Eastwww.se222se.com

www.se222se.com  时间:2021-03-19  阅读:()
NANOEXPRESSOpenAccessSilver(I)-directedgrowthofmetal-organiccomplexnanocrystalswithbidentateligandsofhydroquinineanthraquinone-1,4-diyldiethersaslinkersatthewater-chloroforminterfaceYingTang1,Hui-TingWang1,MengChen1,Dong-JinQian1*,LiZhang2andMinghuaLiu2AbstractImmiscibleliquid-liquidinterfacesprovideuniquedoublephaseregionsforthedesignandconstructionofnanoscalematerials.
Here,wereportedAg(I)-directedgrowthofmetal-organiccomplexnanocrystalsbyusingAgNO3asaconnectorintheaqueoussolutionandbidentateligandof1,4-bis(9-O-dihydroquininyl)anthraquinone[(DHQ)2AQN]anditsenantiomerof(DHQD)2AQNinthechloroformsolutionsaslinkers.
TheAg-(DHQ)2AQNandAg-(DHQD)2AQNcomplexnanocrystalswereformedattheliquid-liquidinterfacesandcharacterizedbyusingUV-visabsorptionandfluorescencespectroscopyandX-rayphotoelectronspectroscopy,aswellasbyusingscanningelectronmicroscopy.
Screw-likenanocrystalswereformedattheinitial30minaftertheinterfacialcoordinationreactionstarted,thentheygrewintonanorodsafterseveraldays,andfinallybecamecubicmicrocrystalsafter2weeks.
Thepureligandshowedtwoemissionbandscenteredatabout363and522nminthemethanolsolution,thesecondoneofwhichwasquenchedandshiftedtoabout470nmintheAg-complexnanocrystals.
TwocouplesofreversibleredoxwaveswererecordedfortheAg-complexnanocrystals;onecenteredatabout0.
25V(vs.
Ag/AgCl)wasdesignatedtooneelectrontransferprocessofAg(DHQ)2AQNandAg(DHQ)2AQN+,andtheotheronecenteredatabout0.
2VwasdesignatedtooneelectrontransferprocessofAg(DHQ)2AQNandAg+(DHQ)2AQN.
Keywords:Metal-organiccomplexnanocrystal;Liquid-liquidinterface;Morphology;Fluorescence;ElectrochemistryBackgroundSelf-assemblyofnanostructuralmaterialsatthefluidin-terfaceshasrecentlyreceivedgrowingattentionbecausetheinterfaceregionshaveadoublephasethicknessoftensofnanometersdependingonthenatureofthesol-ventsandspecieswithinthem,adimensionofwhichiscomparabletothatofthenanostructuralmaterials[1].
Thatis,thefluidinterfaceprovidesauniqueregionforthegrowthofmicro-ornanoscalematerialsandfortheconstrainedchemicalreactions[2,3].
Ithasbeenfurtherfoundthatthosematerialsproducedatthefluidinter-facesarehighlymobileandcanrapidlyachieveanequi-libriumassemblywiththereactantsineachphase.
Thedynamicprocessofspeciesorparticlesacrossinterfaceusuallydominatecomposition,morphology,andstruc-tureofthematerialsproduced[4,5].
Therapiddiffusionofnanoparticlesandreagentsineitherfluidphaseleadstoveryefficientinterfacialchemistry,includinginter-facialchemicalreactionsandmolecularassembly.
Immisciblesolutionsareoftenusedtoformthefluidinterfacesincesuchaninterfacecanprovideadefect-freejunctionthathasanimportancefortheproductswithhighpurity[6].
Manyone-dimensional(1D)nano-wiresandnanotubesand2Dnanosheetsandnanocombsofmetals,metaloxide,metalsulfide,andcomplexeshavebeendesignedandconstructedinthepastdecades[7-9].
Ourpreviousworkhasrevealedthatthespecificfeaturesofthemetalions(suchasthegeometry)andcoordinationnumbersoftheanionicionsorligandstakeanimportantroleingoverningthecrystalstructureoftheproducts[10-12],thoughacomplexinterplayofvanderWaals,*Correspondence:djqian@fudan.
edu.
cn1DepartmentofChemistry,FudanUniversity,220HandanRoad,Shanghai200433,ChinaFulllistofauthorinformationisavailableattheendofthearticle2014Tangetal.
;licenseeSpringer.
ThisisanOpenAccessarticledistributedunderthetermsoftheCreativeCommonsAttributionLicense(http://creativecommons.
org/licenses/by/4.
0),whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedtheoriginalworkisproperlycredited.
Tangetal.
NanoscaleResearchLetters2014,9:488http://www.
nanoscalereslett.
com/content/9/1/488electrostatic,magnetic,molecular,andentropiceffectsneedstobeconsidered.
Besidestheinorganiccompounds,polymercrystallinenanomaterialscouldalsobecon-structedattheliquid/liquidinterfaces.
Forinstance,Matsuiandcoworkerssynthesizedsinglecrystallinecon-ductingpolymer,poly(3,4-ethylenedioxythiophene),withthefastconductanceswitchingproperty[13].
TheyfurtherpreparedsinglecrystallinenanoneedlesofpolyanilineandpolypyrroleviaaninterfacialpolymerizationinducedbyFeCl3[14];theproductshaveafastconductanceswitchingtimebetweentheinsulatingandconductingstatesintheorderofmilliseconds.
Layeredporouspoly(4-vinylpyridine)(P4VP)filmscouldalsobeformedatthewater-oilinterfaceswiththeporousdiametersintherangefromhundrednanometerstose-veralmicrometers[15].
Liuandcoworkershavefurtherdevelopedthismethodtopreparemicrocapsulesandfoamfilms,whichwereusedasplatformstoformvariouscompositeinorganicnanomaterials.
Examplesincludedgoldnanoparticle-dopedpoly(2-vinylpyridine)andpoly(N-vinylcarbazole)composites[16,17]andsilver-orgold-dopeddiblockcopolymerofpoly(t-butylmethacrylate)-block-poly(2-vinylpyridine)composites[18].
Thesemetal-dopedcompositesshowedhighcatalyticactivityanddurabilityonthereductionoforganiccompoundssuchasnitrobenzene,4-nitrophenol,and4-nitrobenzoicacid[19].
Inthepresentwork,Ag(I)-directedmetal-organiccomplexnanocrystalswerefabricatedatthewater-chloroforminterfacebyusingAgNO3asaconnectorandbidentatechiralligandof1,4-bis(9-O-dihydroqui-ninyl)anthraquinone[(DHQ)2AQN]anditsenantiomerof(DHQD)2AQNaslinkers.
OurpreviousworkhasrevealedthatAgNO3coulddirectformationofchiralcoordinationpolymers(CPs)attheair-waterinterface[20].
Atomicforcemicroscopic(AFM)imagesforthetransferredCPsrevealedirregularaggregatesthatwerecomposedofmanyroundparticles.
Theseparticleswereconnectedtogethertoformwireswithparticularorien-tation.
However,duetothelimitationofthereactionspecieswithintheLangmuirmonolayersattheair-waterinterface,theorientationofthoseaggregateswasnotclear.
Hence,toclarifymorphologiesoftheseag-gregates,thecoordinationreactionwasperformedhereatthewater-chloroforminterfacewhereintheirregu-laraggregatesmaygrowintorelativelylargermacro-/nanocrystalssincetherewereenoughinorganicmetalionsandligandsineachphase.
Theas-preparedAg-organiccomplexnanocrystalswerecharacterizedbyusingUV-visabsorptionspectroscopyandX-raypho-toelectronspectroscopy(XPS)andscanningelectronmicroscopy(SEM).
Finally,theluminescentbehaviorsandelectrochemicalpropertiesofthenanocrystalswereinvestigated.
MethodsMaterialsChiralligandofhydroquinineanthraquinone-1,4-diyldi-etherof(DHQ)2AQNanditsenantiomer(DHQD)2AQN(Figure1)werepurchasedfromSigma-AldrichCo.
(St.
Louis,MO,USA).
ChloroformwasfromAlfaAesar(Beijing,China).
AgNO3wasfromShanghaiChemicalRe-agentCo.
(Shanghai,China).
Allchemicalswereusedasreceivedwithoutfurtherpurification.
Ultrapurewater(18.
2ΩMcm)waspreparedwithaRephiLefiltrationunit(RephiLeBioscienceLtd,Shanghai,China).
GrowthofAg-complexnanocrystalsatthewater-chloroforminterfaceInterfacialself-assemblyoftheAg-(DHQ)2AQNorAg-(DHQD)2AQNcomplexnanocrystalswasperformedasfollows:20mL10mMAgNO3aqueoussolutionwasslowlyaddedontothesurfaceof30mL(DHQ)2AQNor(DHQD)2AQNchloroformsolutioninabeaker.
Thereactionsystemwasleftundisturbedatroomtempe-raturefromseveralminutesto2weeks.
Asacontrolex-periment,interfacialphenomenonof(DHQ)2AQNor(DHQD)2AQNattheinterfaceofpurewaterandligandchloroformsolutionwasalsoinvestigated.
TransferofAg-complexnanocrystalsontosubstratesurfacesLayersofAg-(DHQ)2AQNorAg-(DHQD)2AQNcom-plexnanocrystalsgrownattheinterfaceweretransferredontosubstratesurfaceswiththeuseofadipperfromFigure1Structureoftheligandsusedinthepresentwork.
Tangetal.
NanoscaleResearchLetters2014,9:488Page2of9http://www.
nanoscalereslett.
com/content/9/1/488KSV5000minitrough(KSVInstrumentCo.
,Helsinki,Finland)orfromJML04C2trough(Powereach,Shanghai,China).
Thesubstratewasfirstlyimmersedintotheliquid-liquidinterfacebeforetheinterfacialreactionstarted,andafteragiventimewaitingforthecoordinationreactionandformationofAg-complexnanocrystals,thesubstratewasverticallywithdrawnfromtheinterface.
Thedippingratewaskeptat1mm/min.
InstrumentsUV-visspectraweremeasuredwiththeuseofaShimadzuUV-2550UV-visspectrophotometer(Shimadzu,Kyoto,Japan).
Steady-statefluorescencespectrawererecordedbyusingaShimadzuRF-5300PCspectrophotometer.
XPSspectrawererecordedbyusingaVGESCALABMKIImultifunctionspectrometer(VGScientific,EastGrinstead,UK),withnonmonochromatizedMg-KαX-raysastheexcitationsource.
Thesystemwascarefullycali-bratedbyFermiedgeofnickel,Au4f2/7,andCu2p2/3bindingenergy.
Passenergyof70eVandstepsizeof1eVwerechosenwhentakingspectra.
Intheanalysis,chamberpressuresof1~2*107Pawereroutinelymaintained.
ThebindingenergiesobtainedintheXPSanalysiswerecorrectedbyreferencingtheC1speakto284.
60eV.
Scanningelectronmicroscopic(SEM)measurementswereperformedonaPhilipsXL30electronmicroscope(Philips,Amsterdam,TheNetherlands).
ThesamplesweredepositedontheSisubstratesurface.
High-resolutiontransmissionelectronmicroscopeimagewasacquiredonaJEOLJEM-2010transmissionelectronmicroscope(JEOLLtd.
,Akishima-shi,Japan)operatingatanaccel-eratingvoltageof200kV.
Thesamplewasdepositedontoa230-meshcoppergridcoveredwithFormvar.
Cyclicvoltammogram(CV)wasmeasuredbyusinganelectrochemicalanalyzer(CHI601b,CHInstruments,Inc.
,Shanghai,China).
APtwireandAg/AgClelectrodewereusedastheauxiliaryandreferenceelectrodes,respectively,andtheindiumtinoxide(ITO)electrodecoveredwithlayersofAg-(DHQ)2AQNorAg-(DHQD)2AQNnanocrys-talswasusedastheworkingelectrodewitha10mmol/LHClO4solutionastheelectrolyte.
FortheCVmeasurementoftheligandredoxreaction,aninitialpotentialof0.
5Vwasappliedfor2s,followedbycyclicscanstoafinalpo-tentialof0V.
ForthemeasurementoftheAg(I)redoxre-action,theinitialpotentialof0.
1Vwasappliedfor2s,followedbycyclicscanstothefinalpotentialof0.
5V.
AllCVmeasurementsweredonefor10cyclesunderanArat-mosphereatroomtemperature.
ResultsanddiscussionGrowthofAg-complexnanocrystalsatthewater-chloroforminterfaceInterfacialreactionbetweenthesilverionandligandof(DHQ)2ANQor(DHQD)2ANQoccurredquickly.
Duringexperiments,wefoundthatthereactionratewascloselydependentontheconcentrationofAgNO3inwaterandthatoftheligandinchloroformaswellasthetempe-rature.
Similartothosereportedintheliterature[21],strongerconcentrationofthereactantsandhigherre-actiontemperaturecouldresultinaquickformationofmetal-organiccomplexnanocrystals.
Thesenanocrystalswerethentransferredonvarioussubstratesurfacesbytheverticaldippingmethodforthecharacterizationofmorphologies,absorptionandemissionspectra,XPS,andelectrochemistry.
MorphologycharacterizationMorphologiesoftheAg-directedcomplexnanocrystalswerecharacterizedbyusingSEMtechnique.
Thesena-nocrystalsweredepositedonthefreshlycleanedSisubstratesurfacebyverticaldippingmethod.
Similarmorphologieswereobtainedforthetwoligands,soasanexample,Figure2showsseveralSEMimagesoftheAg-(DHQ)2AQNcomplexnanocrystalsformedatthewater-chloroforminterfacefromtheinitial5minto2weeks,whichrevealedthefollowingfeatures.
Firstly,manyscrew-likenanocrystalswereformedattheinitial30minwithalengthofseveralhundrednanome-tersanddiametersoftensofnanometers(Figure2A,B).
Thesenanocrystalsformedaggregatespossiblyduetoastronginteractionbetweeneachscrew-likenanocrystal.
Suchkindofinteractionsbetweenadjacentnanocrystalshasbeenusedtocontrolthegrowthoflarge-scaleorcol-loidalnanocrystalbuildingblocksintheorganicsolutions[22].
Asithasbeenreportedthateachsilverionmayco-ordinatewithtwopyridylgroups[20,23],sowemaysug-gestthateachsilverioncoordinatedwithtwoligandstoformAg-directedCPnanocrystals.
Thescrew-likefeatureofthenanocrystalsmaybeduetothefactthattheligandwasachiralmolecule,whichdominatedgenerallythefor-mationofuniquesupramolecularaggregatesornanocrys-talsashavingbeenreportedbyseveralresearchgroups[24-26].
Secondly,thescrew-likenanocrystalstransformedintonanorodsaftertheinterfacialreactiontimeincreasedtoabout30min.
AsshowninFigure2C,D,thelengthofnanorodsincreasedtobeaboutseveralmicrometerswiththediametersabouttensofnanometers,alittlein-creasedascomparedwiththoseofthescrew-likenano-crystals.
Thisincreasemaybeattributedtothefollowingreasons:(1)thecoordinationreactionofthesilverionsandbidentateligandscontinuedonthesurfaceofthescrew-likenanocrystals,and(2)thenanocrystalsformedattheinitialtimewereofhighlyactivesurfaceenergythatresultedinastronginteractionbetweeneachnano-crystal.
Asaresult,thesmallnanocrystalsformedlargerparticlesasthoseoftenoccurredintheair-organicsol-ventinterfaces[27].
Tangetal.
NanoscaleResearchLetters2014,9:488Page3of9http://www.
nanoscalereslett.
com/content/9/1/488Thirdly,whentheinterfacialreactioncontinueduptoseveraldays,thenanorodsfurthergrewintocubicma-crocrystalswiththelengthofasideabouthundredsofnanometers(Figure2E,F).
Thisprocesswassimilartothatwehaveobservedformetal-mediatednano-crystalsofmultiporphyrinarrays[10],whereintheshapesoftheproductswerecloselydependentonthegeometriesofthecentralmetalions.
Here,theAg+ionsweretetrahedrallycoordinatedwithbidentateligandof(DHQD)2AQN,soscrew-likeornanorodswerefirstlyformed,thentheygrewintolargercubicparticles.
Acomparisonofthesizeofthenanorodswiththatofthecubicparticlescouldfurtherfindthatthecubiclengthwasshorterthanthatofthenanorods;thisphenomenonmaybeattributedtoaslowkineticprocessofthecrys-talgrowingattheearlierstage,thentoathermodyna-micprocessafterseveraldays.
Theotherpossiblereasonmaybethelowestsurfaceactiveenergyofthecubiccrys-tals;thatis,thenanocubesmaybemorestablethanthenanorods.
SimilarTEMimageswereobservedfortheAg-(DHQ)2AQNcomplexnanocrystals,butthescrew-likenano-crystalsformedattheinitialtimewerenotverystableunderthehighbeamenergyofTEM.
Asanexample,Figure2GshowsaTEMphotooftheAg-complexnano-crystalsatthereactiontimeof2h,whichrevealedthatitwascomposedofmanynanorodsanddot-likeag-gregatesandinagreementwiththatobservedfromtheFigure2SEMandTEMimagesofAg-(DHQ)2AQNnanocrystalsgrownatwater-chloroforminterfaceafterdifferentreactiontimes.
SEMimagesafter(A)30min,(B)30min(enlargedphoto),(C)2h,(D)12h,(E)3days,and(F)15days;(G)TEMimageafter2h;(H)electrondiffractionpatternofthenanocrystals.
Tangetal.
NanoscaleResearchLetters2014,9:488Page4of9http://www.
nanoscalereslett.
com/content/9/1/488SEMphotos.
ElectrondiffractionpatternofthepresentAg-complexnanocrystalsrevealedmanyirregulardots(Figure2H),indicatingthattheywerepolycrystalline.
X-rayphotoelectronspectroscopyElementcompositionsfortheAg-directedcomplexnano-crystalsweredetectedbyusingtheXPStechnique.
Alsoasanexample,Figure3showsthehigh-resolutionXPSbandsfortheAg-(DHQ)2AQNcomplexnanocrystals,whichrevealedfourpeaksinthebindingenergyfrom100to600eVexceptfortheSielementfromsubstratesurface.
Thebindingenergyofthesefourpeakswasasfollows:284.
6,368.
6/374.
4,399.
4~403,and532.
6eV,whichcouldbeassignedtotheelementsofC(1s),Ag(3d),N(1s),andO(1s),respectively.
TheC,partofN,andOelementswerefromtheligandof(DHQ)2AQN,whiletheelementsofAg,partofN,andOwerefromAgNO3.
Thus,theseXPSdataconfirmedformationofAg-(DHQ)2AQNcom-plexnanocrystals[20].
AbsorbanceandfluorescenceemissionofthenanocrystalsAbsorptionandemissionfeaturesoftheAg-complexnanocrystalsas-preparedwereinvestigatedonthequartzsurfaces.
Asanexample,Figure4showsabsorptionspec-trafortheAg-(DHQ)2AQNnanocrystalstransferredfromthewater-chloroforminterfaceatdifferentreactiontimes,togetherwithaspectrumoftheligandinthedilutemethanolsolution.
Threeabsorptionbandswererecordedandappearedatabout230~238,323~334,and416nmfortheligandof(DHQ)2AQNinthesolution,whichcanbedesignatedtotheelectrontransitionofquinuclidine,quinine,andanthraquinonesubstituents.
Ourpreviousworkhasrevealedthatthesepeaksshiftedtoabout240,337,and416nminitsLangmuir-Blodgett(LB)film[20].
WhentheligandwascoordinatedwithAg+ionstoformtheLBfilmofAg-(DHQ)2AQNcoordinationpolymers,theseabsorptionbandsappearedatabout245,342,and413nm,respectively[20].
Thatis,aredshiftwasrecordedfortheformertwopeakswhentheligandwascoordinatedwithAg+ions.
Here,forthefilmsofAg-(DHQ)2AQNcomplexnano-crystals,abroadabsorptionbandwasrecordedwiththemaximumatabout270~296nm.
Butitishardtodis-tinguisheachpeakasthoseinthesolutionsandLBfilms[20].
ThisdifferencecanbeattributedtothefactthattheLBfilmwasalmosttransparentanddidnotscatterthelightduringtheabsorptionmeasurements;however,thepresentfilmofAg-(DHQ)2AQNcomplexnanocrys-talswasnot.
Thedetectedlightwasstronglyscatteredbythenanoparticles,resultinginabroadenbandfrom200tonearly600nm.
Moreover,withincreasingthere-actiontime,theaveragesizesofthenanocrystalsin-creased(asshownintheSEMimagesinFigure2).
Asaresult,themainabsorptionbandalittleredshifted,thefeatureofwhichwasinagreementwiththatobservedintheaggregatesofinorganiccomplexesormacrocycliccompoundsduetoastrongmolecularinteractioninthelargeraggregatesortoastrongerlightscatteredbythelargeraggregates[28,29].
Basedonthechemicalstructureofthechiralligandsused,wecanfindthattheycontainbothquinineandan-thraquinonesubstituents,bothofthemareimportantlight-harvestingunits.
Theycannotonlyabsorbultravio-letlightbutalsogiveoffemissioninthenearultravioletandvisibleregion[30,31],sotheyhavepotentialapplica-tionsinthefieldsofoptical,electroluminescentmaterialsandlight-emittingdiodes.
ThelightenergyabsorbedbytheligandscanbefurthertransferredtosomemetalionslikeEu3+andTb3+asluminophores,sensors,andorganiclight-emittingdiodes[32,33].
Here,luminescentemission280284288366372378396402408BindingEnergy(eV)528534540Figure3High-resolutionXPSspectraoftheAg-(DHQ)2AQNnanocrystals.
2003004005006000.
00.
10.
20.
30.
40.
5cbAbsorbance(arb.
unit)Wavelength(nm)aFigure4Absorptionspectra.
(a)Ligandof(DHQ)2AQNinthemethanolsolutionand(b)Ag-(DHQ)2AQNnanocrystalsdeposited2hand(c)Ag-(DHQ)2AQNnanocrystalsdeposited3daysaftertheinterfacialreaction.
Tangetal.
NanoscaleResearchLetters2014,9:488Page5of9http://www.
nanoscalereslett.
com/content/9/1/488propertiesfortheAg-(DHQ)2AQNcomplexnanocrystalswereinvestigatedaftertheyweretransferredonthequartzsubstratesurfaces.
Figure5showsemissionspectrumfortheAg-(DHQ)2AQNcomplexnanocrystalsonthequartzsubstratesurface,togetherwithanemissionspectrumoftheligandinthemethanolsolution.
Theexcitedwavelengthwas317nm.
Theseemissionspectrarevealedthefollowingfeatures.
Firstly,twobroademissionpeakswererecordedandcen-teredatabout363and520to530nmfortheligand(DHQ)2AQNinthemethanolsolution.
Thefirstpeakmaybedesignatedtotheemissionfromthehydroquininesub-stituentsandthesecondonetothatoftheanthraquinone[20].
Secondly,theAg-(DHQ)2AQNcomplexnanocrystalsshowedalsotwobroademissionpeaks;thefirstoneap-pearedatabout360nm(verysimilartothatinthemetha-nolsolution),whilethesecondone'blue'shiftedtoabout470nm.
Previously,wehavefoundthatthefluorescentemissionfeaturesfortheligandsinthecastingfilmsweresimilartothoseintheLBfilms;thatis,thefirstoneap-pearedatabout365nmwhilethesecondoneslightlyredshiftedtotherangeof530~560nm.
Thisredshifthasbeenattributedtoacloselypackedarrangementofthemoleculesintheorganizedultrathinfilmsasoftenobservedforthemacrocyclicmoleculessuchasporphyrinsandinorganiccomplexes[10-12].
Theblueshiftphenomenonofthesecondemissionbandwasalsoobservedinthelayer-by-layermultilayersofPd-(DHQ)2ANQandPd-(DHQD)2ANQcoordinationpolymers[34],whichwasattributedtotheformationofthePd-(DHQ)2AQNandPd-(DHQD)2ANQcomplexes.
Duringexperiments,wemeasuredtheemissionspectraforthemixturesof(DHQ)2ANQandAgNO3atthemolarratiosfrom1:0to1:10inthemethanolsolution.
AsshowninFigure6,theemissionatapproximately360nmdidnotshowasignificantdifferencewiththeincreaseoftherelativemolarfractionsofAgNO3.
How-ever,theemissionat525nmgraduallyweakenedwhentheAgNO3solutionwasadded.
WhenthemolarratiosofAgNO3relativetotheligandincreasedto10,aweakemissionpeakwasobservedatapproximately470nm,whichwasinagreementwiththatobservedintheAg-(DHQ)2AQNcomplexnanocrystals.
Theseresultssug-gestedthattheblueshiftandquenchingofthesecondemissionpeakmaybeattributedtotheformationofmetal-ligandcomplexesinthenanocrystals[34].
VoltammetricpropertiesBesidestheinterestingopticalandchiralbehaviors,(DHQ)2AQNand(DHQD)2AQNarealsoelectroactivecompoundsbecausetheycontaintheanthraquinonesubstituents,whichhavebeenwidelyusedaselectroac-tivematerialseitherforthefundamentalresearchesonelectrochemistryorforthepotentialapplicationsinthesensors,electrochromism,andorganicbatteries[32,33].
Here,thecyclicvoltammogramsofAg-complexnano-crystalsontheITOelectrodeswereinvestigatedandcomparedwiththoseoftheligandinthecastingfilms.
Figure7AshowstheCVcurvesfortheITOelectrodecoveredbytheAg-(DHQ)2AQNcomplexnanocrystalsinthe0.
01mol/LHClO4electrolytesolutionsinthepo-tentialrangeof0.
5to0Vatthescanratesfrom0.
05to0.
6V/s.
Onecoupleofredoxwavewasrecordedwiththecathodic(Epc)andanodic(Epa)potentialsataround0.
27~0.
29and0.
22~0.
20Vvs.
Ag/AgCl,respect-ively.
Basedontheliterature[35],thisredoxcouplewasdesignatedtotheelectrontransferprocessof(DHQ)2AQNand(DHQ)2AQN.
ThepotentialdifferenceΔE(ΔE=Epa–Epc)was0.
05Vwhenthescanratewas0.
05V/s,whichslightlyincreasedto0.
09Vwhenthescanratewas0.
6V/s.
Thereductioncurrentintensitywasabout15.
6μA,whichwasalsoclosetothatofthe3504004505005506000306090120EmissionIntensity(arb.
unit)Wavelength(nm)Figure5Fluorescencespectra.
Ag-(DHQ)2AQNnanocrystals(solidline)andtheligandinthemethanolsolution(dashedline).
350400450500550600080160240Ag+:(DHQ)2ANQ1:01:21:51:10Absorbance(arb.
unit)Wavelength(nm)Figure6Fluorescencespectraforthemixturesof(DHQ)2AQNandAgNO3inthemethanolsolutions.
Tangetal.
NanoscaleResearchLetters2014,9:488Page6of9http://www.
nanoscalereslett.
com/content/9/1/488oxidationcurrentintensity(12.
6μA)whenthescanratewas0.
6V/s.
TheseCVfeaturessuggestedthattheredoxprocessoftheligandsinthenanocrystalswasreversible.
Figure7BshowstheCVcurvesfortheAg-(DHQ)2AQNnanocrystalsinthe0.
01mol/LHClO4electrolytesolutionsinthepotentialrangeof0.
1to0.
5Vatthescanratesfrom0.
05to0.
6V/s.
Onecoupleofredoxwavewasrecordedwiththecathodicandanodicpoten-tialsataround0.
13~0.
07and0.
28~0.
32V,whichwasattributedtotheredoxreactionoftheconnectorofAg+ions[36],withtheelectrontransferprocessofAg-(DHQ)2AQNandAg+-(DHQ)2AQN.
Thepotentialdiffer-enceΔEwas0.
35Vwhenthescanratewas0.
05V/s,whichincreasedto0.
45Vwhenthescanratewas0.
6V/s.
Relationoftheredoxcurrentintensityofthemodifiedelectrodetothescanrateandtherootofthescanratewascalculated.
Figure8AshowsplotsofthecurrentintensityforthereductionreactionoftheligandAg-(DHQ)2AQN→Ag-(DHQ)2AQNtothescanrateandtherootofthescanratefortheITOelectrodemodifiedbythefilmofAg-(DHQ)2AQNnanocrystals.
Basedonthesedata,wecanfindthatthecurrentintensitywasproportionaltotherootofthescanratesratherthanthatofthescanrates,whichindicatedthattheelectroac-tivethicknessofthenanocrystalswasthickerthanthatofthediffusionlayer.
ThiswasreasonablebecausethefilmwascomposedofirregularAg-(DHQ)2AQNcom-plexnanocrystalswiththesizesintherangeofhundredsofnanometers(Figure2).
Acloseinspectionofthefig-urecouldfurtherfindthatthislinedidnotgothroughthezeropoint.
Thisfeaturesuggestedthat,besidesthediffusionlayer,theelectrontransferprocessbetweentheAg-(DHQ)2AQNnanocrystalsandelectrodesurfacemaybealsoinfluencedbysomeotherissues,suchasthein-terfacialresistancebetweenthenanocrystalsandelec-trodesurfaceandtheconnectorsofAgNO3betweentheligandsandelectrodesurface[36].
-0.
5-0.
4-0.
3-0.
2-0.
10.
0-80-4004080120CurrentIntensity(A)Potential(VvsAg/AgCl)(A)-0.
10.
00.
10.
20.
30.
40.
5-300-200-1000100200300CurrentIntensity(A)Potential(VvsAg/AgCl)(B)Figure7CyclicvoltammogramsoftheAg-(DHQ)2AQNnanocrystals.
(A)Potentialrangeof0.
5to0Vand(B)potentialrangeof0.
1to0.
5Vatthescanratesof0.
05,0.
1,0.
2,0.
3,0.
4,0.
5,and0.
6V/sinthe0.
01mol/LHClO4electrolytesolutions.
(A)(B)Figure8Plotsofcurrentintensitytothescanrates(blackcircles)androotofscanrates(blacksquares).
(A)ReductionreactionofAg-(DHQ)2AQN→Ag-(DHQ)2AQNand(B)reductionreactionofAg+-(DHQ)2AQN→Ag-(DHQ)2AQNcomplexnanocrystals.
Tangetal.
NanoscaleResearchLetters2014,9:488Page7of9http://www.
nanoscalereslett.
com/content/9/1/488Figure8BshowsplotsofthecurrentintensityforthereductionreactionofthesilverionsinthecomplexnanocrystalsofAg+-(DHQ)2AQN→Ag-(DHQ)2AQNtothescanrateandtherootofthescanrate.
DifferentfromthatobservedinFigure8Aforthereductionreac-tionoftheligands,here,thecurrentintensitywasnotproportionaltoneitherthescanratenortherootofthescanrate.
Accordingtothetheoryoffilm-modifiedelec-trode[37,38],thisphenomenoncouldbeattributedtothattheelectroactivethicknessofthenanocrystalswasnotverythinnerorverythickerascomparedwiththatofthediffusionlayer.
ConclusionsSilver(I)-directedmetal-organiccomplexnanocrystalshavebeenpreparedusingAgNO3asaconnectorandchiralbidentateligandsaslinkersatthewater-chloroforminterface.
Screw-likeAg-directedcomplexnanocrystalsformedattheinitialreactiontime;then,theygrewintonanorodsandfinallybecamecubicnano-ormicrocrystals.
Theas-preparedAg-complexnanocrystalsshowedstrongluminescentemissionsaswellasreversibleredoxproper-ties,whichmayhavepotentialinterestsinthefundamen-talresearchesandapplicationsinthefieldsofchemicallymodifiedelectrodesandoptoelectronicdevices.
CompetinginterestsTheauthorsdeclarethattheyhavenocompetinginterests.
Authors'contributionsYT,HTW,MC,andLZcarriedoutthesynthesisandcharacterizationsofthematerialsanddraftedthemanuscript.
MLandDJQcontributedinthedesignanddiscussionofthisworkandintherevisionofthemanuscript.
Allauthorsreadandapprovedthefinalmanuscript.
AcknowledgementsTheauthorsaregratefultotheNationalScienceFoundationofChina(91027042)andtheProgramforChangjiangScholarsandInnovativeResearchTeaminUniversity(IRT1117).
Authordetails1DepartmentofChemistry,FudanUniversity,220HandanRoad,Shanghai200433,China.
2BeijingNationalLaboratoryforMolecularScience,CASKeyLaboratoryofColloid,InterfaceandChemicalThermodynamics,InstituteofChemistry,ChineseAcademyofSciences,No.
2ZhongguancunBeiyijie,Beijing100190,China.
Received:23July2014Accepted:7September2014Published:12September2014References1.
WangX,PengQ,LiY:Interface-mediatedgrowthofmonodispersednanostructures.
AccChemRes2007,40:635–643.
2.
NikolaidesMG,BauschAR,HsuMF,DinsmoreAD,BrennerMP,GayC,WeitzDA:Electric-field-inducedcapillaryattractionbetweenlike-chargedparticlesatliquidinterfaces.
Nature2002,420:299–301.
3.
JungwirthP,Finlayson-PittsBJ,TobiasDJ:Introduction:structureandchemistryataqueousinterfaces.
ChemRev2006,106:1137–1139.
4.
SuB,AbidJP,FermínDJ,GiraultHH,HoffmannováH,KrtilP,SamecZ:Reversiblevoltage-inducedassemblyofAunanoparticlesatliquid/liquidinterfaces.
JAmChemSoc2004,126:915–919.
5.
LinY,SkaffH,EmrickT,DinsmoreAD,RussellTP:Nanoparticleassemblyandtransportatliquid-liquidinterfaces.
Science2003,299:226–229.
6.
ZhurovK,DickinsonEJF,ComptonRG:Dynamicsofiontransferpotentialsatliquid-liquidinterfaces:thecaseofmultiplespecies.
JPhysChemB2011,115:12429–12440.
7.
ZhangSY,LiuJW,ZhangCL,YuSH:Co-assembledthinfilmsofAgnanowiresandfunctionalnanoparticlesattheliquid-liquidinterfacebyshaking.
Nanoscale2013,5:4223–4229.
8.
KhuranaE,DeVaneRH,KohlmeyerA,KleinML:Probingpeptidenanotubeself-assemblyataliquid-liquidinterfacewithcoarse-grainedmoleculardynamics.
NanoLett2008,8:3626–3630.
9.
BiswasS,DrzalLT:Anovelapproachtocreateahighlyorderedmonolayerfilmofgraphenenanosheetsattheliquid-liquidinterface.
NanoLett2009,9:167–172.
10.
LiuB,QianDJ,HuangHX,WakayamaT,HaraS,HuangW,NakamuraC,MiyakeJ:Controllablegrowthofwell-definedregularmultiporphyrinarraynanocrystalsatthewater-chloroforminterface.
Langmuir2005,21:5079–5084.
11.
LiuB,QianDJ,ChenM,WakayamaT,NakamuraC,MiyakeJ:Metal-mediatedcoordinationpolymernanotubesof5,10,15,20-tetrapyridylporphineandtris(4-pyridyl)-1,3,5-triazineatthewater-chloroforminterface.
ChemCommun2006,30:3175–3177.
12.
LiuB,ChenM,NakamuraC,MiyakeJ,QianDJ:Coordinationpolymernanocombsself-assembledatthewater-chloroforminterface.
NewJChem2007,31:1007–1012.
13.
SuK,NurajeN,ZhangL,ChuIW,PeetzRM,MatsuiH,YangNL:Fastconductanceswitchinginsingle-crystalorganicnanoneedlespreparedfromaninterfacialpolymerizationcrystallizationof3,4-ethylenedioxythiophene.
AdvMater2007,19:669–672.
14.
NurajeN,SuK,YangNI,MatsuiH:Liquid/liquidinterfacialpolymerizationtogrowsinglecrystallinenanoneedlesofvariousconductingpolymers.
ACSNano2008,2:502–506.
15.
RenZB,LiuJ,ChenYP,ChenM,QianDJ:FacilefabricationofporouspureandAgnanoparticle-dopedpoly(4-vinylpyridine)filmsattheliquid–liquidinterfaces.
ChinChemLett2011,22:867–870.
16.
ChenLJ,MaH,ChenK,ChaHR,LeeYI,QianDJ,HaoJ,LiuHG:Synthesisandassemblyofgoldnanoparticle-dopedpolymersolidfoamfilmsattheliquid/liquidinterfaceandtheircatalyticproperties.
JColloidInterfaceSci2011,362:81–88.
17.
ChuC,YangD,WangD,MaH,LiuHG:FormationofAunanoparticle-dopedPVKmicrocapsulesandfoam-likestructuresattheliquid/liquidinterface.
MaterChemPhys2012,132:916–922.
18.
ChuC,WangD,MaH,YuM,HaoJ,LiuHG:AssemblyoffoamandhoneycombfilmsofadiblockcopolymerdopedwithAuorAgnanoparticlesattheliquid/liquidinterfaceandtheircatalyticproperties.
MaterChemPhys2013,142:259–267.
19.
MaH,GengY,LeeYI,HaoJ,LiuHG:Free-standingpoly(2-vinylpyridine)foamfilmsdopedwithsilvernanoparticlesformedattheplanarliquid/liquidinterface.
JColloidInterfaceSci2013,201:223–230.
20.
TangY,ChenM,QianDJ,ZhangL,LiuM:Interfacialself-assemblyandcharacterizationofchiralcoordinationpolymermultilayerswithbidentateligandsofhydroquinineanthraquinone-1,4-diyldietheraslinkers.
Langmuir2013,29:6308–6316.
21.
RaoCNR,KulkarniGU,AgrawalVV,GautamUK,GhoshM,TumkurkarU:Useoftheliquid–liquidinterfaceforgeneratingultrathinnanocrystallinefilmsofmetals,chalcogenides,andoxides.
JColloidInterfaceSci2005,289:305–318.
22.
MillironDJ,BuonsantiR,LlordesA,HelmsBA:Constructingfunctionalmesostructuredmaterialsfromcolloidalnanocrystalbuildingblocks.
AccChemRes2014,47:236–246.
23.
KhlobystovAN,BlakeAJ,ChampnessNR,LemenovskiiDA,MajougaAG,ZykNV,SchrderM:Supramoleculardesignofone-dimensionalcoordinationpolymersbasedonsilver(I)complexesofaromaticnitrogen-donorligands.
CoordChemRev2001,222:155–192.
24.
SchmuckC:Moleculeswithhelicalstructure:howtobuildamolecularspiralstaircase.
AngewChemIntEd2003,42:2448–2452.
25.
FanZ,GovorovAO:Chiralnanocrystals:plasmonicspectraandcirculardichroism.
NanoLett2012,12:3283–3289.
26.
ShenX,Asenjo-GarciaA,LiuQ,JiangQ,AbajoFJG,LiuN,DingB:Three-dimensionalplasmonicchiraltetramersassembledbyDNAorigami.
NanoLett2013,13:2128–2133.
27.
PileniMP:Supra-andnanocrystallinity:specificpropertiesrelatedtocrystalgrowthmechanismsandnanocrystallinity.
AccChemRes2012,45:1965–1972.
Tangetal.
NanoscaleResearchLetters2014,9:488Page8of9http://www.
nanoscalereslett.
com/content/9/1/48828.
ChanLMW,TischlerJR,KooiSE,BuloviV,SwagerTM:SynthesisofJ-aggregatingdibenz[a,j]anthracene-basedmacrocycles.
JAmChemSoc2009,131:5659–5666.
29.
McCarthyBD,HontzER,YostSR,VoorhisTV,DincM:ChargetransferorJ-couplingassignmentofanunexpectedred-shiftedabsorptionbandinanaphthalenediimide-basedmetal-organicframework.
JPhysChemLett2013,4:453–458.
30.
BatistaRMF,OliveiraE,CostaSPG,LodeirobC,RaposoMMM:Cyanideandfluoridecolorimetricsensingbynovelimidazo-anthraquinonesfunctionalisedwithindoleandcarbazole.
SupramolChem2014,26:71–80.
31.
JoshiS,VarmaYT,PantDD:Steadystateandtime-resolvedfluorescencespectroscopyofquininesulfatedicationinionicandneutralmicelles:effectofmicellarchargeonphotophysics.
ColloidsSurfA:PhysicochemEngAspects2013,425:59–67.
32.
RaoX,HuangQ,YangX,CuiY,YangY,WuC,ChenB,QianG:ColortunableandwhitelightemittingTb3+andEu3+dopedlanthanidemetal-organicframeworkmaterials.
JMaterChem2012,22:3210–3214.
33.
ChelebaevaE,LongJ,LarionovaJ,FerreiraRAS,CarlosLD,AlmeidaPazFA,GomesJBR,TrifonovA,GuérinC,GuariY:Bifunctionalmixed-lanthanidecyano-bridgedcoordinationpolymersLn0.
5Ln0.
5(H2O)5[W(CN)8](Ln/Ln=Eu3+/Tb3+,Eu3+/Gd3+,Tb3+/Sm3+).
InorgChem2012,51:9005–9016.
34.
TangY,ChenM,QianDJ,ZhangL,LiuM:Palladium(II)-directedlayer-by-layerassemblyofchiralmetal–organiccomplexmultilayerswithbidentateligandsofhydroquinineanthraquinone-1,4-diyldietheraslinkersonsubstratesurfaces.
ColloidsSurfA:PhysicochemEngAspects2014,457:41–48.
35.
OyaizuK,ChoiW,NishideH:Functionalizationofpoly(4-chloromethylstyrene)withanthraquinonependantsfororganicanode-activematerials.
PolymAdvTechnol2011,22:1242–1247.
36.
SunQ,LiuJ,HuangHX,ChenM,QianDJ:Self-assembledmonolayersofpyridylthio-functionalizedcarbonnanotubesusedasasupporttoimmobilizecytochromec.
NanoscaleResLett2013,8:63.
37.
DongSJ,CheGL,XieYW:ChemicallyModifiedElectrodes.
Beijing:ChineseSciencePress;1995:52–63.
38.
MurrayRF:InElectrochemicalChemistry,VolumeVolume13.
EditedbyBardAJ.
NewYork:MareelDekkerPress;1984:191.
doi:10.
1186/1556-276X-9-488Citethisarticleas:Tangetal.
:Silver(I)-directedgrowthofmetal-organiccomplexnanocrystalswithbidentateligandsofhydroquinineanthraquinone-1,4-diyldiethersaslinkersatthewater-chloroforminterface.
NanoscaleResearchLetters20149:488.
Submityourmanuscripttoajournalandbenetfrom:7Convenientonlinesubmission7Rigorouspeerreview7Immediatepublicationonacceptance7Openaccess:articlesfreelyavailableonline7Highvisibilitywithintheeld7RetainingthecopyrighttoyourarticleSubmityournextmanuscriptat7springeropen.
comTangetal.
NanoscaleResearchLetters2014,9:488Page9of9http://www.
nanoscalereslett.
com/content/9/1/488

RackNerd:便宜vps补货/1核/768M内存/12G SSD/2T流量/1G带宽,可选机房圣何塞/芝加哥/达拉斯/亚特拉大/荷兰/$9.49/年

RackNerd今天补货了3款便宜vps,最便宜的仅$9.49/年, 硬盘是SSD RAID-10 Storage,共享G口带宽,最低配给的流量也有2T,注意,这3款补货的便宜vps是intel平台。官方网站便宜VPS套餐机型均为KVM虚拟,SolusVM Control Panel ,硬盘是SSD RAID-10 Storage,共享G口带宽,大流量。CPU:1核心内存:768 MB硬盘:12 ...

捷锐数据399/年、60元/季 ,香港CN2云服务器 4H4G10M

捷锐数据官网商家介绍捷锐数据怎么样?捷锐数据好不好?捷锐数据是成立于2018年一家国人IDC商家,早期其主营虚拟主机CDN,现在主要有香港云服、国内物理机、腾讯轻量云代理、阿里轻量云代理,自营香港为CN2+BGP线路,采用KVM虚拟化而且单IP提供10G流量清洗并且免费配备天机盾可达到屏蔽UDP以及无视CC效果。这次捷锐数据给大家带来的活动是香港云促销,总共放量40台点击进入捷锐数据官网优惠活动内...

webhosting24:€28/年,日本NVMe3900X+Webvps

webhosting24决定从7月1日开始对日本机房的VPS进行NVMe和流量大升级,几乎是翻倍了硬盘和流量,当然前提是价格依旧不变。目前来看,国内过去走的是NTT直连,服务器托管机房应该是CDN77*(也就是datapacket.com),加上高性能平台(AMD Ryzen 9 3900X+NVMe),这样的日本VPS还是有相当大的性价比的。官方网站:https://www.webhosting...

www.se222se.com为你推荐
permissiondeniedpermission denied是什么意思啊?杨紫别祝我生日快乐周杰伦的祝我生日快乐这首歌有什么寓意或者是在什么背景下写的嘉兴商标注册嘉兴那里有设计商标的杰景新特杰德特这个英雄怎么样同ip网站一个域名能对应多个IP吗www.522av.com在白虎网站bhwz.com看电影要安装什么播放器?javbibi日文里的bibi是什么意思广告法新修订的《广告法》有哪些内容www.ijinshan.com驱动人生是电脑自带的还是要安装啊!?在哪里呢?没有找到baqizi.cc曹操跟甄洛是什么关系
vps代购 金万维动态域名 cloudstack koss 网络星期一 directadmin ubuntu更新源 tk域名 地址大全 空间出租 昆明蜗牛家 爱奇艺vip免费领取 湖南idc 东莞主机托管 主机返佣 徐州电信 apnic 卡巴斯基免费版 linuxvi let 更多