60GHzCapacitivelyProbe-FedPatchArrayswithSuspendedElementsKavehKeshtkaranandNimaGhalichechianElectroScienceLaboratory,Dept.
ofElectricalandComputerEngineeringTheOhioStateUniversity,Columbus,Ohio,USAEmail:keshtkaran.
2@osu.
edu,ghalichechian.
1@osu.
eduAbstract—Amajordrawbackofcurrentmillimeter-wavetechnologiesusedforintegrationofphasedarraysonachipislowefficiency(5-10%)andconsequentlylowrealizedgain.
Inthiswork,wepresentintegratedantennaarraysonsiliconthatexhibitradiationefficiencyof>80%at60GHz.
Thisisachievedbysuspendingtheradiatingelementsofaphasedarrayinairusingmicro-electro-mechanicalsystems(MEMS)processes,effectivelyreplacingalossysiliconsubstrate(undereachelement)withair.
Inthelatestdesignweusedcapacitivefeedingwithpinandpatchheightof40and60m,respectively.
Finiteelementsimulationresultsverifytheperformanceofthearray.
Afinitearraywith5*5elementsachieved-10-dBbandwidthof1.
7GHz.
Arrayiswellmatchedat60GHzwithS11Suspended,MEMS,PhasedArray,HighEfficiency.
I.
INTRODUCTIONConservativeestimatespredictthatcellulardatatrafficwillgrow40-70%annuallyintheforeseeablefuture,implyingtheneedfornetworkstosupportgreaterthan1000timesthecurrentdatatraffic[1-3].
Inrecentyearstherehasbeengreatinterestin60GHzantennasduetolargeunlicensedbandsavailableat57-64GHz[4].
Thisbandisagreatcandidatefornext-generationshort-rangecommunicationlinks.
However,thereareseveralchallengesforsuccessfulrealizationofmillimeter-wavecommunicationsystems.
Onesuchchallengeisthatthesignalpropagationatmillimeter-wavefrequenciesisimpairedbyseverepath-lossandshadowingeffects[5].
Transmitandreceivebeamformingnetworkswithmany(e.
g.
,≥100)antennasperterminalarenaturalapproachtocounteringtheincreasedpathlossat60GHzband.
Asaresult,nextgenerationantennasoperatingatthisbandneedtobecapableofelectronicscanningwhileexhibitingahighgain.
Currentlytherearetwoapproachesforon-chipantennas.
Inthefirstapproach,theantennaispositionedonthesubstrateresultinginmassiveradiationlosses.
Thisisduetolowresistivityofsiliconcausingmostofthefieldcoupletosiliconsubstrate(withdielectricconstantof11.
7)insteadofradiatinginfreespace.
Improvementstoefficiencyarepossiblebythinningdownthesubstrateorusinghigh-resistivitysubstratewhicharebothundesirableoptionssincetheyarelimitedandcostly.
Despitetheseimprovements,theantennaradiationefficiencyisintheorderof5-10%orless[6-8].
Thestateoftheartapproachutilizesagroundplaneonthesubstratewithathinlayerofsilicondioxide(SiO2)(e.
g.
5minthickness)separatingaradiatingelementsfromthegroundlayer[9].
Duetocloseproximityofthetransmissionlineandradiatingelementstothegroundplane,theconductivelossesdominateresultinginantennaradiationefficiencyintheorderof45%orless.
ThekeylimitationhereisfinitethicknessofSiO2layerinastandardBi-CMOSprocessesusedforfabricatingactivecomponentssuchasT/Rmodules.
Toavoidcrackinginthethickdielectriclayer,metalfences(vias)aredesignedandfabricatedwithinthedielectriclayerthatcontributetoadditionallosses.
Furthermore,highersilicondioxidethickness(betweenthegroundplaneandtheantennaelements)increasesthefabricationcostoftheantennaarray.
Incontrasttotheaforementionedapproachesinrealizingintegratedphasedarrays,thispaperpresentsanovelarchitecturethatusesMEMSsuspendedradiatingelementstogetherwithcapacitively-fedpatchtoachieve>80%efficiency.
Thisapproachhasafewuniquefeatures.
Forinstance,bysuspendingthepatch,theeffectivedielectricconstantofthesubstrateisreducedto1.
Asaresultbyreducingconductive,dielectric,andsurfacewavelosses,theefficiencyoftheantennaisincreased.
Moreimportant,byreducingeffectivedielectricconstant,thearrayisabletoscanmuchlargervolumecomparedtoconventionalpatcharrayantennas.
Wehavealsoimprovedonourpreviousworkthatusedaperturecoupledmicrostripfeednetwork[10].
Unlikeourpreviousdesign,thepin/capacitorfeedingschemeprovidesbettercompatibilityandeasiermonolithicintegrationwithaCMOST/Rsubstrate.
Thispaperisstructuredasthefollowing.
InSectionII,basicdesignandarchitectureofthephasedarrayisdiscussed.
FabricationprocessispresentedinSectionIII.
Simulationresults–includingimpedancematching,efficiency,andscanning–arereportedinSectionIV.
II.
PHASEDARRAYARCHITECTUREA.
UnitCellDesignSuccessfulimplementationofthenext-generationantennaarrayat60GHzwilldependonasimple–yet201711thEuropeanConferenceonAntennasandPropagation(EUCAP)978-88-907018-7-0/17/$31.
002017IEEE#15703175292511important–factor:EaseofintegrationoftheantennaandthesubstratethatholdstheRFfront-endcircuits.
Asmentionedearlier,inatraditionalapproach,theproximityoftheradiatingelement(patch,dipole,etc.
)toalossyhighdielectricconstant(silicon)substrate(orthegroundplane)isamajorsourceofradiationloss.
Incaseswherethesubstrateisshieldedbyagroundplane,alayerofsilicondioxideisusedforseparationbetweentheradiatingelementandthegroundplane[11].
Giventhesizeofthewavelength(λ=5mmat60GHz)andcurrenttechnologylimitationstofabricatethickSiO2layer,themaximumpossibleoxidethickness(5-15m)isstillwellbelowtherequiredthicknesstoavoidohmiclossesandachievehighradiationresistance(e.
g.
λ/10≈500mforapatcharrayat60GHz).
Toaddresstheaforementionedshortcoming,weproposeanovelsuspendedphasedarraystructurethatimprovesefficiencyandscanningperformanceofthearraywhilemaintainingtherequiredbandwidth.
TheunitcellschematicofthesuspendedpatcharrayisshowninFig.
1.
Asillustrated,thepatchissuspended60mabovethegroundplanewithathickSU-8postsdefinedbyaphotolithographyprocess.
Thesepostsoccupyasmallarea,thus,haveaminorimpactontheradiationpatternofthepatch.
WehaverecentlycharacterizedtheelectricalpropertiesoftheSU-8atmillimeterwaveandterahertzbands[12].
Theradiatingelementcanbefabricatedonathinmembraneor–asshowninFig.
1–onathickdielectricsuperstrate.
Unitcellsizeis3mm*3mm.
Thepatchisfedwitha40-m-heightpinformingacapacitivescheme.
EachpinisfeddirectlybyaT/Rmodulelocatedunderneathelements.
ThepinsarefabricatedbymetallizationofthesecondsetofSU-8posts.
B.
FiniteArrayDesignSchematic3DviewofthesuspendedphasedarrayisshowninFig2.
Thearraysizeischosentobe5*5fortheeaseofsimulation,fabrication,andtesting.
Thearraysizeis15mm*15mm.
Asmentionedearlier,thisarchitectureissuitableforactiveelectronicallyscannedarrays.
Largerarraysizescanalsobeconsideredinfuturetoachieveahighergain.
Fabricationandsimulationresultsarereportedinthenextsections.
III.
FABRICATIONThefabricationprocessofthearrayisasfollowing.
First,thefeedlineswerefabricatedbypatteringa1-m-thickgoldlayeronasiliconsubstrate.
A3-m-thickSiO2layerwasthendeposited,patterned,andetchedtoformapinslot.
Next,thegroundplanewaspatternedusingagoldlayer.
Furthermore,40-m-thickSU-8photoresistwasspincotedandpatternedtoformthepostsforpins.
Then,1mconformalgoldlayerwasdepositedandetchedtoformcapacitivecaps.
Onaseparate100-m-thickquartzsubstrate,a1mgoldlayerwasdepositedandpatternedfollowedbyspincoatingandpatterninga60mthickSU-8layertoformthepostsforsuspendedpatch.
Lastly,thetwowaferswerealignedandbondedtogethertoformthefinalarraystructure.
IV.
SIMULATIONRESULTSANSYSHFSSwasusedforthesimulationoftheunitcellofaninfiniteanarray.
Wealsousedthesametoolforthesimulationofthefinite5*5elementarray.
Theimpedancematching(atbroadside)isshowninFig.
3.
Theantennaiswellmatchedat60GHzwithS11suspendedpatcharray.
Fig.
2:3Dschematicofhigh-efficiencyphasedarraywith25elements.
Eachpatchissuspendedon5postsandfedbycapacitivepin.
201711thEuropeanConferenceonAntennasandPropagation(EUCAP)#15703175292512maximumrealizedgainof20dBiatbroadside.
Dependingontheapplication,thegaincaneasilybeincreasedbydesigningalargerarray.
Thearrayiscapableofscanningdownto45°inbothEandHplanes.
Comparedtothebroadside,thegainisreducedby4dBat45°.
Thesidelobesareacceptableandareabout13.
3dBlevel.
Totalradiationefficiencyofthearrayiscalculatedtobe89%.
Fig.
3:Simulationresultsshowingreflectioncoefficient(S11)asafunctionoffrequency.
MinimumS11is19dBandbandwidthisapprox.
1.
7GHz.
Fig.
4:SimulationresultsfortheantennapatternshowingrealizedgainasafunctionofscanningangleforE-plane(top)andH-plane(bottom).
V.
CONCLUSIONInthispaperwepresentedanewdesigntoimproveon-chipphasedarrayantennaefficiencyandrealizedgainat60GHz.
Thisisachievedbypolymer-corecapacitively-fedandsuspendedradiatingelements.
Achievedgainis20dBiwith13.
3dBsidelobeslevel.
The5*5(25elements)arrayiscapableofscanning±45°inEandHplanes.
Inthisdesign,antennaisdirectlyfedfrombelow.
Theareaunderthegroundplanecanbeusedforfront-endelectronics.
Thissavesvaluablesemiconductorspace.
Thisantennawillbetestedbyterminatingallbutthecenterelement.
ThelatterwillbeexcitedbymicrostriplineandRFprobes.
Furtherenhancementstothebandwidth,efficiency,andscanningperformanceisalsopossiblebyreducinggratinglobesandterminatingthefieldsattheedgeofthearray.
Design,simulation,fabrication,andmeasurementresultswillbepresentedattheconference.
REFERENCES[1]J.
Hasch,E.
Topak,R.
Schnabel,T.
Zwick,R.
Weigel,andC.
Waldschmidt,"Millimeter-WaveTechnologyforAutomotiveRadarSensorsinthe77GHzFrequencyBand,"IEEETransactionsonMicrowaveTheoryandTechniques,vol.
60,pp.
845-860,2012.
[2]F.
KhanandP.
Zhouyue,"mmWavemobilebroadband(MMB):Unleashingthe3-300GHzspectrum,"in34thIEEESarnoffSymposium,2011,pp.
1-6.
[3]U.
Forum,"Mobiletrafficforecasts2010-2020report,"UMTS2011.
[4]C.
ParkandT.
S.
Rappaport,"Short-RangeWirelessCommunicationsforNext-GenerationNetworks:UWB,60GHzMillimeter-WaveWPAN,AndZigBee,"IEEEWirelessCommunications,vol.
14,pp.
70-78,2007.
[5]S.
Rangan,T.
S.
Rappaport,andE.
Erkip,"Millimeter-WaveCellularWirelessNetworks:PotentialsandChallenges,"ProceedingsoftheIEEE,vol.
102,pp.
366-385,Mar2014.
[6]H.
M.
CheemaandA.
Shamim,"Thelastbarrier:on-chipantennas,"MicrowaveMagazine,IEEE,vol.
14,pp.
79-91,2013.
[7]N.
Behdad,D.
Shi,W.
Hong,K.
Sarabandi,andM.
P.
Flynn,"A0.
3mm^2MiniaturizedX-BandOn-ChipSlotAntennain0.
13umCMOS,"in2007IEEERadioFrequencyIntegratedCircuits(RFIC)Symposium,2007,pp.
441-444.
[8]A.
Babakhani,X.
Guan,A.
Komijani,A.
Natarajan,andA.
Hajimiri,"A77-GHzPhased-ArrayTransceiverWithOn-ChipAntennasinSilicon:ReceiverandAntennas,"IEEEJournalofSolid-StateCircuits,vol.
41,pp.
2795-2806,2006.
[9]W.
Shin,B.
H.
Ku,O.
Inac,Y.
C.
Ou,andG.
M.
Rebeiz,"A108-114GHz4x4Wafer-ScalePhasedArrayTransmitterWithHigh-EfficiencyOn-ChipAntennas,"IEEEJournalofSolid-StateCircuits,vol.
48,pp.
2041-2055,2013.
[10]K.
KeshtkaranandN.
Ghalichechian,"Suspended60GHzphasedarrayantennawithhighefficiency,"inInternationalWorkshoponAntennaTechnology(iWAT),2016,pp.
37-39.
[11]W.
Ruoyu,S.
Yaoming,M.
Kaynak,S.
Beer,J.
Borngr,andJ.
C.
Scheytt,"Amicromachineddouble-dipoleantennafor122-140GHzapplicationsbasedonaSiGeBiCMOStechnology,"inIEEEMTT-SInternationalMicrowaveSymposiumDigest(MTT),2012,pp.
1-3.
[12]N.
GhalichechianandK.
Sertel,"PermittivityandLossCharacterizationofSU-8FilmsformmWandTerahertzApplications,"IEEEAntennasandWirelessPropagationLetters,vol.
14,pp.
723-726,2015.
201711thEuropeanConferenceonAntennasandPropagation(EUCAP)#15703175292513
优惠码年付一次性5折优惠码:TYO-Lite-Open-Beta-1y-50OFF永久8折优惠码:TYO-Lite-Open-Beta-Recur-20OFF日本vpsCPU内存SSD流量带宽价格购买1核1.5G20 GB4 TB1Gbps$10.9/月购买2核2 G40 GB6 TB1Gbps$16.9/月购买2核4 G60 GB8 TB1Gbps$21.9/月购买4核4 G80 GB12 TB...
搬瓦工怎么样?这几天收到搬瓦工发来的邮件,告知香港pccw机房(HKHK_1)即将关闭,这也不算是什么出乎意料的事情,反而他不关闭我倒觉得奇怪。因为目前搬瓦工香港cn2 GIA 机房和香港pccw机房价格、配置都一样,可以互相迁移,但是不管是速度还是延迟还是丢包率,搬瓦工香港PCCW机房都比不上香港cn2 gia 机房,所以不知道香港 PCCW 机房存在还有什么意义?关闭也是理所当然的事情。点击进...
HostKvm,我们很多人都算是比较熟悉的国人服务商,旗下也有多个品牌,差异化多占位策略营销的,商家是一个创建于2013年的品牌,有提供中国香港、美国、日本、新加坡区域虚拟化服务器业务,所有业务均对中国大陆地区线路优化,已经如果做海外线路的话,竞争力不够。今天有看到HostKvm夏季优惠发布,主要针对香港国际和韩国VPS提供7折优惠,折后最低月付5.95美元,其他机房VPS依然是全场8折。第一、夏...
suspended为你推荐
独立ip空间怎么知道自己的空间是不是独立IP呢?全能虚拟主机时代互联的全能云虚拟主机怎么样,稳不稳定,速度怎么样的?中文域名注册查询中文域名注册怎么查询域名服务商请问那些域名服务商是怎么捣鼓这么多域名的? 它们为什么可以做这个免费网站域名申请怎么免费上传我的网站呀和免费申请域名域名购买域名购买的流程是什么?虚拟空间哪个好虚拟主机哪家的最好?asp虚拟空间ASP空间是什么意思?天津虚拟主机天津APP开发的比较专业的公司有哪些?东莞虚拟主机东莞vps主机哪家的好?
手机域名注册 中文域名查询 海外服务器 免费cdn加速 iis安装教程 正版win8.1升级win10 lighttpd 本网站服务器在美国 大容量存储器 谁的qq空间最好看 200g硬盘 腾讯实名认证中心 美国免费空间 河南移动m值兑换 gtt 网游服务器 ca187 如何建立邮箱 华为云盘 域名dns 更多