60GHzCapacitivelyProbe-FedPatchArrayswithSuspendedElementsKavehKeshtkaranandNimaGhalichechianElectroScienceLaboratory,Dept.
ofElectricalandComputerEngineeringTheOhioStateUniversity,Columbus,Ohio,USAEmail:keshtkaran.
2@osu.
edu,ghalichechian.
1@osu.
eduAbstract—Amajordrawbackofcurrentmillimeter-wavetechnologiesusedforintegrationofphasedarraysonachipislowefficiency(5-10%)andconsequentlylowrealizedgain.
Inthiswork,wepresentintegratedantennaarraysonsiliconthatexhibitradiationefficiencyof>80%at60GHz.
Thisisachievedbysuspendingtheradiatingelementsofaphasedarrayinairusingmicro-electro-mechanicalsystems(MEMS)processes,effectivelyreplacingalossysiliconsubstrate(undereachelement)withair.
Inthelatestdesignweusedcapacitivefeedingwithpinandpatchheightof40and60m,respectively.
Finiteelementsimulationresultsverifytheperformanceofthearray.
Afinitearraywith5*5elementsachieved-10-dBbandwidthof1.
7GHz.
Arrayiswellmatchedat60GHzwithS11Suspended,MEMS,PhasedArray,HighEfficiency.
I.
INTRODUCTIONConservativeestimatespredictthatcellulardatatrafficwillgrow40-70%annuallyintheforeseeablefuture,implyingtheneedfornetworkstosupportgreaterthan1000timesthecurrentdatatraffic[1-3].
Inrecentyearstherehasbeengreatinterestin60GHzantennasduetolargeunlicensedbandsavailableat57-64GHz[4].
Thisbandisagreatcandidatefornext-generationshort-rangecommunicationlinks.
However,thereareseveralchallengesforsuccessfulrealizationofmillimeter-wavecommunicationsystems.
Onesuchchallengeisthatthesignalpropagationatmillimeter-wavefrequenciesisimpairedbyseverepath-lossandshadowingeffects[5].
Transmitandreceivebeamformingnetworkswithmany(e.
g.
,≥100)antennasperterminalarenaturalapproachtocounteringtheincreasedpathlossat60GHzband.
Asaresult,nextgenerationantennasoperatingatthisbandneedtobecapableofelectronicscanningwhileexhibitingahighgain.
Currentlytherearetwoapproachesforon-chipantennas.
Inthefirstapproach,theantennaispositionedonthesubstrateresultinginmassiveradiationlosses.
Thisisduetolowresistivityofsiliconcausingmostofthefieldcoupletosiliconsubstrate(withdielectricconstantof11.
7)insteadofradiatinginfreespace.
Improvementstoefficiencyarepossiblebythinningdownthesubstrateorusinghigh-resistivitysubstratewhicharebothundesirableoptionssincetheyarelimitedandcostly.
Despitetheseimprovements,theantennaradiationefficiencyisintheorderof5-10%orless[6-8].
Thestateoftheartapproachutilizesagroundplaneonthesubstratewithathinlayerofsilicondioxide(SiO2)(e.
g.
5minthickness)separatingaradiatingelementsfromthegroundlayer[9].
Duetocloseproximityofthetransmissionlineandradiatingelementstothegroundplane,theconductivelossesdominateresultinginantennaradiationefficiencyintheorderof45%orless.
ThekeylimitationhereisfinitethicknessofSiO2layerinastandardBi-CMOSprocessesusedforfabricatingactivecomponentssuchasT/Rmodules.
Toavoidcrackinginthethickdielectriclayer,metalfences(vias)aredesignedandfabricatedwithinthedielectriclayerthatcontributetoadditionallosses.
Furthermore,highersilicondioxidethickness(betweenthegroundplaneandtheantennaelements)increasesthefabricationcostoftheantennaarray.
Incontrasttotheaforementionedapproachesinrealizingintegratedphasedarrays,thispaperpresentsanovelarchitecturethatusesMEMSsuspendedradiatingelementstogetherwithcapacitively-fedpatchtoachieve>80%efficiency.
Thisapproachhasafewuniquefeatures.
Forinstance,bysuspendingthepatch,theeffectivedielectricconstantofthesubstrateisreducedto1.
Asaresultbyreducingconductive,dielectric,andsurfacewavelosses,theefficiencyoftheantennaisincreased.
Moreimportant,byreducingeffectivedielectricconstant,thearrayisabletoscanmuchlargervolumecomparedtoconventionalpatcharrayantennas.
Wehavealsoimprovedonourpreviousworkthatusedaperturecoupledmicrostripfeednetwork[10].
Unlikeourpreviousdesign,thepin/capacitorfeedingschemeprovidesbettercompatibilityandeasiermonolithicintegrationwithaCMOST/Rsubstrate.
Thispaperisstructuredasthefollowing.
InSectionII,basicdesignandarchitectureofthephasedarrayisdiscussed.
FabricationprocessispresentedinSectionIII.
Simulationresults–includingimpedancematching,efficiency,andscanning–arereportedinSectionIV.
II.
PHASEDARRAYARCHITECTUREA.
UnitCellDesignSuccessfulimplementationofthenext-generationantennaarrayat60GHzwilldependonasimple–yet201711thEuropeanConferenceonAntennasandPropagation(EUCAP)978-88-907018-7-0/17/$31.
002017IEEE#15703175292511important–factor:EaseofintegrationoftheantennaandthesubstratethatholdstheRFfront-endcircuits.
Asmentionedearlier,inatraditionalapproach,theproximityoftheradiatingelement(patch,dipole,etc.
)toalossyhighdielectricconstant(silicon)substrate(orthegroundplane)isamajorsourceofradiationloss.
Incaseswherethesubstrateisshieldedbyagroundplane,alayerofsilicondioxideisusedforseparationbetweentheradiatingelementandthegroundplane[11].
Giventhesizeofthewavelength(λ=5mmat60GHz)andcurrenttechnologylimitationstofabricatethickSiO2layer,themaximumpossibleoxidethickness(5-15m)isstillwellbelowtherequiredthicknesstoavoidohmiclossesandachievehighradiationresistance(e.
g.
λ/10≈500mforapatcharrayat60GHz).
Toaddresstheaforementionedshortcoming,weproposeanovelsuspendedphasedarraystructurethatimprovesefficiencyandscanningperformanceofthearraywhilemaintainingtherequiredbandwidth.
TheunitcellschematicofthesuspendedpatcharrayisshowninFig.
1.
Asillustrated,thepatchissuspended60mabovethegroundplanewithathickSU-8postsdefinedbyaphotolithographyprocess.
Thesepostsoccupyasmallarea,thus,haveaminorimpactontheradiationpatternofthepatch.
WehaverecentlycharacterizedtheelectricalpropertiesoftheSU-8atmillimeterwaveandterahertzbands[12].
Theradiatingelementcanbefabricatedonathinmembraneor–asshowninFig.
1–onathickdielectricsuperstrate.
Unitcellsizeis3mm*3mm.
Thepatchisfedwitha40-m-heightpinformingacapacitivescheme.
EachpinisfeddirectlybyaT/Rmodulelocatedunderneathelements.
ThepinsarefabricatedbymetallizationofthesecondsetofSU-8posts.
B.
FiniteArrayDesignSchematic3DviewofthesuspendedphasedarrayisshowninFig2.
Thearraysizeischosentobe5*5fortheeaseofsimulation,fabrication,andtesting.
Thearraysizeis15mm*15mm.
Asmentionedearlier,thisarchitectureissuitableforactiveelectronicallyscannedarrays.
Largerarraysizescanalsobeconsideredinfuturetoachieveahighergain.
Fabricationandsimulationresultsarereportedinthenextsections.
III.
FABRICATIONThefabricationprocessofthearrayisasfollowing.
First,thefeedlineswerefabricatedbypatteringa1-m-thickgoldlayeronasiliconsubstrate.
A3-m-thickSiO2layerwasthendeposited,patterned,andetchedtoformapinslot.
Next,thegroundplanewaspatternedusingagoldlayer.
Furthermore,40-m-thickSU-8photoresistwasspincotedandpatternedtoformthepostsforpins.
Then,1mconformalgoldlayerwasdepositedandetchedtoformcapacitivecaps.
Onaseparate100-m-thickquartzsubstrate,a1mgoldlayerwasdepositedandpatternedfollowedbyspincoatingandpatterninga60mthickSU-8layertoformthepostsforsuspendedpatch.
Lastly,thetwowaferswerealignedandbondedtogethertoformthefinalarraystructure.
IV.
SIMULATIONRESULTSANSYSHFSSwasusedforthesimulationoftheunitcellofaninfiniteanarray.
Wealsousedthesametoolforthesimulationofthefinite5*5elementarray.
Theimpedancematching(atbroadside)isshowninFig.
3.
Theantennaiswellmatchedat60GHzwithS11suspendedpatcharray.
Fig.
2:3Dschematicofhigh-efficiencyphasedarraywith25elements.
Eachpatchissuspendedon5postsandfedbycapacitivepin.
201711thEuropeanConferenceonAntennasandPropagation(EUCAP)#15703175292512maximumrealizedgainof20dBiatbroadside.
Dependingontheapplication,thegaincaneasilybeincreasedbydesigningalargerarray.
Thearrayiscapableofscanningdownto45°inbothEandHplanes.
Comparedtothebroadside,thegainisreducedby4dBat45°.
Thesidelobesareacceptableandareabout13.
3dBlevel.
Totalradiationefficiencyofthearrayiscalculatedtobe89%.
Fig.
3:Simulationresultsshowingreflectioncoefficient(S11)asafunctionoffrequency.
MinimumS11is19dBandbandwidthisapprox.
1.
7GHz.
Fig.
4:SimulationresultsfortheantennapatternshowingrealizedgainasafunctionofscanningangleforE-plane(top)andH-plane(bottom).
V.
CONCLUSIONInthispaperwepresentedanewdesigntoimproveon-chipphasedarrayantennaefficiencyandrealizedgainat60GHz.
Thisisachievedbypolymer-corecapacitively-fedandsuspendedradiatingelements.
Achievedgainis20dBiwith13.
3dBsidelobeslevel.
The5*5(25elements)arrayiscapableofscanning±45°inEandHplanes.
Inthisdesign,antennaisdirectlyfedfrombelow.
Theareaunderthegroundplanecanbeusedforfront-endelectronics.
Thissavesvaluablesemiconductorspace.
Thisantennawillbetestedbyterminatingallbutthecenterelement.
ThelatterwillbeexcitedbymicrostriplineandRFprobes.
Furtherenhancementstothebandwidth,efficiency,andscanningperformanceisalsopossiblebyreducinggratinglobesandterminatingthefieldsattheedgeofthearray.
Design,simulation,fabrication,andmeasurementresultswillbepresentedattheconference.
REFERENCES[1]J.
Hasch,E.
Topak,R.
Schnabel,T.
Zwick,R.
Weigel,andC.
Waldschmidt,"Millimeter-WaveTechnologyforAutomotiveRadarSensorsinthe77GHzFrequencyBand,"IEEETransactionsonMicrowaveTheoryandTechniques,vol.
60,pp.
845-860,2012.
[2]F.
KhanandP.
Zhouyue,"mmWavemobilebroadband(MMB):Unleashingthe3-300GHzspectrum,"in34thIEEESarnoffSymposium,2011,pp.
1-6.
[3]U.
Forum,"Mobiletrafficforecasts2010-2020report,"UMTS2011.
[4]C.
ParkandT.
S.
Rappaport,"Short-RangeWirelessCommunicationsforNext-GenerationNetworks:UWB,60GHzMillimeter-WaveWPAN,AndZigBee,"IEEEWirelessCommunications,vol.
14,pp.
70-78,2007.
[5]S.
Rangan,T.
S.
Rappaport,andE.
Erkip,"Millimeter-WaveCellularWirelessNetworks:PotentialsandChallenges,"ProceedingsoftheIEEE,vol.
102,pp.
366-385,Mar2014.
[6]H.
M.
CheemaandA.
Shamim,"Thelastbarrier:on-chipantennas,"MicrowaveMagazine,IEEE,vol.
14,pp.
79-91,2013.
[7]N.
Behdad,D.
Shi,W.
Hong,K.
Sarabandi,andM.
P.
Flynn,"A0.
3mm^2MiniaturizedX-BandOn-ChipSlotAntennain0.
13umCMOS,"in2007IEEERadioFrequencyIntegratedCircuits(RFIC)Symposium,2007,pp.
441-444.
[8]A.
Babakhani,X.
Guan,A.
Komijani,A.
Natarajan,andA.
Hajimiri,"A77-GHzPhased-ArrayTransceiverWithOn-ChipAntennasinSilicon:ReceiverandAntennas,"IEEEJournalofSolid-StateCircuits,vol.
41,pp.
2795-2806,2006.
[9]W.
Shin,B.
H.
Ku,O.
Inac,Y.
C.
Ou,andG.
M.
Rebeiz,"A108-114GHz4x4Wafer-ScalePhasedArrayTransmitterWithHigh-EfficiencyOn-ChipAntennas,"IEEEJournalofSolid-StateCircuits,vol.
48,pp.
2041-2055,2013.
[10]K.
KeshtkaranandN.
Ghalichechian,"Suspended60GHzphasedarrayantennawithhighefficiency,"inInternationalWorkshoponAntennaTechnology(iWAT),2016,pp.
37-39.
[11]W.
Ruoyu,S.
Yaoming,M.
Kaynak,S.
Beer,J.
Borngr,andJ.
C.
Scheytt,"Amicromachineddouble-dipoleantennafor122-140GHzapplicationsbasedonaSiGeBiCMOStechnology,"inIEEEMTT-SInternationalMicrowaveSymposiumDigest(MTT),2012,pp.
1-3.
[12]N.
GhalichechianandK.
Sertel,"PermittivityandLossCharacterizationofSU-8FilmsformmWandTerahertzApplications,"IEEEAntennasandWirelessPropagationLetters,vol.
14,pp.
723-726,2015.
201711thEuropeanConferenceonAntennasandPropagation(EUCAP)#15703175292513
Digital-VM商家的暑期活动促销,这个商家提供有多个数据中心独立服务器、VPS主机产品。最低配置月付80美元,支持带宽、流量和IP的自定义配置。Digital-VM,是2019年新成立的商家,主要从事日本东京、新加坡、美国洛杉矶、荷兰阿姆斯特丹、西班牙马德里、挪威奥斯陆、丹麦哥本哈根数据中心的KVM架构VPS产品销售,分为大硬盘型(1Gbps带宽端口、分配较大的硬盘)和大带宽型(10Gbps...
华纳云怎么样?华纳云是香港老牌的IDC服务商,成立于2015年,主要提供中国香港/美国节点的服务器及网络安全产品、比如,香港服务器、香港云服务器、香港高防服务器、香港高防IP、美国云服务器、机柜出租以及云虚拟主机等。以极速 BGP 冗余网络、CN2 GIA 回国专线以及多年技能经验,帮助全球数十万家企业实现业务转型攀升。华纳云针对618返场活动,华纳云推出一系列热销产品活动,香港云服务器低至3折,...
便宜的香港vps多少钱?现在国外VPS主机的价格已经很便宜了,美国VPS主机最低一个月只要十几元,但同样免备案的香港VPS价格贵不贵呢?或者说便宜的香港VPS多少钱?香港vps主机价格要比美国机房的贵一些,但比国内的又便宜不少,所以目前情况是同等配置下,美国VPS比香港的便宜,香港VPS比国内(指大陆地区)的便宜。目前,最便宜香港vps低至3元/首月、18元/月起,今天云服务器网(www.yunt...
suspended为你推荐
虚拟主机购买够买虚拟主机在那里的比较好介绍一个国外虚拟空间哪里买的100m海外虚拟空间便宜稳定?海外域名求国外域名商列表网站空间购买购买网站空间需要注意什么深圳网站空间深圳宝安网站设计,深圳网站空间,哪里做的最好???网站空间免备案想买一个网站空间,大家给推荐个稳定的,速度的,免备案的?什么是虚拟主机虚拟主机是什么?深圳虚拟主机需要一个虚拟主机???很急!!美国免费虚拟主机美国虚拟主机怎么样?美国虚拟主机那个比较好?虚拟主机提供商找个比较好的虚拟主机提供商
dreamhost mediafire下载工具 创宇云 debian源 绍兴高防 个人免费空间 新天域互联 广州服务器 t云 网游服务器 网站加速 杭州电信宽带 weblogic部署 paypal兑换 screen tko ddos攻击工具 电脑显示屏不亮但是主机已开机 监控主机 报警主机 更多