APPLIEDANDENVIRONMENTALMICROBIOLOGY,July2008,p.
4149–4163Vol.
74,No.
130099-2240/08/$08.
000doi:10.
1128/AEM.
02371-07Copyright2008,AmericanSocietyforMicrobiology.
AllRightsReserved.
InSilicoandInVivoEvaluationofBacteriophageEF24C,aCandidateforTreatmentofEnterococcusfaecalisInfectionsJumpeiUchiyama,1,2MohammadRashel,2IyoTakemura,2HiroshiWakiguchi,1andShigenobuMatsuzaki2*DepartmentsofPediatrics1andMicrobiologyandInfection,2KochiMedicalSchool,Oko-cho,NankokuCity,Kochi783-8505,JapanReceived22October2007/Accepted1April2008Alongwiththeincreasingthreatofnosocomialinfectionsbyvancomycin-resistantEnterococcusfaecalis,bacteriophage(phage)therapyhasbeenexpectedasanalternativetherapyagainstinfectiousdisease.
Al-thoughgenomeinformationandproofofapplicabilityareprerequisitesforamoderntherapeuticphage,E.
faecalisphagehasnotbeenanalyzedintermsoftheseaspects.
Previously,wereportedanovelvirulentphage,EF24C,anditsbiologyindicateditstherapeuticpotentialagainstE.
faecalisinfection.
Inthisstudy,theEF24CgenomewasanalyzedandtheinvivotherapeuticapplicabilityofEF24Cwasalsobrieyassessed.
Itscompletegenome(142,072bp)waspredictedtohave221openreadingframes(ORFs)andvetRNAgenes.
InourfunctionalanalysisoftheORFsbyuseofapublicdatabase,noproteinsundesirableinphagetherapy,suchaspathogenicandintegration-relatedproteins,werepredicted.
Thenoncompetitivedirectionsofrepli-cationandtranscriptionandthehost-adaptedtranslationofthephagewerededucedbioinformatically.
ItsgenomicfeaturesindicatedthatEF24CisamemberoftheSPO1-likephagegenusandespeciallythatithasacloserelationshiptotheListeriaphageP100,whichisauthorizedforprophylacticuse.
Thus,thesebioin-formaticsanalysesrationalizedthetherapeuticeligibilityofEF24C.
Moreover,theinvivotherapeuticpotentialofEF24C,whichwaseffectiveatalowconcentrationandwasnotaffectedbyhostsensitivitytothephage,wasprovenbyuseofsepsisBALB/cmousemodels.
Furthermore,nochangeinmouselethalitywasobservedundereithersingleorrepeatedphageexposures.
Althoughfurtherstudyisrequired,EF24CcanbeapromisingtherapeuticphageagainstE.
faecalisinfections.
Enterococcusspeciescanbefoundintheenvironmentandnormalmicrooraoflargemammals,andsomeofthesebac-terialspeciesoccasionallycauseavarietyofdiseases(30).
Theemergenceofvancomycin-resistantEnterococcus(VRE)dis-ruptseffectiveconventionalchemotherapyandcausesfatalinfectionsinnosocomialsettings.
AnincreaseinthenumberofVREcaseshasbeenreportedworldwide(5,9,14).
Amongtheenterococcalinfections,E.
faecalisisthemostclinicallyiso-latedspecies(19,30).
Bacteriophage(phage)therapyharnessesaliveprokaryoticvirusasabioagenttotargetanddestroydisease-causingbac-teria(7,15).
PhagetherapyhasalonghistoryofsuccessfuluseintheformerEasternbloccountries,whereasithasalmostnosuchhistoryintheWest(15,27).
Therecentincreaseinthenumberofmultiple-drug-resistantbacteriaincludingVREhasrenewedtheinterestoftheWesternscienticcommunityinphagetherapy(15,27).
However,becausethepastfailuresinphagetherapyresultedfromalackofscienticknowledgeofphagebiology,thistherapeuticapproachneedstobescientif-icallyrationalized(27).
Hence,eachtherapeuticphageneedstobewellcharacterized,likeotherapproveddrugs.
Genomeanalysisandproofofapplicabilityaresimpleandeffectivemethodsfortheprimaryevaluationofeachphage.
First,thephagegenomereectsbiologicalinformationsuchasmorphology(e.
g.
,drugformulation)andlifecycle(e.
g.
,prop-agationmechanismanddrugefcacy),enablingtheelucidationofphagedrugfeatures.
Inaddition,genomeanalysisallowsustoexaminethesafetyoftheapproachbydeterminingthepresenceorabsenceofundesirablegenessuchaspathogenicandintegration-relatedgenes(36,43).
Moreover,thelyticac-tivityandintrinsiceffectsofeachphageinvivoareusuallyunknown,sothatinvivotherapeuticeffectivenessandphagetoxicitymustalsobeexamined.
Unfortunately,notherapeuticphagewithsuchevaluationiscurrentlyavailableagainstE.
faecalisinfections.
Previously,EF24Cwasisolatedanditsbiologywaschar-acterizedbriey.
EF24C,whichwasclassiedinthefamilyMyoviridaemorphotypeA1,hasabroadhostspecicitywithstrongvirulenceagainstE.
faecalis,includingtheVREstrains(47).
ThemorphologyofEF24C,togetherwiththeN-termi-nalsequencesofitsstructuralproteins,impliesarelationshiptomembersoftheSPO1-likephagegenus(28,47).
Someofthesemembersareconsideredtobetherapeuticandprophy-lacticphagecandidates(e.
g.
,StaphylococcusphagesKand812andListeriaphageP100)(8,20,29,40).
Consequently,EF24Cwasproposedasaputativetherapeuticcandidate.
Inthepresentstudy,theEF24Cgenomewasanalyzedforthersttime.
Next,invivotherapeuticeffectivenesswasevaluatedusingseveresepsismousemodelsinfectedwithanE.
faecalisstrainhavingeitherhighorlowphagesensitivity.
Inaddition,phagetoxicitywasbrieyexaminedinvivo.
*Correspondingauthor.
Mailingaddress:DepartmentofMicrobiologyandInfection,KochiMedicalSchool,KohasuOko-cho,NankokuCity,Kochi783-8505,Japan.
Phone:81-88-880-2323.
Fax:81-88-880-2324.
E-mail:matuzaki@kochi-u.
ac.
jp.
Supplementalmaterialforthisarticlemaybefoundathttp://aem.
asm.
org/.
Publishedaheadofprinton2May2008.
4149onMarch11,2021byguesthttp://aem.
asm.
org/DownloadedfromMATERIALSANDMETHODSCulturemedia.
Bothtrypticsoybroth(TSB)andheartinfusionbrothwereobtainedfromBecton,DickinsonandCompany(Sparks,MD).
ConstituentsofculturemediausedwerepurchasedfromNacalaiTesque(Kyoto,Japan)unlessotherwisestated.
Heartinfusionbrothsupplementedwith20mMMgCl2and20mMCaCl2(HIMC)wasprepared.
Forthephageplaqueformationassay,TSB-basedsolidmediacontaining1.
5%and0.
5%agarwereusedforthelowerandupperlayers,respectively.
Bacterialstrains.
E.
faecalisstrainEF24wasemployedasahostforthephagepropagationandphageplaqueformationassay.
E.
faecalisstrainsEF14andVRE2wereemployedintheanimalexperiments.
Thesebacterialstrainsweredescribedpreviously(47).
Phagepurication.
Phagepuricationwascarriedoutasdescribedpreviously(47).
Briey,phagewaspropagatedwithhoststrainEF24in1literofTSBmedium.
Aftertheremovalofbacterialdebrisbycentrifugation(10,000g,4°C,10min)andsupplementationofthelysatewithpolyethyleneglycol6000(Sigma-AldrichCo.
,MI)andNaCl(nalconcentrationsof10%and0.
5M,respectively),phagewasprecipitatedbycentrifugation(10,000g,4°C,30min).
PhageprecipitatewastreatedwithDNaseI(typeII;Sigma-Aldrich)andRNaseA(typeIA;Sigma-Aldrich)(both50g/ml).
Finally,phagewassequentiallypuriedbyCsClstepgradientultracentrifugation(50,000g,4°C,2h)twice.
AnS80AT3rotorandaGXseriesHimacCS100GXmicroultracentrifuge(HitachiLtd.
,Tokyo,Japan)wereusedforultracentrifugation.
Afterthephagebandwascollected,thepuriedphagewastreateddifferentlyforeachexperimentalpur-pose.
Genomesequencing.
TheextractionofpuriedphageDNAwascarriedoutasdescribedpreviously(47).
Briey,thepuriedphagesuspensioncontainingCsClwasdilutedwithAAS(0.
1Mammoniumacetate,10mMNaCl,1mMCaCl2,1mMMgCl2,pH7.
2)fourtimes,andphagewaspelletedbyultracentrifugation(100,000g,4°C,1h).
ThephagepelletwasincubatedwithproteinaseK(TakaraBio,Kyoto,Japan),andphenolextractionandethanolprecipitationwereconducted.
Finally,thegenomeDNAwassolubilizedinwater.
ThephageDNAwasdigestedbyrestrictionendonucleaseHindIII(50ngDNA/Uin50l,37°C,4h)(TakaraBio)andthenelectrophoresedin0.
8%agarose.
Aftervisualizationwithethidiumbromide(1g/ml),theDNAfrag-mentswereexcisedandextractedfromthegel.
TheDNAfragmentswereclonedintopUC19vectorsandtransformedintocompetentEscherichiacoliDH5.
SequencingofeachclonedfragmentwasperformedbyPCR,usingtheBigDyeTerminatorv1.
1cyclesequencingkit(AppliedBiosystems,CA).
ThePCRprod-uctswerepuriedthroughaSephadexG-50column(Sigma-Aldrich)andwerethenanalyzedusinganABIPrism3100-Avantgeneticanalyzer(AppliedBio-systems).
Clonedfragmentsweresequencedbyprimerwalking.
TheregionsuncoveredbytheclonedfragmentswereampliedbyPCRwithprimersbasedontheclonedfragments,andthenthePCRproductswerepuriedbyLaboPassPCR(HokkaidoSystemScience,Sapporo,Japan)andsequencedbyprimerwalkingasdescribedabove.
Bothstrandsweresequenced,andthesequencedatawereconnectedusingtheGenetyx-MacATSQprogram,version4.
2.
1(GenetyxCo.
,Tokyo,Japan).
Thesequencecoverageredundancywasatleastdouble.
Genomeanalysis.
Thepotentialopenreadingframes(ORFs)thatpossiblyen-codethegeneproductswererstpredictedbythefollowinggenepredicationtools:GeneMarkVIORIN(http://opal.
biology.
gatech.
edu/GeneMark/)(3),FGENESB(http://www.
softberry.
com/berry.
phtml),andMicrobialGenomeAnnotationTools(http://www.
ncbi.
nlm.
nih.
gov/genomes/MICROBES/glimmer_3.
cgi)(12,46).
ATG,TTG,andGTGwereconsideredtobestartcodons,andTAA,TGA,andTAGwereconsideredtobestopcodons.
TheORFswerethendeterminedfromtheprogram-predictedORFsbasedonthecriteriaofalengthofmorethan72nucleotidesandamaximumlengthequivalenttothatoftheprogram-predictedORFswithstopcodonsatthesamelocations.
ToexaminethetherapeuticeligibilityofEF24Cstrictly,suchcriteriawerepurposelyusedtodeterminetheORFsinthisstudy.
Toincreasethepossibilityofidentifyingprotein-codingsequences,theribosomalbind-ingsite(RBS)sequenceofeachORFwasalsosubsequentlyinvestigated.
Moreover,tRNAgeneswerepredictedusingthetRNAscan-SEprogram(http://lowelab.
ucsc.
edu/tRNAscan-SE/)(34).
TheputativeproductsoftheORFswereanalyzedbyBLASTPattheNationalCenterforBiotechnologyInformation(http://www.
ncbi.
nlm.
nih.
gov/blast/Blast.
cgi)andbyInterProScanwithBlastProDom,FPrintScan,HMMPIR,HMMPfam,HMMSmart,HMMTigr,ProleScan,ScanRegExp,SuperFamily,HMMPanther,andGene3DattheEuropeanBioinformaticsInstitute(http://www.
ebi.
ac.
uk/InterProScan/)(38).
Transmembranedomainsandsignalpeptideswerealsopre-dictedbyTMHMM(http://www.
cbs.
dtu.
dk/services/TMHMM/)andSignalIP3.
0(http://www.
cbs.
dtu.
dk/services/SignalP/),respectively(2,31).
UsinganEvaluethresholdof0.
1forbothBLASTPandInterProScan,thefunctionsoftheputativegeneproductswerespecied.
Thefollowinggenomefeatureswerealsoanalyzedusinginsilicomolecularcloninggenomicsedition(InSilicoBiology,Inc.
,Yokohama,Japan):GCcon-tent,GCscanning,GCskew,cumulativeGCskew,andcodonusage.
Anunrootedphylogenictreewasconstructedbytheneighbor-joiningmethod,usingDNASISPro(HitachiSoftwareEngineeringCo.
,Ltd.
,Tokyo,Japan).
Bootstrapanalysiswasperformedbyresamplingthedatasets10,000times.
Bootstrapvaluesofgreaterthan95%wereconsideredtobestatisticallysignif-icantforthegrouping.
Thegeneorderwascomparedwiththemostrelatedphagegenome;thiscomparisonwasmanuallyperformedbyin-houseBLASTsearch,usinginsilicomolecularcloninggenomicsedition(InSilicoBiology,Inc.
).
AnEvalueoflessthan0.
1wasconsideredasindicativeofhomology.
ComparativedataforthefollowingwereretrievedfromtheGenBankdata-base:bacteriophageG1(accessionnumberAY954969),StaphylococcusphageK(accessionnumberAY176327),StaphylococcusphageTwort(accessionnumberAY954970),ListeriabacteriophageP100(accessionnumberDQ004855),Lacto-bacillusplantarumbacteriophageLP65(accessionnumberAY682195),andE.
faecalisV583(accessionnumberAE016830.
1).
Phagepreparationforanimalexperiments.
Forthepurposeofamouserescueexperiment,thepuriedphagesamplewascontinuouslydialyzedagainstSMC(salinewith20mMMgCl2and20mMCaCl2)(4°C,30min)andHIMC(4°C,30min).
Ontheotherhand,thepuriedphagesamplewasdialyzedagainstSMC(4°C,60min)fortherepeatedadministration.
Thetiters(PFU/ml)ofthephagewerethendeterminedbyinoculationintobacterialstrainEF24.
Thephagewasstoredat4°Cuntiluse.
Animalexperiments.
Allanimalexperimentswereconductedwiththeap-provaloftheAnimalExperimentCommitteeofKochiMedicalSchool.
Female6-to8-week-oldBALB/cmice(weighingupto18g)wereusedinthefollowingexperiments.
E.
faecaliscells(eitherstrainEF14orstrainVRE2)weregrownin300mlofTSBmediumat37°Cuntiltheearlystationaryphase(uptoca.
200Klettunits)andwerethencentrifuged(10,000g,4°C,10min).
Thecellpelletwaswashedwith300mlofsaline,centrifuged(10,000g,4°C,10min),andnallyresus-pendedin3mlofsaline.
Afterappropriatedilutionusingsaline,thebacterialconcentration(bacteria/ml)wasdeterminedbyturbidity(inKlettunits),mea-suredwithaKlett-Summersonphotoelectriccolorimeter(KlettMfg.
Co.
,NY).
EF14waspreparedtobeat1.
01010,2.
01010,5.
01010,1.
01011,2.
01011,and5.
01011bacteria/ml.
VRE2waspreparedtobeat5.
01010,1.
01010,2.
11010,5.
01010,1.
01011,and2.
11011bacteria/ml.
Saline(0.
2ml;control)orbacterialsuspensionatdifferentconcentrationswasinjectedintotheperitonealcavitiesof5micethroughtheleftsideoftheabdomen(intotal,70micewereused).
Thesurvivalratesforandactivitiesofalltestedanimalswereobservedfor7days.
Theminimumbacterialconcentrationshowing100%lethal-itywasdeterminedastheminimumlethalbacterialdosage.
Forthemouserescueexperimentbyphage,thephagewasdilutedinHIMCtothefollowingconcentrations(expressedinmultiplicitiesofinfection[MOI]):100,10,1,0.
1,0.
01,0.
001,and0.
0001.
Micewereinoculatedontheleftsideoftheabdomenwith0.
2mloftheminimumlethalbacterialdose(intotal,70mice).
About20minaftertheinoculationofthelethalbacterialdose,0.
2mlofphagesolutionatdifferentconcentrations(inMOI),HIMC,orsalinewasadministeredtovemiceontherightsideoftheabdomen.
Thedataonthesurvivalratesofthemicewereanalyzedstatisticallywithatwo-tailedFisher'sexacttest.
More-over,tomeasuretheintrinsiceffectsofphagealoneandbuffers,0.
5-mlaliquotsofHIMC,saline,orphagesuspension(total,1.
01012PFU)alonewasadmin-isteredintotheabdominalcavitiesof5mice(atotalof15mice).
Thesurvivalratesforandactivitiesofalltestedanimalswereobservedfor7days.
Toexaminetheeffectsofrepeatedphageexposure,0.
5mlofanSMCphagesuspension(intotal,3.
51010PFU)orSMCalonewasintraperitoneallyadministeredseventimesat4-dayintervalsintotheabdominalcavitiesof10mice(atotalof20mice).
Themousesurvivalratewasrecordedfor2monthsfromtheinitialphageadministration.
Nucleotidesequenceaccessionnumber.
ThegenomedataofphageEF24CwasdepositedtoGenBank(accessionnumberAP009390).
RESULTSANDDISCUSSIONGeneralgenomedescription.
TheEF24Cgenomewasde-terminedtobe142,072bp.
Also,thegenomesequencewascircularlypermutedbecausenodeniteterminalendswereidentiedbygenomicsequencing.
TheGCcontentwas35.
7%.
4150UCHIYAMAETAL.
APPL.
ENVIRON.
MICROBIOL.
onMarch11,2021byguesthttp://aem.
asm.
org/DownloadedfromTwohundredtwenty-oneORFsandvetRNAgenesweredetermined.
WhenwecheckedforthepresenceofanRBSupstreamfromeachORF,mostORFsseemedtohaveatyp-icalRBS(seethesupplementalmaterial).
Inthefollowingtext,ORFsconsideredtohaveafunctionalputativeproductweredenedasputativegenesandaredesignatedusingan"orf"prex.
Theputativegene(i.
e.
,orf)productislikewiseshownusing"Orf.
"Bioinformaticanalysisrevealedthat45.
2%(100/221)oftheputativeORFproductswereassumedtohaveeitherproteinfunctionaldomainsorsimilaritytootherphagegeneproductsorboth.
Overall,20.
8%(46/221)oftheORFswerededucedtoencodefunctionalproteins.
Nogenescodingforsite-specicintegrase,toxinandantibioticresistancegenes,orotherpatho-genicfactorswerepredicted.
ABLASTPsearchonthehypo-theticalORF-encodedproteinsshowedsimilaritieswiththegeneproductsoftheotherlargevirulentphages,includingStaphylococcusphageK,G1,Twort,LactobacillusphageLP65,andListeriaphageP100.
Thegenomesofthesephagesarewellcharacterized(8,10,32,39).
ThegenomemapofEF24CisshowninFig.
1.
TheannotationofthegenomeisalsoshowninTable1.
TheN-terminalaminoacidsequencesoftheproductsoftheorf16,orf23,orf24,orf40,orf69,andorf219genespreciselycor-respondedtothoseofsixvirionproteins(42,62,16,26,21,and12.
6kDa,respectively)ofEF24Casreportedinourpreviouspaper(47).
OnlyOrf16andOrf23werebioinformaticallyspec-iedasmajorcapsidprotein(MCP)andtailsheathprotein,respectively;theotherswereunknown.
ExceptforthatofOrf219,theN-terminalendswereconsideredtobeprocessed.
Duringmorphogenesis,theN-terminal20aminoacidresiduesoftheMCP(Orf16)wereconsideredtoberemoved,whichwasassumedtobemediatedbytheputativeproheadprotease(Orf14).
Theotherstructuralproteins(Orf23,Orf24,Orf40,andOrf69)wereassumedtobesimilarlydigestedbetweenmethionineandalanine.
Ingeneral,functionallyrelevantgenesareclusteredasamoduleinphage(6,11).
Threemoduleswerespeculatedtorangefrom1bpto71kbpinEF24C,accordingtogenomeannotationandstructuralproteinidentication(Fig.
1).
Thelargestructuralmoduleseemedtobeassociatedwithheadandtailcomponents(1bpto46kbp).
Thereplication-associatedgeneswereclusteredasaDNAreplicationmodule(46kbpto68kbp).
Thesmallstructuralmoduleincludedatleastorf68andorf69(69kbpto71kbp)duetoanimmunoglobulin(Ig)-likedomainspeciedonOrf68(anIg-likedomainistypicallyfoundinavirionproteinofphage)andtheidenticationofOrf69asastructuralproteinfromtheproteomicanalysis(16,17).
Inthefunctionallyuncategorizedregion,someputativegenesassociatedwithdenovosynthesisofnucleicacidprecur-sorswerespeculated.
TheseincludedthegenesforOrf103FIG.
1.
GenomemapofphageEF24C.
ArrowsindicateputativeORFsandtRNAgenes,alongwiththeirorientations.
Functionallyassignedgenesaredifferentlycolored(blue,structuralgene;red,lysisgene;green,DNA-associatedgene;violet,tRNAgene).
Speculatedmodulesareenclosedbyboxes(black,structuralmodule;pink,DNAreplicationmodule).
,geneforstructuralprotein.
VOL.
74,2008THERAPEUTICPHAGEAGAINSTE.
FAECALISINFECTIONS4151onMarch11,2021byguesthttp://aem.
asm.
org/DownloadedfromTABLE1.
FeaturesofphageEF24CgeneproductsandtheirfunctionalassignmentsORFPositionStrandaLength(nt)bSize(aa)cMolmass(kDa)dpIePutativefunctionalassignmentNCBIdatabasesearchresultProteindomainsearchresultPredictedTMHfandsignalpeptideStartEndSimilarities/homologiestogeneproductsofphagesandbacteriaToolBitsEvaluePredicteddomainToolEvalueTMHHMgSignalPh11143832708910.
19.
8224046822799210.
39.
9ORF133(StaphylococcusphageTwort)BLASTP64.
39.
00E-113692111442314015.
94.
4gp3(ListeriabacteriophageP100)BLASTP73.
23.
00E-1241114148236912213.
89.
6LargeterminaseLargeterminase(Bacillussubtilisphage1102phil-3)BLASTP1602.
00E-385176732721,50650156.
76.
3Largeterminasegp5(ListeriabacteriophageP100)BLASTP6338.
00E-180Phageterminaselargesubunit(GpA)RPSBLAST4.
00E-0863372416078926229.
67.
6gp6(ListeriabacteriophageP100)BLASTP1114.
00E-2374265498171723827.
54.
7gp8(ListeriabacteriophageP100)BLASTP1021.
00E-2084971531534511412.
86.
6gp9(ListeriabacteriophageP100)BLASTP350.
9295409627887028931.
47.
0Endolysin-associatedproteinN-Acetylmuramyl-L-alanineamidase,negativeregulatorofAmpC,AmpD(RubrobacterxylanophilusDSM9941)BLASTP70.
59.
00E-11N-Acetylmuramoyl-L-alanineamidase,family2RPSBLAST4.
00E-12106445708363921223.
14.
4Endolysin-associatedproteinLysMdomainprotein(EnterococcusfaecalisV583)BLASTP1591.
00E-37LysMdomainRPSBLAST6.
00E-09Y117227757134511413.
55.
9gp13(ListeriabacteriophageP100)BLASTP76.
63.
00E-1312758693101,72557464.
95.
6Portalproteingp14(ListeriaBLASTP6440PhageportalproteinRPSBLAST6.
00E-08bacteriophageP100)139344943087283.
19.
31494171020879226329.
65.
2Proheadproteasegp15(ListeriabacteriophageP100)BLASTP2812.
00E-74PeptidaseU35HMMPfam8.
10E-0615102151114192730834.
84.
3IgA-specicmetalloendopeptidase(EC3.
4.
24.
13)type1precursor-Haemophilusinuenzae(strainHK613)BLASTP47.
87.
00E-041611282126761,39546451.
25.
2MCPCps(ListeriabacteriophageP100)BLASTP674011712763130442829310.
36.
7gp18(ListeriabacteriophageP100)BLASTP29.
33.
418130571395690029934.
04.
9gp19(ListeriabacteriophageP100)BLASTP3797.
00E-10419139761484587028932.
65.
9gp20(ListeriabacteriophageP100)BLASTP2645.
00E-6920148381546162420723.
710.
5gp21(ListeriabacteriophageP100)BLASTP1835.
00E-4521154651631084628131.
84.
6ORF6(ListeriabacteriophageA511)BLASTP2391.
00E-61221631016543234779.
09.
3ORF185(StaphylococcusphageTwort)BLASTP66.
63.
00E-102316547182561,71056962.
04.
9TailsheathproteinTsh(ListeriabacteriophageP100)BLASTP69704152UCHIYAMAETAL.
APPL.
ENVIRON.
MICROBIOL.
onMarch11,2021byguesthttp://aem.
asm.
org/Downloadedfrom24183171873942314015.
55.
4StructuralproteinORF8(ListeriaBLASTP2054.
00E-52bacteriophageA511)25188631969983727832.
19.
8261971319859147485.
85.
027199952046847415718.
34.
9gp26(ListeriabacteriophageP100)BLASTP1286.
00E-2928205362111157619122.
44.
4RNApolymarasegp27(ListeriabacteriophageP100)BLASTP90.
93.
00E-17MitochondrialDNA-directedRNApolymeraseRPSBLAST0.
0062921156248003,6451214129.
48.
3Taillysingp28(ListeriabacteriophageP100)BLASTP4002.
00E-109SLTdomainproteinsRPSBLAST7.
00E-093024839280243,1861061118.
15.
2Taillysingp29(ListeriabacteriophageP100)BLASTP5484.
00E-154NlpC/P60familyRPSBLAST0.
000002PeptidasefamilyM23/M37RPSBLAST0.
00023128108335855,4781825203.
04.
7Tailbergp30(ListeriabacteriophageP100)BLASTP2773.
00E-73Galactose-bindingdomain-likeSuperFamily0.
00021LuxS/MPP-likemetallohydrolaseSuperFamily0.
0123233685361172,43381089.
49.
0MinorstructuralProphageLambdaSal,BLASTP70.
15.
00E-10LipocalinProleScanproteinminorstructuralprotein,putative(Streptococcusagalactiae2603V/R)33361113683672624127.
94.
4343686837014147485.
74.
935371513784069022925.
59.
1gp31(ListeriabacteriophageP100)BLASTP2203.
00E-5636378443838053717820.
24.
6gp32(ListeriabacteriophageP100)BLASTP1463.
00E-3437383673907170523426.
34.
6Baseplategp33(ListeriabacteriophageP100)BLASTP2434.
00E-633839087401391,05335039.
65.
2Structuralproteingp34(ListeriabacteriophageP100)BLASTP4091.
00E-112UncharacterizedhomologofRPSBLAST0.
000033940158415581,40146653.
14.
7gp35(ListeriabacteriophageP100)BLASTP3223.
00E-86phageMuproteingp4740416644220954618120.
35.
9Structuralproteingp36(ListeriabacteriophageP100)BLASTP1842.
00E-454142224456883,4651154128.
84.
9Adsorption-associatedtailproteingp37(ListeriabacteriophageP100)BLASTP14640Sialidases(neuraminidases)SuperFamily0.
0037424576545971207687.
85.
7Putativetransposase(WolinellasuccinogenesDSM1740)BLASTP32.
75.
44346226479981,77359067.
26.
4Helicasegp42(ListeriabacteriophageP100)BLASTP7060HelicasesuperfamilyC-terminaldomainRPSBLAST2.
00E-114448026496541,62954262.
98.
4Transcriptionalregulatorgp43(ListeriabacteriophageP100)BLASTP3117.
00E-83PredictedtranscriptionalregulatorRPSBLAST0.
0024549687511591,47349055.
44.
8Helicasegp44(ListeriabacteriophageP100)BLASTP4231.
00E-116DnaBhelicaseCterminaldomainRPSBLAST4.
00E-134651159522141,05635139.
85.
5Exonucleasegp45(ListeriabacteriophageP100)BLASTP2591.
00E-67SbcD,DNArepairexonucleaseRPSBLAST2.
00E-164752330542221,89363071.
25.
2ExonucleasePutativeexonuclease(StaphylococcusphageK)BLASTP3746.
00E-102SbcCDandotherMre11/Rad50(MR)complexesRPSBLAST6.
00E-0948542315489666622125.
94.
9ORF065(StaphylococcusphageTwort)BLASTP49.
71.
00E-044954897559551,05935240.
47.
1Primasegp49(ListeriaBLASTP3361.
00E-90DnaG,DNAprimase(bacterialtype)RPSBLAST3.
00E-13bacteriophageP100)50559725660463321024.
25.
151566305751488529432.
76.
0gp50(ListeriabacteriophageP100)BLASTP1507.
00E-35ContinuedonfollowingpageVOL.
74,2008THERAPEUTICPHAGEAGAINSTE.
FAECALISINFECTIONS4153onMarch11,2021byguesthttp://aem.
asm.
org/DownloadedfromTABLE1—ContinuedORFPositionStrandaLength(nt)bSize(aa)cMolmass(kDa)dpIePutativefunctionalassignmentNCBIdatabasesearchresultProteindomainsearchresultPredictedTMHfandsignalpeptideStartEndSimilarities/homologiestogeneproductsofphagesandbacteriaToolBitsEvaluePredicteddomainToolEvalueTMHHMgSignalPh525751757747231769.
09.
0dUTPasegp51(ListeriaBLASTP32.
36.
5dUTPaseRPSBLAST0.
0008bacteriophageP100)53577495805730910212.
18.
654580445835531210312.
24.
6Phosphotransferase/aniontransportproteinPhosphotransferase/aniontransportproteinSuperFamily0.
01455583485871937212314.
36.
2gp53(ListeriabacteriophageP100)BLASTP46.
24.
00E-0456587395940766922225.
75.
0ResolvaseHypotheticalproteinBLASTP1728.
00E-42HollidayjunctionRPSBLAST0.
001KgORF78(Staphylo-coccusphageK)resolvase,archaealtype57594095971430610111.
35.
458597156019448015918.
56.
3Hypotheticalproteinphil2p15(Staphylococcusaureusphagephi12)BLASTP73.
63.
00E-1259602876108179526431.
57.
0gp66(ListeriabacteriophageP100)BLASTP2404.
00E-6260610746138531210311.
99.
7IntegrationhostfactorPutativeintegrationhostfactor(StaphylococcusphageK)BLASTP727.
00E-12Integrationhostfactor(IHF)andHURPSBLAST0.
000261614756454630721023119.
06.
1DNApolymerasePutativeDNApoly-merase(Staphylo-coccusphageK)BLASTP7910DNApolymerasefamilyARPSBLAST7.
00E-6762646496519154318021.
55.
2gp70(ListeriabacteriophageP100)BLASTP1241.
00E-276365246665351,29042948.
24.
9gp71(ListeriabacteriophageP100)BLASTP1256.
00E-276466620678671,24841546.
25.
7RecAgp72(ListeriabacteriophageP100)BLASTP4345.
00E-120RecARPSBLAST7.
00E-3765679216830738712814.
78.
6gp73(ListeriabacteriophageP100)BLASTP72.
46.
00E-1266683006891461520423.
76.
2Sigmafactorgp74(ListeriabacteriophageP100)BLASTP1734.
00E-426768975692502769110.
26.
2HolinHolin-likeproteinsimilartoORFofbacteriophageBK5-T(BidobacteriumlongumNCC2705)BLASTP43.
50.
002HolinRPSBLAST0.
0003268692987026096332035.
24.
5Ig-likeproteinIg-like,group2(FlavobacteriumjohnsoniaeUW101)BLASTP891.
00E-17BacterialIg-likedomain(group2)RPSBLAST3.
00E-0769702817072444414716.
64.
5Structuralproteingp77(ListeriaBLASTP1133.
00E-24bacteriophageP100)70708307113530610112.
15.
271711327208595431735.
95.
7gp79(ListeriabacteriophageP100)BLASTP1384.
00E-317272139734221,28442748.
85.
7gp80(ListeriabacteriophageP100)BLASTP4346.
00E-120Metallophospho-esteraseHMMPfam0.
0009673734347380837512414.
29.
6gp81(ListeriabacteriophageP100)BLASTP43.
50.
003374738477446762120623.
25.
7gp82(ListeriabacteriophageP100)BLASTP1134.
00E-2475744677520774124628.
39.
3gp84(ListeriabacteriophageP100)BLASTP2873.
00E-764154UCHIYAMAETAL.
APPL.
ENVIRON.
MICROBIOL.
onMarch11,2021byguesthttp://aem.
asm.
org/Downloadedfrom76751977570350716819.
110.
3gp85(ListeriaBLASTP942.
00E-18bacteriophageP100)77757177606735111612.
63.
878760927694985828531.
54.
9ORF036(bacteriophageBLASTP55.
82.
00E-06G1)79770547789984628132.
44.
8NucleotidyltransferaseSuperFamily0.
00168077892795201,62954262.
77.
0ORF137(Lactobacillusplantarumbacterio-phageLP65)BLASTP75.
56.
00E-12YC53_LISIN_Q925W4BlastProDom7.
00E-1381798398052869022926.
34.
9gp96(Listeriabacterio-phageP100)BLASTP2035.
00E-5182805398100646815518.
24.
8gp97(Listeriabacterio-phageP100)BLASTP90.
92.
00E-17838110683385228075986.
54.
6HypotheticalproteinBLASTP71.
61.
00E-10KgORF105(Staph-ylococcusphageK)848344583651207687.
56.
52Y85836708417650716818.
65.
32868424984353105343.
93.
4878435584525171566.
74.
58884515847872739010.
34.
4898489585146252839.
69.
2TranscriptionalDNA-bindingproteinBLASTP46.
63.
00E-04Helix-turn-helixXRE-RPSBLAST4.
00E-06regulator(Pseudomonassyringaepv.
phaseolicolafamily-likeproteins1448A)9085159854462889511.
44.
591854498623778926229.
96.
79286320873931,07435738.
34.
3LPXTG_anchorHMMTigr0.
0047193875198782130310011.
510.
394878238812530310011.
74.
09588128884212949710.
69.
52968841888597180596.
84.
197886108896335411713.
74.
198889908936737812514.
38.
92998936089590231768.
85.
22100895948996837512414.
24.
71018996590192228758.
84.
71029021090398189627.
34.
9103903959099460019923.
05.
0CytidinedeaminaseCytidinedeaminaseRPSBLAST0.
0006104910369187884328032.
24.
8105918919252063020923.
95.
01069259892840243809.
64.
81079285892998141465.
39.
01089301193205195647.
65.
2109932219386264221324.
25.
3110938749431744414716.
65.
2111944549490044714817.
04.
211295256955553009911.
28.
411395633959232919611.
85.
3114960069632932410712.
34.
91159642696566141465.
510.
111696625969182949711.
56.
91179702597231207687.
69.
221189731397555243809.
44.
21199763297877246819.
47.
8ORF160(LactobacillusBLASTP64.
31.
00E-09plantarumbacterio-phageLP65)1209794498180237789.
23.
81219823198437207687.
96.
31229845998626168556.
810.
1123986239871290293.
39.
8112498770990662979811.
38.
91259913299362231769.
04.
9126994819991243214316.
74.
3ContinuedonfollowingpageVOL.
74,2008THERAPEUTICPHAGEAGAINSTE.
FAECALISINFECTIONS4155onMarch11,2021byguesthttp://aem.
asm.
org/DownloadedfromTABLE1—ContinuedORFPositionStrandaLength(nt)bSize(aa)cMolmass(kDa)dpIePutativefunctionalassignmentNCBIdatabasesearchresultProteindomainsearchresultPredictedTMHfandsignalpeptideStartEndSimilarities/homologiestogeneproductsofphagesandbacteriaToolBitsEvaluePredicteddomainToolEvalueTMHHMgSignalPh1279999610034635111612.
85.
412810037810080342614116.
43.
9129100797101009213708.
37.
9130101038101229192637.
44.
613110124210160136011914.
010.
0132101606101707102333.
88.
111331026211028752558410.
04.
2134102964103230267889.
84.
8135103328103495168556.
18.
7136103580103756177586.
74.
4137103838104011174576.
74.
3138104087104311225748.
44.
113910441410472230910211.
84.
914010479010510131210311.
89.
2141105193105351159525.
94.
9142105485105724240799.
04.
2143105805106050246819.
15.
714410617110686669623127.
04.
0MyosinheavychainRPSBLAST0.
006145106973107221249829.
84.
6146107292107486195647.
44.
9147107512107691180596.
99.
6148108021108281261869.
88.
7149108278108550273909.
95.
4215010855510889634211313.
05.
215110892910924031210311.
35.
03152109233109496264879.
94.
7215310949710980230610111.
96.
5154110021110212192637.
06.
5155110256110480225748.
33.
815611049411089840513415.
45.
0157111288111485198657.
54.
615811148511200051617119.
94.
9Proteingp51(ListeriaBLASTP58.
22.
00E-07DUF1642HMMPfam6.
10E-09monocytogenesstrain4bH7858)159112013112261249829.
35.
116011227411279852517420.
45.
3HypotheticalproteinEfaeDRAFT_2183(EnterococcusfaeciumDO)BLASTP729.
00E-12DUF1642HMMPfam2.
70E-3016111279911319139313015.
75.
0HypotheticalproteinEF1441(EnterococcusfaecalisV583)BLASTP1094.
00E-2316211318411354336011914.
04.
5HypotheticalproteinEF1441(EnterococcusfaecalisV583)BLASTP42.
70.
005163113547113717171566.
43.
8HypotheticalproteinSdys1_01002815(Shigelladysenteriae1012)BLASTP42.
70.
00516411370511424754318020.
86.
4HypotheticalproteinEF2118(EnterococcusfaecalisV583)BLASTP97.
82.
00E-1916511425011471446515418.
28.
7HypotheticalproteinBLASTP65.
56.
00E-10EF0326(EnterococcusfaecalisV583)4156UCHIYAMAETAL.
APPL.
ENVIRON.
MICROBIOL.
onMarch11,2021byguesthttp://aem.
asm.
org/Downloadedfrom166114711114815105344.
14.
316711492811529336612113.
95.
5168115290115469180596.
83.
416911548311600151917220.
09.
3gp158(ListeriabacteriophageP100)BLASTP1172.
00E26ConservedhypotheticalproteinCHP02464TIGRFAM3.
40E58COG3236RPSBLAST2.
00E2617011600211647547415718.
16.
417111647211717970823526.
25.
317211720811764844114616.
95.
0173117698117886189627.
65.
117411788311834446215316.
93.
9ABCtransporterProleScan175118358118534177586.
73.
8176118531118728198657.
84.
817711872511916243814517.
59.
7117811925511999574124628.
04.
9Serinethreonine-proteinphosphatasegp135(ListeriabacteriophageP100)BLASTP1482.
00E-34Serum/threonine-specicproteinphosphataseandbis(5-nucleosyl)-tetraphosphataseFPrintScan1.
10E0517911999212047148015918.
19.
441801204751207262528310.
39.
818112072312126554318020.
88.
0PhosphoesterasePhosphoesterase(putative)(LactobacillusreuteriJCM1112)BLASTP1203.
00E26Phosphoesterase/phosphohydrolaseRPSBLAST4.
00E1418212134512169535111613.
76.
42183121692121808117384.
23.
8184121822122034213708.
04.
518512203412211481262.
85.
6118612211512252841413716.
04.
918712253312291638412714.
64.
518812298512387589129634.
45.
1189123877124065189627.
55.
6190124156124329174576.
69.
61Y19112431912466334511413.
45.
0192124663124917255849.
64.
81931248981251522558410.
05.
119412516312549833611112.
94.
519512547312591043814517.
25.
319612592612638746215317.
54.
9PutativeTNP-liketransposableelement[Oryzasativa(japonicacultivar-group)]BLASTP36.
20.
45197126380126634255849.
58.
9198126635126853219728.
24.
519912684112727243214316.
74.
5200127275127505231768.
73.
920112750212793343214316.
54.
8202127937128089153505.
79.
820312808912903694831536.
05.
7ThymidylatesynthaseThymidylatesynthase(Bacillusmojavensis)BLASTP1991.
00E49ThymidylatesynthaseRPSBLAST3.
00E5020412900612909896313.
610.
320512908912947538712814.
99.
0HypotheticalproteinF116p23(PseudomonasaeruginosaphageF116)BLASTP83.
23.
00E15206129566129715150495.
78.
01Y20712971513057285828531.
18.
4AntiproliferativeproteinPhage-likeprotein(BacilluslicheniformisATCC14580)BLASTP1774.
00E43Band7domainofotillin(reggie)-likeproteinRPSBLAST1.
00E131Y20813073313171698432737.
34.
6RibonucleotidereductaseUnknown(bacteriophageSPBc2)BLASTP2538.
00E66RibonucleotidereductaseR2/betasubunit(RNRR2)RPSBLAST2.
00E63ContinuedonfollowingpageVOL.
74,2008THERAPEUTICPHAGEAGAINSTE.
FAECALISINFECTIONS4157onMarch11,2021byguesthttp://aem.
asm.
org/DownloadedfromTABLE1—ContinuedORFPositionStrandaLength(nt)bSize(aa)cMolmass(kDa)dpIePutativefunctionalassignmentNCBIdatabasesearchresultProteindomainsearchresultPredictedTMHfandsignalpeptideStartEndSimilarities/homologiestogeneproductsofphagesandbacteriaToolBitsEvaluePredicteddomainToolEvalueTMHHMgSignalPh209131729133879215171680.
75.
1RibonucleotidereductaseRibonucleotide-diphosphatereductasealphasubunit(LactobacillusplantarumWCFS1)BLASTP9260Class1ribonucleotidereductase(RNR)RPSBLAST4.
00E119210133882134124243809.
05.
7RibonucleotidereductaseRibonucleotidereductase,NrdH-redoxin(Lactobacillussakeisubsp.
sakei23K)BLASTP68.
69.
00E11NrdH-redoxin(NrdH)familyRPSBLAST5.
00E122111342511345172678810.
04.
921213452313482830610111.
99.
0213134919135149231768.
99.
1TranscriptionalregulatorORF187(bacteriophageG1)BLASTP59.
35.
00E08Helix-helixXRE-family-likeproteinsRPSBLAST2.
00E08214135213135437225748.
49.
8gp166(ListeriabacteriophageP100)BLASTP32.
74.
9215135519136610109236341.
75.
0AAAproteinfamilyHypotheticalproteinRBTH_07188(Bacillusthuringiensisserovarisraelensis)BLASTP3482.
00E94ATPasefamilyassociatedwithvariouscellularactivities(AAA)RPSBLAST1.
00E07tRNA-Met13698113705474AnticodonCAU2161373701376362678810.
04.
8tRNA-Leu13767713776185AnticodonUAGtRNA-Arg13848313855674AnticodonUCU21713869813876972232.
69.
7tRNA-Trp1391571392287223AnticodonCCAtRNA-Asp13947813955376AnticodonGUC218140224140358135445.
08.
921914102814136633911212.
64.
8Structuralproteingp171(ListeriabacteriophageP100)BLASTP37.
70.
14STATSUPERFAMILY0.
007222014143014177434511413.
34.
9gp172(ListeriabacteriophageP100)BLASTP92.
46.
00E181221141809142069261869.
97.
73aOrientationsoftheORFsintheEF24Cgenome.
and,rightwardandleftwardorientations,respectively,ofORFsinFig.
2.
bSizesofORFs,includingstopcodons,innucleotides(nt).
cSizesofORFproducts,inaminoacids(aa).
dPredictedmolecularmassesofORFproducts.
ePredictedpI.
fTMH,transmembranehelix.
gTMHHM,thepredictiontooloftransmembranehelicesinproteins;thenumbersoftransmembranehelicesareshowninthecolumn.
hSignalP,thepredictiontoolforsignalpeptideinproteins.
"Y"indicatesthepresenceofasignalpeptide.
4158UCHIYAMAETAL.
APPL.
ENVIRON.
MICROBIOL.
onMarch11,2021byguesthttp://aem.
asm.
org/Downloadedfrom(cytidinedeaminase),Orf203(thymidylatesynthase),andOrf208,Orf209,andOrf210(ribonucleotidediphosphatere-ductase).
LikeT4phage,EF24Cmayproduceitsownmod-iedbasefromhostDNAbreakdown(22,37).
Atthenalstageofthelatentperiod,progenyphageswithinabacterialcellwerereleasedbythedegradationofthecellwall(25,27).
Thiscellwalllysisistypicallyinducedbytwophage-encodedproteinscalledholinandendolysin(25,27).
Atthelateperiodofinfection,holinformsaholeinthecellmem-brane,andendolysinpassesthroughtheholeanddestroysthepeptidoglycanstructure(25,27).
InthephageEF24Cge-nome,theputativegenesforendolysin(Orf9andOrf10)andholin(Orf67)arethoughttobedistantlypositioned,asoccursinphageT4(37).
orf9andorf10arethoughttobelocatedinonestructuralmodule,andorf67isthoughttobelocatedinverycloseproximitytoanotherstructuralmodule.
Thus,thesegenesarepossiblyexpressedlateintheperiodofinfection(37).
Consequently,Orf9,Orf10,andOrf67mayfunctionasaholin-endolysinsystem.
PhylogeneticanalysesofEF24CwithintheSPO1-likephages.
TheEF24Cgenomecontainsapproximately142kbp,theGCcontentofwhichis35.
7%,asdescribedabove.
Thegenomeiscircularlypermuted,andDNApolymeraseA(Orf61)hasbeententativelyidentied.
Theseattributes,to-getherwiththemorphologicalandbiologicalfeaturesofEF24C,suggestthatEF24CisamemberoftheSPO1-likephagegenus(28).
Therefore,thephylogenicrelationshipsofEF24CtotheotherSPO1-likephageswereexamined.
AphylogenictreebasedontheMCPisfrequentlyusedinphagephylogenicanalysis(1,26).
TheMCPsofthefollowingphageswereobtainedfromtheirgenomesequences:Staphy-lococcusphageK,G1,Twort,LactobacillusphageLP65,andListeriaphageP100.
TheMCP-basedphylogenicanalysisshowedthatEF24CismostcloselyrelatedtoListeriaphageP100amongthesephages(Fig.
2A).
Next,thegeneorganiza-tionoftheEF24CgenomewasalsocomparedwiththatofListeriaphageP100.
Genomesyntenywasobserved,particu-larlyonthepredictedstructuralandDNAreplicationmodulesinEF24C(ca.
70%ofthegenome)(Fig.
2B),whereasthegenesontheotherregionofEF24C(theremainingca.
30%ofthegenome)arenotonlyfunctionallyunknownbutalsodissimilartoanygenesofListeriaphageP100.
ByconsideringthedifferenceinbacterialspeciesandphylogenicrelationbasedonMCP,EF24CandListeriaphageP100wereconsid-eredtohaveevolveddivergentlyfromthesamevirusorigin(44).
Noncompetitivenaturebetweenreplicationandtranscrip-tiondirections.
Theoriginofreplication(ori)andreplicationterminus(ter)canbededucedbyGCskewandcumulativeGCskewanalyses(23,24,45).
ThecumulativeGCskewanalysisforFig.
3showsthepredictedoriandter,whicharethelowest(ca.
1-bp)andhighest(108-kbp)regions,respectively.
Al-thoughtheprocessofEF24Cgenomereplicationremainsunknown,itseemstoreplicateinamannerslightlydifferentfromthatofanotherlargephage,T4ofE.
coli.
TheEF24Cgenomeseemstohaveonlyoneori,whereasphageT4hasmultipleoris(37).
Moreover,thespeculatedreplicationdirec-tion(oritoter)matchedwiththedirectionoftranscription(directionofgenes).
Accordingtothismutualcorrespondence,bimolecularcollisionsduringreplicationandtranscriptioncanbeavoided(13,18).
Hence,EF24Cisassumedtomultiplywithoutsuchmutualinterferencebetweenreplicationandtranscription.
Host-adaptedtranslation.
HostandphagecodonusagecomparisonsandphagetRNAanalysisimpliedefcienttrans-lation.
ThecodonusagesofEF24CandE.
faecalisV583wereFIG.
2.
PhylogeneticanalysesofEF24C.
(A)PhylogenetictreebasedonMCPs.
(B)ComparisonofthegeneorderbetweenEnterococcusphageEF24CandListeriaphageP100.
TheORFofEF24CisconnectedtothatofP100byablacklinewheretheEvaluefromthein-houseBLASTsearchislessthan0.
1.
VOL.
74,2008THERAPEUTICPHAGEAGAINSTE.
FAECALISINFECTIONS4159onMarch11,2021byguesthttp://aem.
asm.
org/Downloadedfrommutuallysimilar(Fig.
4A),whichcanindicateoverallefcienttranslationinthehost.
Moreover,thecodonusageofEF24CexceededthatofthehostonvepredictedtRNAswhosegeneswerecarriedbythephage(Fig.
4B).
Thus,wecaninferthatEF24CsuppliesspecictRNAsonitsownincaseoftRNAdeciency.
E.
faecalissepsismousemodel.
Sepsismousemodelsaretypicallyusedforthepreliminaryassessmentofphagetherapyagainstnosocomialbacteria(4,35,48–50).
Toexaminethera-peuticeffectivenessandtheeffectofhostsensitivitydifferenceonthephageinvivo,E.
faecalissepsismousemodelsusingBALB/cmiceweresetupusingtwostrains,EF14andVRE2.
Inthepreviousstudy,EF14hadphagesensitivityabout32timesgreaterthanthatofVRE2(efciencyofplating[EOP]againstEF14,1;EOPagainstVRE2,0.
032)(47).
Afterintra-peritonealbacterialinoculationatdifferentconcentrationstomice,theminimumlethalbacterialdosagesofEF14andVRE2weredeterminedtobe1.
01010and4.
2109bac-teria,respectively;thesedosagesresultedin100%lethalitywithin2days.
Thesebacterialdosageswereusedforthefol-lowingexperimentstoassessmouserescuebyphage.
Inbothcases,inoculationoftheminimumlethalbacterialdosagesseemedtoinduceseveresepsiscomplications.
Astimeelapsedafterbacterialinoculation,anincreaseinthenumberofbacteriainthebloodwasalsoobserved(bacteremia).
Inaddition,anincreasingfrequencyofunusualchangesinthemicewasobserved,suchasdecreaseinactivity,lowbodytem-perature,shivering,bloodclotting,andhyperventilation.
Theseabnormalconditionswereconsideredtobetypicalfeaturesofseveresepsis,althoughhistologicalanalyseswerenotper-formed(21,41).
EF24Ctherapeuticeffectivenessinvivo.
Noabnormalmousebehaviororalteredsurvivalratewasobservedfollowingtheadministrationofsaline,HIMC,orphagealone(1.
01012PFU).
Thus,thephagerescueexperimentswereconsideredtobeconductedwithoutbias.
TheinvivotherapeuticeffectivenessofEF24Cwasthenexamined.
Aftertheinoculationoftheminimumlethalbacte-rialdosage,HIMCorEF24CatdifferentMOIof10,1,0.
1,0.
01,0.
001,and0.
0001wasadministered.
Figure5showstheresultsofmouserescueexperimentsusingEF24C.
Thedose-dependenteffectivenesswasobservedtobelessthanMOIof0.
01and0.
1intheEF14andVRE2mousesepsismodels,respectively.
Comparedwiththecontrol(HIMCorsalinetreatment),theEF24CtreatmentwassignicantlyeffectiveforbothEF14-infectedmiceatMOIof10,1,0.
1,and0.
01(P0.
01)andVRE2-infectedmiceatMOIof10,1,and0.
1(P0.
01)or0.
01(P0.
05).
Accordingtotheseresults,EF24CcanefcientlyrescuemiceinfectedwithbothEF14andVRE2atanMOIof0.
01.
Undertheseexperimentalconditions,thetherapeuticefcacyofEF24Cdidnotseemtobeaffectedbythesensitivityofthehosttothephage.
TheEF24Cburstsizeinvitrowasreportedasca.
100inapreviouswork(47).
Underinvivoconditions,thephagemaynotinfectthebacteriaorpropagateasefcientlyasitdoesunderinvitroconditions.
Therefore,theseresultssuggestthattheefcientpropagationofEF24Cledtoitssignicanttherapeuticeffectivenessinvivo.
EligibilityofEF24Casapotentialtherapeuticphage.
EF24Cisconsideredtobeeligibleasatherapeuticphageforthefollowingreasons.
First,asdemonstratedinapreviousstudy,EF24ChasbroadhostspecicityandstrongvirulenceagainstE.
faecalisstrains.
Second,undesirablegenesforphagetherapysuchasintegration-relatedandpathogenic(e.
g.
,toxinandantibioticresistance,etc.
)geneshavenotyetbeenidenti-ed.
Third,wecaninferfromthefollowingfeaturesthatthebiologicalnatureofEF24Cisappropriateforatherapeuticphage:itsdenovonucleicacidsynthesisfromhostDNAbreak-down,itsholin-endolysinsystem,itshost-adaptedtranslation,andthenoncompetitivenatureofitstranscriptionandrepli-cation.
Fourth,itsgenomicfeatures,togetherwithitsmorphol-ogy,allowEF24CtobecategorizedintheSPO1-likephagegenus,somemembersofwhich,includingphagesKandP100,areusedorareunderconsiderationfortherapyorprophylaxis.
PhylogeneticandgenomesyntenyanalysesrevealedacloserelationshipbetweenEF24CandtheListeriaphageP100,whichhasbeenapprovedforprophylacticuseandhasbeencommercialized(EBIFoodSafety[http://www.
ebifoodsafety.
com/])(8,42).
Thus,EF24Ccanbeencompassedinthegeneraltherapeuticphagegroup.
Fifth,accidentalhomologousrecombinationisalsonotlikelyintheuseofEF24C,becausesimilaritiesbetweentheEF24CgenomeandthehostE.
fae-calisV583genomewererestrictedtotRNAgenesandafewgenesforhypotheticalproteins,asfortheothertherapeuticphagesKandP100(datanotshown).
Thisanimalexperimentshowedthatasinglelow-dosageadministrationofEF24Ccaneffectivelytreatsepsisinmicewithouttheeffectofhostsensi-tivitytothephageobservedinvitro(i.
e.
,EOPdifferencebe-tweenstrainsEF14andVRE2).
Thephagebacteriolyticactionisbelievedtobetheprimarymechanismofmouserescueeffects.
However,EF24Cefcacymaybealteredindifferentmousestrainsandanimals.
Forexample,somepossiblephage-inactivatingfactors,suchasphage-neutralizingantibodyandliverorbileacids,mayalterphageefcacy,andthephagemaynotefcientlyreachthefocusofinfection.
Therefore,furtherstudyisrequired(i.
e.
,ofthepharmacokineticsandpharmaco-FIG.
3.
GC-associatedgenomeanalysis.
IntheGCscanning,thelowregioninGCisindicatedbythebar.
InthecumulativeGCskew,theoriginofreplication(blackarrow)andthechangingpointofgenedirection/terminationofDNAreplication(whitearrow)areindicated.
4160UCHIYAMAETAL.
APPL.
ENVIRON.
MICROBIOL.
onMarch11,2021byguesthttp://aem.
asm.
org/Downloadedfromdynamicsassociatedwiththecompromisedrouteofadminis-tration).
Safetyissuesareofgreatconcerninphagetherapy.
Surpris-ingly,nosignicantsideeffectsofphagetherapyhavebeenreportedtodateintheEast(36,43).
Inthisexperiment,phageadministrationdidnotcauseanylethalityormousebehaviorchangebothinthemouserescueexperimentandinthead-ministrationofahigh-concentrationdosageofphagealone.
InFIG.
4.
OptimizationofEF24CcodonusagetoitshostcodonusageanditspossibletRNAfunction.
(A)ComparisonofcodonusagebetweenEF24CandE.
faecalisV583.
(B)LocationoftRNAgenes(top),predictedsecondarystructuresoftRNAs(middle),andphageandhostcodonusagecomparisonsonthetRNAanticodons(bottom).
Inthebarchart,codonsforEF24CtRNAsareindicatedinboldface.
VOL.
74,2008THERAPEUTICPHAGEAGAINSTE.
FAECALISINFECTIONS4161onMarch11,2021byguesthttp://aem.
asm.
org/Downloadedfromaddition,repeatedexposuretophage(administrationseventimesat4-dayintervals)didnotcauseanychangeinmousebehavior.
However,differentphageshavedifferentmolecularfeatures,anddifferentmousestrainshavedifferentlevelsofimmunity,sothesafetyofeachphagemustbeexaminedinthefuture(25,33,36).
Inthisstudy,EF24Cwasinvestigatedprimarilyasatherapeuticphage.
Althoughfurtherdevelop-mentofthisphageandothermethodsisstillnecessarytoaddresssomeremainingproblems,EF24CisapromisingtherapeuticphageagainstE.
faecalisinfections.
ACKNOWLEDGMENTSWethankHiromiKataoka(ClinicalLaboratoryCenters,KochiMedicalSchool)foraccesstoDNASISProandToshimitsuUchiyama(TohoUniversity,Tokyo,Japan)forhelpfulscienticadvice.
ThisstudywassupportedbyTheSpecialResearchProjectofGreenScience,KochiUniversity.
REFERENCES1.
Bamford,D.
H.
,J.
M.
Grimes,andD.
I.
Stuart.
2005.
WhatdoesstructuretellusaboutvirusevolutionCurr.
Opin.
Struct.
Biol.
15:655–663.
2.
Bendtsen,J.
D.
,H.
Nielsen,G.
vonHeijne,andS.
Brunak.
2004.
Improvedpredictionofsignalpeptides:SignalP3.
0.
J.
Mol.
Biol.
340:783–795.
3.
Besemer,J.
,andM.
Borodovsky.
2005.
GeneMark:websoftwareforgenendinginprokaryotes,eukaryotesandviruses.
NucleicAcidsRes.
33:e451–e454.
4.
Biswas,B.
,S.
Adhya,P.
Washart,B.
Paul,A.
N.
Trostel,B.
Powell,R.
Carlton,andC.
R.
Merril.
2002.
Bacteriophagetherapyrescuesmicebac-teremicfromaclinicalisolateofvancomycin-resistantEnterococcusfaecium.
Infect.
Immun.
70:204–210.
5.
Bonten,M.
J.
,R.
Willems,andR.
A.
Weinstein.
2001.
Vancomycin-resistantenterococci:whyaretheyhere,andwheredotheycomefromLancetInfect.
Dis.
1:314–325.
6.
Botstein,D.
1980.
Atheoryofmodularevolutionforbacteriophages.
Ann.
N.
Y.
Acad.
Sci.
354:484–490.
7.
Bradley,J.
S.
,R.
Guidos,S.
Baragona,J.
G.
Bartlett,E.
Rubinstein,G.
G.
Zhanel,M.
D.
Tino,D.
L.
Pompliano,F.
Tally,P.
Tipirneni,G.
S.
Tillotson,J.
H.
Powers,andG.
S.
Tillotson.
2007.
Anti-infectiveresearchanddevel-opment–problems,challenges,andsolutions.
LancetInfect.
Dis.
7:68–78.
8.
Carlton,R.
M.
,W.
H.
Noordman,B.
Biswas,E.
D.
deMeester,andM.
J.
Loessner.
2005.
BacteriophageP100forcontrolofListeriamonocytogenesinfoods:genomesequence,bioinformaticanalyses,oraltoxicitystudy,andapplication.
Regul.
Toxicol.
Pharmacol.
43:301–312.
9.
Cetinkaya,Y.
,P.
Falk,andC.
G.
Mayhall.
2000.
Vancomycin-resistanten-terococci.
Clin.
Microbiol.
Rev.
13:686–707.
10.
Chibani-Chennou,S.
,M.
L.
Dillmann,L.
Marvin-Guy,S.
Rami-Shojaei,andH.
Bru¨ssow.
2004.
LactobacillusplantarumbacteriophageLP65:anewmemberoftheSPO1-likegenusofthefamilyMyoviridae.
J.
Bacteriol.
186:7069–7083.
11.
Comeau,A.
M.
,C.
Bertrand,A.
Letarov,F.
Tetart,andH.
M.
Krisch.
2007.
ModulararchitectureoftheT4phagesuperfamily:aconservedcoregenomeandaplasticperiphery.
Virology362:384–396.
12.
Delcher,A.
L.
,K.
A.
Bratke,E.
C.
Powers,andS.
L.
Salzberg.
2007.
Iden-tifyingbacterialgenesandendosymbiontDNAwithGlimmer.
Bioinformat-ics23:673–679.
13.
Deshpande,A.
M.
,andC.
S.
Newlon.
1996.
DNAreplicationforkpausesitesdependentontranscription.
Science272:1030–1033.
14.
Deshpande,L.
M.
,T.
R.
Fritsche,G.
J.
Moet,D.
J.
Biedenbach,andR.
N.
Jones.
2007.
Antimicrobialresistanceandmolecularepidemiologyofvan-comycin-resistantenterococcifromNorthAmericaandEurope:areportfromtheSENTRYantimicrobialsurveillanceprogram.
Diagn.
Microbiol.
Infect.
Dis.
58:163–170.
15.
Fischetti,V.
A.
,D.
Nelson,andR.
Schuch.
2006.
Reinventingphagetherapy:arethepartsgreaterthanthesumNat.
Biotechnol.
24:1508–1511.
16.
Fraser,J.
S.
,K.
L.
Maxwell,andA.
R.
Davidson.
2007.
Immunoglobulin-likedomainsonbacteriophage:weaponsofmodestdamageCurr.
Opin.
Micro-biol.
10:382–387.
17.
Fraser,J.
S.
,Z.
Yu,K.
L.
Maxwell,andA.
R.
Davidson.
2006.
Ig-likedomainsonbacteriophages:ataleofpromiscuityanddeceit.
J.
Mol.
Biol.
359:496–507.
18.
Freeman,M.
J.
,N.
T.
Plasterer,F.
T.
Smith,andC.
S.
Mohr.
1998.
Patternsofgenomeorganizationinbacteria.
Science279:1827.
19.
Fujita,N.
2005.
Vancomycin-resistantenterococci(VRE)–forVREendem-icsinJapan.
RinshoBiseibutshuJinsokuShindanKenkyukaiShi16:1–16.
(InJapanese.
)20.
Gill,J.
J.
,M.
E.
Pacan,M.
E.
Carson,K.
E.
Leslie,M.
W.
Grifths,andP.
M.
Sabour.
2006.
EfcacyandpharmacokineticsofbacteriophagetherapyintreatmentofsubclinicalStaphylococcusaureusmastitisinlactatingdairycattle.
Antimicrob.
AgentsChemother.
50:2912–2918.
21.
Gomi,H.
2007.
Sepsis.
NipponRinsho65(Suppl.
3):613–616.
(InJapanese.
)22.
Greenberg,R.
G.
,P.
He,J.
Hilnger,andM.
J.
Tseng.
1994.
Deoxyribo-nucleosidetriphosphatesynthesisandphageT4DNAreplication,p.
14–27.
InJ.
D.
Karam,J.
W.
Drake,andK.
N.
Kreuzer(ed.
),MolecularbiologyofbacteriophageT4.
ASMPress,Washington,DC.
23.
Grigoriev,A.
1998.
Analyzinggenomeswithcumulativeskewdiagrams.
Nu-cleicAcidsRes.
26:2286–2290.
24.
Grigoriev,A.
1999.
Strand-speciccompositionalasymmetriesindouble-strandedDNAviruses.
VirusRes.
60:1–19.
25.
Guttman,B.
,R.
Raya,andE.
Kutter.
2005.
Basicphagebiology,p.
29–66.
InE.
KutterandA.
Sulakvelidze(ed.
),Bacteriophages:biologyandapplica-tions.
CRCPress,BocaRaton,FL.
26.
Hambly,E.
,F.
Tetart,C.
Desplats,W.
H.
Wilson,H.
M.
Krisch,andN.
H.
Mann.
2001.
AconservedgeneticmodulethatencodesthemajorvirioncomponentsinboththecoliphageT4andthemarinecyanophageS-PM2.
Proc.
Natl.
Acad.
Sci.
USA98:11411–11416.
27.
Hanlon,G.
W.
2007.
Bacteriophages:anappraisaloftheirroleinthetreat-mentofbacterialinfections.
Int.
J.
Antimicrob.
Agents30:118–128.
28.
Hendrix,R.
W.
,andS.
R.
Casjens.
2005.
Myoviridae,p.
43–55.
InC.
M.
Fauquet,M.
A.
Mayo,J.
Maniloff,U.
Desselberger,andL.
A.
Ball(ed.
),Virustaxonomy.
EighthreportoftheInternationalCommitteeonTaxon-omyofViruses.
ElsevierAcademicPress,SanDiego,CA.
29.
Kasparek,P.
,R.
Pantucek,J.
Kahankova,V.
Ruzickova,andJ.
Doskar.
2007.
Genomerearrangementsinhost-rangemutantsofthepolyvalentstaphylococcalbacteriophage812.
FoliaMicrobiol.
(Praha)52:331–338.
30.
Kayser,F.
H.
2003.
Safetyaspectsofenterococcifromthemedicalpointofview.
Int.
J.
FoodMicrobiol.
88:255–262.
31.
Krogh,A.
,B.
Larsson,G.
vonHeijne,andE.
L.
Sonnhammer.
2001.
Pre-dictingtransmembraneproteintopologywithahiddenMarkovmodel:ap-plicationtocompletegenomes.
J.
Mol.
Biol.
305:567–580.
32.
Kwan,T.
,J.
Liu,M.
DuBow,P.
Gros,andJ.
Pelletier.
2005.
Thecompletegenomesandproteomesof27Staphylococcusaureusbacteriophages.
Proc.
Natl.
Acad.
Sci.
USA102:5174–5179.
33.
Lei,H.
Y.
,S.
H.
Lee,andS.
H.
Leir.
1996.
Antigen-inducedanaphylacticdeathinmice.
Int.
Arch.
AllergyImmunol.
109:407–412.
34.
Lowe,T.
M.
,andS.
R.
Eddy.
1997.
tRNAscan-SE:aprogramforimproveddetectionoftransferRNAgenesingenomicsequence.
NucleicAcidsRes.
25:955–964.
35.
Matsuzaki,S.
,M.
Yasuda,H.
Nishikawa,M.
Kuroda,T.
Ujihara,T.
Shuin,Y.
Shen,Z.
Jin,S.
Fujimoto,M.
D.
Nasimuzzaman,H.
Wakiguchi,S.
Sugi-hara,T.
Sugiura,S.
Koda,A.
Muraoka,andS.
Imai.
2003.
ExperimentalprotectionofmiceagainstlethalStaphylococcusaureusinfectionbynovelbacteriophageMR11.
J.
Infect.
Dis.
187:613–624.
36.
Merril,R.
C.
,D.
Scholl,andS.
Adhya.
2006.
Phagetherapy,p.
725–741.
InR.
CalenderandT.
S.
Abedon(ed.
),Thebacteriophages,2nded.
OxfordUniversityPress,NewYork,NY.
37.
Miller,E.
S.
,E.
Kutter,G.
Mosig,F.
Arisaka,T.
Kunisawa,andW.
Ruger.
2003.
BacteriophageT4genome.
Microbiol.
Mol.
Biol.
Rev.
67:86–156.
38.
Mulder,N.
J.
,R.
Apweiler,T.
K.
Attwood,A.
Bairoch,A.
Bateman,D.
Binns,P.
Bork,V.
Buillard,L.
Cerutti,R.
Copley,E.
Courcelle,U.
Das,L.
Daugh-erty,M.
Dibley,R.
Finn,W.
Fleischmann,J.
Gough,D.
Haft,N.
Hulo,S.
Hunter,D.
Kahn,A.
Kanapin,A.
Kejariwal,A.
Labarga,P.
S.
Langendijk-FIG.
5.
ExperimentexaminingmouserescuebyphageEF24Cad-ministration.
Atapproximately20minaftertheintraperitonealinocula-tionoftheminimumlethalbacterialdosage(EF14,1.
01010bacteria;VRE2,4.
2109bacteria)toBALB/cmice,differentconcentrationsofphage(MOIof10,1,0.
1,0.
01,0.
001,and0.
0001)orHIMCmedium(control)wereadministeredtotheoppositesideoftheabdominalcavitiesofvemice.
Thesurvivalratewasrecordedafter7days.
Valuessigni-cantlydifferentfromthecontrolvalues(P0.
05andP0.
01)areindicatedbyasterisksanddoubleasterisks,respectively.
4162UCHIYAMAETAL.
APPL.
ENVIRON.
MICROBIOL.
onMarch11,2021byguesthttp://aem.
asm.
org/DownloadedfromGenevaux,D.
Lonsdale,R.
Lopez,I.
Letunic,M.
Madera,J.
Maslen,C.
McAnulla,J.
McDowall,J.
Mistry,A.
Mitchell,A.
N.
Nikolskaya,S.
Or-chard,C.
Orengo,R.
Petryszak,J.
D.
Selengut,C.
J.
Sigrist,P.
D.
Thomas,F.
Valentin,D.
Wilson,C.
H.
Wu,andC.
Yeats.
2007.
NewdevelopmentsintheInterProdatabase.
NucleicAcidsRes.
35:e224–e228.
39.
O'Flaherty,S.
,A.
Coffey,R.
Edwards,W.
Meaney,G.
F.
Fitzgerald,andR.
P.
Ross.
2004.
GenomeofstaphylococcalphageK:anewlineageofMyoviridaeinfectinggram-positivebacteriawithalowGCcontent.
J.
Bacteriol.
186:2862–2871.
40.
O'Flaherty,S.
,R.
P.
Ross,W.
Meaney,G.
F.
Fitzgerald,M.
F.
Elbreki,andA.
Coffey.
2005.
Potentialofthepolyvalentanti-Staphylococcusbacterio-phageKforcontrolofantibiotic-resistantstaphylococcifromhospitals.
Appl.
Environ.
Microbiol.
71:1836–1842.
41.
Okajima,K.
2007.
Multipleorganfailureassociatedwithsevereinfection–themolecularmechanism(s)andnewtherapeuticstrategies.
NipponRinsho65(Suppl.
3):619–626.
(InJapanese.
)42.
Petty,N.
K.
,T.
J.
Evans,P.
C.
Fineran,andG.
P.
Salmond.
2007.
Biotech-nologicalexploitationofbacteriophageresearch.
TrendsBiotechnol.
25:7–15.
43.
Sulakvelidze,A.
,andE.
Kutter.
2005.
Bacteriophagetherapyinhumans,p.
381–436.
InE.
KutterandA.
Sulakevelidze(ed.
),Bacteriophages:biologyandapplications.
CRCPress,BocaRaton,FL.
44.
Tamames,J.
2001.
Evolutionofgeneorderconservationinprokaryotes.
GenomeBiol.
2:research0020.
1–research0020.
11.
doi:10.
1186/gb-2001-2-6-research0020.
45.
Tang,S.
L.
,S.
Nuttall,K.
Ngui,C.
Fisher,P.
Lopez,andM.
Dyall-Smith.
2002.
HF2:adouble-strandedDNAtailedhaloarchaealviruswithamosaicgenome.
Mol.
Microbiol.
44:283–296.
46.
Tyson,G.
W.
,J.
Chapman,P.
Hugenholtz,E.
E.
Allen,R.
J.
Ram,P.
M.
Richardson,V.
V.
Solovyev,E.
M.
Rubin,D.
S.
Rokhsar,andJ.
F.
Baneld.
2004.
Communitystructureandmetabolismthroughreconstructionofmi-crobialgenomesfromtheenvironment.
Nature428:37–43.
47.
Uchiyama,J.
,M.
Rashel,Y.
Maeda,I.
Takemura,S.
Sugihara,K.
Akechi,A.
Muraoka,H.
Wakiguchi,andS.
Matsuzaki.
2008.
Isolationandcharacter-izationofanovelEnterococcusfaecalisbacteriophageEF24Casacandi-datetherapeutic.
FEMSMicrobiol.
Lett.
278:200–206.
48.
Vinodkumar,C.
S.
,Y.
F.
Neelagund,andS.
Kalsurmath.
2005.
Bacterio-phageinthetreatmentofexperimentalsepticemicmicefromaclinicalisolateofmultidrugresistantKlebsiellapneumoniae.
J.
Commun.
Dis.
37:18–29.
49.
Wang,J.
,B.
Hu,M.
Xu,Q.
Yan,S.
Liu,X.
Zhu,Z.
Sun,D.
Tao,L.
Ding,E.
Reed,J.
Gong,Q.
Q.
Li,andJ.
Hu.
2006.
Therapeuticeffectivenessofbacteriophagesintherescueofmicewithextendedspectrumbeta-lacta-mase-producingEscherichiacolibacteremia.
Int.
J.
Mol.
Med.
17:347–355.
50.
Watanabe,R.
,T.
Matsumoto,G.
Sano,Y.
Ishii,K.
Tateda,Y.
Sumiyama,J.
Uchiyama,S.
Sakurai,S.
Matsuzaki,S.
Imai,andK.
Yamaguchi.
2007.
Efcacyofbacteriophagetherapyagainstgut-derivedsepsiscausedbyPseudomonasaeruginosainmice.
Antimicrob.
AgentsChemother.
51:446–452.
VOL.
74,2008THERAPEUTICPHAGEAGAINSTE.
FAECALISINFECTIONS4163onMarch11,2021byguesthttp://aem.
asm.
org/Downloadedfrom
华纳云(HNCloud Limited)是一家专业的全球数据中心基础服务提供商,总部在香港,隶属于香港联合通讯国际有限公司,拥有香港政府颁发的商业登记证明,保证用户的安全性和合规性。 华纳云是APNIC 和 ARIN 会员单位。主要提供数据中心基础服务、互联网业务解决方案, 以及香港服务器租用、香港服务器托管、香港云服务器、美国云服务器,云计算、云安全技术研发等产品和服务。其中云服务器基于成熟的 ...
速云怎么样?速云是一家国人商家。速云商家主要提供广州移动、深圳移动、广州茂名联通、香港HKT等VDS和独立服务器。目前,速云推出深圳独服优惠活动,机房为深圳移动机房,购买深圳服务器可享受5折优惠,目前独立服务器还支持申请免费试用,需要提交工单开通免费体验试用,次月可享受永久8折优惠,也是需工单申请哦!点击进入:速云官方网站地址活动期限至 2021年7月22日速云云服务器优惠活动:活动1:新购首月可...
湖南百纵科技有限公司是一家具有ISP ICP 电信增值许可证的正规公司,多年不断转型探索现已颇具规模,公司成立于2009年 通过多年经营积累目前已独具一格,公司主要经营有国内高防服务器,香港服务器,美国服务器,站群服务器,东南亚服务器租用,国内香港美国云服务器,以及全球专线业务!活动方案:主营:1、美国CN2云服务器,美国VPS,美国高防云主机,美国独立服务器,美国站群服务器,美国母机。2、香港C...
103838.com为你推荐
futureshop笔记本电脑一般国外比国内便宜多少固态硬盘是什么固态硬盘是什么?www.20ren.com求此欧美艳星名字http://www.sqsmm.com/index.php?album-read-id-1286.html18comic.fun黑色禁药http://www.lovecomic.cn/attachment/Fid_18/18_4_00d3b0cb502ea74.jpg这幅画名字叫什么?www.119mm.comwww.kb119.com 这个网站你们能打开不?mole.61.com谁知道摩尔庄园的网址啊百度指数词什么是百度指数www.mywife.ccmywife哪部最经典www.toutoulu.com外链方案到底应该怎么弄呢www.dm8.cc有谁知道海贼王最新漫画网址是多少??
in域名注册 免费申请网站域名 cpanel 宕机监控 英语简历模板word php探针 debian6 创梦 佛山高防服务器 国外视频网站有哪些 视频服务器是什么 河南移动梦网 摩尔庄园注册 实惠 国外免费云空间 卡巴斯基试用版下载 hdroad 锐速 腾讯服务器 windowsserver2012r2 更多