60GHzCapacitivelyProbe-FedPatchArrayswithSuspendedElementsKavehKeshtkaranandNimaGhalichechianElectroScienceLaboratory,Dept.
ofElectricalandComputerEngineeringTheOhioStateUniversity,Columbus,Ohio,USAEmail:keshtkaran.
2@osu.
edu,ghalichechian.
1@osu.
eduAbstract—Amajordrawbackofcurrentmillimeter-wavetechnologiesusedforintegrationofphasedarraysonachipislowefficiency(5-10%)andconsequentlylowrealizedgain.
Inthiswork,wepresentintegratedantennaarraysonsiliconthatexhibitradiationefficiencyof>80%at60GHz.
Thisisachievedbysuspendingtheradiatingelementsofaphasedarrayinairusingmicro-electro-mechanicalsystems(MEMS)processes,effectivelyreplacingalossysiliconsubstrate(undereachelement)withair.
Inthelatestdesignweusedcapacitivefeedingwithpinandpatchheightof40and60m,respectively.
Finiteelementsimulationresultsverifytheperformanceofthearray.
Afinitearraywith5*5elementsachieved-10-dBbandwidthof1.
7GHz.
Arrayiswellmatchedat60GHzwithS11Suspended,MEMS,PhasedArray,HighEfficiency.
I.
INTRODUCTIONConservativeestimatespredictthatcellulardatatrafficwillgrow40-70%annuallyintheforeseeablefuture,implyingtheneedfornetworkstosupportgreaterthan1000timesthecurrentdatatraffic[1-3].
Inrecentyearstherehasbeengreatinterestin60GHzantennasduetolargeunlicensedbandsavailableat57-64GHz[4].
Thisbandisagreatcandidatefornext-generationshort-rangecommunicationlinks.
However,thereareseveralchallengesforsuccessfulrealizationofmillimeter-wavecommunicationsystems.
Onesuchchallengeisthatthesignalpropagationatmillimeter-wavefrequenciesisimpairedbyseverepath-lossandshadowingeffects[5].
Transmitandreceivebeamformingnetworkswithmany(e.
g.
,≥100)antennasperterminalarenaturalapproachtocounteringtheincreasedpathlossat60GHzband.
Asaresult,nextgenerationantennasoperatingatthisbandneedtobecapableofelectronicscanningwhileexhibitingahighgain.
Currentlytherearetwoapproachesforon-chipantennas.
Inthefirstapproach,theantennaispositionedonthesubstrateresultinginmassiveradiationlosses.
Thisisduetolowresistivityofsiliconcausingmostofthefieldcoupletosiliconsubstrate(withdielectricconstantof11.
7)insteadofradiatinginfreespace.
Improvementstoefficiencyarepossiblebythinningdownthesubstrateorusinghigh-resistivitysubstratewhicharebothundesirableoptionssincetheyarelimitedandcostly.
Despitetheseimprovements,theantennaradiationefficiencyisintheorderof5-10%orless[6-8].
Thestateoftheartapproachutilizesagroundplaneonthesubstratewithathinlayerofsilicondioxide(SiO2)(e.
g.
5minthickness)separatingaradiatingelementsfromthegroundlayer[9].
Duetocloseproximityofthetransmissionlineandradiatingelementstothegroundplane,theconductivelossesdominateresultinginantennaradiationefficiencyintheorderof45%orless.
ThekeylimitationhereisfinitethicknessofSiO2layerinastandardBi-CMOSprocessesusedforfabricatingactivecomponentssuchasT/Rmodules.
Toavoidcrackinginthethickdielectriclayer,metalfences(vias)aredesignedandfabricatedwithinthedielectriclayerthatcontributetoadditionallosses.
Furthermore,highersilicondioxidethickness(betweenthegroundplaneandtheantennaelements)increasesthefabricationcostoftheantennaarray.
Incontrasttotheaforementionedapproachesinrealizingintegratedphasedarrays,thispaperpresentsanovelarchitecturethatusesMEMSsuspendedradiatingelementstogetherwithcapacitively-fedpatchtoachieve>80%efficiency.
Thisapproachhasafewuniquefeatures.
Forinstance,bysuspendingthepatch,theeffectivedielectricconstantofthesubstrateisreducedto1.
Asaresultbyreducingconductive,dielectric,andsurfacewavelosses,theefficiencyoftheantennaisincreased.
Moreimportant,byreducingeffectivedielectricconstant,thearrayisabletoscanmuchlargervolumecomparedtoconventionalpatcharrayantennas.
Wehavealsoimprovedonourpreviousworkthatusedaperturecoupledmicrostripfeednetwork[10].
Unlikeourpreviousdesign,thepin/capacitorfeedingschemeprovidesbettercompatibilityandeasiermonolithicintegrationwithaCMOST/Rsubstrate.
Thispaperisstructuredasthefollowing.
InSectionII,basicdesignandarchitectureofthephasedarrayisdiscussed.
FabricationprocessispresentedinSectionIII.
Simulationresults–includingimpedancematching,efficiency,andscanning–arereportedinSectionIV.
II.
PHASEDARRAYARCHITECTUREA.
UnitCellDesignSuccessfulimplementationofthenext-generationantennaarrayat60GHzwilldependonasimple–yet201711thEuropeanConferenceonAntennasandPropagation(EUCAP)978-88-907018-7-0/17/$31.
002017IEEE#15703175292511important–factor:EaseofintegrationoftheantennaandthesubstratethatholdstheRFfront-endcircuits.
Asmentionedearlier,inatraditionalapproach,theproximityoftheradiatingelement(patch,dipole,etc.
)toalossyhighdielectricconstant(silicon)substrate(orthegroundplane)isamajorsourceofradiationloss.
Incaseswherethesubstrateisshieldedbyagroundplane,alayerofsilicondioxideisusedforseparationbetweentheradiatingelementandthegroundplane[11].
Giventhesizeofthewavelength(λ=5mmat60GHz)andcurrenttechnologylimitationstofabricatethickSiO2layer,themaximumpossibleoxidethickness(5-15m)isstillwellbelowtherequiredthicknesstoavoidohmiclossesandachievehighradiationresistance(e.
g.
λ/10≈500mforapatcharrayat60GHz).
Toaddresstheaforementionedshortcoming,weproposeanovelsuspendedphasedarraystructurethatimprovesefficiencyandscanningperformanceofthearraywhilemaintainingtherequiredbandwidth.
TheunitcellschematicofthesuspendedpatcharrayisshowninFig.
1.
Asillustrated,thepatchissuspended60mabovethegroundplanewithathickSU-8postsdefinedbyaphotolithographyprocess.
Thesepostsoccupyasmallarea,thus,haveaminorimpactontheradiationpatternofthepatch.
WehaverecentlycharacterizedtheelectricalpropertiesoftheSU-8atmillimeterwaveandterahertzbands[12].
Theradiatingelementcanbefabricatedonathinmembraneor–asshowninFig.
1–onathickdielectricsuperstrate.
Unitcellsizeis3mm*3mm.
Thepatchisfedwitha40-m-heightpinformingacapacitivescheme.
EachpinisfeddirectlybyaT/Rmodulelocatedunderneathelements.
ThepinsarefabricatedbymetallizationofthesecondsetofSU-8posts.
B.
FiniteArrayDesignSchematic3DviewofthesuspendedphasedarrayisshowninFig2.
Thearraysizeischosentobe5*5fortheeaseofsimulation,fabrication,andtesting.
Thearraysizeis15mm*15mm.
Asmentionedearlier,thisarchitectureissuitableforactiveelectronicallyscannedarrays.
Largerarraysizescanalsobeconsideredinfuturetoachieveahighergain.
Fabricationandsimulationresultsarereportedinthenextsections.
III.
FABRICATIONThefabricationprocessofthearrayisasfollowing.
First,thefeedlineswerefabricatedbypatteringa1-m-thickgoldlayeronasiliconsubstrate.
A3-m-thickSiO2layerwasthendeposited,patterned,andetchedtoformapinslot.
Next,thegroundplanewaspatternedusingagoldlayer.
Furthermore,40-m-thickSU-8photoresistwasspincotedandpatternedtoformthepostsforpins.
Then,1mconformalgoldlayerwasdepositedandetchedtoformcapacitivecaps.
Onaseparate100-m-thickquartzsubstrate,a1mgoldlayerwasdepositedandpatternedfollowedbyspincoatingandpatterninga60mthickSU-8layertoformthepostsforsuspendedpatch.
Lastly,thetwowaferswerealignedandbondedtogethertoformthefinalarraystructure.
IV.
SIMULATIONRESULTSANSYSHFSSwasusedforthesimulationoftheunitcellofaninfiniteanarray.
Wealsousedthesametoolforthesimulationofthefinite5*5elementarray.
Theimpedancematching(atbroadside)isshowninFig.
3.
Theantennaiswellmatchedat60GHzwithS11suspendedpatcharray.
Fig.
2:3Dschematicofhigh-efficiencyphasedarraywith25elements.
Eachpatchissuspendedon5postsandfedbycapacitivepin.
201711thEuropeanConferenceonAntennasandPropagation(EUCAP)#15703175292512maximumrealizedgainof20dBiatbroadside.
Dependingontheapplication,thegaincaneasilybeincreasedbydesigningalargerarray.
Thearrayiscapableofscanningdownto45°inbothEandHplanes.
Comparedtothebroadside,thegainisreducedby4dBat45°.
Thesidelobesareacceptableandareabout13.
3dBlevel.
Totalradiationefficiencyofthearrayiscalculatedtobe89%.
Fig.
3:Simulationresultsshowingreflectioncoefficient(S11)asafunctionoffrequency.
MinimumS11is19dBandbandwidthisapprox.
1.
7GHz.
Fig.
4:SimulationresultsfortheantennapatternshowingrealizedgainasafunctionofscanningangleforE-plane(top)andH-plane(bottom).
V.
CONCLUSIONInthispaperwepresentedanewdesigntoimproveon-chipphasedarrayantennaefficiencyandrealizedgainat60GHz.
Thisisachievedbypolymer-corecapacitively-fedandsuspendedradiatingelements.
Achievedgainis20dBiwith13.
3dBsidelobeslevel.
The5*5(25elements)arrayiscapableofscanning±45°inEandHplanes.
Inthisdesign,antennaisdirectlyfedfrombelow.
Theareaunderthegroundplanecanbeusedforfront-endelectronics.
Thissavesvaluablesemiconductorspace.
Thisantennawillbetestedbyterminatingallbutthecenterelement.
ThelatterwillbeexcitedbymicrostriplineandRFprobes.
Furtherenhancementstothebandwidth,efficiency,andscanningperformanceisalsopossiblebyreducinggratinglobesandterminatingthefieldsattheedgeofthearray.
Design,simulation,fabrication,andmeasurementresultswillbepresentedattheconference.
REFERENCES[1]J.
Hasch,E.
Topak,R.
Schnabel,T.
Zwick,R.
Weigel,andC.
Waldschmidt,"Millimeter-WaveTechnologyforAutomotiveRadarSensorsinthe77GHzFrequencyBand,"IEEETransactionsonMicrowaveTheoryandTechniques,vol.
60,pp.
845-860,2012.
[2]F.
KhanandP.
Zhouyue,"mmWavemobilebroadband(MMB):Unleashingthe3-300GHzspectrum,"in34thIEEESarnoffSymposium,2011,pp.
1-6.
[3]U.
Forum,"Mobiletrafficforecasts2010-2020report,"UMTS2011.
[4]C.
ParkandT.
S.
Rappaport,"Short-RangeWirelessCommunicationsforNext-GenerationNetworks:UWB,60GHzMillimeter-WaveWPAN,AndZigBee,"IEEEWirelessCommunications,vol.
14,pp.
70-78,2007.
[5]S.
Rangan,T.
S.
Rappaport,andE.
Erkip,"Millimeter-WaveCellularWirelessNetworks:PotentialsandChallenges,"ProceedingsoftheIEEE,vol.
102,pp.
366-385,Mar2014.
[6]H.
M.
CheemaandA.
Shamim,"Thelastbarrier:on-chipantennas,"MicrowaveMagazine,IEEE,vol.
14,pp.
79-91,2013.
[7]N.
Behdad,D.
Shi,W.
Hong,K.
Sarabandi,andM.
P.
Flynn,"A0.
3mm^2MiniaturizedX-BandOn-ChipSlotAntennain0.
13umCMOS,"in2007IEEERadioFrequencyIntegratedCircuits(RFIC)Symposium,2007,pp.
441-444.
[8]A.
Babakhani,X.
Guan,A.
Komijani,A.
Natarajan,andA.
Hajimiri,"A77-GHzPhased-ArrayTransceiverWithOn-ChipAntennasinSilicon:ReceiverandAntennas,"IEEEJournalofSolid-StateCircuits,vol.
41,pp.
2795-2806,2006.
[9]W.
Shin,B.
H.
Ku,O.
Inac,Y.
C.
Ou,andG.
M.
Rebeiz,"A108-114GHz4x4Wafer-ScalePhasedArrayTransmitterWithHigh-EfficiencyOn-ChipAntennas,"IEEEJournalofSolid-StateCircuits,vol.
48,pp.
2041-2055,2013.
[10]K.
KeshtkaranandN.
Ghalichechian,"Suspended60GHzphasedarrayantennawithhighefficiency,"inInternationalWorkshoponAntennaTechnology(iWAT),2016,pp.
37-39.
[11]W.
Ruoyu,S.
Yaoming,M.
Kaynak,S.
Beer,J.
Borngr,andJ.
C.
Scheytt,"Amicromachineddouble-dipoleantennafor122-140GHzapplicationsbasedonaSiGeBiCMOStechnology,"inIEEEMTT-SInternationalMicrowaveSymposiumDigest(MTT),2012,pp.
1-3.
[12]N.
GhalichechianandK.
Sertel,"PermittivityandLossCharacterizationofSU-8FilmsformmWandTerahertzApplications,"IEEEAntennasandWirelessPropagationLetters,vol.
14,pp.
723-726,2015.
201711thEuropeanConferenceonAntennasandPropagation(EUCAP)#15703175292513
iON Cloud怎么样?iON Cloud今天发布了7月份优惠,使用优惠码:VC4VF8RHFL,新购指定型号VPS半年付或以上可享八五折!iON的云服务器包括美国洛杉矶、美国圣何塞(包含了优化线路、CN2 GIA线路)、新加坡(CN2 GIA线路、PCCW线路、移动CMI线路)这几个机房或者线路可供选择,有Linux和Windows系统之分,整体来说针对中国的优化是非常明显的,机器稳定可靠,比...
国外主机测评昨天接到Hostigger(现Hostiger)商家邮件推送,称其又推出了一款特价大内存VPS,机房位于土耳其的亚欧交界城市伊斯坦布尔,核50G SSD硬盘200Mbps带宽不限月流量只要$59/年。 最近一次分享的促销信息还是5月底,当时商家推出的是同机房同配置的大内存VPS,价格是$59.99/年,不过内存只有10G,虽然同样是大内存,但想必这次商家给出16G,价格却是$59/年,...
看到群里网友们在讨论由于不清楚的原因,有同学的网站无法访问。他的网站是没有用HTTPS的,直接访问他的HTTP是无法访问的,通过PING测试可以看到解析地址已经比较乱,应该是所谓的DNS污染。其中有网友提到采用HTTPS加密证书试试。因为HTTP和HTTPS走的不是一个端口,之前有网友这样测试过是可以缓解这样的问题。这样通过将网站绑定设置HTTPS之后,是可以打开的,看来网站的80端口出现问题,而...
suspended为你推荐
域名空间买域名空间是什么意思虚拟主机购买虚拟主机需要购买吗?我想自己做个网站,只买了域名了,请问还需要怎么做呢?me域名me域名好不好用?美国服务器托管美国服务器租用有哪些系列?网站空间购买企业网站空间购买的网站空间具体需要多大的合适?虚拟主机服务商哪个虚拟主机的服务商比较好?大连虚拟主机大连哪些地方的网通机房好?北京虚拟主机北京的虚拟主机提供商哪个经济实惠?西安虚拟主机西安互联是个什么公司?长沙虚拟主机长沙双线虚拟主机湖南稳定双线虚拟主机湖南双线主机租用推荐一个?
怎么注册域名 河北服务器租用 谷歌域名邮箱 中国万网域名 directspace 韩国俄罗斯 dreamhost ix主机 免备案空间 嘉洲服务器 工信部icp备案号 isp服务商 hktv 湖南idc 国外代理服务器 碳云 ncp是什么 winserver2008下载 西部数码主机 魔兽世界服务器维护 更多