数据仓库数据仓库是做什么的

数据仓库  时间:2021-01-22  阅读:()

什么是数据仓库

数据仓库是在企业管理和决策中面向主题的、集成的、与时间相关的、不可修改的数据集合 数据仓库,英文名称为Data Warehouse,可简写为DW。

数据仓库之父Bill Inmon在1991年出版的“Building the Data Warehouse”一书中所提出的定义被广泛接受——数据仓库(Data Warehouse)是一个面向主题的(Subject Oriented)、集成的(Integrated)、相对稳定的(Non-Volatile)、反映历史变化(Time Variant)的数据集合,用于支持管理决策(Decision Making Support)。

◆面向主题:操作型数据库的数据组织面向事务处理任务,各个业务系统之间各自分离,而数据仓库中的数据是按照一定的主题域进行组织的。

◆集成的:数据仓库中的数据是在对原有分散的数据库数据抽取、清理的基础上经过系统加工、汇总和整理得到的,必须消除源数据中的不一致性,以保证数据仓库内的信息是关于整个企业的一致的全局信息。

◆相对稳定的:数据仓库的数据主要供企业决策分析之用,所涉及的数据操作主要是数据查询,一旦某个数据进入数据仓库以后,一般情况下将被长期保留,也就是数据仓库中一般有大量的查询操作,但修改和删除操作很少,通常只需要定期的加载、刷新。

◆反映历史变化:数据仓库中的数据通常包含历史信息,系统记录了企业从过去某一时点(如开始应用数据仓库的时点)到目前的各个阶段的信息,通过这些信息,可以对企业的发展历程和未来趋势做出定量分析和预测。

数据仓库是一个过程而不是一个项目。

数据仓库系统是一个信息提供平台,他从业务处理系统获得数据,主要以星型模型和雪花模型进行数据组织,并为用户提供各种手段从数据中获取信息和知识。

从功能结构化分,数据仓库系统至少应该包含数据获取(Data Acquisition)、数据存储(Data Storage)、数据访问(Data ess)三个关键部分 数据挖掘(Data Mining),又称为数据库中的知识发现(Knowledge Discovery in Database, KDD),就是从大量数据中获取有效的、新颖的、潜在有用的、最终可理解的模式的非平凡过程,简单的说,数据挖掘就是从大量数据中提取或“挖掘”知识。

并非所有的信息发现任务都被视为数据挖掘。

例如,使用数据库管理系统查找个别的记录,或通过因特网的搜索引擎查找特定的Web页面,则是信息检索(information retrieval)领域的任务。

虽然这些任务是重要的,可能涉及使用复杂的算法和数据结构,但是它们主要依赖传统的计算机科学技术和数据的明显特征来创建索引结构,从而有效地组织和检索信息。

尽管如此,数据挖掘技术也已用来增强信息检索系统的能力

数据仓库和数据库有什么区别和联系?

简而言之,数据库是面向事务的设计,数据仓库是面向主题设计的。

数据库一般存储在线交易数据,数据仓库存储的一般是历史数据。

数据库设计是尽量避免冗余,一般采用符合范式的规则来设计,数据仓库在设计是有意引入冗余,采用反范式的方式来设计。

数据库是为捕获数据而设计,数据仓库是为分析数据而设计,它的两个基本的元素是维表和事实表。

维是看问题的角度,比如时间,部门,维表放的就是这些东西的定义,事实表里放着要查询的数据,同时有维的ID。

单从概念上讲,有些晦涩。

任何技术都是为应用服务的,结合应用可以很容易地理解。

以银行业务为例。

数据库是事务系统的数据平台,客户在银行做的每笔交易都会写入数据库,被记录下来,这里,可以简单地理解为用数据库记帐。

数据仓库是分析系统的数据平台,它从事务系统获取数据,并做汇总、加工,为决策者提供决策的依据。

比如,某银行某分行一个月发生多少交易,该分行当前存款余额是多少。

如果存款又多,消费交易又多,那么该地区就有必要设立ATM了。

显然,银行的交易量是巨大的,通常以百万甚至千万次来计算。

事务系统是实时的,这就要求时效性,客户存一笔钱需要几十秒是无法忍受的,这就要求数据库只能存储很短一段时间的数据。

而分析系统是事后的,它要提供关注时间段内所有的有效数据。

这些数据是海量的,汇总计算起来也要慢一些,但是,只要能够提供有效的分析数据就达到目的了。

数据仓库,是在数据库已经大量存在的情况下,为了进一步挖掘数据资源、为了决策需要而产生的,它决不是所谓的“大型数据库”。

那么,数据仓库与传统数据库比较,有哪些不同呢?让我们先看看W.H.Inmon关于数据仓库的定义:面向主题的、集成的、与时间相关且不可修改的数据集合。

“面向主题的”:传统数据库主要是为应用程序进行数据处理,未必按照同一主题存储数据;数据仓库侧重于数据分析工作,是按照主题存储的。

这一点,类似于传统农贸市场与超市的区别—市场里面,白菜、萝卜、香菜会在一个摊位上,如果它们是一个小贩卖的;而超市里,白菜、萝卜、香菜则各自一块。

也就是说,市场里的菜(数据)是按照小贩(应用程序)归堆(存储)的,超市里面则是按照菜的类型(同主题)归堆的。

“与时间相关”:数据库保存信息的时候,并不强调一定有时间信息。

数据仓库则不同,出于决策的需要,数据仓库中的数据都要标明时间属性。

决策中,时间属性很重要。

同样都是累计购买过九车产品的顾客,一位是最近三个月购买九车,一位是最近一年从未买过,这对于决策者意义是不同的。

“不可修改”:数据仓库中的数据并不是最新的,而是来源于其它数据源。

数据仓库反映的是历史信息,并不是很多数据库处理的那种日常事务数据(有的数据库例如电信计费数据库甚至处理实时信息)。

因此,数据仓库中的数据是极少或根本不修改的;当然,向数据仓库添加数据是允许的。

数据仓库的出现,并不是要取代数据库。

目前,大部分数据仓库还是用关系数据库管理系统来管理的。

可以说,数据库、数据仓库相辅相成、各有千秋。

补充一下,数据仓库的方案建设的目的,是为前端查询和分析作为基础,由于有较大的冗余,所以需要的存储也较大。

为了更好地为前端应用服务,数据仓库必须有如下几点优点,否则是失败的数据仓库方案。

1.效率足够高。

客户要求的分析数据一般分为日、周、月、季、年等,可以看出,日为周期的数据要求的效率最高,要求24小时甚至12小时内,客户能看到昨天的数据分析。

由于有的企业每日的数据量很大,设计不好的数据仓库经常会出问题,延迟1-3日才能给出数据,显然不行的。

2.数据质量。

客户要看各种信息,肯定要准确的数据,但由于数据仓库流程至少分为3步,2次ETL,复杂的架构会更多层次,那么由于数据源有脏数据或者代码不严谨,都可以导致数据失真,客户看到错误的信息就可能导致分析出错误的决策,造成损失,而不是效益。

3.扩展性。

之所以有的大型数据仓库系统架构设计复杂,是因为考虑到了未来3-5年的扩展性,这样的话,客户不用太快花钱去重建数据仓库系统,就能很稳定运行。

主要体现在数据建模的合理性,数据仓库方案中多出一些中间层,使海量数据流有足够的缓冲,不至于数据量大很多,就运行不起来了。

数据仓库是做什么的

目前,数据仓库一词尚没有一个统一的定义,著名的数据仓库专家W.H.Inmon在其著作《Building the Data Warehouse》一书中给予如下描述:数据仓库(Data Warehouse)是一个面向主题的(Subject Oriented)、集成的(Integrate)、相对稳定的(Non-Volatile)、反映历史变化(Time Variant)的数据集合,用于支持管理决策。

对于数据仓库的概念我们可以从两个层次予以理解,首先,数据仓库用于支持决策,面向分析型数据处理,它不同于企业现有的操作型数据库;其次,数据仓库是对多个异构的数据源有效集成,集成后按照主题进行了重组,并包含历史数据,而且存放在数据仓库中的数据一般不再修改。

根据数据仓库概念的含义,数据仓库拥有以下四个特点: 1、面向主题。

操作型数据库的数据组织面向事务处理任务,各个业务系统之间各自分离,而数据仓库中的数据是按照一定的主题域进行组织。

主题是一个抽象的概念,是指用户使用数据仓库进行决策时所关心的重点方面,一个主题通常与多个操作型信息系统相关。

2、集成的。

面向事务处理的操作型数据库通常与某些特定的应用相关,数据库之间相互独立,并且往往是异构的。

而数据仓库中的数据是在对原有分散的数据库数据抽取、清理的基础上经过系统加工、汇总和整理得到的,必须消除源数据中的不一致性,以保证数据仓库内的信息是关于整个企业的一致的全局信息。

3、相对稳定的。

操作型数据库中的数据通常实时更新,数据根据需要及时发生变化。

数据仓库的数据主要供企业决策分析之用,所涉及的数据操作主要是数据查询,一旦某个数据进入数据仓库以后,一般情况下将被长期保留,也就是数据仓库中一般有大量的查询操作,但修改和删除操作很少,通常只需要定期的加载、刷新。

4、反映历史变化。

操作型数据库主要关心当前某一个时间段内的数据,而数据仓库中的数据通常包含历史信息,系统记录了企业从过去某一时点(如开始应用数据仓库的时点)到目前的各个阶段的信息,通过这些信息,可以对企业的发展历程和未来趋势做出定量分析和预测。

企业数据仓库的建设,是以现有企业业务系统和大量业务数据的积累为基础。

数据仓库不是静态的概念,只有把信息及时交给需要这些信息的使用者,供他们做出改善其业务经营的决策,信息才能发挥作用,信息才有意义。

而把信息加以整理归纳和重组,并及时提供给相应的管理决策人员,是数据仓库的根本任务。

因此,从产业界的角度看,数据仓库建设是一个工程,是一个过程。

整个数据仓库系统是一个包含四个层次的体系结构,具体由下图表示。

数据仓库系统体系结构 ·数据源:是数据仓库系统的基础,是整个系统的数据源泉。

通常包括企业内部信息和外部信息。

内部信息包括存放于RDBMS中的各种业务处理数据和各类文档数据。

外部信息包括各类法律法规、市场信息和竞争对手的信息等等; ·数据的存储与管理:是整个数据仓库系统的核心。

数据仓库的真正关键是数据的存储和管理。

数据仓库的组织管理方式决定了它有别于传统数据库,同时也决定了其对外部数据的表现形式。

要决定采用什么产品和技术来建立数据仓库的核心,则需要从数据仓库的技术特点着手分析。

针对现有各业务系统的数据,进行抽取、清理,并有效集成,按照主题进行组织。

数据仓库按照数据的覆盖范围可以分为企业级数据仓库和部门级数据仓库(通常称为数据集市)。

·OLAP服务器:对分析需要的数据进行有效集成,按多维模型予以组织,以便进行多角度、多层次的分析,并发现趋势。

其具体实现可以分为:ROLAP、MOLAP和HOLAP。

ROLAP基本数据和聚合数据均存放在RDBMS之中;MOLAP基本数据和聚合数据均存放于多维数据库中;HOLAP基本数据存放于RDBMS之中,聚合数据存放于多维数据库中。

·前端工具:主要包括各种报表工具、查询工具、数据分析工具、数据挖掘工具以及各种基于数据仓库或数据集市的应用开发工具。

其中数据分析工具主要针对OLAP服务器,报表工具、数据挖掘工具主要针对数据仓库。

物语云-VPS-美国洛杉矶VPS无限流量云windows大带宽100M不限流量 26/月起

物语云计算怎么样?物语云计算(MonogatariCloud)是一家成立于2016年的老牌国人商家,主营国内游戏高防独服业务,拥有多家机房资源,产品质量过硬,颇有一定口碑。本次带来的是特惠活动为美国洛杉矶Cera机房的不限流量大带宽VPS,去程直连回程4837,支持免费安装Windows系统。值得注意的是,物语云采用的虚拟化技术为Hyper-v,因此并不会超售超开。一、物语云官网点击此处进入物语云...

[6.18]DogYun:充100送10元,态云7折,经典云8折,独立服务器月省100元,幸运大转盘最高5折

DogYun是一家2019年成立的国人主机商,提供VPS和独立服务器租用等,数据中心包括中国香港、美国洛杉矶、日本、韩国、德国、荷兰等,其中VPS包括常规VPS(经典云)和按小时计费VPS(动态云),使用自行开发的面板和管理系统,支持自定义配置,动态云各个硬件独立按小时计费,带宽按照用户使用量计费(不使用不计费)或者购买流量包,线路也可以自行切换。目前商家发布了6.18促销方案,新购动态云7折,经...

Atcloud:全场8折优惠,美国/加拿大/英国/法国/德国/新加坡vps,500g大硬盘/2T流量/480G高防vps,$4/月

atcloud怎么样?atcloud刚刚发布了最新的8折优惠码,该商家主要提供常规cloud(VPS)和storage(大硬盘存储)系列VPS,其数据中心分布在美国(俄勒冈、弗吉尼亚)、加拿大、英国、法国、德国、新加坡,所有VPS默认提供480Gbps的超高DDoS防御。Atcloud高防VPS。atcloud.net,2020年成立,主要提供基于KVM虚拟架构的VPS、只能DNS解析、域名、SS...

数据仓库为你推荐
外网和内网内网和外网是什么意思啊??bbsxp老大!!您好!我是初学者!请问我的bbsxp如何更改顶端左面的LOGO??在线漏洞检测漏洞扫描工具有哪些依赖注入请问下依赖注入的三种方式的区别安卓应用平台安卓系统支持的软件并不是那么多,为什么这么多人推崇?如何建立自己的网站怎么创建自己的网站硬盘人500G的硬盘容量是多少啊?qq怎么发邮件用QQ怎样发送文件开机滚动条开机滚动条太多怎么办?ios7固件下载iphone自动下载IOS7固件版本怎么删除
网站虚拟主机空间 域名备案收费吗 中文域名交易中心 花生壳域名贝锐 ipage flashfxp怎么用 主机测评网 美元争夺战 koss http500内部服务器错误 京东商城双十一活动 韩国名字大全 php空间推荐 cdn加速原理 泉州移动 百度云1t 如何建立邮箱 江苏双线服务器 512mb 买空间网 更多