keysuspended

suspended  时间:2021-01-05  阅读:()
60GHzCapacitivelyProbe-FedPatchArrayswithSuspendedElementsKavehKeshtkaranandNimaGhalichechianElectroScienceLaboratory,Dept.
ofElectricalandComputerEngineeringTheOhioStateUniversity,Columbus,Ohio,USAEmail:keshtkaran.
2@osu.
edu,ghalichechian.
1@osu.
eduAbstract—Amajordrawbackofcurrentmillimeter-wavetechnologiesusedforintegrationofphasedarraysonachipislowefficiency(5-10%)andconsequentlylowrealizedgain.
Inthiswork,wepresentintegratedantennaarraysonsiliconthatexhibitradiationefficiencyof>80%at60GHz.
Thisisachievedbysuspendingtheradiatingelementsofaphasedarrayinairusingmicro-electro-mechanicalsystems(MEMS)processes,effectivelyreplacingalossysiliconsubstrate(undereachelement)withair.
Inthelatestdesignweusedcapacitivefeedingwithpinandpatchheightof40and60m,respectively.
Finiteelementsimulationresultsverifytheperformanceofthearray.
Afinitearraywith5*5elementsachieved-10-dBbandwidthof1.
7GHz.
Arrayiswellmatchedat60GHzwithS11Suspended,MEMS,PhasedArray,HighEfficiency.
I.
INTRODUCTIONConservativeestimatespredictthatcellulardatatrafficwillgrow40-70%annuallyintheforeseeablefuture,implyingtheneedfornetworkstosupportgreaterthan1000timesthecurrentdatatraffic[1-3].
Inrecentyearstherehasbeengreatinterestin60GHzantennasduetolargeunlicensedbandsavailableat57-64GHz[4].
Thisbandisagreatcandidatefornext-generationshort-rangecommunicationlinks.
However,thereareseveralchallengesforsuccessfulrealizationofmillimeter-wavecommunicationsystems.
Onesuchchallengeisthatthesignalpropagationatmillimeter-wavefrequenciesisimpairedbyseverepath-lossandshadowingeffects[5].
Transmitandreceivebeamformingnetworkswithmany(e.
g.
,≥100)antennasperterminalarenaturalapproachtocounteringtheincreasedpathlossat60GHzband.
Asaresult,nextgenerationantennasoperatingatthisbandneedtobecapableofelectronicscanningwhileexhibitingahighgain.
Currentlytherearetwoapproachesforon-chipantennas.
Inthefirstapproach,theantennaispositionedonthesubstrateresultinginmassiveradiationlosses.
Thisisduetolowresistivityofsiliconcausingmostofthefieldcoupletosiliconsubstrate(withdielectricconstantof11.
7)insteadofradiatinginfreespace.
Improvementstoefficiencyarepossiblebythinningdownthesubstrateorusinghigh-resistivitysubstratewhicharebothundesirableoptionssincetheyarelimitedandcostly.
Despitetheseimprovements,theantennaradiationefficiencyisintheorderof5-10%orless[6-8].
Thestateoftheartapproachutilizesagroundplaneonthesubstratewithathinlayerofsilicondioxide(SiO2)(e.
g.
5minthickness)separatingaradiatingelementsfromthegroundlayer[9].
Duetocloseproximityofthetransmissionlineandradiatingelementstothegroundplane,theconductivelossesdominateresultinginantennaradiationefficiencyintheorderof45%orless.
ThekeylimitationhereisfinitethicknessofSiO2layerinastandardBi-CMOSprocessesusedforfabricatingactivecomponentssuchasT/Rmodules.
Toavoidcrackinginthethickdielectriclayer,metalfences(vias)aredesignedandfabricatedwithinthedielectriclayerthatcontributetoadditionallosses.
Furthermore,highersilicondioxidethickness(betweenthegroundplaneandtheantennaelements)increasesthefabricationcostoftheantennaarray.
Incontrasttotheaforementionedapproachesinrealizingintegratedphasedarrays,thispaperpresentsanovelarchitecturethatusesMEMSsuspendedradiatingelementstogetherwithcapacitively-fedpatchtoachieve>80%efficiency.
Thisapproachhasafewuniquefeatures.
Forinstance,bysuspendingthepatch,theeffectivedielectricconstantofthesubstrateisreducedto1.
Asaresultbyreducingconductive,dielectric,andsurfacewavelosses,theefficiencyoftheantennaisincreased.
Moreimportant,byreducingeffectivedielectricconstant,thearrayisabletoscanmuchlargervolumecomparedtoconventionalpatcharrayantennas.
Wehavealsoimprovedonourpreviousworkthatusedaperturecoupledmicrostripfeednetwork[10].
Unlikeourpreviousdesign,thepin/capacitorfeedingschemeprovidesbettercompatibilityandeasiermonolithicintegrationwithaCMOST/Rsubstrate.
Thispaperisstructuredasthefollowing.
InSectionII,basicdesignandarchitectureofthephasedarrayisdiscussed.
FabricationprocessispresentedinSectionIII.
Simulationresults–includingimpedancematching,efficiency,andscanning–arereportedinSectionIV.
II.
PHASEDARRAYARCHITECTUREA.
UnitCellDesignSuccessfulimplementationofthenext-generationantennaarrayat60GHzwilldependonasimple–yet201711thEuropeanConferenceonAntennasandPropagation(EUCAP)978-88-907018-7-0/17/$31.
002017IEEE#15703175292511important–factor:EaseofintegrationoftheantennaandthesubstratethatholdstheRFfront-endcircuits.
Asmentionedearlier,inatraditionalapproach,theproximityoftheradiatingelement(patch,dipole,etc.
)toalossyhighdielectricconstant(silicon)substrate(orthegroundplane)isamajorsourceofradiationloss.
Incaseswherethesubstrateisshieldedbyagroundplane,alayerofsilicondioxideisusedforseparationbetweentheradiatingelementandthegroundplane[11].
Giventhesizeofthewavelength(λ=5mmat60GHz)andcurrenttechnologylimitationstofabricatethickSiO2layer,themaximumpossibleoxidethickness(5-15m)isstillwellbelowtherequiredthicknesstoavoidohmiclossesandachievehighradiationresistance(e.
g.
λ/10≈500mforapatcharrayat60GHz).
Toaddresstheaforementionedshortcoming,weproposeanovelsuspendedphasedarraystructurethatimprovesefficiencyandscanningperformanceofthearraywhilemaintainingtherequiredbandwidth.
TheunitcellschematicofthesuspendedpatcharrayisshowninFig.
1.
Asillustrated,thepatchissuspended60mabovethegroundplanewithathickSU-8postsdefinedbyaphotolithographyprocess.
Thesepostsoccupyasmallarea,thus,haveaminorimpactontheradiationpatternofthepatch.
WehaverecentlycharacterizedtheelectricalpropertiesoftheSU-8atmillimeterwaveandterahertzbands[12].
Theradiatingelementcanbefabricatedonathinmembraneor–asshowninFig.
1–onathickdielectricsuperstrate.
Unitcellsizeis3mm*3mm.
Thepatchisfedwitha40-m-heightpinformingacapacitivescheme.
EachpinisfeddirectlybyaT/Rmodulelocatedunderneathelements.
ThepinsarefabricatedbymetallizationofthesecondsetofSU-8posts.
B.
FiniteArrayDesignSchematic3DviewofthesuspendedphasedarrayisshowninFig2.
Thearraysizeischosentobe5*5fortheeaseofsimulation,fabrication,andtesting.
Thearraysizeis15mm*15mm.
Asmentionedearlier,thisarchitectureissuitableforactiveelectronicallyscannedarrays.
Largerarraysizescanalsobeconsideredinfuturetoachieveahighergain.
Fabricationandsimulationresultsarereportedinthenextsections.
III.
FABRICATIONThefabricationprocessofthearrayisasfollowing.
First,thefeedlineswerefabricatedbypatteringa1-m-thickgoldlayeronasiliconsubstrate.
A3-m-thickSiO2layerwasthendeposited,patterned,andetchedtoformapinslot.
Next,thegroundplanewaspatternedusingagoldlayer.
Furthermore,40-m-thickSU-8photoresistwasspincotedandpatternedtoformthepostsforpins.
Then,1mconformalgoldlayerwasdepositedandetchedtoformcapacitivecaps.
Onaseparate100-m-thickquartzsubstrate,a1mgoldlayerwasdepositedandpatternedfollowedbyspincoatingandpatterninga60mthickSU-8layertoformthepostsforsuspendedpatch.
Lastly,thetwowaferswerealignedandbondedtogethertoformthefinalarraystructure.
IV.
SIMULATIONRESULTSANSYSHFSSwasusedforthesimulationoftheunitcellofaninfiniteanarray.
Wealsousedthesametoolforthesimulationofthefinite5*5elementarray.
Theimpedancematching(atbroadside)isshowninFig.
3.
Theantennaiswellmatchedat60GHzwithS11suspendedpatcharray.
Fig.
2:3Dschematicofhigh-efficiencyphasedarraywith25elements.
Eachpatchissuspendedon5postsandfedbycapacitivepin.
201711thEuropeanConferenceonAntennasandPropagation(EUCAP)#15703175292512maximumrealizedgainof20dBiatbroadside.
Dependingontheapplication,thegaincaneasilybeincreasedbydesigningalargerarray.
Thearrayiscapableofscanningdownto45°inbothEandHplanes.
Comparedtothebroadside,thegainisreducedby4dBat45°.
Thesidelobesareacceptableandareabout13.
3dBlevel.
Totalradiationefficiencyofthearrayiscalculatedtobe89%.
Fig.
3:Simulationresultsshowingreflectioncoefficient(S11)asafunctionoffrequency.
MinimumS11is19dBandbandwidthisapprox.
1.
7GHz.
Fig.
4:SimulationresultsfortheantennapatternshowingrealizedgainasafunctionofscanningangleforE-plane(top)andH-plane(bottom).
V.
CONCLUSIONInthispaperwepresentedanewdesigntoimproveon-chipphasedarrayantennaefficiencyandrealizedgainat60GHz.
Thisisachievedbypolymer-corecapacitively-fedandsuspendedradiatingelements.
Achievedgainis20dBiwith13.
3dBsidelobeslevel.
The5*5(25elements)arrayiscapableofscanning±45°inEandHplanes.
Inthisdesign,antennaisdirectlyfedfrombelow.
Theareaunderthegroundplanecanbeusedforfront-endelectronics.
Thissavesvaluablesemiconductorspace.
Thisantennawillbetestedbyterminatingallbutthecenterelement.
ThelatterwillbeexcitedbymicrostriplineandRFprobes.
Furtherenhancementstothebandwidth,efficiency,andscanningperformanceisalsopossiblebyreducinggratinglobesandterminatingthefieldsattheedgeofthearray.
Design,simulation,fabrication,andmeasurementresultswillbepresentedattheconference.
REFERENCES[1]J.
Hasch,E.
Topak,R.
Schnabel,T.
Zwick,R.
Weigel,andC.
Waldschmidt,"Millimeter-WaveTechnologyforAutomotiveRadarSensorsinthe77GHzFrequencyBand,"IEEETransactionsonMicrowaveTheoryandTechniques,vol.
60,pp.
845-860,2012.
[2]F.
KhanandP.
Zhouyue,"mmWavemobilebroadband(MMB):Unleashingthe3-300GHzspectrum,"in34thIEEESarnoffSymposium,2011,pp.
1-6.
[3]U.
Forum,"Mobiletrafficforecasts2010-2020report,"UMTS2011.
[4]C.
ParkandT.
S.
Rappaport,"Short-RangeWirelessCommunicationsforNext-GenerationNetworks:UWB,60GHzMillimeter-WaveWPAN,AndZigBee,"IEEEWirelessCommunications,vol.
14,pp.
70-78,2007.
[5]S.
Rangan,T.
S.
Rappaport,andE.
Erkip,"Millimeter-WaveCellularWirelessNetworks:PotentialsandChallenges,"ProceedingsoftheIEEE,vol.
102,pp.
366-385,Mar2014.
[6]H.
M.
CheemaandA.
Shamim,"Thelastbarrier:on-chipantennas,"MicrowaveMagazine,IEEE,vol.
14,pp.
79-91,2013.
[7]N.
Behdad,D.
Shi,W.
Hong,K.
Sarabandi,andM.
P.
Flynn,"A0.
3mm^2MiniaturizedX-BandOn-ChipSlotAntennain0.
13umCMOS,"in2007IEEERadioFrequencyIntegratedCircuits(RFIC)Symposium,2007,pp.
441-444.
[8]A.
Babakhani,X.
Guan,A.
Komijani,A.
Natarajan,andA.
Hajimiri,"A77-GHzPhased-ArrayTransceiverWithOn-ChipAntennasinSilicon:ReceiverandAntennas,"IEEEJournalofSolid-StateCircuits,vol.
41,pp.
2795-2806,2006.
[9]W.
Shin,B.
H.
Ku,O.
Inac,Y.
C.
Ou,andG.
M.
Rebeiz,"A108-114GHz4x4Wafer-ScalePhasedArrayTransmitterWithHigh-EfficiencyOn-ChipAntennas,"IEEEJournalofSolid-StateCircuits,vol.
48,pp.
2041-2055,2013.
[10]K.
KeshtkaranandN.
Ghalichechian,"Suspended60GHzphasedarrayantennawithhighefficiency,"inInternationalWorkshoponAntennaTechnology(iWAT),2016,pp.
37-39.
[11]W.
Ruoyu,S.
Yaoming,M.
Kaynak,S.
Beer,J.
Borngr,andJ.
C.
Scheytt,"Amicromachineddouble-dipoleantennafor122-140GHzapplicationsbasedonaSiGeBiCMOStechnology,"inIEEEMTT-SInternationalMicrowaveSymposiumDigest(MTT),2012,pp.
1-3.
[12]N.
GhalichechianandK.
Sertel,"PermittivityandLossCharacterizationofSU-8FilmsformmWandTerahertzApplications,"IEEEAntennasandWirelessPropagationLetters,vol.
14,pp.
723-726,2015.
201711thEuropeanConferenceonAntennasandPropagation(EUCAP)#15703175292513

这几个Vultr VPS主机商家的优点造就商家的用户驱动力

目前云服务器市场竞争是相当的大的,比如我们在年中活动中看到各大服务商都找准这个噱头的活动发布各种活动,有的甚至就是平时的活动价格,只是换一个说法而已。可见这个行业确实竞争很大,当然我们也可以看到很多主机商几个月就消失,也有看到很多个人商家捣鼓几个品牌然后忽悠一圈跑路的。当然,个人建议在选择服务商的时候尽量选择老牌商家,这样性能更为稳定一些。近期可能会准备重新整理Vultr商家的一些信息和教程。以前...

.asia域名是否适合做个人网站及.asia域名注册和续费成本

今天看到群里的老秦同学在布局自己的网站项目,这个同学还是比较奇怪的,他就喜欢用这些奇怪的域名。比如前几天看到有用.in域名,个人网站他用的.me域名不奇怪,这个还是常见的。今天看到他在做的一个范文网站的域名,居然用的是 .asia 后缀。问到其理由,是有不错好记的前缀。这里简单的搜索到.ASIA域名的新注册价格是有促销的,大约35元首年左右,续费大约是80元左右,这个成本算的话,比COM域名还贵。...

DediPath($1.40),OpenVZ架构 1GB内存

DediPath 商家成立时间也不过三五年,商家提供的云服务器产品有包括KVM和OPENVZ架构的VPS主机。翻看前面的文章有几次提到这个商家其中机房还是比较多的。其实对于OPENVZ架构的VPS主机以前我们是遇到比较多,只不过这几年很多商家都陆续的全部用KVM和XEN架构替代。这次DediPath商家有基于OPENVZ架构提供低价的VPS主机。这次四折的促销活动不包括512MB内存方案。第一、D...

suspended为你推荐
cm域名注册cm域名是什么含义?价格是多少?注册地址是多少?有什么投资价值?已备案域名查询如何查询网站的域名是否已经备案域名主机IDC(主机域名)是什么意思?免备案虚拟空间备案退两次了。哪里有免备案空间虚拟主机用?重庆虚拟空间在重庆开一家VR体验馆价格要多少?国外网站空间怎么样把网站空间放到国外去?免费网站空间申请哪个网站可以申请免费的网页空间香港虚拟主机想买一个香港虚拟主机,大家推荐一下吧上海虚拟主机谁能告诉我杭州哪个公司的虚拟主机最好,机房最好是上海或浙江的.台湾虚拟主机香港虚拟主机和台湾虚拟主机比较,哪个更好!?
虚拟主机排名 vir 华为云服务 美国主机推荐 谷歌香港 华为4核 嘉洲服务器 泉州电信 多线空间 华为云服务登录 smtp虚拟服务器 cxz 个人免费邮箱 日本代理ip 国外代理服务器 乐视会员免费领取 新网dns 湖南铁通 websitepanel 性能测试工具 更多