60GHzCapacitivelyProbe-FedPatchArrayswithSuspendedElementsKavehKeshtkaranandNimaGhalichechianElectroScienceLaboratory,Dept.
ofElectricalandComputerEngineeringTheOhioStateUniversity,Columbus,Ohio,USAEmail:keshtkaran.
2@osu.
edu,ghalichechian.
1@osu.
eduAbstract—Amajordrawbackofcurrentmillimeter-wavetechnologiesusedforintegrationofphasedarraysonachipislowefficiency(5-10%)andconsequentlylowrealizedgain.
Inthiswork,wepresentintegratedantennaarraysonsiliconthatexhibitradiationefficiencyof>80%at60GHz.
Thisisachievedbysuspendingtheradiatingelementsofaphasedarrayinairusingmicro-electro-mechanicalsystems(MEMS)processes,effectivelyreplacingalossysiliconsubstrate(undereachelement)withair.
Inthelatestdesignweusedcapacitivefeedingwithpinandpatchheightof40and60m,respectively.
Finiteelementsimulationresultsverifytheperformanceofthearray.
Afinitearraywith5*5elementsachieved-10-dBbandwidthof1.
7GHz.
Arrayiswellmatchedat60GHzwithS11Suspended,MEMS,PhasedArray,HighEfficiency.
I.
INTRODUCTIONConservativeestimatespredictthatcellulardatatrafficwillgrow40-70%annuallyintheforeseeablefuture,implyingtheneedfornetworkstosupportgreaterthan1000timesthecurrentdatatraffic[1-3].
Inrecentyearstherehasbeengreatinterestin60GHzantennasduetolargeunlicensedbandsavailableat57-64GHz[4].
Thisbandisagreatcandidatefornext-generationshort-rangecommunicationlinks.
However,thereareseveralchallengesforsuccessfulrealizationofmillimeter-wavecommunicationsystems.
Onesuchchallengeisthatthesignalpropagationatmillimeter-wavefrequenciesisimpairedbyseverepath-lossandshadowingeffects[5].
Transmitandreceivebeamformingnetworkswithmany(e.
g.
,≥100)antennasperterminalarenaturalapproachtocounteringtheincreasedpathlossat60GHzband.
Asaresult,nextgenerationantennasoperatingatthisbandneedtobecapableofelectronicscanningwhileexhibitingahighgain.
Currentlytherearetwoapproachesforon-chipantennas.
Inthefirstapproach,theantennaispositionedonthesubstrateresultinginmassiveradiationlosses.
Thisisduetolowresistivityofsiliconcausingmostofthefieldcoupletosiliconsubstrate(withdielectricconstantof11.
7)insteadofradiatinginfreespace.
Improvementstoefficiencyarepossiblebythinningdownthesubstrateorusinghigh-resistivitysubstratewhicharebothundesirableoptionssincetheyarelimitedandcostly.
Despitetheseimprovements,theantennaradiationefficiencyisintheorderof5-10%orless[6-8].
Thestateoftheartapproachutilizesagroundplaneonthesubstratewithathinlayerofsilicondioxide(SiO2)(e.
g.
5minthickness)separatingaradiatingelementsfromthegroundlayer[9].
Duetocloseproximityofthetransmissionlineandradiatingelementstothegroundplane,theconductivelossesdominateresultinginantennaradiationefficiencyintheorderof45%orless.
ThekeylimitationhereisfinitethicknessofSiO2layerinastandardBi-CMOSprocessesusedforfabricatingactivecomponentssuchasT/Rmodules.
Toavoidcrackinginthethickdielectriclayer,metalfences(vias)aredesignedandfabricatedwithinthedielectriclayerthatcontributetoadditionallosses.
Furthermore,highersilicondioxidethickness(betweenthegroundplaneandtheantennaelements)increasesthefabricationcostoftheantennaarray.
Incontrasttotheaforementionedapproachesinrealizingintegratedphasedarrays,thispaperpresentsanovelarchitecturethatusesMEMSsuspendedradiatingelementstogetherwithcapacitively-fedpatchtoachieve>80%efficiency.
Thisapproachhasafewuniquefeatures.
Forinstance,bysuspendingthepatch,theeffectivedielectricconstantofthesubstrateisreducedto1.
Asaresultbyreducingconductive,dielectric,andsurfacewavelosses,theefficiencyoftheantennaisincreased.
Moreimportant,byreducingeffectivedielectricconstant,thearrayisabletoscanmuchlargervolumecomparedtoconventionalpatcharrayantennas.
Wehavealsoimprovedonourpreviousworkthatusedaperturecoupledmicrostripfeednetwork[10].
Unlikeourpreviousdesign,thepin/capacitorfeedingschemeprovidesbettercompatibilityandeasiermonolithicintegrationwithaCMOST/Rsubstrate.
Thispaperisstructuredasthefollowing.
InSectionII,basicdesignandarchitectureofthephasedarrayisdiscussed.
FabricationprocessispresentedinSectionIII.
Simulationresults–includingimpedancematching,efficiency,andscanning–arereportedinSectionIV.
II.
PHASEDARRAYARCHITECTUREA.
UnitCellDesignSuccessfulimplementationofthenext-generationantennaarrayat60GHzwilldependonasimple–yet201711thEuropeanConferenceonAntennasandPropagation(EUCAP)978-88-907018-7-0/17/$31.
002017IEEE#15703175292511important–factor:EaseofintegrationoftheantennaandthesubstratethatholdstheRFfront-endcircuits.
Asmentionedearlier,inatraditionalapproach,theproximityoftheradiatingelement(patch,dipole,etc.
)toalossyhighdielectricconstant(silicon)substrate(orthegroundplane)isamajorsourceofradiationloss.
Incaseswherethesubstrateisshieldedbyagroundplane,alayerofsilicondioxideisusedforseparationbetweentheradiatingelementandthegroundplane[11].
Giventhesizeofthewavelength(λ=5mmat60GHz)andcurrenttechnologylimitationstofabricatethickSiO2layer,themaximumpossibleoxidethickness(5-15m)isstillwellbelowtherequiredthicknesstoavoidohmiclossesandachievehighradiationresistance(e.
g.
λ/10≈500mforapatcharrayat60GHz).
Toaddresstheaforementionedshortcoming,weproposeanovelsuspendedphasedarraystructurethatimprovesefficiencyandscanningperformanceofthearraywhilemaintainingtherequiredbandwidth.
TheunitcellschematicofthesuspendedpatcharrayisshowninFig.
1.
Asillustrated,thepatchissuspended60mabovethegroundplanewithathickSU-8postsdefinedbyaphotolithographyprocess.
Thesepostsoccupyasmallarea,thus,haveaminorimpactontheradiationpatternofthepatch.
WehaverecentlycharacterizedtheelectricalpropertiesoftheSU-8atmillimeterwaveandterahertzbands[12].
Theradiatingelementcanbefabricatedonathinmembraneor–asshowninFig.
1–onathickdielectricsuperstrate.
Unitcellsizeis3mm*3mm.
Thepatchisfedwitha40-m-heightpinformingacapacitivescheme.
EachpinisfeddirectlybyaT/Rmodulelocatedunderneathelements.
ThepinsarefabricatedbymetallizationofthesecondsetofSU-8posts.
B.
FiniteArrayDesignSchematic3DviewofthesuspendedphasedarrayisshowninFig2.
Thearraysizeischosentobe5*5fortheeaseofsimulation,fabrication,andtesting.
Thearraysizeis15mm*15mm.
Asmentionedearlier,thisarchitectureissuitableforactiveelectronicallyscannedarrays.
Largerarraysizescanalsobeconsideredinfuturetoachieveahighergain.
Fabricationandsimulationresultsarereportedinthenextsections.
III.
FABRICATIONThefabricationprocessofthearrayisasfollowing.
First,thefeedlineswerefabricatedbypatteringa1-m-thickgoldlayeronasiliconsubstrate.
A3-m-thickSiO2layerwasthendeposited,patterned,andetchedtoformapinslot.
Next,thegroundplanewaspatternedusingagoldlayer.
Furthermore,40-m-thickSU-8photoresistwasspincotedandpatternedtoformthepostsforpins.
Then,1mconformalgoldlayerwasdepositedandetchedtoformcapacitivecaps.
Onaseparate100-m-thickquartzsubstrate,a1mgoldlayerwasdepositedandpatternedfollowedbyspincoatingandpatterninga60mthickSU-8layertoformthepostsforsuspendedpatch.
Lastly,thetwowaferswerealignedandbondedtogethertoformthefinalarraystructure.
IV.
SIMULATIONRESULTSANSYSHFSSwasusedforthesimulationoftheunitcellofaninfiniteanarray.
Wealsousedthesametoolforthesimulationofthefinite5*5elementarray.
Theimpedancematching(atbroadside)isshowninFig.
3.
Theantennaiswellmatchedat60GHzwithS11suspendedpatcharray.
Fig.
2:3Dschematicofhigh-efficiencyphasedarraywith25elements.
Eachpatchissuspendedon5postsandfedbycapacitivepin.
201711thEuropeanConferenceonAntennasandPropagation(EUCAP)#15703175292512maximumrealizedgainof20dBiatbroadside.
Dependingontheapplication,thegaincaneasilybeincreasedbydesigningalargerarray.
Thearrayiscapableofscanningdownto45°inbothEandHplanes.
Comparedtothebroadside,thegainisreducedby4dBat45°.
Thesidelobesareacceptableandareabout13.
3dBlevel.
Totalradiationefficiencyofthearrayiscalculatedtobe89%.
Fig.
3:Simulationresultsshowingreflectioncoefficient(S11)asafunctionoffrequency.
MinimumS11is19dBandbandwidthisapprox.
1.
7GHz.
Fig.
4:SimulationresultsfortheantennapatternshowingrealizedgainasafunctionofscanningangleforE-plane(top)andH-plane(bottom).
V.
CONCLUSIONInthispaperwepresentedanewdesigntoimproveon-chipphasedarrayantennaefficiencyandrealizedgainat60GHz.
Thisisachievedbypolymer-corecapacitively-fedandsuspendedradiatingelements.
Achievedgainis20dBiwith13.
3dBsidelobeslevel.
The5*5(25elements)arrayiscapableofscanning±45°inEandHplanes.
Inthisdesign,antennaisdirectlyfedfrombelow.
Theareaunderthegroundplanecanbeusedforfront-endelectronics.
Thissavesvaluablesemiconductorspace.
Thisantennawillbetestedbyterminatingallbutthecenterelement.
ThelatterwillbeexcitedbymicrostriplineandRFprobes.
Furtherenhancementstothebandwidth,efficiency,andscanningperformanceisalsopossiblebyreducinggratinglobesandterminatingthefieldsattheedgeofthearray.
Design,simulation,fabrication,andmeasurementresultswillbepresentedattheconference.
REFERENCES[1]J.
Hasch,E.
Topak,R.
Schnabel,T.
Zwick,R.
Weigel,andC.
Waldschmidt,"Millimeter-WaveTechnologyforAutomotiveRadarSensorsinthe77GHzFrequencyBand,"IEEETransactionsonMicrowaveTheoryandTechniques,vol.
60,pp.
845-860,2012.
[2]F.
KhanandP.
Zhouyue,"mmWavemobilebroadband(MMB):Unleashingthe3-300GHzspectrum,"in34thIEEESarnoffSymposium,2011,pp.
1-6.
[3]U.
Forum,"Mobiletrafficforecasts2010-2020report,"UMTS2011.
[4]C.
ParkandT.
S.
Rappaport,"Short-RangeWirelessCommunicationsforNext-GenerationNetworks:UWB,60GHzMillimeter-WaveWPAN,AndZigBee,"IEEEWirelessCommunications,vol.
14,pp.
70-78,2007.
[5]S.
Rangan,T.
S.
Rappaport,andE.
Erkip,"Millimeter-WaveCellularWirelessNetworks:PotentialsandChallenges,"ProceedingsoftheIEEE,vol.
102,pp.
366-385,Mar2014.
[6]H.
M.
CheemaandA.
Shamim,"Thelastbarrier:on-chipantennas,"MicrowaveMagazine,IEEE,vol.
14,pp.
79-91,2013.
[7]N.
Behdad,D.
Shi,W.
Hong,K.
Sarabandi,andM.
P.
Flynn,"A0.
3mm^2MiniaturizedX-BandOn-ChipSlotAntennain0.
13umCMOS,"in2007IEEERadioFrequencyIntegratedCircuits(RFIC)Symposium,2007,pp.
441-444.
[8]A.
Babakhani,X.
Guan,A.
Komijani,A.
Natarajan,andA.
Hajimiri,"A77-GHzPhased-ArrayTransceiverWithOn-ChipAntennasinSilicon:ReceiverandAntennas,"IEEEJournalofSolid-StateCircuits,vol.
41,pp.
2795-2806,2006.
[9]W.
Shin,B.
H.
Ku,O.
Inac,Y.
C.
Ou,andG.
M.
Rebeiz,"A108-114GHz4x4Wafer-ScalePhasedArrayTransmitterWithHigh-EfficiencyOn-ChipAntennas,"IEEEJournalofSolid-StateCircuits,vol.
48,pp.
2041-2055,2013.
[10]K.
KeshtkaranandN.
Ghalichechian,"Suspended60GHzphasedarrayantennawithhighefficiency,"inInternationalWorkshoponAntennaTechnology(iWAT),2016,pp.
37-39.
[11]W.
Ruoyu,S.
Yaoming,M.
Kaynak,S.
Beer,J.
Borngr,andJ.
C.
Scheytt,"Amicromachineddouble-dipoleantennafor122-140GHzapplicationsbasedonaSiGeBiCMOStechnology,"inIEEEMTT-SInternationalMicrowaveSymposiumDigest(MTT),2012,pp.
1-3.
[12]N.
GhalichechianandK.
Sertel,"PermittivityandLossCharacterizationofSU-8FilmsformmWandTerahertzApplications,"IEEEAntennasandWirelessPropagationLetters,vol.
14,pp.
723-726,2015.
201711thEuropeanConferenceonAntennasandPropagation(EUCAP)#15703175292513
昨天,有在"阿里云秋季促销活动 轻量云服务器2G5M配置新购年60元"文章中记录到阿里云轻量服务器2GB内存、5M带宽一年60元的活动,当然这个也是国内机房的。我们很多人都清楚备案是需要接入的,如果我们在其他服务商的域名备案的,那是不能解析的。除非我们不是用来建站,而是用来云端的,是可以用的。这不看到其对手腾讯云也有推出两款轻量服务器活动。其中一款是4GB内存、8M带宽,这个比阿里云还要狠。这个真...
OneTechCloud发布了本月促销信息,全场VPS主机月付9折,季付8折,优惠后香港VPS月付25.2元起,美国CN2 GIA线路高防VPS月付31.5元起。这是一家2019年成立的国人主机商,提供VPS主机和独立服务器租用,产品数据中心包括美国洛杉矶和中国香港,Cera的机器,VPS基于KVM架构,采用SSD硬盘,其中美国洛杉矶回程CN2 GIA,可选高防。下面列出部分套餐配置信息。美国CN...
Megalayer 商家算是新晋的服务商,商家才开始的时候主要是以香港、美国独立服务器。后来有新增菲律宾机房,包括有VPS云服务器、独立服务器、站群服务器等产品。线路上有CN2优化带宽、全向带宽和国际带宽,这里有看到商家的特价方案有增加至9个,之前是四个的。在这篇文章中,我来整理看看。第一、香港服务器系列这里香港服务器会根据带宽的不同区别。我这里将香港机房的都整理到一个系列里。核心内存硬盘IP带宽...
suspended为你推荐
英文域名英文域名与中文域名有啥区别com域名注册.com的域名注册需要什么证件和资料吗?美国vps租用VPS服务器租用哪里的好?域名备案域名怎么进行备案?jsp虚拟主机jsp中文网的虚拟主机有人用过没?觉得怎么样?虚拟主机测评虚拟主机怎么看好坏!!!!虚拟主机测评哪一种虚拟主机比较好用?长沙虚拟主机长沙哪里虚拟主机和主机托管比较关好!虚拟主机试用哪儿的虚拟主机可以试用??花生壳域名用花生壳可申请免费域名吗?
国外vps租用 justhost 电影服务器 好看的桌面背景大图 绍兴高防 小米数据库 100x100头像 柚子舍官网 hdd 服务器监测 彩虹云 海外空间 湖南idc 东莞主机托管 摩尔庄园注册 睿云 restart 发证机构 美国西雅图独立 ddos攻击 更多