK8brothculturewithPHBwasaddedintriplicatetowellsintheplatesandincubatedfor36–48h.
AHLextractedwithoutPHBadditionactedascontrols.
PlatesweremonitoredforpurplecolourformationinthereporterstrainCV026.
DegradationofC6-HSLduetoalackofpurplecolourformation,wasfurtherveriedusingGC-MS;withextractsfromVibrioPUGSK8growninthepresenceof50μg/mlPHBbeinganalysed.
PHBdegradationbyVibrioPUGSK8TodeterminePHBdegradationandutilisationbyVibrioPUGSK8,thedegradationassaywasperformedaspreviouslydescribedwithamodicationtothegrowthmedia.
55VibrioPUGSK8wasinoculatedinnutrientrich(ZMA)mediumaswellasintheminimalmediasupplementedwithvariousconcentrationofPHBrangingfrom100mg/l,200mg/l,250mg/lPHB.
Theplateswereincubatedat28°Cfor48handmonitoredfortheformationofzonesofclearance.
TodeterminetheamountofPHBdepolymeraseproducedbyVibrioPUGSK8,aturbidometricassaywasperformedaspreviouslydescribed56,57Briey,VibrioPUGSK8wasculturedinminimalmediasupplementedwith0.
1%PHBat28°Cwithagitationat220r.
p.
m.
fordifferenttimeintervalsrangingfrom12–48h.
Theproductionmediawascentrifugedat10,640gfor10min.
Thecrudeenzymeextractwasthenvacuumlteredthrough0.
22μmMilliporeltres.
PHBdepolymerasewasthenprecipitatedwithequalvolumesofcoldacetoneandtheprecipitatewasdissolvedin10mMacetatebufferpH6.
0.
TheprecipitatedenzymewasfurtherpuriedbysephadexG-200columnchromatography.
Theactiveenzymefractionswerepooledandtheenzymeassaywascarriedout.
Theassaymixwaspreparedwith0.
7mgofPHBin1mlof10mMacetatebufferwithaliquotsbeingmixedthoroughlyusingsonicationfor10min.
Theassaymixwasaddedintriplicateto0.
5mloftheenzymesolutionandincubatedat40°Cfor20min.
Theenzymeactivitywascalculatedasadecreaseintheturbidityat660nmwithPHBwithoutenzymesolutionactingasacontrolblank.
OneunitofPHBdepolymeraseactivitywasdenedastheamountoftheenzymesolution(μl)tohydrolyse1μgofPHBpermin.
Thedegradationproductsformedresultingfromdepolymeraseactivityafter12hofincubationwasanalysedElectrosprayIonisation-HighResolutionMassSpectralanalysis(ESI-HRMS,OrbitrapElite).
ArtemiaassayTheinvivochallengeexperimentwasperformedusingagnotobioticmodelassaywithA.
franciscanaaspreviouslydescribed.
53Theexperi-mentalsetupwasperformedinasterileairlaminarowhood.
Sterilecystsandlarvaewereobtainedbydecapsulationusing3.
3mlNaOH(32%)and50mlNaOCl(50%).
Cystswereaeratedina1-lcapacitysterilisedglasscylinder(jar)containingautoclavedseawater.
Toprovidecompletehydrationofthecysts,anairstonewasplacedinthebottomofthejarseawaterandoxygenatedcontinuouslyusingaeratorpumps.
After24hincubationat28°Cthenewlyhatchedfree-swimmingpink-colouredDegradationintermediatesofPHBGSeghalKiranetal8npjBiolmsandMicrobiomes(2016)16002PublishedinpartnershipwiththeNanyangTechnologicalUniversitynaupliiwerecollectedfromthebottomofthejar.
Theaxenicityofthenaupliiwasconrmedbyplating50μlofthehatchedwaterontoZMAplatesandincubatingat28°Cfor7days.
PreliminarydoseselectingexperimentswereperformedtondtheeffectiveconcentrationofPHBandtodetermineanytoxiceffectofPHBonArtemia.
NewlyhatchedArtemiawereexposedtovariousconcentrationofPHBrangingfrom25to200μg/ml.
Afterexposure,theexperimentalsetupwasincubatedat28°Cunderconstantaerationandillumination.
ThesurvivalofArtemiawasrecordedafter24and48h.
Allexperimentswereperformedintriplicate.
ChallengeexperimentwithgnotobioticArtemiaGroupsof20freshlyhatchednaupliiweretransferredintosterile50-mlbeakerscontaining25mlsterilisedseawater.
Theexperimentswereperformedintriplicatewithparallelnegativecontrol(Artemiawithdriedyeast6mg/ml),positivecontrol(ArtemiachallengedwithluminescentVibrioPUGSK8(105CFU/ml))andtest(ArtemiatreatedwithluminescentVibrioPUGSK8of105CFU/mlalongwith50μg/mlofPHB).
Allexperimentswereperformedinsterileconditionsat28°Cunderlightwithcontinuousaeration.
Thesurvivalratewasdeterminedafter24and48hbytransferringtheliveArtemiatoawatchglassandcountingmanually.
ACKNOWLEDGEMENTSG.
S.
K.
acknowledgestheDepartmentofBiotechnology,MinistryofScienceandTechnologyandIndianCouncilofMedicalResearchforafellowshiptoworkinUCC,Ireland.
J.
S.
thankfullyacknowledgedA.
P.
Lipton,CentralMarineFisheriesResearchInstituteforprovidingArtemiacyst.
ThisworkisfundedbyDepartmentofBiotechnology,MinistryofScienceandTechnology,NewDelhi.
CONTRIBUTIONSJ.
S.
designedthework,G.
S.
K.
guidedtheexperimentsandwritingofthemanuscript,S.
P.
andG.
S.
K.
performedtheexperiments,A.
D.
guidedthedataprocessing,interpretationandmanuscripteditingandE.
G.
didanalysisandchemistryofQSmoleculesandESI-HRMSspectradata.
COMPETINGINTERESTSTheauthorsdeclarenoconictofinterest.
REFERENCES1.
Chrisolite,B.
etal.
DistributionofluminescentVibrioharveyiandtheirbacter-iophagesinacommercialshrimphatcheryinSouthIndia.
Aquaculture275,13–1(2008).
2.
DeSchryver,P.
,Defoirdt,T.
,Sorgeloos,P.
&Rall,G.
F.
Earlymortalitysyndromeoutbreaks:AmicrobialmanagementissueinshrimpfarmingPLoSPathog.
10,e1003919(2014).
3.
Faruque,S.
M.
,Albert,M.
J.
&Mekalanos,J.
J.
Epidemiology,genetics,andecologyoftoxigenicVibriocholerae.
Microbiol.
Mol.
Biol.
Rev.
62,1301–1314(1998).
4.
Watnick,P.
I.
&Kolter,R.
StepsinthedevelopmentofVibriocholeraElTorbiolm.
Mol.
Microbiol.
34,586–595(1999).
5.
Yildiz,F.
H.
&Schoolnik,G.
K.
VibriocholeraO1ElTor:identicationofageneclusterrequiredfortherugosecolonytypeexopolysaccharideproduction,chlorineresistance,andbiolmformation.
Proc.
NatlAcad.
Sci.
USA96,4028–4033(1999).
6.
Karunasagar,I.
,Otta,S.
K.
&Karunasagar,I.
BiolmformationbyVibrioharveyionsurfaces.
Aquaculture140,241–245(1996).
7.
Soonthornchai,W.
,Chaiyapechara,S.
,Jarayabhand,P.
,Sderhll,K.
&Jiravanichpaisal,P.
InteractionofVibriospp.
withtheinnersurfaceofthedigestivetractofPenaeusmonodon.
PLoSONE10,e0135783(2015).
8.
Wai,S.
N.
,Mizunoe,Y.
,Takade,A.
,Kawabata,S.
&Yoshida,S.
VibriocholeraeO1strainTSI-4producestheexopolysaccharidematerialsthatdeterminecolonymorphology,stressresistance,andbiolmformation.
Appl.
Environ.
Microbiol.
64,3648–3655(1998).
9.
Watnick,P.
I.
,Lauriano,C.
M.
,Klose,K.
E.
,Croal,L.
&Kolter,R.
Absenceofaagellumleadstoalteredcolonymorphology,biolmdevelopment,andvirulenceinV.
choleraeO139.
Mol.
Microbiol.
39,223–235(2001).
10.
Wang,S.
Y.
,Lauritz,J.
,Jass,J.
&Milton,D.
L.
Roleforthemajorouter-membraneproteinfromVibrioanguitlaruminbileresistanceandbiolmformation.
Microbiology149,1061–1071(2003).
11.
Zhu,J.
&Mekalanos,J.
J.
Quorumsensing-dependentbiolmsenhancecoloni-zationinVibriocholera.
Dev.
Cell5,647–656(2003).
12.
Faruque,S.
M.
etal.
Transmissibilityofcholera:invivo-formedbiolmsandtheirrelationshiptoinfectivityandpersistenceintheenvironment.
Proc.
NatlAcad.
Sci.
USA103,6350–6355(2006).
13.
Yildiz,F.
H.
&Visick,K.
L.
Vibriobiolms:somuchthesameyetsodifferent.
TrendsMicrobiol.
17,109–118(2009).
14.
Defoirdt,T.
etal.
Quorumsensing-disruptingbrominatedfuranonesprotectthegnotobioticbrineshrimpArtemiafranciscanafrompathogenicVibrioharveyi,VibriocampbelliiandVibrioparahaemolyticusisolates.
Appl.
Environ.
Microbiol.
72,6419–6423(2006).
15.
You,J.
etal.
InhibitionofVibriobiolmformationbyamarineactinomycetestrainA66.
Appl.
Microbiol.
Biotechnol.
76,1137–1144(2007).
16.
Kiran,G.
S.
,Sabarathnam,B.
&Selvin,J.
BiolmdisruptionpotentialofaglycolipidbiosurfactantfrommarineBrevibacteriumcasei.
FEMSImmunol.
Med.
Microbiol.
59,432–438(2010).
17.
Kiran,G.
S.
etal.
Antiadhesiveactivityofpoly-hydroxybutyratebiopolymerfromamarineBrevibacteriumcaseiMSI04againstshrimppathogenicvibrios.
Microb.
CellFact.
13,114(2014).
18.
AL-Fattani,M.
A.
&Douglas,L.
J.
BiolmmatrixofCandidaalbicansandCandidatropicalis:chemicalcompositionandroleindrugresistance.
J.
Med.
Microbiol.
55,999–1008(2006).
19.
Kiran,G.
S.
,Priyadharshini,S.
,Anitha,K.
,Gnanamani,E.
&Selvin,J.
Character-izationofanexopolysaccharidefromprobiontEnterobacterfaecalisMSI12anditseffectonthedisruptionofCandidaalbicansbiolm.
RSCAdv.
5,715–773(2015).
20.
Waters,C.
M.
&Bassler,B.
L.
Quorumsensing:cell-to-cellcommunicationinbacteria.
Annu.
Rev.
CellDev.
Biol.
21,319–346(2005).
21.
Ng,W.
L.
&Bassler,B.
L.
Bacterialquorum-sensingnetworkarchitectures.
Annu.
Rev.
Genet.
43,197–222(2009).
22.
Cao,J.
G.
&Meighen,E.
A.
Puricationandstructuralidenticationofanauto-inducerfortheluminescencesystemofVibrioharveyi.
J.
Biol.
Chem.
264,21670–21676(1989).
23.
Chen,X.
etal.
Structuralidenticationofabacterialquorum-sensingsignalcontainingboron.
Nature415,545–549(2002).
24.
Defoirdt,T.
,Boon,N.
,Sorgeloos,P.
,Verstraete,W.
&Bossier,P.
QuorumsensingandquorumquenchinginVibrioharveyilessonslearnedfrominvivowork.
ISMEJ.
2,19–26(2008).
25.
Taylor,M.
W.
etal.
Evidenceforacylhomoserinelactonesignalproductioninbacteriaassociatedwithmarinesponges.
Appl.
Environ.
Microbiol.
70,4387–4389(2004).
26.
Tait,K.
,Hutchison,Z.
,Thompson,F.
L.
&Munn,C.
B.
Quorumsensingsignalproductionandinhibitionbycoral-associatedvibrios.
Environ.
Microbiol.
Rep.
2,145–150(2010).
27.
Defoirdt,T.
etal.
Thebacterialstoragecompoundpoly-beta-hydroxybutyrateprotectsArtemiafranciscanafrompathogenicVibriocampbellii.
Environ.
Microbiol.
9,445–452(2007).
28.
Defoirdt,T.
,Boon,N.
,Sorgeloos,P.
,Verstraete,W.
&Bossier,P.
Short-chainfattyacidsandpoly-β-hydroxyalkanoates:(new)biocontrolagentsforasustainableanimalproduction.
Biotechnol.
Adv.
27,680–685(2009).
29.
Baruah,K.
etal.
Probingtheprotectivemechanismofpoly--hydroxybutyrateagainstvibriosisbyusinggnotobioticArtemiafranciscanaandVibriocampbelliiashost-pathogenmodel.
Sci.
Rep.
30,5–9427(2015).
30.
Maneeld,M.
,Harris,L.
,Rice,S.
A.
,DeNys,R.
&Kjelleberg,S.
Inhibitionofluminescenceandvirulenceintheblacktigerprawn(Penaeusmonodon)pathogenVibrioharveyibyintercellularsignalantagonists.
Appl.
Environ.
Microbiol.
66,2079–2084(2000).
31.
Wang,Z.
etal.
VibriocampbelliihmgA-mediatedpyomelanizationimpairsquorumsensing,virulenceandcellulartness.
Front.
Microbiol.
4,379(2013).
32.
Gomez-Gil,B.
etal.
MolecularidenticationofVibrioharveyi-relatedisolatesassociatedwithdiseasedaquaticorganisms.
Microbiology150,1769–1777(2004).
33.
Nakayama,T.
,Ito,E.
,Nomura,N.
,Nomura,N.
&Matsumura,M.
ComparisonofVibrioharveyistrainsisolatedfromshrimpfarmsandfromculturecollectionintermsoftoxicityandantibioticresistance.
FEMSMicrobiol.
Lett.
258,194–199(2006).
34.
Cataldi,T.
R.
I.
,Bianco,G.
,Frommberger,M.
&Schmitt-Kopplin,P.
H.
DirectanalysisofselectedN-acyl-L-homoserinelactonesbygaschromatography/massspectrometry.
RapidCommun.
MassSpectrom.
18,1341–1344(2004).
35.
Burton,E.
O.
,Read,H.
W.
,Pellitteri,M.
C.
&Hickey,W.
J.
Identicationofacyl-homoserinelactonesignalmoleculesproducedbyNitrosomonaseuropaeastrainschmidt.
Appl.
Environ.
Microbiol.
71,4906–4909(2005).
36.
Gutiérrez-Barranquero,J.
A.
,Reen,F.
J.
,McCarthy,R.
R.
&O'Gara,F.
DecipheringtheroleofcoumarinasanovelquorumsensinginhibitorsuppressingvirulenceDegradationintermediatesofPHBGSeghalKiranetal9PublishedinpartnershipwiththeNanyangTechnologicalUniversitynpjBiolmsandMicrobiomes(2016)16002phenotypesinbacterialpathogens.
Appl.
Microbiol.
Biotechnol.
99,3303–3316(2015).
37.
Rasmussen,T.
B.
etal.
HowDeliseapulchrafuranonesactquorumsensingandswarmingmotilityinSerratialiquefaciensMG1.
Microbiology146,3237–3244(2000).
38.
Yang,Q.
&Defoirdt,T.
QuorumSensingpositivelyregulatesagellarmotilityinpathogenicVibrioharveyi.
Environ.
Microbiol.
17,960–968(2015).
39.
Kalia,V.
C.
,Wood,T.
K.
&Kumar,P.
Evolutionofresistancetoquorumsensinginhibitors.
Microb.
Ecol.
68,13–23(2014).
40.
VanImmerseeletal.
InvasionofSalmonellaenteritidisinavianintestinalepithelialcellsinvitroisinuencedbyshort-chainfattyacids.
Int.
J.
FoodMicrobiol.
85,237–248(2003).
41.
Defoirdt,V.
,Boon,N.
,Sorgeloos,P.
,Verstraete,W.
&Bossier,P.
Short-chainfattyacidsandpoly-β-hydroxyalkanoates:(new)biocontrolagentsforasustainableanimalproduction.
Biotechnol.
Adv.
27,680–685(2009).
42.
Halet,D.
etal.
Poly-β-hydroxybutyrate-accumulatingbacteriaprotectgnotobioticArtemiafranciscanafrompathogenicVibriocampbellii.
FEMSMicrobiol.
Ecol.
60,363–369(2007).
43.
Forni,D.
,Bee,G.
,Kreuzer,M.
&Wenk,C.
NovelbiodegradableplasticsinsheepnutritioneffectsofNaOHpre-treatmentofpoly(3-hydroxybutyrate-co-3-hydro-xyvalerate)oninvivodigestibilityandoninvitrodisappearance(Rusitec).
J.
Anim.
Physiol.
Anim.
Nutr.
81,41–50(1999a).
44.
Forni,D.
,Wenk,C.
&Bee,G.
Digestiveutilizationofnovelbiodegradableplasticingrowingpigs.
Ann.
Zootech.
48,163–171(1999b).
45.
Knoll,M.
,Hamm,T.
M.
,Wagner,F.
,Martinez,V.
&Pleiss,J.
ThePHAdepolymeraseengineeringdatabase:asystematicanalysistoolforthediversefamilyofpoly-hydroxyalkanoate(PHA)depolymerases.
BMCBioinformatics10,89–97(2009).
46.
Ren,D.
,Sims,J.
&Wood,T.
K.
InhibitionofbiolmformationandswarmingofEscherichiacoliby(5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone.
Environ.
Microbiol.
3,731–736(2001).
47.
Hentzer,M.
&Givskov,M.
Pharmacologicalinhibitionofquorumsensingforthetreatmentofchronicbacterialinfections.
J.
Clin.
Invest.
112,1300–1307(2003).
48.
Defoirdt,T.
,Verstraete,W.
&Bossier,P.
Luminescence,virulenceandquorumsensingsignalproductionbypathogenicVibriocampbelliiandVibrioharveyiisolates.
J.
Appl.
Microbiol.
104,1480–1487(2008).
49.
Semmler,A.
B.
T.
,Whitchurch,C.
B.
&Mattick,J.
S.
Are-examinationoftwitchingmotilityinPseudomonasaeruginosa.
Microbiology145,2863–2873(1999).
50.
Rashid,M.
H.
,Rao,N.
N.
&Kornberg,A.
Inorganicpolyphosphateisrequiredformotilityofbacterialpathogens.
J.
Bacteriol.
182,225±227(2000).
51.
Shaw,P.
D.
etal.
DetectingandcharacterizingN-acyl-homoserinelactonesignalmoleculesbythin-layerchromatography.
Proc.
NatlAcad.
Sci.
USA94,6036–6041(1997).
52.
Beecher,D.
J.
&Wong,A.
C.
IdenticationofhemolysinBL-producingBacilluscereusisolatesbyadiscontinuoushemolyticpatterninbloodagar.
Appl.
Environ.
Microbiol.
60,1646–1651(1994).
53.
BaruahK.
etal.
InvivoeffectsofsingleorcombinedN-acylhomoserinelactonequorumsensingsignalsontheperformanceofMacrobrachiumrosenbergiilarvae.
Aquaculture2009;288:233–238.
54.
Zhang,H.
B.
,Wang,L.
H.
,ZhangL.
H.
inCurrentProtocolsinMicrobiology(ed.
StevensonR.
C.
J.
Q.
B.
)(JohnWileyandSons,2007).
55.
Liu,Y.
etal.
PHB-degradingbacteriaisolatedfromthegastrointestinaltractofaquaticanimalsasprotectiveactorsagainstluminescentvibriosis.
FEMSMicrobiol.
Ecol.
74,196–204(2010).
56.
Bhatt,R.
,Patel,K.
C.
&Trivedi,U.
"Puricationandpropertiesofextracellularpoly(3-hydroxybutyrate)depolymeraseproducedbyAspergillusfumigatus202.
J.
Polym.
Environ.
18,141–147(2010).
57.
Panagiotidou,E.
etal.
Asimplerouteforpurifyingextracellularpoly(3-hydro-xybutyrate)-depolymerasefromPenicilliumpino-philum.
EnzymeRes.
2014,159809(2014).
ThisworkislicensedunderaCreativeCommonsAttribution4.
0InternationalLicense.
Theimagesorotherthirdpartymaterialinthisarticleareincludedinthearticle'sCreativeCommonslicense,unlessindicatedotherwiseinthecreditline;ifthematerialisnotincludedundertheCreativeCommonslicense,userswillneedtoobtainpermissionfromthelicenseholdertoreproducethematerial.
Toviewacopyofthislicense,visithttp://creativecommons.
org/licenses/by/4.
0/TheAuthor(s)2016SupplementaryInformationaccompaniesthepaperonthenpjBiolmsandMicrobiomeswebsite(http://www.
nature.
com/npjbiolms)DegradationintermediatesofPHBGSeghalKiranetal10npjBiolmsandMicrobiomes(2016)16002PublishedinpartnershipwiththeNanyangTechnologicalUniversity

老用户专享福利 腾讯云 免费领取轻量云2核4G服务器一年

感恩一年有你!免费领取2核4G套餐!2核4G轻量应用服务器2核 CPU 4GB内存 60G SSD云硬盘 6Mbps带宽领取地址:https://cloud.tencent.com/act/pro/lighthousethankyou活动规则活动时间2021年9月23日 ~ 2021年10月23日活动对象腾讯云官网已注册且完成实名认证的国内站用户(协作者与子用户账号除外),且符合以下活动条件:账号...

Spinservers:美国独立服务器(圣何塞),$111/月

spinservers是Majestic Hosting Solutions,LLC旗下站点,主营美国独立服务器租用和Hybrid Dedicated等,spinservers这次提供的大硬盘、大内存服务器很多人很喜欢。TheServerStore自1994年以来,它是一家成熟的企业 IT 设备供应商,专门从事二手服务器和工作站业务,在德克萨斯州拥有40,000 平方英尺的仓库,库存中始终有数千台...

美国Cera 2核4G 20元/45天 香港CN2 E5 20M物理机服务器 150元 日本CN2 E5 20M物理机服务器 150元 提速啦

提速啦 成立于2012年,作为互联网老兵我们一直为用户提供 稳定 高速 高质量的产品。成立至今一直深受用户的喜爱 荣获 “2021年赣州安全大赛第三名” “2020创新企业入围奖” 等殊荣。目前我司在美国拥有4.6万G总内存云服务器资源,香港拥有2.2万G总内存云服务器资源,阿里云香港机房拥有8000G总内存云服务器资源,国内多地区拥有1.6万G总内存云服务器资源,绝非1 2台宿主机的小商家可比。...

www.k8k8.com为你推荐
openeuler手机里的安全性open.wpapsk分别是什么意思sonicchat苹果手机微信显示WeChatwww.hao360.cn搜狗360导航网址是什么陈嘉垣陈嘉桓是谁?嘀动网在炫动网买鞋怎么样,是真的吗haole16.com高手们帮我看看我的新网站WWW.16mngt.com怎么不被收录啊?www.7788dy.comwww.tom365.com这个免费的电影网站有毒吗?5xoy.comhttp://www.5yau.com (舞与伦比),以前是这个地址,后来更新了,很长时间没玩了,谁知道现在的地址? 谢谢,www.baitu.com谁有免费的动漫网站?m.kan84.net电视剧海派甜心全集海派甜心在线观看海派甜心全集高清dvd快播迅雷下载
深圳网站空间 沈阳虚拟主机 南通服务器租用 高防服务器租用qy 天津服务器租赁 万网域名代理 老左 x3220 westhost raksmart 韩国加速器 xfce 免费个人博客 合肥鹏博士 jsp空间 中国电信测网速 腾讯实名认证中心 佛山高防服务器 免费私人服务器 空间登入 更多