laseradman
adman 时间:2021-01-03 阅读:(
)
CorrectionBIOCHEMISTRYCorrectionfor"Redox-coupledprotontransfermechanisminni-tritereductaserevealedbyfemtosecondcrystallography,"byYohtaFukuda,KaManTse,TakanoriNakane,ToruNakatsu,MamoruSuzuki,MichihiroSugahara,ShigeyukiInoue,TetsuyaMasuda,FumiakiYumoto,NaohiroMatsugaki,ErikoNango,KensukeTono,YasumasaJoti,TakashiKameshima,ChangyongSong,TakakiHatsui,MakinaYabashi,OsamuNureki,MichaelE.
P.
Murphy,TsuyoshiInoue,SoIwata,andEiichiMizohata,whichappearedinissue11,March15,2016,ofProcNatlAcadSciUSA(113:2928–2933;firstpublishedFebruary29,2016;10.
1073/pnas.
1517770113).
TheauthorsnotethatFig.
4appearedincorrectly.
Thecor-rectedfigureanditslegendappearbelow.
www.
pnas.
org/cgi/doi/10.
1073/pnas.
1604061113Fig.
4.
Updatedreactionmechanismofnitritereduction.
DashedlinesrepresentH-bonds.
StrongandweakH-bondsinvolvedinPCETarecoloredasinFig.
2B.
Chainlinesmeansterichindrancebetweenthenearface-onsubstrateandHis255.
www.
pnas.
orgPNAS|April12,2016|vol.
113|no.
15|E2207CORRECTIONDownloadedbyguestonNovember21,2020DownloadedbyguestonNovember21,2020DownloadedbyguestonNovember21,2020DownloadedbyguestonNovember21,2020DownloadedbyguestonNovember21,2020DownloadedbyguestonNovember21,2020DownloadedbyguestonNovember21,2020DownloadedbyguestonNovember21,2020Redox-coupledprotontransfermechanisminnitritereductaserevealedbyfemtosecondcrystallographyYohtaFukudaa,b,1,KaManTsea,1,TakanoriNakane(中根崇智)c,1,ToruNakatsud,e,MamoruSuzukie,f,MichihiroSugaharae,ShigeyukiInouee,g,TetsuyaMasudae,h,FumiakiYumotoi,NaohiroMatsugakii,ErikoNangoe,KensukeTonoj,YasumasaJotij,TakashiKameshimaj,ChangyongSonge,k,TakakiHatsuie,MakinaYabashie,OsamuNurekic,l,MichaelE.
P.
Murphym,TsuyoshiInouea,2,SoIwatae,n,andEiichiMizohata(溝端栄一)a,2aDepartmentofAppliedChemistry,GraduateSchoolofEngineering,OsakaUniversity,2-1Yamadaoka,Suita,Osaka565-0871,Japan;bDepartmentofBiochemistryandMolecularBiophysics,ColumbiaUniversity,NewYork,NY10032;cDepartmentofBiologicalSciences,GraduateSchoolofScience,TheUniversityofTokyo,7-3-1Hongo,Bunkyo-ku,Tokyo113-0033,Japan;dDepartmentofStructuralBiology,GraduateSchoolofPharmaceuticalSciences,KyotoUniversity,Sakyo,Kyoto606-8501,Japan;eRIKENSPring-8Center,1-1-1Kouto,Sayo-cho,Sayo-gun,Hyogo679-5148,Japan;fInstituteforProteinResearch,OsakaUniversity,3-2Yamadaoka,Suita,Osaka565-0871,Japan;gDepartmentofCellBiologyandAnatomy,GraduateSchoolofMedicine,TheUniversityofTokyo,7-3-1Hongo,Bunkyo-ku,Tokyo113-0033,Japan;hDivisionofFoodScienceandBiotechnology,GraduateSchoolofAgriculture,KyotoUniversity,Gokasho,Uji,Kyoto611-0011,Japan;iStructuralBiologyResearchCenter,KEKHighEnergyAcceleratorResearchOrganization,Tsukuba,Ibaraki305-0801,Japan;jJapanSynchrotronRadiationResearchInstitute,1-1-1Kouto,Sayo-cho,Sayo-gun,Hyogo679-5198,Japan;kDepartmentofPhysics,PohangUniversityofScienceandTechnology,Pohang790-784,Korea;lGlobalResearchCluster,RIKEN,2-1Hirosawa,Wako-shi,Saitama351-0198,Japan;mDepartmentofMicrobiologyandImmunology,UniversityofBritishColumbia,Vancouver,BC,CanadaV6T1Z3;andnDepartmentofCellBiology,GraduateSchoolofMedicine,KyotoUniversity,Yoshidakonoe-cho,Sakyo-ku,Kyoto,606-8501,JapanEditedbyEdwardI.
Solomon,StanfordUniversity,Stanford,CA,andapprovedFebruary2,2016(receivedforreviewSeptember9,2015)Proton-coupledelectrontransfer(PCET),aubiquitousphenome-noninbiologicalsystems,playsanessentialroleincoppernitritereductase(CuNiR),thekeymetalloenzymeinmicrobialdenitrifica-tionoftheglobalnitrogencycle.
AnalysesofthenitritereductionmechanisminCuNiRwithconventionalsynchrotronradiationcrystallography(SRX)havebeenfacedwithdifficulties,becauseX-rayphotoreductionchangesthenativestructuresofmetalcentersandtheenzyme–substratecomplex.
Usingserialfemtosecondcrys-tallography(SFX),wedeterminedtheintactstructuresofCuNiRintherestingstateandthenitritecomplex(NC)stateat2.
03-and1.
60-resolution,respectively.
Furthermore,theSRXNCstructurerepre-sentingatransientstateinthecatalyticcyclewasdeterminedat1.
30-resolution.
ComparisonbetweenSRXandSFXstructuresrevealedthatphotoreductionchangesthecoordinationmannerofthesubstrateandthatcatalyticallyimportantHis255canswitchhydrogenbondpartnersbetweenthebackbonecarbonyloxygenofnearbyGlu279andtheside-chainhydroxylgroupofThr280.
Thesefindings,whichSRXhasfailedtouncover,proposearedox-coupledprotonswitchforPCET.
Thisconceptcanexplainhowpro-tontransfertothesubstrateisinvolvedinintramolecularelectrontransferandwhysubstratebindingacceleratesPCET.
OurstudydemonstratesthepotentialofSFXasapowerfultooltostudyredoxprocessesinmetalloenzymes.
copper|bioinorganicchemistry|freeelectronlaser|SADphasing|damage-freestructureSincetheinventionoftheHaber–Boschprocess,theamountoffixednitrogeninsoilsandwatershasbeenincreasing,andthistrendhassignificantimpactontheglobalenvironment(1,2).
Fixednitrogenisoxidizedtonitrite(NO2)ornitrate(NO3)bynitrificationandthenconvertedtogaseousdinitrogen(N2)bymicrobialdenitrification,whichclosesthenitrogencycle.
Micro-organismsinvolvedindenitrificationcoupletheirrespiratorysystemstostepwisereductionofnitrogenoxidestoN2(NO3→NO2→NO→N2O→N2)(3,4).
ThereductionofNO2totoxicnitricoxide(NO2+2H++e→NO+H2O)isreferredtoasthekeystepindenitrificationandcatalyzedbyeithercd1-hemenitritereductase(cd1NiR)orcoppernitritereductase(CuNiR)(3,4).
Althoughthecatalyticmechanismofcd1NiRiswellunderstood(5,6),thatofCuNiRiscontroversial(7).
CuNiRisahomotrimericproteincontainingtwodistinctCusitespermonomer(SIAppendix,Fig.
S1).
Type1Cu(T1Cu)withaCys–Met–His2ligandsetisanelectronacceptorincorporatednearthemolecularsurface,whereastype2Cu(T2Cu)withaHis3ligandsetisacatalyticcenter,whichis12distantfromthemolecularsurfaceandlocatedbetweentwoadjacentmonomers(7,8).
Spaced12.
5apart,thetwoCusitesarelinkedbyaCys–Hisbridgeandasensorloop.
WhereastheCys–Hisbridgeisanelectronpathway,thesensorloopisthoughttocontrolelectrondistributionbetweenT1CuandT2Cu(9).
Twoconservedresidues,Asp98andHis255(Alcaligenesfaecalisnumbering),arelocatedabovetheT2Cusiteandbridgedbyawatermoleculecalledbridgingwater(SIAppendix,Fig.
S1).
TheyareessentialtotheCuNiRactivitybecausetheyassistprotonSignificanceCoppernitritereductase(CuNiR)isinvolvedindenitrificationofthenitrogencycle.
SynchrotronX-raysrapidlyreducecoppersitesanddecomposethesubstratecomplexstructure,whichhasmadecrystallographicstudiesofCuNiRdifficult.
UsingfemtosecondX-rayfreeelectronlasers,wedeterminedintactstructuresofCuNiRwithandwithoutnitrite.
Basedontheobtainedstructures,weproposedaredox-coupledprotonswitchmodel,whichprovidesanexplanationforproton-coupledelectrontransfer(PCET)inCuNiR.
PCETiswidelydistributedthroughbiogenicprocessesinclud-ingrespiratoryandphotosyntheticsystemsandishighlyexpectedtobeincorporatedintobioinspiredmoleculardevices.
OurstudyalsoestablishesthefoundationforfuturestudiesonPCETinothersystems.
Authorcontributions:Y.
F.
andE.
M.
designedresearch;Y.
F.
,K.
M.
T.
,T.
Nakane,T.
Nakatsu,M.
Suzuki,M.
Sugahara,S.
Inoue,T.
M.
,F.
Y.
,N.
M.
,E.
N.
,K.
T.
,Y.
J.
,T.
K.
,C.
S.
,T.
H.
,M.
Y.
,O.
N.
,M.
E.
P.
M.
,S.
Iwata,andE.
M.
performedresearch;E.
N.
,K.
T.
,Y.
J.
,T.
K.
,C.
S.
,T.
H.
,andM.
Y.
contributednewreagents/analytictools;K.
M.
T.
purifiedandcrystallizedproteinsandper-formedtheassay;T.
Nakaneprocessedserialfemtosecondcrystallography(SFX)dataandperformedsingle-wavelengthanomalousdiffractionphasing;T.
Nakatsu,M.
Suzuki,M.
Sugahara,S.
Inoue,T.
M.
,F.
Y.
,andN.
M.
collectedSFXdata;E.
N.
,K.
T.
,Y.
J.
,T.
K.
,C.
S.
,T.
H.
,andM.
Y.
contributedtheSFXsystems;S.
IwatasupervisedtheSPring-8AngstromCompactFree-ElectronLaserSFXProject;E.
M.
collectedSFXdataandcollectedandprocessedsynchrotronradiationcrystallographydata;Y.
F.
,K.
M.
T.
,T.
Nakane,andE.
M.
ana-lyzeddata;andY.
F.
,K.
M.
T.
,T.
Nakane,M.
E.
P.
M.
,T.
I.
,andE.
M.
wrotethepaper.
Theauthorsdeclarenoconflictofinterest.
ThisarticleisaPNASDirectSubmission.
FreelyavailableonlinethroughthePNASopenaccessoption.
Datadeposition:Crystallography,atomiccoordinates,andstructurefactorshavebeendepositedintheProteinDataBank,www.
pdb.
org[PDBIDcodes4YSC(SFXRS),4YSE(SRXRS),5D4H(SRXNC),5D4I(SFXNC),5D4J(SRXRSCL),5F7B(SRXRSRT),5F7A(SRXNCRT);andCoherentX-rayImagingDataBankID:34].
1Y.
F.
,K.
M.
T.
,andT.
Nakanecontributedequallytothiswork.
2Towhomcorrespondencemaybeaddressed.
Email:inouet@chem.
eng.
osaka-u.
ac.
jpormizohata@chem.
eng.
osaka-u.
ac.
jp.
Thisarticlecontainssupportinginformationonlineatwww.
pnas.
org/lookup/suppl/doi:10.
1073/pnas.
1517770113/-/DCSupplemental.
2928–2933|PNAS|March15,2016|vol.
113|no.
11www.
pnas.
org/cgi/doi/10.
1073/pnas.
1517770113transfer(PT)tothesubstrate(10–12).
Althoughintramolecularelectrontransfer(ET)fromT1CutoT2Cucanoccurintherestingstate(RS)(13,14),thedifferencesintheredoxpotentialsofT2CuminusT1CuaresmallandsometimesnegativeintheabsenceofNO2,meaningthatintramolecularETbeforeNO2bindingisnotenergeticallyfavorable(15,16).
Bycontrast,intramolecularETisdramaticallyacceleratedinthepresenceofNO2(15,17).
Anex-planationforthisgating-likephenomenonisthatsubstratebindingraisestheredoxpotentialofT2CuandshiftstheequilibriumoftheETreaction(16).
However,pHdependenceofintramolecularETinthepresenceofNO2cannotbeexplainedbysuchachangeofredoxpotentials(15).
Instead,Kobayashietal.
(15)proposedthatreduction-inducedstructuralchangeofHis255isresponsibleforthegating-likemechanism.
BecauseithasbeenrecentlyproventhatintramolecularETinCuNiRisaccompaniedbyPTandhenceproton-coupledET(PCET)(17,18),onecanreadilyspeculatethatintramolecularETcontributesPTtoNO2andthatthestructuralchangeofHis255isinvolvedinPCET.
CrystalstructuresofCuNiRfromRhodobactersphaeroides(RhsNiR)impliesthispossibilitybe-causeHis287inRhsNiR,whichcorrespondstoHis255,seemstoshowpH-andredox-dependentconformationalchanges(19,20).
However,presumablybecauseofX-rayradiationdamagesimpliedbyrerefinementofRhsNiRstructures(21),electrondensityaroundHis287wassounusualthatinterpretationofitisdifficult(SIAp-pendix,Fig.
S2).
Crystalstructuresdeterminedbysynchrotronradiationcrystal-lography(SRX)haveprovidedinsightsintotheenzymaticmecha-nismofCuNiR(22–25),andthesestudiesaresummarizedelsewhere(7).
High-resolutionnitritecomplex(NC)structuresrevealedanO-coordinationofNO2showinganearface-onbindingmode(22,23),whereasCu(II)-NO2modelcomplexesshowaverticalbindingmode(7,26–29).
Thenearface-oncoordinationmanneristhoughttofacilitateitsconversiontoside-onNO,whichwasobservedinthecrystalstructuresofCuNiRexposedtoNO(22,23,25).
Skepticaleyeshave,however,beencastontheseCuNiRstructuresbecauseSRXdatamightbeaffectedbysomeproblemsconnectedtothehighradiationdosedeliveredonthecrystals.
First,strongsynchro-tronX-rayscausenotonlyradiationdamagestoaminoacidresiduesbutalsophotoreductionofmetalloproteins(30,31).
Althoughacomparisonbetweenoxidizedandreducedstatesisnecessarytocloselyinvestigateredoxreactions,completelyoxidizedstructuresarealmostimpossibletodeterminebySRX.
Indeed,theCucentersinCuNiRarerapidlyreducedbyexposuretosynchrotronX-rays(21,32).
Second,followingthephotoreductionofT2Cu,NO2iseasilyreducedandproducesNOandwaterinSRX(21).
Conse-quently,electrondensityatthecatalyticsiteofanNCstructureisderivedfromthemixtureofbothsubstrateandproduct,makinginterpretationofdatacomplicatedandunreliable.
Third,cryogenicmanipulationsforreducingradiationdamagesinSRXhavealsobeenfocusedasafactorthatchangesthepopulationofaminoacidresidues(33,34)andenzyme–substratecomplexes(35).
Crystallo-graphic(36),computational(37),andspectroscopic(38–40)studiesactuallyshowthatbindingmodesofNO2andNOinCuNiRcrystalstructurescandifferfromthoseinphysiologicalenvironments.
WehereventuredtousephotoreductioninSRXtoinitiateachemicalreactionandtotrapanenzymaticallyproducedin-termediarystate(30,31).
Furthermore,tovisualizeintactCuNiRstructuresintherestingandNCstates,weappliedserialfemtosec-ondcrystallography(SFX)withX-rayfreeelectronlasers(XFELs)(41),whichenablesdamage-freestructuraldeterminationofmetal-loproteins(42,43)andevaluationofthenativeconformationalpopulationatroomtemperature(RT)(44).
BycomparingSRXandSFXdata,wediscussPCETandnitritereductioninCuNiR.
ResultsandDiscussionRSStructuresDeterminedbySFXandSRX.
TheSFXandcryogenicSRXstructuresofCuNiRfromA.
faecalis(AfNiR)(45,46)inRSwererefinedto2.
03-and1.
20-resolution,respectively(SFXRSandSRXRS,SIAppendix,TablesS1andS2).
Wealsocol-lectedSRXdataat293K,whichisthetemperatureintheSFXexperiment,andthestructurewasdeterminedat1.
56-resolution(SRXRSRT,SIAppendix,TableS2).
AlthoughtheT1CusiteisrapidlyreducedbysynchrotronX-rays(21,32),thereisnosig-nificantdifferenceinthegeometrybetweentheSRXandSFXstructures(SIAppendix,TableS3).
BecausethetypicaldifferencesoftheT1CugeometriesbetweenthereducedandoxidizedstatesareAdmanET(1997)Structureofnitriteboundtocopper-con-tainingnitritereductasefromAlcaligenesfaecalis.
Mechanisticimplications.
JBiolChem272(45):28455–28460.
47.
SolomonEI,SzilagyiRK,DeBeerGeorgeS,BasumallickL(2004)Electronicstructuresofmetalsitesinproteinsandmodels:Contributionstofunctioninbluecopperpro-teins.
ChemRev104(2):419–458.
48.
NakaneT,etal.
(2015)Nativesulfur/chlorineSADphasingforserialfemtosecondcrystallography.
ActaCrystallogrDBiolCrystallogr71(Pt12):2519–2525.
49.
GhoshS,DeyA,SunY,ScholesCP,SolomonEI(2009)Spectroscopicandcomputa-tionalstudiesofnitritereductase:Protoninducedelectrontransferandbackbondingcontributionstoreactivity.
JAmChemSoc131(1):277–288.
50.
HalfenJA,TolmanWB(1994)Syntheticmodelofthesubstrateadducttothereducedactivesiteofcoppernitritereductase.
JAmChemSoc116:5475–5476.
51.
HalfenJA,etal.
(1996)Syntheticmodelingofnitritebindingandactivationbyre-ducedcopperproteins.
Characterizationofcopper(I)-nitritecomplexesthatevolvenitricoxide.
JAmChemSoc118:763–776.
52.
KujimeM,IzumiC,TomuraM,HadaM,FujiiH(2008)Effectofatridentateligandonthestructure,electronicstructure,andreactivityofthecopper(I)nitritecomplex:Roleoftheconservedthree-histidineligandenvironmentofthetype-2coppersiteincopper-containingnitritereductases.
JAmChemSoc130(19):6088–6098.
53.
LiY,HodakM,BernholcJ(2015)Enzymaticmechanismofcopper-containingnitritereductase.
Biochemistry54(5):1233–1242.
54.
DouzouP,HoaGHB,PetskoGA(1975)Proteincrystallographyatsub-zerotemperatures:Lysozyme-substratecomplexesincooledmixedsolvents.
JMolBiol96(3):367–380.
55.
FukudaY,etal.
(2016)Redox-coupledstructuralchangesinnitritereductaserevealedbyserialfemtosecondandmicrofocuscrystallography.
JBiochemmvv133.
56.
BoulangerMJ,MurphyMEP(2002)Crystalstructureofthesolubledomainofthemajoranaerobicallyinducedoutermembraneprotein(AniA)frompathogenicNeisseria:Anewclassofcopper-containingnitritereductases.
JMolBiol315(5):1111–1127.
57.
LawtonTJ,BowenKE,Sayavedra-SotoLA,ArpDJ,RosenzweigAC(2013)Characterizationofanitritereductaseinvolvedinnitrifierdenitrification.
JBiolChem288(35):25575–25583.
58.
ZhangH,BoulangerMJ,MaukAG,MurphyMEP(2000)Carbonmonoxidebindingtocopper-containingnitritereductasefromAlcaligenesfaecalis.
JPhysChemB104:10738–10742.
59.
FukudaY,etal.
(2014)Structuralinsightsintothefunctionofathermostablecopper-containingnitritereductase.
JBiochem155(2):123–135.
60.
TenboerJ,etal.
(2014)Time-resolvedserialcrystallographycaptureshigh-resolutionintermediatesofphotoactiveyellowprotein.
Science346(6214):1242–1246.
61.
KupitzC,etal.
(2014)Serialtime-resolvedcrystallographyofphotosystemIIusingafemtosecondX-raylaser.
Nature513(7517):261–265.
62.
OtwinowskiZ,MinorW(1997)ProcessingofX-raydiffractiondatacollectedinos-cillationmode.
MethodsEnzymol276:307–326.
63.
McCoyAJ,etal.
(2007)Phasercrystallographicsoftware.
JApplCryst40(Pt4):658–674.
64.
EmsleyP,LohkampB,ScottWG,CowtanK(2010)FeaturesanddevelopmentofCoot.
ActaCrystallogrDBiolCrystallogr66(Pt4):486–501.
65.
MurshudovGN,etal.
(2011)REFMAC5fortherefinementofmacromolecularcrystalstructures.
ActaCrystallogrDBiolCrystallogr67(Pt4):355–367.
66.
WinnMD,etal.
(2011)OverviewoftheCCP4suiteandcurrentdevelopments.
ActaCrystallogrDBiolCrystallogr67(Pt4):235–242.
67.
ChenVB,etal.
(2010)MolProbity:All-atomstructurevalidationformacromolecularcrystallography.
ActaCrystallogrDBiolCrystallogr66(Pt1):12–21.
68.
SugaharaM,etal.
(2015)Greasematrixasaversatilecarrierofproteinsforserialcrystallography.
NatMethods12(1):61–63.
69.
TonoK,etal.
(2013)Beamline,experimentalstationsandphotonbeamdiagnosticsforthehardx-rayfreeelectronlaserofSACLA.
NewJPhys15(8):083035.
70.
WhiteTA,etal.
(2012)CrystFEL:Asoftwaresuiteforsnapshotserialcrystallography.
JApplCryst45(2):335–341.
71.
DuisenbergAJM(1992)Indexinginsingle-crystaldiffractometrywithanobstinatelistofreflections.
JApplCryst25:92–96.
72.
SheldrickGM(2010)ExperimentalphasingwithSHELXC/D/E:Combiningchaintracingwithdensitymodification.
ActaCrystallogrDBiolCrystallogr66(Pt4):479–485.
Fukudaetal.
PNAS|March15,2016|vol.
113|no.
11|2933BIOCHEMISTRY
Virmach商家我们是不是比较熟悉?速度一般,但是人家价格低,而且机房是比较多的。早年的时候有帮助一个有做外贸也许需要多个机房且便宜服务商的时候接触到这个商家,有曾经帮助够买过上百台这样的低价机器。这里需要提醒的,便宜但是速度一般,尤其是中文业务速度确实不快,如果是外贸业务,那肯定是没有问题。这几天,我们有看到Virmach推出了夏季优惠促销,VPS首年8折,最低年付仅7.2美元,多机房可选,如...
HostKvm商家我们也不用多介绍,这个服务商来自国内某商家,旗下也有多个品牌的,每次看到推送信息都是几个服务商品牌一起推送的。当然商家还是比较稳定的,商家品牌比较多,这也是国内商家一贯的做法,这样广撒网。这次看到黑五优惠活动发布了,针对其主打的香港云服务器提供终身6折的优惠,其余机房服务器依然是8折,另还有充值50美元赠送5美元的优惠活动,有需要的可以看看。HostKvm是一个创建于2013年的...
bgp.to对日本机房、新加坡机房的独立服务器在搞特价促销,日本独立服务器低至6.5折优惠,新加坡独立服务器低至7.5折优惠,所有优惠都是循环的,终身不涨价。服务器不限制流量,支持升级带宽,免费支持Linux和Windows server中文版(还包括Windows 10). 特色:自动部署,无需人工干预,用户可以在后台自己重装系统、重启、关机等操作!官方网站:https://www.bgp.to...
adman为你推荐
美国虚拟主机美国虚拟主机用着怎么样?独立ip主机独立ip主机的好处?空间租用租用空间多少钱 1MB?免费网站空间哪里有永久免费的网站空间?虚拟主机管理系统什么虚拟主机管理系统支持W和linux操作系统虚拟主机管理系统如何用win虚拟主机管理系统搭建1g虚拟主机1G虚拟空间大约多少钱?windows虚拟主机在windows上怎么安装虚拟机双线虚拟主机什么是智能双线虚拟主机?联动天下的双线主机有什么优势?域名停靠域名停放是什么?
网络域名 北京vps 汉邦高科域名申请 lunarpages inmotionhosting vpsio 安云加速器 12306抢票助手 网通服务器ip vip购优汇 电信托管 中国电信网络测速 东莞服务器托管 中国linux 建站行业 饭桶 海康流媒体服务器 好看的空间头像 网络时间服务器 个人web服务器软件 更多