数据仓库数据仓库是做什么的

数据仓库  时间:2021-01-22  阅读:()

什么是数据仓库

数据仓库是在企业管理和决策中面向主题的、集成的、与时间相关的、不可修改的数据集合 数据仓库,英文名称为Data Warehouse,可简写为DW。

数据仓库之父Bill Inmon在1991年出版的“Building the Data Warehouse”一书中所提出的定义被广泛接受——数据仓库(Data Warehouse)是一个面向主题的(Subject Oriented)、集成的(Integrated)、相对稳定的(Non-Volatile)、反映历史变化(Time Variant)的数据集合,用于支持管理决策(Decision Making Support)。

◆面向主题:操作型数据库的数据组织面向事务处理任务,各个业务系统之间各自分离,而数据仓库中的数据是按照一定的主题域进行组织的。

◆集成的:数据仓库中的数据是在对原有分散的数据库数据抽取、清理的基础上经过系统加工、汇总和整理得到的,必须消除源数据中的不一致性,以保证数据仓库内的信息是关于整个企业的一致的全局信息。

◆相对稳定的:数据仓库的数据主要供企业决策分析之用,所涉及的数据操作主要是数据查询,一旦某个数据进入数据仓库以后,一般情况下将被长期保留,也就是数据仓库中一般有大量的查询操作,但修改和删除操作很少,通常只需要定期的加载、刷新。

◆反映历史变化:数据仓库中的数据通常包含历史信息,系统记录了企业从过去某一时点(如开始应用数据仓库的时点)到目前的各个阶段的信息,通过这些信息,可以对企业的发展历程和未来趋势做出定量分析和预测。

数据仓库是一个过程而不是一个项目。

数据仓库系统是一个信息提供平台,他从业务处理系统获得数据,主要以星型模型和雪花模型进行数据组织,并为用户提供各种手段从数据中获取信息和知识。

从功能结构化分,数据仓库系统至少应该包含数据获取(Data Acquisition)、数据存储(Data Storage)、数据访问(Data ess)三个关键部分 数据挖掘(Data Mining),又称为数据库中的知识发现(Knowledge Discovery in Database, KDD),就是从大量数据中获取有效的、新颖的、潜在有用的、最终可理解的模式的非平凡过程,简单的说,数据挖掘就是从大量数据中提取或“挖掘”知识。

并非所有的信息发现任务都被视为数据挖掘。

例如,使用数据库管理系统查找个别的记录,或通过因特网的搜索引擎查找特定的Web页面,则是信息检索(information retrieval)领域的任务。

虽然这些任务是重要的,可能涉及使用复杂的算法和数据结构,但是它们主要依赖传统的计算机科学技术和数据的明显特征来创建索引结构,从而有效地组织和检索信息。

尽管如此,数据挖掘技术也已用来增强信息检索系统的能力

数据仓库和数据库有什么区别和联系?

简而言之,数据库是面向事务的设计,数据仓库是面向主题设计的。

数据库一般存储在线交易数据,数据仓库存储的一般是历史数据。

数据库设计是尽量避免冗余,一般采用符合范式的规则来设计,数据仓库在设计是有意引入冗余,采用反范式的方式来设计。

数据库是为捕获数据而设计,数据仓库是为分析数据而设计,它的两个基本的元素是维表和事实表。

维是看问题的角度,比如时间,部门,维表放的就是这些东西的定义,事实表里放着要查询的数据,同时有维的ID。

单从概念上讲,有些晦涩。

任何技术都是为应用服务的,结合应用可以很容易地理解。

以银行业务为例。

数据库是事务系统的数据平台,客户在银行做的每笔交易都会写入数据库,被记录下来,这里,可以简单地理解为用数据库记帐。

数据仓库是分析系统的数据平台,它从事务系统获取数据,并做汇总、加工,为决策者提供决策的依据。

比如,某银行某分行一个月发生多少交易,该分行当前存款余额是多少。

如果存款又多,消费交易又多,那么该地区就有必要设立ATM了。

显然,银行的交易量是巨大的,通常以百万甚至千万次来计算。

事务系统是实时的,这就要求时效性,客户存一笔钱需要几十秒是无法忍受的,这就要求数据库只能存储很短一段时间的数据。

而分析系统是事后的,它要提供关注时间段内所有的有效数据。

这些数据是海量的,汇总计算起来也要慢一些,但是,只要能够提供有效的分析数据就达到目的了。

数据仓库,是在数据库已经大量存在的情况下,为了进一步挖掘数据资源、为了决策需要而产生的,它决不是所谓的“大型数据库”。

那么,数据仓库与传统数据库比较,有哪些不同呢?让我们先看看W.H.Inmon关于数据仓库的定义:面向主题的、集成的、与时间相关且不可修改的数据集合。

“面向主题的”:传统数据库主要是为应用程序进行数据处理,未必按照同一主题存储数据;数据仓库侧重于数据分析工作,是按照主题存储的。

这一点,类似于传统农贸市场与超市的区别—市场里面,白菜、萝卜、香菜会在一个摊位上,如果它们是一个小贩卖的;而超市里,白菜、萝卜、香菜则各自一块。

也就是说,市场里的菜(数据)是按照小贩(应用程序)归堆(存储)的,超市里面则是按照菜的类型(同主题)归堆的。

“与时间相关”:数据库保存信息的时候,并不强调一定有时间信息。

数据仓库则不同,出于决策的需要,数据仓库中的数据都要标明时间属性。

决策中,时间属性很重要。

同样都是累计购买过九车产品的顾客,一位是最近三个月购买九车,一位是最近一年从未买过,这对于决策者意义是不同的。

“不可修改”:数据仓库中的数据并不是最新的,而是来源于其它数据源。

数据仓库反映的是历史信息,并不是很多数据库处理的那种日常事务数据(有的数据库例如电信计费数据库甚至处理实时信息)。

因此,数据仓库中的数据是极少或根本不修改的;当然,向数据仓库添加数据是允许的。

数据仓库的出现,并不是要取代数据库。

目前,大部分数据仓库还是用关系数据库管理系统来管理的。

可以说,数据库、数据仓库相辅相成、各有千秋。

补充一下,数据仓库的方案建设的目的,是为前端查询和分析作为基础,由于有较大的冗余,所以需要的存储也较大。

为了更好地为前端应用服务,数据仓库必须有如下几点优点,否则是失败的数据仓库方案。

1.效率足够高。

客户要求的分析数据一般分为日、周、月、季、年等,可以看出,日为周期的数据要求的效率最高,要求24小时甚至12小时内,客户能看到昨天的数据分析。

由于有的企业每日的数据量很大,设计不好的数据仓库经常会出问题,延迟1-3日才能给出数据,显然不行的。

2.数据质量。

客户要看各种信息,肯定要准确的数据,但由于数据仓库流程至少分为3步,2次ETL,复杂的架构会更多层次,那么由于数据源有脏数据或者代码不严谨,都可以导致数据失真,客户看到错误的信息就可能导致分析出错误的决策,造成损失,而不是效益。

3.扩展性。

之所以有的大型数据仓库系统架构设计复杂,是因为考虑到了未来3-5年的扩展性,这样的话,客户不用太快花钱去重建数据仓库系统,就能很稳定运行。

主要体现在数据建模的合理性,数据仓库方案中多出一些中间层,使海量数据流有足够的缓冲,不至于数据量大很多,就运行不起来了。

数据仓库是做什么的

目前,数据仓库一词尚没有一个统一的定义,著名的数据仓库专家W.H.Inmon在其著作《Building the Data Warehouse》一书中给予如下描述:数据仓库(Data Warehouse)是一个面向主题的(Subject Oriented)、集成的(Integrate)、相对稳定的(Non-Volatile)、反映历史变化(Time Variant)的数据集合,用于支持管理决策。

对于数据仓库的概念我们可以从两个层次予以理解,首先,数据仓库用于支持决策,面向分析型数据处理,它不同于企业现有的操作型数据库;其次,数据仓库是对多个异构的数据源有效集成,集成后按照主题进行了重组,并包含历史数据,而且存放在数据仓库中的数据一般不再修改。

根据数据仓库概念的含义,数据仓库拥有以下四个特点: 1、面向主题。

操作型数据库的数据组织面向事务处理任务,各个业务系统之间各自分离,而数据仓库中的数据是按照一定的主题域进行组织。

主题是一个抽象的概念,是指用户使用数据仓库进行决策时所关心的重点方面,一个主题通常与多个操作型信息系统相关。

2、集成的。

面向事务处理的操作型数据库通常与某些特定的应用相关,数据库之间相互独立,并且往往是异构的。

而数据仓库中的数据是在对原有分散的数据库数据抽取、清理的基础上经过系统加工、汇总和整理得到的,必须消除源数据中的不一致性,以保证数据仓库内的信息是关于整个企业的一致的全局信息。

3、相对稳定的。

操作型数据库中的数据通常实时更新,数据根据需要及时发生变化。

数据仓库的数据主要供企业决策分析之用,所涉及的数据操作主要是数据查询,一旦某个数据进入数据仓库以后,一般情况下将被长期保留,也就是数据仓库中一般有大量的查询操作,但修改和删除操作很少,通常只需要定期的加载、刷新。

4、反映历史变化。

操作型数据库主要关心当前某一个时间段内的数据,而数据仓库中的数据通常包含历史信息,系统记录了企业从过去某一时点(如开始应用数据仓库的时点)到目前的各个阶段的信息,通过这些信息,可以对企业的发展历程和未来趋势做出定量分析和预测。

企业数据仓库的建设,是以现有企业业务系统和大量业务数据的积累为基础。

数据仓库不是静态的概念,只有把信息及时交给需要这些信息的使用者,供他们做出改善其业务经营的决策,信息才能发挥作用,信息才有意义。

而把信息加以整理归纳和重组,并及时提供给相应的管理决策人员,是数据仓库的根本任务。

因此,从产业界的角度看,数据仓库建设是一个工程,是一个过程。

整个数据仓库系统是一个包含四个层次的体系结构,具体由下图表示。

数据仓库系统体系结构 ·数据源:是数据仓库系统的基础,是整个系统的数据源泉。

通常包括企业内部信息和外部信息。

内部信息包括存放于RDBMS中的各种业务处理数据和各类文档数据。

外部信息包括各类法律法规、市场信息和竞争对手的信息等等; ·数据的存储与管理:是整个数据仓库系统的核心。

数据仓库的真正关键是数据的存储和管理。

数据仓库的组织管理方式决定了它有别于传统数据库,同时也决定了其对外部数据的表现形式。

要决定采用什么产品和技术来建立数据仓库的核心,则需要从数据仓库的技术特点着手分析。

针对现有各业务系统的数据,进行抽取、清理,并有效集成,按照主题进行组织。

数据仓库按照数据的覆盖范围可以分为企业级数据仓库和部门级数据仓库(通常称为数据集市)。

·OLAP服务器:对分析需要的数据进行有效集成,按多维模型予以组织,以便进行多角度、多层次的分析,并发现趋势。

其具体实现可以分为:ROLAP、MOLAP和HOLAP。

ROLAP基本数据和聚合数据均存放在RDBMS之中;MOLAP基本数据和聚合数据均存放于多维数据库中;HOLAP基本数据存放于RDBMS之中,聚合数据存放于多维数据库中。

·前端工具:主要包括各种报表工具、查询工具、数据分析工具、数据挖掘工具以及各种基于数据仓库或数据集市的应用开发工具。

其中数据分析工具主要针对OLAP服务器,报表工具、数据挖掘工具主要针对数据仓库。

特网云(198元/月),高质量云虚拟主机低至0.16元/天,裸金属服务器仅需10.5元/天

特网云为您提供高速、稳定、安全、弹性的云计算服务计算、存储、监控、安全,完善的云产品满足您的一切所需,深耕云计算领域10余年;我们拥有前沿的核心技术,始终致力于为政府机构、企业组织和个人开发者提供稳定、安全、可靠、高性价比的云计算产品与服务。官方网站:https://www.56dr.com/ 10年老品牌 值得信赖 有需要的请联系======================特网云推出多IP云主机...

ATCLOUD-KVM架构的VPS产品$4.5,杜绝DDoS攻击

ATCLOUD.NET怎么样?ATCLOUD.NET主要提供KVM架构的VPS产品、LXC容器化产品、权威DNS智能解析、域名注册、SSL证书等海外网站建设服务。 其大部分数据中心是由OVH机房提供,其节点包括美国(俄勒冈、弗吉尼亚)、加拿大、英国、法国、德国以及新加坡。 提供超过480Gbps的DDoS高防保护,杜绝DDoS攻击骚扰,比较适合海外建站等业务。官方网站:点击访问ATCLOUD官网活...

RackNerd提供四款高配美国服务器促销活动低至月$189

RackNerd 商家给的感觉就是一直蹭节日热点,然后时不时通过修改配置结构不断的提供低价年付的VPS主机,不过他们家还是在做事的,这么两年多的发展,居然已经有新增至十几个数据中心,而且产品线发展也是比较丰富。比如也有独立服务器业务,不过在他们轮番的低价年付VPS主机活动下,他们的服务器估摸着销路不是太好的。这里,今天有看到RackNerd商家的独立服务器业务有促销。这次提供美国多个机房的高配独立...

数据仓库为你推荐
文件夹删不掉文件夹是文件夹删不掉怎么办?在线漏洞检测漏洞扫描工具有哪些ghostxp3GHOSTxp sp3系统有什么优点和缺点???pwlosera,pw是什么,是不认识的人发的短信。请解释::照片转手绘照片弄成手绘一样的那个软件到底叫什么,能不能告诉啊?童之磊网文大学很强吗?蘑菇街美丽说蘑菇街、美丽说这类网站前期是怎么推广的?硬盘人上海人说“硬盘”是什么梗lockdowndios8.1能用gpp3to2吗?型号A1429怎么上传音乐怎样可以上传本地音乐到网上?
购买域名 猫咪av永久最新域名 域名系统 手机域名注册 主机屋 国内免备案主机 hawkhost优惠码 cve-2014-6271 谷歌香港 免费名片模板 ntfs格式分区 699美元 135邮箱 129邮箱 可外链网盘 免费高速空间 百度云1t 免费网页申请 新世界服务器 美国独立日 更多