XXXXporntime
porntime 时间:2021-03-19 阅读:(
)
δ13CStableIsotopeAnalysisofAtmosphericOxygenatedVolatileOrganicCompoundsbyGasChromatography-IsotopeRatioMassSpectrometryBrianM.
Giebel,*PeterK.
Swart,andDanielD.
RiemerUniversityofMiami,RosenstielSchoolofMarineandAtmosphericScience,4600RickenbackerCauseway,Miami,Florida33149Wepresentanewmethodforanalyzingtheδ13Cisotopiccompositionofseveraloxygenatedvolatileorganiccompounds(OVOCs)fromdirectsourcesandambientatmosphericsamples.
Guidedbytherequirementsforanalysisoftracecomponentsinair,agaschromato-graphisotoperatiomassspectrometer(GC-IRMS)systemwasdevelopedwiththegoalofincreasingsensitivity,reducingdead-volumeandpeakbandbroad-ening,optimizingcombustionandwaterremoval,anddecreasingthesplitratiototheisotoperatiomassspectrometer(IRMS).
Thetechniquereliesonatwo-stagepreconcentrationsystem,alow-volumecapillaryreactorandwatertrap,andabalancedreferencegasdeliverysystem.
Theinstrument'smeasurementpreci-sionis0.
6to2.
9‰(1σ),andresultsindicatethatnegligiblesamplefractionationoccursduringgassam-pling.
Measuredδ13Cvalueshaveaminordependenceonsamplesize;linearityforacetonewas0.
06‰ngC-1andwasbestover1-10ngC.
Sensitivityis10timesgreaterthansimilarinstrumentationdesigns,incor-poratestheuseofadilutedworkingreferencegas(0.
1%CO2),andrequirescollectionof>0.
7ngCtoproduceaccurateandpreciseresults.
Withthisdetec-tionlimit,a1.
0Lsampleofambientairprovidessufcientcarbonforisotopicanalysis.
Emissionsfromvegetationandvehicleexhaustarecomparedandshowcleardifferencesinisotopicsignatures.
AmbientsamplescollectedinmetropolitanMiamiandtheEvergladesNationalParkcanbedifferentiatedandreectmultiplesourcesandsinksaffectingasinglesamplinglocation.
Vehicleexhaustemissionsofetha-nol,andthosecollectedinmetropolitanMiami,haveanomalouslyenrichedδ13Cvaluesrangingfrom-5.
0to-17.
2‰;weattributethisresulttoethanol'soriginfromcornanduseasanadditiveinautomotivefuels.
Oxygenatedvolatileorganiccompounds(OVOCs)suchasmethanol,ethanol,acetaldehyde,andacetonearegasesfoundthroughoutthetropospherethatinuenceatmosphericchemistryinmanyways.
Thesecompoundsactasasourceofradicalsandasinkforthehydroxylradical(OH),participateintroposphericozoneformation,andareprecursorstoformaldehydeandCO.
1MixingratiosforOVOCsaretypicallyatthelowpartsperbillionbyvolume(ppbv)levelanddependonsamplinglocationandseason.
2-5MostatmosphericOVOCmeasurementshavereportedinformationonambientlevels,sourceemissionstrengths,anduxrates,2,3,5-9withtwoindividualOVOCs,methanolandacetone,receivingthemajorityoffocusthusfar.
Methanolisthesecondmostabundantorganicgasintheatmosphereaftermethaneanditsglobalbudgethasbeenstudiedextensively.
3,10-12Emissionsfromvegetationarethesinglelargestsourcetotheatmosphereandareestimatedbetween75-312Tgyear-1.
Othersourcesofmethanolexist,includingfossilfuelcombustion,biomassburning,plantdecay,andinsituatmo-sphericproductionviaoxidationofmethane.
Combined,thesesourcesareestimatedat2‰wereobserved.
Thistestwasperformeddailytoevaluatetheintegrityoftheinstrumentation.
Iftheoffsetswere0.
3-0.
5‰,theconcur-rentdataforthedaywerecorrectedbytheappropriateamount.
Iftheoffsetexceeded0.
5‰,thecapillaryreactorwasreplaced.
DynamicRangeandLinearity.
A6LelectropolishedstainlesssteelbulbwithadiptubeassemblyservedasanexponentialdilutionasktotestthedynamicrangeandlinearityofthemethodandIRMSintheabsenceofcombustion.
Thebulbcontaineda1%CO2mixtureinheliummadefromthesamesubsampledCO2usedintheproductionofworkingreferencegas.
Adiluantowofheliumenteredthesteelbulbthroughthediptubeatarateof125cm3min-1andtheoutowwasplumbedtoRV1.
Thetotalanalysisoccurredovera5.
5hperiodbrokeninto9segmentswiththeintroductionofworkingreferencegas.
Theamountofcarbonreachingtheionsourcewas0.
1-80ng.
Theδ13Cvaluesoverthisrangeareexpressedasadifferenceofthemeasured(andcorrected)exponentiallydilutedCO2fromtheworkingreferencegas'acceptedvalueandaredisplayedinFigure3a.
Ofparticularinterestistheappearanceofapositiveoffset,0.
46‰,fromzero.
Effortsweremadetominimizefractionationsduringthegastransfers,andthegasesweremadefromthesamestock.
Despitethiseffort,theoffsetstillpersisted.
(43)Apel,E.
C.
;Emmons,L.
K.
;Karl,T.
;Flocke,F.
;Hills,A.
J.
;Madronich,S.
;Lee-Taylor,J.
;Fried,A.
;Weibring,P.
;Walega,J.
;Richter,D.
;Tie,X.
;Mauldin,L.
;Campos,T.
;Weinheimer,A.
;Knapp,D.
;Sive,B.
;Kleinman,L.
;Springston,S.
;Zaveri,R.
;Ortega,J.
;Voss,P.
;Blake,D.
;Baker,A.
;Warneke,C.
;Welsh-Bon,D.
;deGouw,J.
;Zheng,J.
;Zhang,R.
;Rudolph,J.
;Junkermann,W.
;Riemer,D.
D.
Atmos.
Chem.
Phys.
2010,10,2353–2375.
Figure2.
RangeofatmosphericOVOCmixingratiosexpectedinlargeportionsofthetroposphereandtheirrelationtocarbontransmittedtotheIRMSionsource.
Theshadedareacorrespondstothemethoddetectionlimit.
EAnalyticalChemistry,Vol.
xxx,No.
xx,MonthXX,XXXXThepositiveoffsetforCO2waslikelyaresultofsmallamountsofambientCO2becomingentrainedinthesystemandtherebyenrichingthemeasuredδ13Cvalue.
Forlargesamplesizesthisappearedtohaveaminimaleffect.
However,theeffectbecamemagniedforsamplesizesbelow1ngC,wheredeviationsupto2‰areobserved.
Thelinearityoverthisrange,determinedbyordinarylinearregression,was0.
01‰ngC-1.
Thissuggeststhatvariationoftheδ13Csignaturewithsamplesizeisnegligibleandrequires10ngCtoinduceachangeof0.
1‰.
Accuracyandprecisionwerebestovertherangeof0.
2to20ngC.
Samplescontainingmorethan20ngCandlessthat0.
2ngCwereenrichedin13C.
LiquidCompoundsandSingle-ComponentGases.
Low-pressuresingle-componentgassamplesenteredRV1atarateof3cm3min-1andwereloopinjectedontotheGC-IRMSwithnocryo-focusingbeforethechromatographiccolumn.
Teninjec-tionsofeachgaswerecomparedtosixinjectionsofworkingreferencegas.
Single-componentgasestestedtheGC-IRMSinstrumentationbycomparisontotheisotopicvaluesobtainedfortherawliquidsontheelementalanalyzer(ANCA).
Thevaluesfortherawliquidsservedasthebasisofallourcomparisons.
Thecalculatedpercentdifferencebetweenthetwomeasurementsrangedbetween-0.
1and4.
8%,andtheresultsarelistedinTable1.
AcetonewassuitabletotestthedynamicrangeandlinearresponseoftheIRMSwiththeaddedstepofcombustion.
Acetonewaschosenastheanalytebecauseitshowedconsistentandexcellentreproducibilityacrossallaspectsofthisstudy.
TheexperimentaldesignwasidenticaltothatoftheCO2experimentdescribedpreviouslybutwithoneexception,theacetonemixturehadastartingcarbonequivalentof0.
1%beforethediluentowofheliumwasadded.
A1%mixtureofacetonewasFigure3.
(A,B)Resultsforexponentiallydiluted(A)CO2and(B)acetonesamples.
δ13CvaluesareexpressedasadifferenceofthedilutedCO2andacetonefromtheacceptedvalueofthe0.
1%workingreferencegasandacetonevalueobtainedontheelementalanalyzer.
Anoffset,oppositeinsignbutalmostequalmagnitude,existsforCO2(0.
5‰)andacetone(-0.
6‰).
ForCO2,thisisthoughttobetheresultofanambientleakwherebyatmosphericCO2entersthesystem.
Foracetone,incompletecombustionwithinthecapillaryreactormaycontributetotheobservednegativeoffset.
Table1.
Tabulatedδ13CValuesforOVOCsUsedinThisWorkaelementalanalyzerliquidcompoundsGC-IRMSsingle-componentgasGC-IRMSlow-pressure7-componentGC-IRMShigh-pressure7-componentpooledGC-IRMSmean±1σ(‰)mean±1σ(‰)95%condence(±‰)%errormean±1σ(‰)95%condence(±‰)%errormean±1σ(‰)95%condence(±‰)%errormean±1σ(‰)95%condence(±‰)%errormethanol–35.
3±0.
1–34.
1±0.
10.
13.
5–33.
0±0.
10.
16.
5–34.
4±2.
82.
12.
5–34.
0±1.
60.
73.
7ethanol–29.
2±0.
2–27.
8±0.
80.
64.
8–26.
2±0.
81.
310.
2–26.
5±0.
50.
49.
2–26.
6±1.
40.
68.
7propanal–32.
8±0.
1–31.
9±0.
20.
12.
7–35.
0±0.
61.
0–6.
9–27.
4±0.
80.
616.
5–30.
5±2.
91.
26.
9acetone–27.
5±0.
2–28.
5±0.
70.
5–3.
7–27.
9±0.
20.
3–1.
4–27.
6±0.
20.
1–0.
4–28.
0±0.
60.
2–1.
7MEK–23.
2±0.
2–23.
5±0.
90.
6–1.
3–25.
5±0.
71.
1–10.
1–22.
5±0.
30.
2–3.
0–23.
5±1.
20.
5–1.
22-pentanone–25.
0±0.
3–26.
1±0.
20.
1–4.
3–33.
7±1.
11.
8–34.
8–28.
4±0.
60.
5–13.
6–28.
6±2.
81.
1–14.
33-pentanone–30.
7±0.
2–30.
7±0.
60.
4–0.
1–34.
3±0.
30.
5–11.
6–32.
7±0.
70.
5–6.
5–32.
3±1.
50.
6–5.
1samplenumbern)3n)10n)4n)9n)23InstrumentVariablesdiluentHeHeN2sampleloopRV1RV1RV2cryo-focusnoyesyescarbonsorbentnonoyeszeroairdilutionnonoyesaAccuracyandprecisionistracedfromtheelementalanalyzerthroughthenaldesignoftheGC-IRMSsystem.
Differentvariablestestedduringeachphasearelisted.
Thesystem'stotalprecisionwascalculatedbetween0.
6and2.
9‰whencomparedtothevaluesobtainedontheelementalanalyzer.
FAnalyticalChemistry,Vol.
xxx,No.
xx,MonthXX,XXXXavoidedfortworeasons.
First,ambientsamplesarenotexpectedtobegreaterthan0.
1%,andsecond,thereismoreconcernforwhathappenstomeasuredisotopicsignaturesassmallersampleconcentrationsareapproached.
TheamountofcarbonreachingtheionsourcewasdeterminedsimilarlytotheCO2testandrangedbetween0.
8and12ng.
Theδ13Cvaluesoverthisrangeareexpressedasadifferenceofthemeasuredandcorrectedexponentiallydilutedacetonefromthevalueobtainedontheelementalanalyzer(Figure3b).
Thelinearityoverthisrange,determinedbyordinarylinearregression,was0.
06‰ngC-1.
Foracetone,thisindicatesthatsamplesizecaninuencemeasuredδ13Candthatachangebetween1and10ngCcaninduceanoticeableshiftof0.
6‰inmeasuredδ13C.
Accuracyandprecisionwerebestovertherangeof0.
2-10ngC.
Alsoworthnotingistheapparentnegativeoffsetforacetone,-0.
56‰,comparedtothepositiveoffsetforCO2,0.
46‰.
Rawdataforbothexperimentswerecorrectedby0.
5‰and0.
4‰foracetoneandCO2,respectively.
However,theoffsetsstillexist.
EntrainmentofambientCO2didnotappeartoaffectacetonebecauseofitsseparationonthechromatographiccolumn.
Thenegativeoffsetforacetonewaslikelyrelatedtoincompletecombustionwithinthecapillaryreactor.
Thermo-dynamicprinciplessupport12Cbeingcombustedbefore13C;thus,ifcombustionwasincomplete,wewouldobservealighterδ13Cvalue.
CalibrantGasAnalyses.
Low-PressureSeven-ComponentGasMixture.
Alow-pressureseven-componentgasmixtureinheliumwasusedpreliminarilytotestchromatographicconditionsintheabsenceofthecarbonsorbentbyusingtheRV1loop(Table1).
Thiswasalogicalstepbetweentheuseofsingle-componentgasesandagravimetricallyprepared,high-pressure,seven-componentcalibrationgasinnitrogen.
Thelow-pressureseven-componentgasmixtureowedthroughtheRV1loopfor5minpriortostartingtheanalysis.
Theowrate(3cm3min-1)wasmaintainedbyMFC(no.
1)upstreamofRV1.
Aftertheinitial5minpurgeperiod,RV1wasmanuallyswitchedandthegaswithintheinjectionloopwasdivertedthroughRV2andcryogenicallyfocusedinliquidnitrogenforanadditional5minbeforeinjectionintothechromatographiccolumn.
Ofparticularnotearethevaluesobtainedfor2-and3-pentanone,whicharedepletedin13Ccomparedtoboththeliquidcompoundsandthesinglecomponentgasmixtures.
Thismayindicateanunknowneffectresultingfromtheanalyticalcolumn.
Thepercenterrorbetweenthismeasurementtechniqueandthatperformedontheelementalanalyzerforthepureliquidcompoundsrangesbetween1.
4and35%.
GravimetricSeven-ComponentGasMixture.
OneofthemaingoalsofthisworkwastodevelopaGC-IRMSsystemcapableofmeasuringOVOCsoverthedynamicrangefoundintheatmo-sphere.
Tomimicambientlevelsofthesecompoundsintheatmosphere,thehigh-pressurecalibrantgaswasdilutedintomoistzero-airusingadynamicdilutionsystem.
Dilutionproducedmixingratiosbetween18.
6ppbv(methanol)and7.
3ppbv(2-pentanone)forallcomponents.
Thedilutedcalibrantwascon-necteddirectlytothegasmanifold(Figure1).
Usingtherangeofmixingratiosproducedafterthehigh-pressurecalibrantgaswasdilutedinzero-air(7.
3-18.
6ppbv),thevolumeofairconcentrated(1.
0L),andtheopensplitdilution(30%),wecalculated2.
5-5ngCweredeliveredtotheionsourceforallcomponents.
ResultsforninereplicateanalysesarepresentedinTable1,andanexampleofthechromatographicresponseappearsinFigure4.
Reasonableagreementexistsforallsevencomponentscomparedtotheliquidreagentsanalyzedontheelementalanalyzer;themarginoferrorbetweenthesetwomeasurementsrangedbetween0.
4and16.
5%.
Thecomponentswiththetwolargesterrorswerepropanal(16.
5%)and2-pentanone(13.
6%).
Bothofthesepeaksaretheleadingpeakinapair(propanal/acetoneand2-penatnone/3-penatanone),andperhapsthelaterelutingcompoundsinuencethemeasuredδ13Cvaluesoftheearliercompounds.
Thisissupportedbytheobservationthatanalysisofthesingle-componentgasesforthesamecompoundsontheGC-IRMShadalowererror(25%ofU.
S.
cornproductionandthatethanolconstitutes99%ofallbiofuelsintheUnitedStates.
47,48UtilizingC4photosynthesis,whichdiscriminateslessagainst13C,cornandotherC4plantsaregenerallyenrichedintheisotopecomparedtoC3plants.
Bulkcarbohydrateanalysesbetweenthetwoplanttypesshowanenrichmentof15‰incarbohydratesextractedfromC4plantmaterial.
49Investigationsofindustriallyproducedethanoloriginatingfromcornhavebeenshowntohaveδ13Cvaluesof-10.
71±0.
31‰.
49ThevaluesweobservedintheScoutsamplesare5‰heavierand,consideringthewidespreaduseofethanol(7.
5billiongallonsareexpectedtobeusedinfuelby201248),mayserveasatracerfortransportationrelatedsourcestotheatmosphere.
Somebiogenicsamplesinthisstudy,suchassandliveoakandorangecitrus,hadsubstantiallydepletedvaluesformethanolandagreewithincubatedemissionsfromvariousdeciduoustreesandgrassesmadebyKeppleretal.
33(Table2).
However,thisobservationisnotconsistentacrossallsamplesandsuggestthatvariationsinδ13Cvaluesmayresultfrominterspeciesdiffer-ences,microbeinteractionontheleaf'ssurface,prey/injuryresponse,thepotentialpresenceofamethanolutilizationpathwaywhichoxidizesmethanoltoformaldehydeandformicacid/formate,50,51andotherlesserknownmetabolic,formation,andlosspathwayswithinplants.
52Finally,awoundresponsemaybeobservedbetweentheclippedandintactphilodendronandseagrapesamples.
Inonedistinctcase,acetaldehydeemittedfromclippedseagrapespecimenswereenrichedby4‰comparedtothefossilfuelemissions.
AmbientMeasurementResults.
Considerabledifferencesinδ13Careobservedbetweenambientsamplinglocations(Table3).
ResultsfromMiamiInternationalAirportarereectiveofanaveragedvalueforfreshvehicularsources.
Themeasuredδ13Crangeforairportsamplesisbetween-12.
3±3.
7‰(ethanol)to-35.
3±1.
7‰(3-pentanone).
Withtheexceptionofethanol,whichhasaδ13CvalueconsistentwithitsC4plantsource,and2-and3-pentanone,themeasuredrangeattheairportagreeswiththatestablishedforNMHCsfromtrans-portation-relatedsourcesbyRudolph,namely,-21.
9to-31.
3‰.
25Ouracetaldehydevalueisconsistentwiththerange(44)Iannone,R.
;Koppmann,R.
;Rudolph,J.
J.
Atmos.
Chem.
2007,58,181–202.
(45)Rudolph,J.
;Anderson,R.
S.
;Czapiewski,K.
V.
;Czuba,E.
;Ernst,D.
;Gillespie,T.
;Huang,L.
;Rigby,C.
;Thompson,A.
E.
J.
Atmos.
Chem.
2003,44,39–55.
(46)Rudolph,J.
;Czuba,E.
;Norman,A.
L.
;Huang,L.
;Ernst,D.
Atmos.
Environ.
2002,36,1173–1181.
(47)Barnett,M.
O.
Environ.
Sci.
Technol.
2010,44,5330-5331.
(48)Farrell,A.
E.
;Plevin,R.
J.
;Turner,B.
T.
;Jones,A.
D.
;O'Hare,M.
;Kammen,D.
M.
Science2006,311,506–508.
(49)Ishida-Fujii,K.
;Goto,S.
;Uemura,R.
;Yamada,K.
;Sato,M.
;Yoshida,N.
Biosci.
,Biotechnol.
,Biochem.
2005,69,2193–2199.
(50)Cossins,E.
A.
Can.
J.
Biochem.
1964,42,1793–1802.
(51)Gout,E.
;Aubert,S.
;Bligny,R.
;Rebeille,F.
;Nonomura,A.
R.
;Benson,A.
A.
;Douce,R.
PlantPhysiol.
2000,123,287–296.
(52)Fall,R.
InReactiveHydrocarbonsintheAtmosphere;Hewitt,C.
N.
,Ed.
;AcademicPress:SanDiego,CA,1999;pp43-97.
Table2.
δ13CValuesforCompoundsEmittedfromVariousTropicalPlantsandaFossilFuelCombustionSourceaplanttypesandliveoakQuercusgeminataorangeCitrussinensislemonCitruslimonphilodendronPhilodendronselloumseagrapeCoccolobauviferaKeppleretal.
33fossilfuelcombustionacetaldehyde-29.
9(2.
3)-25.
7(0.
1)-22.
4(1.
4)*-17.
5(0.
5)-30.
7(1.
1)*-24.
9(2.
2)-20.
9(0.
4)methanol-41.
9(3.
1)-59.
7(2.
9)-37.
8(2.
6)*-27.
5(0.
5)-30.
7(1.
0)*-68.
2(11.
2)-16.
9(1.
3)ethanol-41.
5(0.
8)-37.
5(0.
3)-30.
6(0.
2)-36.
5(0.
2)*-29.
4(2.
6)-5.
0(0.
4)propanal-25.
6(2.
7)isopreneoffscaleb-26.
9(3.
7)-35.
2(3.
5)-33.
8(2.
6)-23.
0(2.
6)*-16.
7(1.
2)-32.
6(0.
9)*acetone-35.
7(4.
1)-37.
4(2.
4)-32.
8(1.
2)-38.
8(1.
1)-29.
3(1.
5)*-33.
8(0.
8)-31.
3(0.
8)*-28.
1(2.
5)-25.
6(0.
5)2-pentanone-35.
2(1.
4)benzene-26.
9(0.
3)toluene-27.
5(0.
6)aAlsoincludedarevaluesforpreppedandincubatedbiogenicsamplesfromKeppleretal.
.
33Allvaluesarereportedastheaverage(standarddeviation).
Allsamplesn)5,exceptthefossilfuelsourcewheren)3.
Allbiogenicsamplesarewounded/clippedbranches,exceptwherenoted(*),whichrepresentsanintactbranchonthesamplespecimen.
Thefossilfuelsourcewascollectedfroma1972ScoutInternationalwithnocatalyticconverterataconstantcruise.
bIsoprenewaspresent;however,itsaturatedthedetectorsandthesignalresponsewasoffscaleandtheδ13Cvaluecouldnotbecalculated.
HAnalyticalChemistry,Vol.
xxx,No.
xx,MonthXX,XXXXpresentedbyWenetal.
whomeasuredvaluesviaaderivati-zationprocedureof-21.
0‰and-29.
2‰forsamplescollectedatabusstationandpetrochemicalrenery,respec-tively.
36SomeobservationsatMiami'sFinancialDistrictarebetween2.
2and4.
4‰enrichedin13CcomparedtothesamecompoundsatMiamiInternationalAirport,andagainweobserveananomalouslyenrichedvalueforethanol(-17.
2±4.
1‰).
Samplesfromtheairportaregeneralδ13CvalueswecanexpectforOVOCsfromtransportationrelatedsourceswithoutadditionfromothersourcesandlossescausedbysolarradiationandreactionwithOH.
Miami'sFinancialDistrictislocatedwithin0.
1mileofBiscayneBayand1mileofthePortofMiamiandwasdominatedbyanonshorebreezeduringthesamplecollection.
Therefore,wecanexpectvaluesfromthenancialdistricttobeenrichedsincetheδ13Csignatureforeachcompoundwillreectacombinationofvehicular,biogenic,andpossiblymarinesourcesand,additionally,lossesattributabletoreactivitywithOHandphotolysis.
Isotopicvaluesforsamplesfromthenancialdistrictareboundwithinthereportedrangeof-15.
8to-37.
4‰forNMHCssampledatamoderatelypollutedwaterfrontinWellington,NewZealand.
25Incomparisonwithautomobileexhaust(Table2),themeanvaluesobservedatMiamiInternationalAirportandMiami'snancialdistrictaregenerallydepletedin13C.
Thetwomostobviousdifferencesamongthesesamplesthatmayinuencetheobservationsarethefuelsourceandthepresenceofacatalyticconverter.
Emissionscollectedattheairportareamixofrenedpetroleumanddiesel,whereastheScoutInterna-tionalwasfueledbyunleadedgasoline.
Furthermore,vehicleemissionsattheairportareassumedtobeproducedbyengineshavingacatalyticconverter.
However,theScoutlackedaconverter,andthespeedsoftheenginesproducingtheemissionswereverydifferent.
Trafcthroughtheairport'slowerroadwaymovedatanidlepaceandrarelyexceeded15mph.
TheScoutsampleswereobtainedwiththeengineundersignicantloadandataconstantrevolutionperminute(2000rpm)andcruisespeed(80kph).
Toourknowledge,nostudiesexistshowinghowthepresenceofacatalyticconverterorenginespeedmayinuencetheδ13Cofemittedhydrocarbons.
SamplesfromEvergladesNationalParkspannedalargerangefrom-19.
0to-36.
3‰.
MeasuredmethanolfromwithintheNationalParkwas-36.
3±3.
7‰,considerablydepletedandconsistentwithothervaluesobtainedinthetropicalplantenclosurestudies(i.
e.
,sandliveoakδ13CMethanol)-41.
9±3.
1‰)andwiththeresultspresentedearlierfromKeppleretal.
33Similarly,δ13CvaluesforisoprenereleasedfromC3plantsrangefrom-26to-29‰.
45IsoprenevaluesattheNationalParkarelighter(-30.
3±2.
1‰)thantherangepresentedbyRudolphetal.
However,whentheprecisionofthemeasure-mentisconsidered,theisoprenevaluesmeasuredfromtheEverglades'samplesoverlaptherangeobservedwiththatpreviouswork.
AcetoneandacetaldehydevaluesfromwithintheNationalParkaremoreenrichedthananticipated.
Themeanδ13Cvaluesforthesecompoundsare-23.
7‰and-19.
0‰,respectively.
Eachareenrichedapproximately7.
5‰comparedtosamplescollectedatMiamiInternationalAirportandarefairlyconsistentwithsamplesfromMiami'snancialdistrictandfossilfuelcombustion.
Whenestimatedatmosphericlifetimes(τ)areconsideredforthesecompoundsinthetroposphereforlossescausedbyreactivitywithOH(τacetoneOH)66days;τacetaldehydeOH)11h)andphotolysis(τacetonehν)38days;τacetaldehydehν)5days),theseobservationscanbeexplained,especiallyfortheenrichmentofacetaldehydeoveracetone(5‰).
Fewstudiesofambientδ13Cforacetaldehydeexist,29,36andonlyoneexistsforacetone.
37ForsamplescollectedwithinabiospherereserveinChina,Guoetal.
measuredacetaldehydevaluesbetween-31.
6and-34.
9‰.
Thesevaluesaredepletedin13Ccomparedtoourmeasurements.
However,theyreportweakphotolyticlossofformaldehydeinthesamestudy,andconsideringformaldehyde'slifetimeagainstphotolysisisshorter(4h)comparedtoacetaldehyde(5days),weassumethistobetrueforacetaldehydeatthesamelocation.
Guoetal.
usedaderivatizationmethodtocalculateδ13Cvaluesforacetonecollectedataforestedsite(-31‰)andatthetopofa10mbuildinginuencedbyvehicleemissions(-26‰).
TheacetonevaluesfromEvergladesNationalParkareenrichedby2-7‰comparedtothevaluespresentedbyGuoetal.
Isotopicvaluesobtainedfromtheforestmayreectthesignatureoffreshacetoneemissionsfrombiomass,whilevaluesforEvergladesNationalParksamplesmaybemorestronglyinuencedbyphotochemistry.
ThemeasuredvaluesforacetoneandacetaldehydefromwithintheEvergladesmayalsoindicatecontributionsfrominsituatmosphericproductionviaoxidationandphotolysisofhigherorderhydrocarbons.
Anexactassessmenttoseparatedirectemissionsfromphoto-chemicalproductionandlossisnotpossibleatthistimesincefractionationsassociatedwiththesepathwaysarenotknown.
CONCLUSIONSAnewmethodformeasuringδ13Cvaluesoflow-molecularweightOVOCsfromdirectsourcesandambientsampleswasdeveloped.
Themethodincorporatedacarbonsorbent,alow-volumecapillaryreactor,watertrap,andbalancedworkingreferencegasdeliverysystem.
Themethod'stotalprecisionrangedbetween0.
6and2.
9‰,andnegligiblesamplefraction-ationoccurredwhilesamplingandtrappinggases.
Furthertestingshowedthatmeasuredδ13CvalueshadlittledependenceTable3.
AmbientMeasurementResultsforSamplesCollectedfromMetropolitanMiamiandEvergladesNationalParkaδ13C±1σ(‰)MiamiInternationalAirportMiamiFinancialDistrictEvergladesNationalParkacetaldehyde-26.
7±0.
7-26.
8±1.
2-19.
0±2.
7methanol-36.
3±3.
7ethanol-12.
3±3.
7-17.
2±4.
1isoprene-30.
3±2.
1propanal-28.
4±1.
5-26.
2±2.
4acetone-31.
0±3.
5-26.
6±0.
4-23.
7±0.
4MEK-28.
3±2.
1-25.
9±1.
92-pentanone-34.
8±6.
5-29.
4±0.
13-pentanone-35.
3±1.
7-37.
8±1.
8toluene-33.
7±2.
0aMiamiInternationalAirport,n)5;Miaminancialdistrict,n)4;EvergladesNationalPark,n)3.
IAnalyticalChemistry,Vol.
xxx,No.
xx,MonthXX,XXXXonsamplesize(0.
06‰ngC1-),andlinearitywasbestovertherangeof1-10ngC.
Themethodwassensitive,requiring>0.
2ngCintotheionsourcetoproduceaccurateandpreciseresults.
Theanalysisofambientsamplesrequiredsmallsamplevolumes,with1.
0Lofgasprovidingsufcientcarbonforanalysis.
Cleardistinctionsinδ13Cwereobservedbetweenemissionsreleasedfromplantsandautomobiles.
Inparticular,ethanolemissionsfromautomotiveexhaustandmetropolitanMiamiweresignicantlyenrichedin13C.
Thisisrelatedtoethanol'sC4plantoriginanduseasafueladditive.
Ambientsamplescanbedifferentiated,butthevariationinδ13Cvalueswasnotasgreatasforthesourcesamples.
Ambientsamplessufferfromadditionalcomplexitywithmultiplesourcesandsinksaffectingsinglesamplinglocations.
Clearly,morestudiesofsourcesandambientsamplingarerequiredtodeneandcharacterizeOVOCsinthetropospherealongwithlaboratorystudiestodeterminethekineticisotopeeffectsassociatedwithOVOCs'insituproductionandlossfromreactionwithOHandphotolysis.
Asitstandsnow,thistechniquecanbeusedtodifferentiateOVOCsourcesandtoassessthecarbonisotopicvaluesforOVOCsinambientair.
Itshouldserveasausefulwaytoinvestigatetransformationsoforganicgasesintheatmosphere.
ACKNOWLEDGMENTWethankTomBrennaandHerbertTobiasforhelpfuldiscus-sionsindevelopingthismethodandRichIannoneforprovidingatemplateforrawdatacalculations.
WeacknowledgeJohnMakandZhihuiWangfortheworkingreferencegasinterlabcompari-son.
WeappreciatetheeffortsofKevinPolkandhis1972InternationalScout.
Finally,wegratefullyacknowledgethehelpfulcommentsmadebytwoanonymousreviewersandsupportprovidedbyNSFGrantNo.
0450939.
SUPPORTINGINFORMATIONAVAILABLEAdditionalinformationasnotedintext.
ThismaterialisavailablefreeofchargeviatheInternetathttp://pubs.
acs.
org.
ReceivedforreviewMarch23,2010.
AcceptedJuly6,2010.
AC1007442JAnalyticalChemistry,Vol.
xxx,No.
xx,MonthXX,XXXX
日前,国内知名主机服务商阿里云与国外资深服务器面板Plesk强强联合,推出 阿里云域名注册与备案、服务器ECS购买与登录使用 前言云服务器(Elastic 只需要确定cpu内存与带宽基本上就可以了,对于新手用户来说,我们在购买阿里云服务申请服务器与域名许多云服务商的云服务器配置是弹性的 三周学会小程序第三讲:服务 不过这个国外服务器有点慢,可以考虑国内的ngrokcc。 ngrokcc...
官方网站:点击访问火数云活动官网活动方案:CPU内存硬盘带宽流量架构IP机房价格购买地址4核4G50G 高效云盘20Mbps独享不限openstack1个九江287元/月立即抢购4核8G50G 高效云盘20Mbps独享不限openstack1个九江329元/月立即抢购2核2G50G 高效云盘5Mbps独享不限openstack1个大连15.9元/月立即抢购2核4G50G 高效云盘5Mbps独享不限...
pia云怎么样?pia云是一家2018的开办的国人商家,原名叫哔哔云,目前整合到了魔方云平台上,商家主要销售VPS服务,采用KVM虚拟架构 ,机房有美国洛杉矶、中国香港和深圳地区,洛杉矶为crea机房,三网回程CN2 GIA,带20G防御。目前,Pia云优惠促销,年付全场8折起,香港超极速CN2季付活动,4核4G15M云服务器仅240元/季起,香港CN2、美国三网CN2深圳BGP优质云服务器超高性...
porntime为你推荐
同ip网站查询服务器禁PING 是不是就可以解决同IP网站查询问题关键字数据库:什么是关键字?比肩工场大运比肩主事,运行长生地是什么意思?原代码源代码是什么意思啊月神谭给点人妖。变身类得小说。同ip站点同IP做同类站好吗?haole018.com为什么www.haole008.com在我这里打不开啊,是不是haole008换新的地址了?sss17.comwww.com17com.com是什么啊?mole.61.com谁知道摩尔庄园的网址啊www.7788dy.comwww.tom365.com这个免费的电影网站有毒吗?
美国和欧洲vps 域名备案收费吗 unsplash 国外免费空间 长沙服务器 hinet qq对话框 paypal注册教程 全能空间 酸酸乳 成都主机托管 锐速 免 优惠服务器 ubuntu安装教程 泥瓦工 主机游戏 阿里云主机 sockscap下载 qq空间论坛 更多