laseradman
adman 时间:2021-01-03 阅读:(
)
CorrectionBIOCHEMISTRYCorrectionfor"Redox-coupledprotontransfermechanisminni-tritereductaserevealedbyfemtosecondcrystallography,"byYohtaFukuda,KaManTse,TakanoriNakane,ToruNakatsu,MamoruSuzuki,MichihiroSugahara,ShigeyukiInoue,TetsuyaMasuda,FumiakiYumoto,NaohiroMatsugaki,ErikoNango,KensukeTono,YasumasaJoti,TakashiKameshima,ChangyongSong,TakakiHatsui,MakinaYabashi,OsamuNureki,MichaelE.
P.
Murphy,TsuyoshiInoue,SoIwata,andEiichiMizohata,whichappearedinissue11,March15,2016,ofProcNatlAcadSciUSA(113:2928–2933;firstpublishedFebruary29,2016;10.
1073/pnas.
1517770113).
TheauthorsnotethatFig.
4appearedincorrectly.
Thecor-rectedfigureanditslegendappearbelow.
www.
pnas.
org/cgi/doi/10.
1073/pnas.
1604061113Fig.
4.
Updatedreactionmechanismofnitritereduction.
DashedlinesrepresentH-bonds.
StrongandweakH-bondsinvolvedinPCETarecoloredasinFig.
2B.
Chainlinesmeansterichindrancebetweenthenearface-onsubstrateandHis255.
www.
pnas.
orgPNAS|April12,2016|vol.
113|no.
15|E2207CORRECTIONDownloadedbyguestonNovember21,2020DownloadedbyguestonNovember21,2020DownloadedbyguestonNovember21,2020DownloadedbyguestonNovember21,2020DownloadedbyguestonNovember21,2020DownloadedbyguestonNovember21,2020DownloadedbyguestonNovember21,2020DownloadedbyguestonNovember21,2020Redox-coupledprotontransfermechanisminnitritereductaserevealedbyfemtosecondcrystallographyYohtaFukudaa,b,1,KaManTsea,1,TakanoriNakane(中根崇智)c,1,ToruNakatsud,e,MamoruSuzukie,f,MichihiroSugaharae,ShigeyukiInouee,g,TetsuyaMasudae,h,FumiakiYumotoi,NaohiroMatsugakii,ErikoNangoe,KensukeTonoj,YasumasaJotij,TakashiKameshimaj,ChangyongSonge,k,TakakiHatsuie,MakinaYabashie,OsamuNurekic,l,MichaelE.
P.
Murphym,TsuyoshiInouea,2,SoIwatae,n,andEiichiMizohata(溝端栄一)a,2aDepartmentofAppliedChemistry,GraduateSchoolofEngineering,OsakaUniversity,2-1Yamadaoka,Suita,Osaka565-0871,Japan;bDepartmentofBiochemistryandMolecularBiophysics,ColumbiaUniversity,NewYork,NY10032;cDepartmentofBiologicalSciences,GraduateSchoolofScience,TheUniversityofTokyo,7-3-1Hongo,Bunkyo-ku,Tokyo113-0033,Japan;dDepartmentofStructuralBiology,GraduateSchoolofPharmaceuticalSciences,KyotoUniversity,Sakyo,Kyoto606-8501,Japan;eRIKENSPring-8Center,1-1-1Kouto,Sayo-cho,Sayo-gun,Hyogo679-5148,Japan;fInstituteforProteinResearch,OsakaUniversity,3-2Yamadaoka,Suita,Osaka565-0871,Japan;gDepartmentofCellBiologyandAnatomy,GraduateSchoolofMedicine,TheUniversityofTokyo,7-3-1Hongo,Bunkyo-ku,Tokyo113-0033,Japan;hDivisionofFoodScienceandBiotechnology,GraduateSchoolofAgriculture,KyotoUniversity,Gokasho,Uji,Kyoto611-0011,Japan;iStructuralBiologyResearchCenter,KEKHighEnergyAcceleratorResearchOrganization,Tsukuba,Ibaraki305-0801,Japan;jJapanSynchrotronRadiationResearchInstitute,1-1-1Kouto,Sayo-cho,Sayo-gun,Hyogo679-5198,Japan;kDepartmentofPhysics,PohangUniversityofScienceandTechnology,Pohang790-784,Korea;lGlobalResearchCluster,RIKEN,2-1Hirosawa,Wako-shi,Saitama351-0198,Japan;mDepartmentofMicrobiologyandImmunology,UniversityofBritishColumbia,Vancouver,BC,CanadaV6T1Z3;andnDepartmentofCellBiology,GraduateSchoolofMedicine,KyotoUniversity,Yoshidakonoe-cho,Sakyo-ku,Kyoto,606-8501,JapanEditedbyEdwardI.
Solomon,StanfordUniversity,Stanford,CA,andapprovedFebruary2,2016(receivedforreviewSeptember9,2015)Proton-coupledelectrontransfer(PCET),aubiquitousphenome-noninbiologicalsystems,playsanessentialroleincoppernitritereductase(CuNiR),thekeymetalloenzymeinmicrobialdenitrifica-tionoftheglobalnitrogencycle.
AnalysesofthenitritereductionmechanisminCuNiRwithconventionalsynchrotronradiationcrystallography(SRX)havebeenfacedwithdifficulties,becauseX-rayphotoreductionchangesthenativestructuresofmetalcentersandtheenzyme–substratecomplex.
Usingserialfemtosecondcrys-tallography(SFX),wedeterminedtheintactstructuresofCuNiRintherestingstateandthenitritecomplex(NC)stateat2.
03-and1.
60-resolution,respectively.
Furthermore,theSRXNCstructurerepre-sentingatransientstateinthecatalyticcyclewasdeterminedat1.
30-resolution.
ComparisonbetweenSRXandSFXstructuresrevealedthatphotoreductionchangesthecoordinationmannerofthesubstrateandthatcatalyticallyimportantHis255canswitchhydrogenbondpartnersbetweenthebackbonecarbonyloxygenofnearbyGlu279andtheside-chainhydroxylgroupofThr280.
Thesefindings,whichSRXhasfailedtouncover,proposearedox-coupledprotonswitchforPCET.
Thisconceptcanexplainhowpro-tontransfertothesubstrateisinvolvedinintramolecularelectrontransferandwhysubstratebindingacceleratesPCET.
OurstudydemonstratesthepotentialofSFXasapowerfultooltostudyredoxprocessesinmetalloenzymes.
copper|bioinorganicchemistry|freeelectronlaser|SADphasing|damage-freestructureSincetheinventionoftheHaber–Boschprocess,theamountoffixednitrogeninsoilsandwatershasbeenincreasing,andthistrendhassignificantimpactontheglobalenvironment(1,2).
Fixednitrogenisoxidizedtonitrite(NO2)ornitrate(NO3)bynitrificationandthenconvertedtogaseousdinitrogen(N2)bymicrobialdenitrification,whichclosesthenitrogencycle.
Micro-organismsinvolvedindenitrificationcoupletheirrespiratorysystemstostepwisereductionofnitrogenoxidestoN2(NO3→NO2→NO→N2O→N2)(3,4).
ThereductionofNO2totoxicnitricoxide(NO2+2H++e→NO+H2O)isreferredtoasthekeystepindenitrificationandcatalyzedbyeithercd1-hemenitritereductase(cd1NiR)orcoppernitritereductase(CuNiR)(3,4).
Althoughthecatalyticmechanismofcd1NiRiswellunderstood(5,6),thatofCuNiRiscontroversial(7).
CuNiRisahomotrimericproteincontainingtwodistinctCusitespermonomer(SIAppendix,Fig.
S1).
Type1Cu(T1Cu)withaCys–Met–His2ligandsetisanelectronacceptorincorporatednearthemolecularsurface,whereastype2Cu(T2Cu)withaHis3ligandsetisacatalyticcenter,whichis12distantfromthemolecularsurfaceandlocatedbetweentwoadjacentmonomers(7,8).
Spaced12.
5apart,thetwoCusitesarelinkedbyaCys–Hisbridgeandasensorloop.
WhereastheCys–Hisbridgeisanelectronpathway,thesensorloopisthoughttocontrolelectrondistributionbetweenT1CuandT2Cu(9).
Twoconservedresidues,Asp98andHis255(Alcaligenesfaecalisnumbering),arelocatedabovetheT2Cusiteandbridgedbyawatermoleculecalledbridgingwater(SIAppendix,Fig.
S1).
TheyareessentialtotheCuNiRactivitybecausetheyassistprotonSignificanceCoppernitritereductase(CuNiR)isinvolvedindenitrificationofthenitrogencycle.
SynchrotronX-raysrapidlyreducecoppersitesanddecomposethesubstratecomplexstructure,whichhasmadecrystallographicstudiesofCuNiRdifficult.
UsingfemtosecondX-rayfreeelectronlasers,wedeterminedintactstructuresofCuNiRwithandwithoutnitrite.
Basedontheobtainedstructures,weproposedaredox-coupledprotonswitchmodel,whichprovidesanexplanationforproton-coupledelectrontransfer(PCET)inCuNiR.
PCETiswidelydistributedthroughbiogenicprocessesinclud-ingrespiratoryandphotosyntheticsystemsandishighlyexpectedtobeincorporatedintobioinspiredmoleculardevices.
OurstudyalsoestablishesthefoundationforfuturestudiesonPCETinothersystems.
Authorcontributions:Y.
F.
andE.
M.
designedresearch;Y.
F.
,K.
M.
T.
,T.
Nakane,T.
Nakatsu,M.
Suzuki,M.
Sugahara,S.
Inoue,T.
M.
,F.
Y.
,N.
M.
,E.
N.
,K.
T.
,Y.
J.
,T.
K.
,C.
S.
,T.
H.
,M.
Y.
,O.
N.
,M.
E.
P.
M.
,S.
Iwata,andE.
M.
performedresearch;E.
N.
,K.
T.
,Y.
J.
,T.
K.
,C.
S.
,T.
H.
,andM.
Y.
contributednewreagents/analytictools;K.
M.
T.
purifiedandcrystallizedproteinsandper-formedtheassay;T.
Nakaneprocessedserialfemtosecondcrystallography(SFX)dataandperformedsingle-wavelengthanomalousdiffractionphasing;T.
Nakatsu,M.
Suzuki,M.
Sugahara,S.
Inoue,T.
M.
,F.
Y.
,andN.
M.
collectedSFXdata;E.
N.
,K.
T.
,Y.
J.
,T.
K.
,C.
S.
,T.
H.
,andM.
Y.
contributedtheSFXsystems;S.
IwatasupervisedtheSPring-8AngstromCompactFree-ElectronLaserSFXProject;E.
M.
collectedSFXdataandcollectedandprocessedsynchrotronradiationcrystallographydata;Y.
F.
,K.
M.
T.
,T.
Nakane,andE.
M.
ana-lyzeddata;andY.
F.
,K.
M.
T.
,T.
Nakane,M.
E.
P.
M.
,T.
I.
,andE.
M.
wrotethepaper.
Theauthorsdeclarenoconflictofinterest.
ThisarticleisaPNASDirectSubmission.
FreelyavailableonlinethroughthePNASopenaccessoption.
Datadeposition:Crystallography,atomiccoordinates,andstructurefactorshavebeendepositedintheProteinDataBank,www.
pdb.
org[PDBIDcodes4YSC(SFXRS),4YSE(SRXRS),5D4H(SRXNC),5D4I(SFXNC),5D4J(SRXRSCL),5F7B(SRXRSRT),5F7A(SRXNCRT);andCoherentX-rayImagingDataBankID:34].
1Y.
F.
,K.
M.
T.
,andT.
Nakanecontributedequallytothiswork.
2Towhomcorrespondencemaybeaddressed.
Email:inouet@chem.
eng.
osaka-u.
ac.
jpormizohata@chem.
eng.
osaka-u.
ac.
jp.
Thisarticlecontainssupportinginformationonlineatwww.
pnas.
org/lookup/suppl/doi:10.
1073/pnas.
1517770113/-/DCSupplemental.
2928–2933|PNAS|March15,2016|vol.
113|no.
11www.
pnas.
org/cgi/doi/10.
1073/pnas.
1517770113transfer(PT)tothesubstrate(10–12).
Althoughintramolecularelectrontransfer(ET)fromT1CutoT2Cucanoccurintherestingstate(RS)(13,14),thedifferencesintheredoxpotentialsofT2CuminusT1CuaresmallandsometimesnegativeintheabsenceofNO2,meaningthatintramolecularETbeforeNO2bindingisnotenergeticallyfavorable(15,16).
Bycontrast,intramolecularETisdramaticallyacceleratedinthepresenceofNO2(15,17).
Anex-planationforthisgating-likephenomenonisthatsubstratebindingraisestheredoxpotentialofT2CuandshiftstheequilibriumoftheETreaction(16).
However,pHdependenceofintramolecularETinthepresenceofNO2cannotbeexplainedbysuchachangeofredoxpotentials(15).
Instead,Kobayashietal.
(15)proposedthatreduction-inducedstructuralchangeofHis255isresponsibleforthegating-likemechanism.
BecauseithasbeenrecentlyproventhatintramolecularETinCuNiRisaccompaniedbyPTandhenceproton-coupledET(PCET)(17,18),onecanreadilyspeculatethatintramolecularETcontributesPTtoNO2andthatthestructuralchangeofHis255isinvolvedinPCET.
CrystalstructuresofCuNiRfromRhodobactersphaeroides(RhsNiR)impliesthispossibilitybe-causeHis287inRhsNiR,whichcorrespondstoHis255,seemstoshowpH-andredox-dependentconformationalchanges(19,20).
However,presumablybecauseofX-rayradiationdamagesimpliedbyrerefinementofRhsNiRstructures(21),electrondensityaroundHis287wassounusualthatinterpretationofitisdifficult(SIAp-pendix,Fig.
S2).
Crystalstructuresdeterminedbysynchrotronradiationcrystal-lography(SRX)haveprovidedinsightsintotheenzymaticmecha-nismofCuNiR(22–25),andthesestudiesaresummarizedelsewhere(7).
High-resolutionnitritecomplex(NC)structuresrevealedanO-coordinationofNO2showinganearface-onbindingmode(22,23),whereasCu(II)-NO2modelcomplexesshowaverticalbindingmode(7,26–29).
Thenearface-oncoordinationmanneristhoughttofacilitateitsconversiontoside-onNO,whichwasobservedinthecrystalstructuresofCuNiRexposedtoNO(22,23,25).
Skepticaleyeshave,however,beencastontheseCuNiRstructuresbecauseSRXdatamightbeaffectedbysomeproblemsconnectedtothehighradiationdosedeliveredonthecrystals.
First,strongsynchro-tronX-rayscausenotonlyradiationdamagestoaminoacidresiduesbutalsophotoreductionofmetalloproteins(30,31).
Althoughacomparisonbetweenoxidizedandreducedstatesisnecessarytocloselyinvestigateredoxreactions,completelyoxidizedstructuresarealmostimpossibletodeterminebySRX.
Indeed,theCucentersinCuNiRarerapidlyreducedbyexposuretosynchrotronX-rays(21,32).
Second,followingthephotoreductionofT2Cu,NO2iseasilyreducedandproducesNOandwaterinSRX(21).
Conse-quently,electrondensityatthecatalyticsiteofanNCstructureisderivedfromthemixtureofbothsubstrateandproduct,makinginterpretationofdatacomplicatedandunreliable.
Third,cryogenicmanipulationsforreducingradiationdamagesinSRXhavealsobeenfocusedasafactorthatchangesthepopulationofaminoacidresidues(33,34)andenzyme–substratecomplexes(35).
Crystallo-graphic(36),computational(37),andspectroscopic(38–40)studiesactuallyshowthatbindingmodesofNO2andNOinCuNiRcrystalstructurescandifferfromthoseinphysiologicalenvironments.
WehereventuredtousephotoreductioninSRXtoinitiateachemicalreactionandtotrapanenzymaticallyproducedin-termediarystate(30,31).
Furthermore,tovisualizeintactCuNiRstructuresintherestingandNCstates,weappliedserialfemtosec-ondcrystallography(SFX)withX-rayfreeelectronlasers(XFELs)(41),whichenablesdamage-freestructuraldeterminationofmetal-loproteins(42,43)andevaluationofthenativeconformationalpopulationatroomtemperature(RT)(44).
BycomparingSRXandSFXdata,wediscussPCETandnitritereductioninCuNiR.
ResultsandDiscussionRSStructuresDeterminedbySFXandSRX.
TheSFXandcryogenicSRXstructuresofCuNiRfromA.
faecalis(AfNiR)(45,46)inRSwererefinedto2.
03-and1.
20-resolution,respectively(SFXRSandSRXRS,SIAppendix,TablesS1andS2).
Wealsocol-lectedSRXdataat293K,whichisthetemperatureintheSFXexperiment,andthestructurewasdeterminedat1.
56-resolution(SRXRSRT,SIAppendix,TableS2).
AlthoughtheT1CusiteisrapidlyreducedbysynchrotronX-rays(21,32),thereisnosig-nificantdifferenceinthegeometrybetweentheSRXandSFXstructures(SIAppendix,TableS3).
BecausethetypicaldifferencesoftheT1CugeometriesbetweenthereducedandoxidizedstatesareAdmanET(1997)Structureofnitriteboundtocopper-con-tainingnitritereductasefromAlcaligenesfaecalis.
Mechanisticimplications.
JBiolChem272(45):28455–28460.
47.
SolomonEI,SzilagyiRK,DeBeerGeorgeS,BasumallickL(2004)Electronicstructuresofmetalsitesinproteinsandmodels:Contributionstofunctioninbluecopperpro-teins.
ChemRev104(2):419–458.
48.
NakaneT,etal.
(2015)Nativesulfur/chlorineSADphasingforserialfemtosecondcrystallography.
ActaCrystallogrDBiolCrystallogr71(Pt12):2519–2525.
49.
GhoshS,DeyA,SunY,ScholesCP,SolomonEI(2009)Spectroscopicandcomputa-tionalstudiesofnitritereductase:Protoninducedelectrontransferandbackbondingcontributionstoreactivity.
JAmChemSoc131(1):277–288.
50.
HalfenJA,TolmanWB(1994)Syntheticmodelofthesubstrateadducttothereducedactivesiteofcoppernitritereductase.
JAmChemSoc116:5475–5476.
51.
HalfenJA,etal.
(1996)Syntheticmodelingofnitritebindingandactivationbyre-ducedcopperproteins.
Characterizationofcopper(I)-nitritecomplexesthatevolvenitricoxide.
JAmChemSoc118:763–776.
52.
KujimeM,IzumiC,TomuraM,HadaM,FujiiH(2008)Effectofatridentateligandonthestructure,electronicstructure,andreactivityofthecopper(I)nitritecomplex:Roleoftheconservedthree-histidineligandenvironmentofthetype-2coppersiteincopper-containingnitritereductases.
JAmChemSoc130(19):6088–6098.
53.
LiY,HodakM,BernholcJ(2015)Enzymaticmechanismofcopper-containingnitritereductase.
Biochemistry54(5):1233–1242.
54.
DouzouP,HoaGHB,PetskoGA(1975)Proteincrystallographyatsub-zerotemperatures:Lysozyme-substratecomplexesincooledmixedsolvents.
JMolBiol96(3):367–380.
55.
FukudaY,etal.
(2016)Redox-coupledstructuralchangesinnitritereductaserevealedbyserialfemtosecondandmicrofocuscrystallography.
JBiochemmvv133.
56.
BoulangerMJ,MurphyMEP(2002)Crystalstructureofthesolubledomainofthemajoranaerobicallyinducedoutermembraneprotein(AniA)frompathogenicNeisseria:Anewclassofcopper-containingnitritereductases.
JMolBiol315(5):1111–1127.
57.
LawtonTJ,BowenKE,Sayavedra-SotoLA,ArpDJ,RosenzweigAC(2013)Characterizationofanitritereductaseinvolvedinnitrifierdenitrification.
JBiolChem288(35):25575–25583.
58.
ZhangH,BoulangerMJ,MaukAG,MurphyMEP(2000)Carbonmonoxidebindingtocopper-containingnitritereductasefromAlcaligenesfaecalis.
JPhysChemB104:10738–10742.
59.
FukudaY,etal.
(2014)Structuralinsightsintothefunctionofathermostablecopper-containingnitritereductase.
JBiochem155(2):123–135.
60.
TenboerJ,etal.
(2014)Time-resolvedserialcrystallographycaptureshigh-resolutionintermediatesofphotoactiveyellowprotein.
Science346(6214):1242–1246.
61.
KupitzC,etal.
(2014)Serialtime-resolvedcrystallographyofphotosystemIIusingafemtosecondX-raylaser.
Nature513(7517):261–265.
62.
OtwinowskiZ,MinorW(1997)ProcessingofX-raydiffractiondatacollectedinos-cillationmode.
MethodsEnzymol276:307–326.
63.
McCoyAJ,etal.
(2007)Phasercrystallographicsoftware.
JApplCryst40(Pt4):658–674.
64.
EmsleyP,LohkampB,ScottWG,CowtanK(2010)FeaturesanddevelopmentofCoot.
ActaCrystallogrDBiolCrystallogr66(Pt4):486–501.
65.
MurshudovGN,etal.
(2011)REFMAC5fortherefinementofmacromolecularcrystalstructures.
ActaCrystallogrDBiolCrystallogr67(Pt4):355–367.
66.
WinnMD,etal.
(2011)OverviewoftheCCP4suiteandcurrentdevelopments.
ActaCrystallogrDBiolCrystallogr67(Pt4):235–242.
67.
ChenVB,etal.
(2010)MolProbity:All-atomstructurevalidationformacromolecularcrystallography.
ActaCrystallogrDBiolCrystallogr66(Pt1):12–21.
68.
SugaharaM,etal.
(2015)Greasematrixasaversatilecarrierofproteinsforserialcrystallography.
NatMethods12(1):61–63.
69.
TonoK,etal.
(2013)Beamline,experimentalstationsandphotonbeamdiagnosticsforthehardx-rayfreeelectronlaserofSACLA.
NewJPhys15(8):083035.
70.
WhiteTA,etal.
(2012)CrystFEL:Asoftwaresuiteforsnapshotserialcrystallography.
JApplCryst45(2):335–341.
71.
DuisenbergAJM(1992)Indexinginsingle-crystaldiffractometrywithanobstinatelistofreflections.
JApplCryst25:92–96.
72.
SheldrickGM(2010)ExperimentalphasingwithSHELXC/D/E:Combiningchaintracingwithdensitymodification.
ActaCrystallogrDBiolCrystallogr66(Pt4):479–485.
Fukudaetal.
PNAS|March15,2016|vol.
113|no.
11|2933BIOCHEMISTRY
瓜云互联一直主打超高性价比的海外vps产品,主要以美国cn2、香港cn2线路为主,100M以内高宽带,非常适合个人使用、企业等等!安全防护体系 弹性灵活,能为提供简单、 高效、智能、快速、低成本的云防护,帮助个人、企业从实现网络攻击防御,同时也承诺产品24H支持退换,不喜欢可以找客服退现,诚信自由交易!官方网站:点击访问瓜云互联官网活动方案:打折优惠策略:新老用户购买服务器统统9折优惠预存返款活动...
CloudCone 商家在以前的篇幅中也有多次介绍到,这个商家也蛮有意思的。以前一直只有洛杉矶MC机房,而且在功能上和Linode、DO、Vultr一样可以随时删除采用按时计费模式。但是,他们没有学到人家的精华部分,要这样的小时计费,一定要机房多才有优势,否则压根没有多大用途。这不最近CloudCone商家有点小变化,有新人洛杉矶优化线路,具体是什么优化的等会我测试看看线路。内存CPU硬盘流量价格...
LOCVPS在农历新年之后新上架了日本大阪机房软银线路VPS主机,基于KVM架构,配备原生IP,适用全场8折优惠码,最低2GB内存套餐优惠后每月仅76元起。LOCVPS是一家成立于2012年的国人VPS服务商,提供中国香港、韩国、美国、日本、新加坡、德国、荷兰、俄罗斯等地区VPS服务器,基于KVM或XEN架构(推荐选择KVM),线路方面均选择国内直连或优化方案,访问延迟低,适合建站或远程办公使用。...
adman为你推荐
虚机什么是虚拟主机?免费虚拟主机哪个网站有比较稳定的免费虚拟主机提供?网速要快的,空间大点的。谢谢!linux虚拟主机如何配置linux虚拟主机linux虚拟主机怎么样在自己的电脑上安装一个Linux的虚拟机操作系统?vps虚拟主机虚拟主机和VPS该选择哪个比较好免费云主机永久免费的云主机哎或者空间或者vps重庆虚拟空间重庆那里可以租用VSP主机网站空间价格1M网站空间是多少钱免费网站空间申请哪里有永久免费的域名空间可以申请网站空间免备案哪个网站有免费的免备案空间,海外港台都可
二级域名 com域名注册1元 如何注册网站域名 泛域名绑定 华为云服务 流量计费 isp服务商 南通服务器 vip域名 无限流量 万网空间管理 上海电信测速网站 ebay注册 湖南idc 免费网络 中国电信宽带测速 免费获得q币 asp介绍 发证机构 nic 更多