Bioassayscydia闪退

cydia闪退  时间:2021-02-27  阅读:()
SynergisticinteractionbetweencarvacrolandBacillusthuringiensiscrystallineproteinsagainstCydiapomonellaandSpodopteraexiguaEdytaKonecka.
AdamKaznowski.
WeronikaGrzesiek.
PatrykNowicki.
El_zbietaCzarniewska.
JakubBaranekReceived:8August2019/Accepted:23March2020/Publishedonline:4April2020TheAuthor(s)2020AbstractTheaimofourstudywastodeterminetheusefulnessofmixturesofcarvacrolandBacillusthuringiensiscrystallineproteinsCryagainstpestsoftwodifferentspecies:CydiapomonellaL.
(Lepi-doptera:Tortricidae)andSpodopteraexiguaHu¨bner(Lepidoptera:Noctuidae).
Thenoveltyofourworkliesinshowingtheinteractionsbetweencarvacrolandbacterialtoxinsagainstinsectpests.
Moreover,wehavedemonstratedthatcarvacrolappliedviaingestionexertstoxicityagainstlepidopterancaterpillars.
WehaveshownthatthebotanicalcompoundandCryproteinsactinsynergyandtheirmixturesaremosteffectiveinreducingthenumberofL1andL3larvaewhenB.
thuringiensistoxinsconstituteupto0.
1%and0.
05%ofthemixtures,respectively.
Carvacrolandcrystallineproteinsactinsynergyinthesecombina-tionsandhavethepotentialtobeeffectiveinprotectingcropsagainstlepidopteranpests.
Thenatureoftheinteractionbetweenthecomponentsdependedontheproportionoftheirconcentrationsinthemixture.
MixturescontainingCrytoxinconcentrationsequalorhigherthan20%causedlowerobservedmortalityofinsectscomparedtotheexpectedone.
Furthermore,weshowedthatcrystallineproteinsofB.
thuringiensisMPUB9,carvacrolandtheirmixturedidnotaffectthemorphologyofinsecthaemocytes,andadditionally,hadnoeffectontheimmunesystem.
KeywordsBacterialtoxinsPlantsubstanceInsecticidalactivityBiopesticideSynergyIntroductionInterestintheuseofcommerciallyavailablebioin-secticidesandfutureprospectsforthedevelopmentofnewbiologicalpreparationsinplantprotectionhassignicantlyincreasedinrecentyears.
Thisisduetothefactthattheyareanenvironmentallysafealterna-tivetochemicalpesticidesandcanbeeasilydegradedwithlimitedpersistenceintheenvironment(Chat-topadhyayetal.
2017).
Additionally,thecurrentstrategyofIntegratedPestManagement(IPM)pro-gramsassumestheapplicationofallavailableplantprotectionmethods,givingprioritytonon-chemicalapproaches.
Biopesticidescontainnaturalproductsderivedfromanimals,plants,fungi,andbacteria.
Almost90%ofcommercialmicrobialinsecticidesareHandlingEditor:EvertonKortKampFernandesE.
Konecka(&)A.
KaznowskiW.
GrzesiekJ.
BaranekDepartmentofMicrobiology,FacultyofBiology,AdamMickiewiczUniversityinPoznan,UniwersytetuPoznanskiego6,61-614Poznan,Polande-mail:edkon@amu.
edu.
plP.
NowickiE.
CzarniewskaDepartmentofAnimalPhysiologyandDevelopment,FacultyofBiology,AdamMickiewiczUniversityinPoznan,UniwersytetuPoznanskiego6,61-614Poznan,Poland123BioControl(2020)65:447–460https://doi.
org/10.
1007/s10526-020-10011-4(0123456789().
,-volV)(0123456789().
,-volV)basedonaspore-crystalsmixtureofBacillusthuringiensis(DamalasandKoutroubas2018).
Plantproductsarealsorecommendedasefcientbioprepa-rationsagainstinsectpests(Koneckaetal.
2018b,2019;Mossa2016).
Moreover,recenttrendsincropprotectionsinvolvetheuseofinsecticidemixtures(Sharifzadehetal.
2018).
Thisapproachcanleadtothepreventionordelayofthedevelopmentofinsectresistance(Sudoetal.
2017),especiallywhenindividualcomponentsofpreparationshavedifferentmodesofaction(Zhuetal.
2016).
Thisstrategylimitscosts(Das2014)andreducesthedosageofprepara-tionswheninsecticidesenhanceeachother'sactivityandactinsynergy(WraightandRamos2005).
B.
thuringiensisstrainssynthesizeproteincrystalsduringsporulation.
Crystalstogetherwithbacterialsporesareeatenanddissolvedintotheinsectmidgut.
Inthemostcommonmodel,Cryproteinsafteractivationbymidgutproteases,bindtoreceptorsonthesurfaceofepithelialcellsanddestroythemidgut(Saiyad2017),allowingbacterialsporestoenterthebodyandcirculatorysystemofinsects,wherethesporesgerminateandbacteriamultiply(Argolo-FilhoandLoguercio2014).
Insecthaemocytesphagocytizebacterialcellsandformaggregatesthatmaybeencapsulatedbyotherhaemocytesorbycellsthatmaybereleasedfromtheaggregates.
Duringbacterialinfection,differentchangesinhaemocytestructureswereobservedinlepidopteraninsects.
Forexample,granulocytesweresurroundedbyprecipitatedhaemo-plasmandvarioussizesofclearvesicles.
Moreover,themembraneofgranulocyteswasdisruptedandthenucleuswasdistorted.
Bodiesresemblinglysosomeswereobservedinthecytoplasmofinfectedhaemo-cytes(El-AzizandAwad2010).
SomeofB.
thuringiensisstrainsproducehaemolysinwithlyticpropertiesthatinducedeathofinsecthaemocytesandmacrophages(Tranetal.
2013).
However,spore-freepreparationofcrystallineproteins,Cry1,Cry2,andCry9,didnotcausechangesinthemorphologyoflepidopteranhaemocytes(Koneckaetal.
2018a).
Carvacrolorplantextractswithcarvacrolasthemaincomponentareknowntoexertnegativeeffectsagainstcoleopteran(Szczepaniketal.
2018),homo-pteran(Zekrietal.
2016),dipteran(Andrade-Ochoaetal.
2018;deMesquitaetal.
2018;Giatropoulosetal.
2018),lepidopteran(Meloetal.
2018),neuropteran(Castilhosetal.
2018),andhemipteran(Gaireetal.
2019;Rizvietal.
2018)insects.
Thisphytochemicalwasshowntoexhibitcontact(Castilhosetal.
2018;Meloetal.
2018;Rizvietal.
2018),repellent(Giatropoulosetal.
2018),andfumigant(Gaireetal.
2019)toxicity.
Thecarvacrol-containingessentialoilshowedneurotoxiceffectsandwasfoundtoinhibittheacetylcholinesteraseenzymeinthecontactapplicationagainstinsectpests(deMesquitaetal.
2018;Rizvietal.
2018).
CarvacrolhasbeenalsoreportedtohaveinsecticidalactivityuponingestionagainstHemiptera(Parketal.
2017)andLepidoptera(Tangetal.
2011).
OnestudyincorporatedextractsofOriganumvulgare(Lamiales)andArtemisiadracunculus(Asterales)withhighcarvacrolcontentintotheinsectdietandtheplantcompoundcausedahighlossofbodyweightofAlphitobiusdiaperinus(Coleoptera)whenappliedthroughconsumption(Szczepaniketal.
2018).
Dataaboutthetoxicityofcarvacroltolepidopteraninsectsdeterminedbasedoningestionarestillnotcompre-hensive.
Themechanismofcarvacrolactionappliedtotheinsectintestinaltractisunknown.
TheaimofthisresearchwastodeterminetheusefulnessofmixturesofB.
thuringiensiscrystallineproteinsandcarvacrolagainstlepidopteranpests.
Wecombinedbacterialandplantproductsindifferentratiosandestablishedthenatureofinteractionsbetweenthem.
ThestudyappliedcrystalsoftwoB.
thuringiensisstrains:MPUB9andMPUB54.
TheMPUB9strainhadalargenumberandvarietyofgenescodingforinsecticidalcrystallineproteinsCry:cry1Aa,cry1B,cry1C,cry1D,cry1I,cry2Ab,cry9B,andcry9E(Koneckaetal.
2007b).
Moreover,massspectrometryanalysisrevealedthatMPUB9crystalscontainedCry1Aa,1Ba,1Ca,1D,and9Etoxins(Baraneketal.
2017).
Bacterialcrystalsaloneorwithsporesshowedhighinsecticidalactivityagainstinsectpests(Koneckaetal.
2018c,2015,2012,2007b).
B.
thuringiensisstrainMPUB54harboredthefollowinggenes:cry1Aa,cry1Ab,cry1C,cry1D,cry1I,cry2Ab,cry9B,andcry9E.
CrystalsofthestrainMPUB54exhibitedsignicantinsecticidalactivityagainstmoths(Koneckaetal.
2018c).
Theinsecticidalactivityofcrystal-carvacrolmix-tureswasdeterminedagainstinsectsoftwodifferentspecies:Cydiapomonella(Lepidoptera:Tortricidae)andSpodopteraexigua(Lepidoptera:Noctuidae).
C.
123448E.
Koneckaetal.
pomonellaisafruitpestandattacksmainlyapples,butalsopears,apricots,cherries,plums,peaches(Alstonetal.
2010),andevenwalnutsandchestnuts(Hagstrumetal.
2013).
Caterpillarsfeedonthesurfaceofthefruitforarelativelyshorttimeandsubsequentlyenterthefruitanddigtunnelsinsideit(Alstonetal.
2010).
Larvaeremainthereuntilcompletingtheirdevelopment(Pajacˇetal.
2011),andthusarehardlyavailablefortheactionofinsecticides.
Recently,adecreaseinthisinsectsensitivitytochemicalpreparationshasbeennoted(Grigg-McGufnetal.
2015).
S.
exiguaisaphy-tophagousspecies.
Itfeedsmainlyonvegetables,butalsoongrainsandornamentalplants,bothinopeneldsandingreenhouses.
Caterpillarsskeletonizefoliageandconsumefruits(Capinera1999).
Bothpestspeciescauseconsiderableeconomicagriculturallosses(Pajacˇetal.
2011;Huaetal.
2013).
DamagesofplantsduetoeatingplantseedlingsandcottonbollscausedbyS.
exiguaslowthegrowthofcommercialcropssuchascottonandreducecropyield,whichhasnegativeimpactonthetextileindustry(Huaetal.
2013).
C.
pomonellainfestationcanreach60–80%forpearsandapples,respectively,inorchardswithoutpestcontroltreatment(Vreysenetal.
2010).
Ithasbecomeaworldwidepestduetothevarietyofhostsandtheincreaseininternationalfruittrade(Thaleretal.
2008).
Theinsectimmunesystemcanbeatargetfordevelopmentofnovelstrategiesofsuppressingpestviability(Czarniewskaetal.
2019a),butthereisnoinformationhowcarvacrolandamixtureofcarvacrolandcrystallineproteinsofB.
thuringiensisaffectinsect'simmunity.
Inthiswork,weexaminedtheinvivoeffectofcarvacrolandthemixtureofcarvacrolandbacterialCryproteinsonmorphology,viability,andcellularimmuneresponse(phagocytosisandnoduleformation)ofthethirdinstarofS.
exiguacaterpillarstodeterminewhethercarvacrolandamixtureofcarvacrolwiththebacterialtoxinsarecytotoxictoimmunocompetentcellsandaffectinsectimmunity.
Forthispurpose,weusedaverysensitivehaemocytebiotestthatwepreviouslydeveloped,throughwhichitispossibletodetectchangesinthemorphology,adhesion,viability,andimmunologicalfunctionofhaemocytesthatcanbeinducedbyvariousbioticandabioticfactors(Czarniewskaetal.
2012,2018,2019a,2019b;Kuczeretal.
2016;Koneckaetal.
2018a;Kowalik-Jankowskaetal.
2019).
OurresultsshouldexplainthemechanismofinteractionbetweencarvacrolandB.
thuringiensisCryproteinsinthemixtureagainstinsects.
MaterialsandmethodsBacteriaTwoBacillusthuringiensisstrainswereusedinthestudy:MPUB9andMPUB54.
ThestrainsweredepositedintheBacteriaCollectionoftheDepartmentofMicrobiology,AdamMickiewiczUniversityinPoznan,Poland.
B.
thuringiensisMPUB9wasisolatedfromtheintestinaltractofdeadcaterpillarofcodlingmothCydiapomonelladuringepizooticscausedbynaturallyoccurredbacterialinfectioninthelabora-tory-culturedlineoftheinsect(Koneckaetal.
2007a).
B.
thuringiensisMPUB54wasculturedfromsoilsample(Koneckaetal.
2018c).
PlantsubstanceAplantsubstance–carvacrol–wasusedinthestudy.
Thepreparationofcarvacrol(purityC98%)waspurchasedfromSAFC,St.
Louis(USA).
InsectsTheactivityofbacterialcrystalsandcarvacrolweredeterminedagainsttwolepidopteranspecies:thecodlingmothC.
pomonellaL.
andthebeetarmywormSpodopteraexigua(Hu¨bner),representingTortricidaeandNoctuidae,respectively.
CaterpillarsofcodlingmothandbeetarmywormcamefromstandardizedlaboratoryculturelinesrearedattheFacultyofBiologyatAdamMickiewiczUniversity,Poznan,Poland.
Insectswererearedonasyntheticmedium(McGuireetal.
1997)at26°CwithaL:D16:8photoperiodand40–60%RH.
DeterminationofinteractionbetweenbacterialcrystallineproteinsandcarvacrolagainstinsectsIsolationofB.
thuringiensiscrystallineproteinsTheisolationprocedurewasdescribedpreviously(Koneckaetal.
2012,2015,2019).
Thestrainswereculturedonamediumforbacteriasporulation123SynergisticinteractionbetweencarvacrolandBacillusthuringiensiscrystallineproteinsagainst…449(LecadetandDedonder1971)at308Cforsevendays.
Thecollectedcrystalsandsporesweresuspendedin1MNaCl,10mMKCl,pH7.
5.
Subsequently,thecrystalswereseparatedfromthespore-crystalmix-turesbysucrosedensitygradientcentrifugation(Guzetal.
2005).
Crystalslayerwascollected,washedinsteriledistilledwaterandweighed.
ThepurityofcrystalswascheckedbystandardlightmicroscopywhichwasprecededbyastainingwithamidoblackandZiehl'scarbolfuchsin(Smirnoff1962).
Estimationofinsecticidalactivityofcarvacrol,B.
thuringiensiscrystallineproteinsandtheirmixturesCarvacrolwashomogenizedwithTween80(1:0.
5ratio).
Then,thedilutionsofthebotanicalpreparation,B.
thuringiensisproteins,andtheirmixtureswerepreparedinsteriledistilledwater(Table1)andappliedtoC.
pomonellaandS.
exiguacaterpillarsoftherstinstar(L1)andadditionallytoS.
exigualarvaeofthethirdinstar(L3).
CaterpillarsofC.
pomonellaandS.
exiguaoftherstinstarwerefedwith:(1)carvacrol,(2)B.
thuringiensisMPUB9Cryproteins,(3)B.
thuringiensisMPUB54Cryproteins,(4)mixturesofcarvacrolorMPUB9proteins,and(5)mixturesofcarvacrolandMPUB54proteins.
Theactivityofeachconcentrationofthepreparationswasdeterminedfor30C.
pomonellacaterpillarsofrstinstar(threesimultaneousreplicateswithtenlarvaeeach)or30S.
exiguacaterpillarsofrstinstar(threesimultaneousreplicateswithtenlarvaeeach).
S.
exigualarvaeofthethirdinstarwerefedwith(1)carvacrol,(2)B.
thuringiensisMPUB9Cryproteins,or(3)mixturesofcarvacrolandMPUB9proteins.
Theactivityofeachconcentrationofthepreparationswasdeterminedfor30S.
exiguacaterpillarsofthirdinstar(threesimultaneousreplicateswithtenlarvaeeach).
BioassayswithC.
pomonellaandS.
exiguawereconductedininsectcultureboxes,asdescribedpreviously(Koneckaetal.
2012,2015,2018a,c,2019).
Eachboxwasdividedinto12separatewells–onewellperonelarva.
Syntheticmediumforcodlingmothandbeetarmywormrearingwasplacedintothewells.
ItscompositionwasthesameasdescribedbyMcGuireetal.
(1997),butwithoutformaldehydetoavoiditseffectontheactionofCryproteins.
Consideringinsectbiology,themediumwaspouredintowellsorformedintocylindricalpiecesof5mmindiameterandaheightof3mmforC.
pomonellaorS.
exiguabioassays,respectively.
Eachdilutionofbotanical,bacterial,andmixedpreparationswasappliedonthedietsurfaceinavolumeof10llforS.
exiguaor50llforC.
pomonellabioassays.
Differentvolumeswereusedtorefertovariousspeciesduetotheuseofvarioussurfaceareasofthemediumontowhichthepreparationwaspoured.
Bioassayswithallmixedpreparations,aswellastheirindividualcomponents,atconcentrationsatwhichtheywereincorporatedintothemixturewereper-formedsimultaneously.
TheTween80inconcentra-tionof10mgml-1andsteriledistilledwater,insteadoftheinsecticidalsubstance,wasgivento30cater-pillarsasanegativecontrol.
Insectswererearedat26°CwithaL:D16:8photoperiodand40–60%RH.
Sevendaysafterpreparationapplications,deadandliveinsectswerecounted.
Calculationofthesynergism,antagonismandadditionbetweencarvacrolandcrystallineproteinsagainstpestsTheexpectedmortalityofinsects(MEXP)causedbythemixtureoftheplantcompoundandB.
thuringien-siscrystallineproteinswascalculatedaccordingtotheequation:MEXP1BC100%,whereBistheproportionofinsectsthatsurvivedtheexposuretocrystallineproteinsinrelationtothetotalnumberofinsectsused,andCistheproportionofinsectsthatsurvivedtheexposuretocarvacrolinrelationtothetotalnumberofinsectsused(Tabashniketal.
2013).
Thecharacteroftheinteractionbetweentheplantandbacterialsubstancesagainstinsectswasdeter-minedaccordingtoTabashniketal.
(2013).
Syner-gismbetweencomponentswasrecordedwhenthevalueoftheobservedmortalitywasstatisticallysignicantlyhigherthanthevalueoftheexpectedmortalityofinsects.
Antagonismwasobservedwhentheobservedmortalitywasstatisticallysignicantlylowerthantheexpectedone.
Ifthedifferencebetweenthevaluesoftheexpectedandobservedmortalitywasnotstatisticallysignicant,theinteractionwasrecog-nizedasadditional.
Fisher'sexacttest(https://www.
graphpad.
com/quickcalcs/contingency1/)wasemployedtodeterminestatisticallysignicant123450E.
Koneckaetal.
differences(P\0.
05)betweentheresults(Tabashniketal.
2013).
ImpactofCryproteins,carvacrolandtheirmixtureonhaemocytesandinsectcellularimmuneresponseWeexaminedthehaemocytes'morphology,viability,adhesion,andphagocyticactivityaswellasnoduleformationintheS.
exiguaL3larvaefedwith(1)250ngofbacterialtoxinsperlarva,(2)500,000ngofcarvacrolperlarva,or(3)theirmixture.
Tween80inconcentrationof10mgml-1insteadoftheinsectici-dalsubstancewasusedasanegativecontrol.
Thehaemocytes'morphology,viability,andadhesionstudywasperformedaccordingtothemethoddescribedbyCzarniewskaetal.
(2012)andKoneckaetal.
(2018a).
Thephagocyticabilityofhaemocytesofcontrolandexperimentalcaterpillarswasanalyzedinvivobyusinguorescentlatexbeads(Sigma-AldrichL1030)accordingtothemethoddescribedbyCzarniewskaetal.
(2019a).
Caterpillarsanaesthetizedanddisinfectedwithethanolwereinjectedwith2lloflatexbeadssuspendedinphysiologicalsolution(274mMNaCl,19mMKCl,9mMCaCl2)(2:1000v/v)throughtheabdominalforelegbyusingaHamiltonsyringe(HamiltonCo.
,Reno,Nevada,USA).
Thecaterpillarswereanaesthetizedagain,disinfectedandwashedindistilledwatertwohoursaftertheinjectionofthelatexbeadsandthesamplesofhaemolymph(2ll)werecollectedanddilutedin20llofsaline.
Haemolymphsampleswereincubatedonthepoly-L-lysine-coatedglasses(SigmaP4707)for30minatroomtemperatureinthedark.
Thehaemo-cyteswerewashedwithsalinetoremoveunphagocy-tizedbeadsandstainedwithDAPIsolutionfor5mininthedarktovisualizecellnuclei.
PhagocyticactivityofhaemocyteswasexaminedwithaNikonEclipseTE2000-Uuorescencemicroscope.
ThephotosofhaemocyteswerecapturedwithaNikonDS-1QMdigitalcameraandanalyzedwiththeImageJsoftware(version2).
Theresultswereexpressedasapercentageofphagocytichaemocytesinthetotalnumberofhaemocytesintheimages.
NoduleformationinthehaemoceolofcontrolandexperimentalcaterpillarswasstudiedaccordingtothemethoddescribedbyCzarniewskaetal.
(2018).
Briey,caterpillarsanaesthetizedanddisinfectedwithethanolwereinjectedwithStaphylococcusaureus(SigmaS2014SaintLouis,Missouri,USA)suspen-sioninphysiologicalsaline(2ll,2:1000v/v)throughtheabdominalproleg.
Caterpillarsweredissectedtwodaysaftertheinjectionofbacteriatoexposethenodulesonthedorsalsideofthehaemocoel.
Forthispurpose,theinsect'sbodywaspinnedontoaSYLGARDRlledPetridish,andthenthefatbody,Malpighiantubules,andthedigestivetractwereremoved.
ThenumberofnoduleswascountedbyusinganOlympusSZX12stereoscopicmicroscopy(OlympusCo.
,Tokyo,Japan),andthreeimagesofeachcaterpillarwerecapturedwithanOlympusU-LH100HGdigitalcamera(OlympusCo.
,Tokyo,Japan).
Thenumberofnodulesonthedorsalsideofthehaemocoelwascountedinallinsects.
TheimageswereanalyzedwiththeImageJ(version2)software.
ResultsDifferenttypesofinteractionswereobservedbetweenB.
thuringiensiscrystallineproteinsandcarvacroldependingontheconcentrationproportionofthecomponentsinthemixtures.
ThecombinationofB.
thuringiensistoxinsandplantcompoundinaratioof1:25,000and1:50,000resultedinasynergybetweentheseproductsagainstCydiapomonellaL1andcausedfrom1.
5-to1.
9-foldhigherinsectmortalitythanexpected,dependingonbacterialstrainCryproteinsused.
ThesametypeofinteractionwasobservedagainstS.
exiguarstandthirdinstarswhentheconcentrationsofcarvacrolinthemixtureswererelativelyhigher.
Theconstituentscombinedin1:1000,1:2000,and1:10,000ratiosactedinsynergyagainstS.
exiguarstinstarandcausedfrom1.
5to1.
8-foldhigherinsectmortalitythanexpected.
Syner-gisticinteractionswerealsonotedbetweencrystallinetoxinsandthephytochemicalin1:2000and1:5000ratiosagainstS.
exiguaL3,astheobservedinsectmortalitywasfrom2to2.
4-foldincomparisontotheexpectedrate.
Bacterialandplantproductsinaratioof1:2000exhibitedsynergismagainstS.
exiguaL1andthethirdinstarlarvaeofS.
exigua(Table1).
123SynergisticinteractionbetweencarvacrolandBacillusthuringiensiscrystallineproteinsagainst…451Table1ActivityofB.
thuringiensiscrystallineproteins,carvacrol,andtheirmixturesagainstlepidopteraninsectsInsectPreparationConcentration(ngperinsect)*ProportionCry:carvacrolMortality(%)P**EffectObserved(±SE)ExpectedC.
pomonellaL1CryMPUB92010––20(±5.
77)10(±0)––––––CryMPUB542010–––56.
7(±3.
33)46.
7(±8.
82)––––––Carvacrol500,0005000––23.
4(±3.
33)10(±5.
77)––––––CryMPUB9carvacrol20500,00020500010500,0001050001:25,0001:2501:50,0001:50070(±0)30(±5.
77)60(±5.
77)23.
4(±3.
33)38.
42831190.
037(s)1.
00(ns)0.
037(s)1.
00(ns)SynergisticAdditiveSynergisticAdditiveCryMPUB54carvacrol20500,000205000105000001050001:25,0001:2501:50,0001:50096.
7(±3.
33)83.
4(±3.
33)93.
4(±3.
33)56.
7(±8.
82)66.
160.
458.
451.
40.
006(s)0.
084(ns)0.
048(s)0.
796(ns)SynergisticAdditiveSynergisticAdditiveControl***––0–––S.
exiguaL1CryMPUB950010050–––13.
4(±3.
33)13.
4(±6.
66)3.
4(±3.
33)–––––––––CryMPUB54200100––30(±11.
55)26.
7(±8.
82)––––––Carvacrol100,0001,000500–––36.
7(±8.
82)20(±10)13.
4(±3.
33)–––––––––CryMPUB9carvacrol500100,0005001000500500100100,00010050050100,000505001:20001:21:11:10,0001:51:20001:1073.
4(±3.
33)13.
4(±6.
66)20(±5.
77)66.
7(±3.
33)10(±0)66.
7(±3.
33)20(±5.
77)44.
330.
424.
344.
324.
337.
915.
60.
035(s)0.
209(ns)1.
00(ns)0.
038(s)0.
299(ns)0.
037(s)1.
00(ns)SynergisticAdditiveAdditiveSynergisticAdditiveSynergisticAdditiveCryMPUB54carvacrol200100,0002001000200500100100,0001005001:5001:51:2.
51:1,0001:560(±10)33.
4(±3.
33)30(±10)83.
4(±3.
33)30(±10)57.
146.
441.
753.
635.
61.
00(ns)0.
0430(ns)0.
422(ns)0.
047(s)0.
785(ns)AdditiveAdditiveAdditiveSynergisticAdditiveControl***––0–––S.
exiguaL3CryMPUB9500250–10(±10)3.
4(±3.
33)––––––Carvacrol500,000250,000––20(±5.
77)13.
4(±3.
33)––––––123452E.
Koneckaetal.
Reducedconcentrationsofcarvacrolinmixturestoratioslowerthan1:1000resultedintheadditiveeffectbetweenB.
thuringiensisproteinsandtheplantsubstanceagainstpests.
Similarvaluesoftheobservedandexpectedinsectmortalitywererecordedinthemajorityofsamplesshowinganadditiveeffectbetweenthecomponents,inwhichCrytoxinsandthephytochemicalweremixedin1:10,1:250,and1:500ratios.
However,asignicantdecreaseinthevalueoftheobservedmortalityincomparisontotheexpectedonewasnotedinabioassaywithmixturescontaining71%orlowercarvacrolconcentration.
Thevaluesoftheobservedmortalitywerefrom1.
05-toeven2.
3-foldlowerthantheexpectedmortalitywhenbacterialandbotanicalproductswereappliedin1:1,1:2,1:2.
5,and1:5ratiostotheinsects(Table1).
B.
thuringiensistoxins,carvacrol,andtheirmixturehadnoeffectonthemorphology,viability,adhesion,andimmunologicalfunctionofinsecthaemocytes.
InsecticidalagentsdidnotexertapoptoticandcaspaseactivityinS.
exiguahaemocytes.
Cellshrinkageandfragmentationofnucleiwerenotvisibleinthehaemocytes.
Thecytoskeletonofthecellswaswelldeveloped,andthushaemocytesadheredtothecoverslipandformednumerouslopodia,similarlyascontrolhaemocytes(Fig.
1).
Additionally,nodiffer-encesincellularimmuneresponsewereobservedincaterpillarstreatedwithbacterialproteins,plantcompound,andtheirmixtureincomparisontothecontrolinsects.
Thepercentageofphagocytichaemo-cytes(Fig.
2)andthenumberofnodulesformedininsecthaemocoelduringimmuneresponsedidnotdiffersignicantlywhencomparedtothecontrolinsects(Fig.
3).
DiscussionThedemonstrationofinteractionsbetweenB.
thuringiensiscrystallineproteinsandcarvacrolagainstinsectpestsisthenoveltyofourresearch.
Addition-ally,wehaveshownthatcarvacrolappliedviaingestionistoxictolepidopterancaterpillars.
AlthoughtherearestudiesonthetoxicityofmixturesofB.
thuringiensisandplantproductsagainstpests(Abedietal.
2014;Amizadehetal.
2015;Nouri-Ganbalanietal.
2016),noneofthemconcerntheuseofcarvacrolasacomponentofthesecombinations.
OurstudyisinlinewiththesearchforeffectivebiologicalplantprotectionproductsandharmonizeswithIPMprograms.
Theuseofamixtureoftwoinsecticidalsubstancesthatactsynergisticallyismoreprof-itablethanemployingtwodifferentpreparationsinseparateapplications.
Ourapproachwillnotonlyreducethecostsofplantprotection,butalsoenableapplyinglowerdosesofpesticidesandreducingtheoccurrenceofinsectresistance,whichisofgreatimportanceduetotheemergenceofinsectresistancetoCryproteins(PeraltaandPalma2017).
OurresearchshowedthatCrytoxinsandcarvacrolactedinsynergyandtheirmixtureswerethemosteffectiveinreducingthenumberofL1andL3pestsTable1continuedInsectPreparationConcentration(ngperinsect)*ProportionCry:carvacrolMortality(%)P**EffectObserved(±SE)ExpectedCryMPUB9carvacrol500500,000500250,000250500,000250250,0001:50001:5001:20001:100056.
7(±3.
33)26.
7(±8.
82)53.
4(±3.
33)20(±11.
55)2821.
722.
415.
60.
035(s)1.
00(ns)0.
033(s)1.
00(ns)SynergisticAdditiveSynergisticAdditiveControl***––0–––ssignicantatP\0.
05,nsnon-signicant*ngofCryin50llor10llofpreparationappliedviaingestionagainstC.
pomonellaorS.
exigua,respectively(seeMethodsfordetails)**ProbabilitythatthedifferencebetweenobservedandexpectedmortalityoccurredbychancebasedonFisher'sexacttest(Tabaschniketal.
2013)***TheTween80inconcentrationof10mgml1andsteriledistilledwater,insteadoftheinsecticidalsubstance,wasgiventoinsectsasanegativecontrol123SynergisticinteractionbetweencarvacrolandBacillusthuringiensiscrystallineproteinsagainst…453whenbacterialtoxinsconstitutedupto0.
1%and0.
05%ofthemixtures,respectively.
Theuseofthesemixturescausedanincreaseintheobservedinsectmortality,uptoapproximately1.
9-foldincomparisonwiththeexpectedone.
However,thetypeoftheinteractionbetweenthecomponentsdependedontheproportionoftheirconcentrationsinthemixture.
IncreasingtheconcentrationofCryproteinsdidnotresultinasynergisticeffectbetweenbacterialandplantproducts.
MixturescontainingconcentrationsofB.
thuringiensistoxinsequalorhigherthan20%causedlowerobservedinsectmortalitythanexpected,asifcarvacrolpreventedtheactionofbacterialtoxinsorreducedtheireffects.
Differenttypesoftheinteractionsbetweensubstancesdependingontheconcentrationofcomponentswerealsoobservedinotherstudies(Koneckaetal.
2018a;RajguruandSharma2012).
WeproposetheuseofacombinationofB.
thuringiensistoxinsandcarvacrolagainstlepi-dopteranpests,becausetheyareconsideredresponsi-bleforthelossofsignicantamountsofplantcrops(Culliney2014).
BacterialproteinsfromtheCry1,Cry2,andCry9groups,whichareproducedbyB.
thuringiensisMPUB9andMPUB54,aswellascarvacrol,werefoundtobeinsecticidalsubstanceswithnonegativeeffectonotheranimalsthanplantpests(Gaoetal.
2018).
Inaddition,thesesubstancesdonotpersistintheenvironmentforalongtime(Mossa2016).
CommercialbiopesticidesbasedonFig.
1FluorescencemicroscopyimagesofhaemocytesofSpodopteraexiguaL3(negativecontrola),fedwith250ngofBacillusthuringiensisCryproteins(b),500,000ngofcarvacrol(c),andtheirmixture(d).
AllhaemocyteswerestainedwiththeSR-VAD-FMKreagentforcaspaseactivitydetection(noredcolor–noactivecaspase),withOregonGreen488phalloidinforF-actincytoskeleton(greencolor)stainingandwithDAPIforDNAstaining(bluecolor)123454E.
Koneckaetal.
B.
thuringiensiscontainbacterialspores.
Wesuggesttheusageofaninsecticidalpreparationwithnobacterialsporesduetothepossibilityofsynthesisofvertebratevirulencefactorsbyvegetativebacterialcellsthatgerminatefromsporesintheinsectbody(Kimetal.
2015).
Thus,inthisstudy,weisolatedB.
Fig.
2Fluorescencemicroscopyimagesshowingthephago-cytosisofuorescentlatexbeads(greencolor)byhaemocytesofSpodopteraexiguaL3(negativecontrola),fedwith250ngofBacillusthuringiensisCryproteins(b),500,000ngofcarvacrol(c),andtheirmixture(d).
AllhaemocyteswerestainedwithDAPItovisualizeDNA.
Thegraphshowsthepercentageofphagocytichaemocytesinhaemolymphofthestudiedcaterpil-lars(e)(means±SE,n=5).
Barswiththesameletterdonotdiffersignicantly(PC0.
05)123SynergisticinteractionbetweencarvacrolandBacillusthuringiensiscrystallineproteinsagainst…455thuringiensiscrystalsfromspore-crystalmixturesbysucrosedensitygradientcentrifugation.
Mixturescanbeadvantageouscomparedtoindi-vidualconstituents,becausetheymayhavedifferentmodesofactionandmaydelaythedevelopmentofresistance.
ThegeneralmodeofactionofB.
thuringiensisCryproteinsisknown(Jouzanietal.
2017;Saiyad2017).
However,manyimportantques-tionsconcerningthemechanismbywhichinsectcellsarekilledbysomeofthecrystallinetoxinsremainpoorlyunderstood(Vachonetal.
2012).
MostCryproteinsdamageepithelialcellpermeabilityandcellularintegrityoftheinsectmidgut(Meloetal.
2016).
Themodeofactionofcarvacrolappliedtoinsectsviatheintestinaltrackisnotexplained.
Itremainsunresolvedwhetherthephytochemicalisinvolvedinthedestructionofinsecttissuesoftheintestinaltrackorwhetherithasanimpactonothercellsthatwereexposedtocarvacrolafterthedestruc-tionofmidgutcellsbyCryproteins.
WeattemptedtoexplainthelatterpossibilityanddeterminetheimpactofcarvacrolanditsmixtureswithMPUB9Cryproteinsoninsecthaemolymphcells.
TheeffectofB.
thuringiensisMPUB9toxinsonthemorphologyandviabilityofinsecthaemocyteshasbeendeterminedpreviously(Koneckaetal.
2018a).
However,weperformedsimilarexperimentsinthisstudyasacomparativeassay.
Tothebestofourknowledge,thereisnodataontheinuenceofcarvacrolanditsmixturewithbacterialtoxinsoninsecthaemocytes.
Furthermore,wealsoconsideredtheconsequencesfortheinsect'simmunesystem,resultingfromtheactionoftheinsecticidalagents.
WeshowedthatcrystallinetoxinsofB.
thuringiensisMPUB9,carvacrol,andtheirmixturedidnotaffectthemorphology,viabilityofinsecthaemocytes,and,additionally,theyhadnoFig.
3ImagesshowingthenoduleformationinhaemocoelofSpodopteraexiguaL3(negativecontrola),fedwith250ngofBacillusthuringiensisCryproteins(b),500,000ngofcarvacrol(c),andtheirmixture(d)inducedbyStaphylococcusaureussuspensioninjection.
Arrowsindicatenodules.
Thegraphshowstheactivityofcellularresponseinhaemocoelofthestudiedcaterpillars(e).
Thenumberofnoduleswasthedeterminantofcellularresponse(means±SE,n=5).
Barswiththesameletterdonotdiffersignicantly(PC0.
05)123456E.
Koneckaetal.
effectsontheimmunologicalsystem.
Thismayindicatethatcarvacrolactedearlier,beforetheintegrityofthemidgutcellswasdisturbedoraffectedinotherinsecttissuesthanthehaemolymph.
IntopicalandfumigantbioassaysperformedbyGaireetal.
(2019),carvacroldemonstratedneuro-inhibitoryeffectsinhemipteraninsect.
Rizvietal.
(2018)showedthatcarvacrolinhibitedacetylcholinesteraseactivityininsectsofthesameorderbycontactapplication.
SimilaractivityofcarvacrolwasfoundagainstDiptera(deMesquitaetal.
2018;Parketal.
2016).
Inourresearch,therouteofcarvacrolappli-cationwasdifferentandtheinsectsusedrepresentedadifferentorderincomparisonwiththeotherstudiesmentionedabove.
ThemodeofactionofingestedcarvacrolaswellastheexplanationofthesynergybetweenCryproteinsandcarvacrolagainstLepi-dopteraneedselucidationbyadditionalexperimentalstudies.
Inconclusion,thepresentstudyhasrevealedforthersttimethatcrystallineprotein-carvacrolmixtures,containingCrytoxinsinconcentrationsupto0.
05%indietaryapplicationsexhibitstrongerinsecticidalactiv-itiesascomparedtothecomponentsassessedsepa-rately.
Thebacterialandplantproductsactinsynergyinthesecombinationsandhavethepotentialtobeeffectiveinprotectingcropsagainstlepidopteranpests.
CompliancewithethicalstandardsConictofinterestTheauthorshavedeclaredthattheyhavenoconictofinterest.
Researchinvolvinghumanand/oranimalrightsThisarti-cledoesnotcontainanystudieswithhumanparticipantsoranimals(vertebrates)performedbyanyoftheauthors.
OpenAccessThisarticleislicensedunderaCreativeCommonsAttribution4.
0InternationalLicense,whichpermitsuse,sharing,adaptation,distributionandreproductioninanymediumorformat,aslongasyougiveappropriatecredittotheoriginalauthor(s)andthesource,providealinktotheCreativeCommonslicence,andindicateifchangesweremade.
Theimagesorotherthirdpartymaterialinthisarticleareincludedinthearticle'sCreativeCommonslicence,unlessindicatedotherwiseinacreditlinetothematerial.
Ifmaterialisnotincludedinthearticle'sCreativeCommonslicenceandyourintendeduseisnotpermittedbystatutoryregulationorexceedsthepermitteduse,youwillneedtoobtainpermissiondirectlyfromthecopyrightholder.
Toviewacopyofthislicence,visithttp://creativecommons.
org/licenses/by/4.
0/.
ReferencesAbediZ,SaberM,VojoudiS,MahdaviV,ParsaeyanE(2014)Acute,sublethal,andcombinationeffectsofazadirachtinandBacillusthuringiensisonthecottonbollwormHeli-coverpaarmigera.
JInsectSci14:30AlstonD,MurrayM,RedingM(2010)Codlingmoth(Cydiapomonella).
UtahpestfactsheetsENT13-06:1-7.
https://climate.
usu.
edu/includes/pestFactSheets/Codling-Moth.
pdf.
Accessed04Mar2020AmizadehM,HejaziMJ,NiknamG,ArzanlouM(2015)CompatibilityandinteractionbetweenBacillusthuringiensisandcertaininsecticides:perspectiveinmanagementofTutaabsoluta(Lepidoptera:Gelechiidae).
BiocontrolSciTechnol25:671–684Andrade-OchoaS,Sanchez-AldanaD,Chacon-VargasKF,Rivera-ChaviraBE,Sanchez-TorresLE,CamachoAD,Nogueda-TorresB,Nevarez-MoorillonGV(2018)Ovipositiondeterrentandlarvicidalandpupaecidalactiv-ityofsevenessentialoilsandtheirmajorcomponentsagainstCulexquinquefasciatusSay(Diptera:Culicidae):synergism–antagonismeffects.
Insects9(1):25Argolo-FilhoRC,LoguercioLL(2014)Bacillusthuringiensisisanenvironmentalpathogenandhost-specicityhasdevelopedasanadaptationtohuman-generatedecologicalniches.
Insects5(1):62–91BaranekJ,KoneckaE,KaznowskiA(2017)InteractionbetweentoxincrystalsandvegetativeinsecticidalproteinsofBacillusthuringiensisinlepidopteranlarvae.
BioControl62:649–658CapineraJL(1999)Spodopteraexigua(Hu¨bner)(Insecta:Lepidoptera:Noctuidae).
FeaturedcreaturesEENY-105.
EntomologyandNematologyDepartment,FloridaCoop-erativeExtensionService,InstituteofFoodandAgricul-turalSciences,UniversityofFlorida,Gainesville,FL,USA.
https://entnemdept.
u.
edu/creatures/veg/leaf/beet_armyworm.
htm.
Accessed06Aug2019CastilhosRV,Gru¨tzmacherAD,CoatsJR(2018)AcutetoxicityandsublethaleffectsofterpenoidsandessentialoilsonthepredatorChrysoperlaexterna(Neuroptera:Chrysopidae).
NeotropEntomol47(2):311–317ChattopadhyayP,BanerjeeG,MukherjeeS(2017)Recenttrendsofmodernbacterialinsecticidesforpestcontrolpracticeinintegratedcropmanagementsystem.
3Biotech7:60CullineyTW(2014)Croplossestoarthropods.
In:PimentelD,PeshinR(eds)Integratedpestmanagement.
Springer,Dordrecht,pp201–225CzarniewskaE,MrowczynskaL,KuczerM,RosinskiG(2012)Thepro-apoptoticactionofthepeptidehormoneNeb-colloostatinoninsecthaemocytes.
JExpBiol215:4308–4313CzarniewskaE,UrbanskiA,SzC,KuczerM(2018)Thelong-termimmunologicaleffectsofalloferonanditsanaloguesinthemealwormTenebriomolitor.
InsectSci25(3):429–438CzarniewskaE,NowickiP,KuczerM,SchroederG(2019a)Impairmentoftheimmuneresponseaftertranscuticularintroductionoftheinsectgonadoinhibitoryand123SynergisticinteractionbetweencarvacrolandBacillusthuringiensiscrystallineproteinsagainst…457hemocytotoxicpeptideNeb-colloostatin:ananotechapproachforpestcontrol.
SciRep9:10330CzarniewskaE,MrowczynskaL,Jedrzejczak-SilickaM,NowickiP,TrukawkaM,MijowskaE(2019b)Non-cyto-toxichydroxyl-functionalizedexfoliatedboronnitridenanoakesimpairtheimmunologicalfunctionofinsecthaemocytesinvivo.
SciRep9:14027DamalasChA,KoutroubasSD(2018)Currentstatusandrecentdevelopmentsinbiopesticideuse.
Agriculture8:13DasSK(2014)Scopeandrelevanceofusingpesticidemixturesincropprotection:acriticalreview.
IJESTR2(5):119–125deMesquitaBM,doNascimentoPGG,SouzaLGS,deFariasIF,daSilvaRAC,deLemosTLG,MonteFJQ,OliveiraIR,TrevisanMTS,daSilvaHC,SantiagoGMP(2018)Syn-thesis,larvacidalandacetylocholinesteraseinhibitoryactivitiesofcarvacrol/tymolandderivatives.
QuimNova41(4):412–416El-AzizNMA,AwadHH(2010)ChangesinthehaemocytesofAgrotisipsilonlarvae(Lepidoptera:noctuidae)inrelationtodimilinandBacillusthuringiensisinfections.
Micron41(3):203–209GaireS,ScharfME,GondhalekarAD(2019)Toxicityandneurophysiologicalimpactsofplantessentialoilcompo-nentsonbedbugs(Cimicidae:Hemiptera).
SciRep9:3961GaoYJ,ZhuHJ,ChenY,LiYH,PengYF,ChenXP(2018)SafetyassessmentofBacillusthuringiensisinsecticidalproteinsCry1CandCry2Awithazebrashembryotoxicitytest.
JAgricFoodChem66(17):4336–4344GiatropoulosA,KimbarisA,MichaelakisA,PapachristosDP,PolissiouMG,EmmanouelN(2018)Chemicalcomposi-tionandassessmentoflarvicidalandrepellentcapacityof14LamiaceaeessentialoilsagainstAedesalbopictus.
ParasitolRes117(6):1953–1964Grigg-McGufnK,ScottIM,BellerosS,ChouinardG,Cor-miercD,Scott-DupreeC(2015)SusceptibilityineldpopulationsofcodlingmothCydiapomonella(L.
)(Lepi-doptera:Tortricidae)inOntarioandQuebecappleorchardstoaselectionofinsecticides.
PestManagSci71(2):234–242GuzK,KucinskaJ,LoncE,DoroszkiewiczW(2005)Differ-entiatedpatternofproteincompositionofcrystallineinclusionsofnewlyisolatedBacillusthuringiensisstrainsfromSilesiainPoland.
PolJMicrobiol54(4):263–269HagstrmDW,KlejdyszT,SubramanyamB,NawrotJ(2013)Atlasofstored-productinsectsandmites.
AACCInterna-tionalInc.
,St.
PaulHuaW,ZemerovS,WasonE(2013)Spodopteraexigua.
Ani-malDiversityWeb.
https://animaldiversity.
org/accounts/Spodoptera_exigua/.
Accessed06Aug2019JouzaniGS,ValijanianE,SharaR(2017)Bacillusthuringiensis:asuccessfulinsecticidewithnewenviron-mentalfeaturesandtidings.
ApplMicrobiolBiotechnol101(7):2691–2711KimMJ,HanJK,ParkJS,LeeJS,LeeSH,ChoJI,KimKS(2015)VariousenterotoxinandothervirulencefactorgeneswidespreadamongBacilluscereusandBacillusthuringiensisstrains.
JMicrobiolBiotechnol25(6):872–879KoneckaE,KaznowskiA,ZiemnickiJ,ZiemnickiK(2007a)MolecularandphenotypiccharacterisationofBacillusthuringiensisisolatedduringepizooticsinCydiapomo-nellaL.
JInvertebrPathol94(1):56–63KoneckaE,KaznowskiA,ZiemnickaJ,ZiemnickiK,PaetzH(2007b)AnalysisofcrygeneprolesinBacillusthuringiensisstrainsisolatedduringepizooticsinCydiapomonellaL.
CurrMicrobiol55(3):217–222KoneckaE,BaranekJ,KaznowskiA,ZiemnickaJ,ZiemnickiK(2012)InteractionbetweencrystallineproteinsoftwoBacillusthuringiensisstrainsagainstSpodopteraexigua.
EntomolExpAppl143(2):148–154KoneckaE,HrycakA,KaznowskiA(2015)SynergisticeffectofBacillusthuringiensiscrystallinetoxinsagainstCydiapomonella(Linneaus)(Tortricidae:Lepidoptera).
EntomolGen35(3):157–166KoneckaE,CzarniewskaE,KaznowskiA,GrochowskaJ(2018a)InsecticidalactivityofBacillusthuringiensiscrystalsandthymolmixtures.
IndCropProd117:272–277KoneckaE,KaznowskiA,MarcinkiewiczW,TomkowiakD,MaciagM,StachowiakM(2018b)InsecticidalactivityofBrassicaalbamustardoilagainstlepidopteranpestsCydiapomonella(Lepidoptera:Tortricidae),Dendrolimuspini(Lepidoptera:Lasiocampidae),andSpodopteraexigua(Lepidoptera:Noctuidae).
JPlantProtRes58(2):206–209KoneckaE,KaznowskiA,StachowiakM,MaciagM(2018c)Activityofspore-crystalmixturesofnewBacillusthuringiensisstrainsagainstDendrolimuspini(Lepi-doptera:Lasiocampidae)andSpodopteraexigua(Lepi-doptera:Noctuidae).
FoliaForPolSerA60(2):91–98KoneckaE,KaznowskiA,TomkowiakD(2019)InsecticidalactivityofmixturesofBacillusthuringiensiscrystalswithplantoilsofSinapisalbaandAzadirachtaindica.
AnnApplBiol174(3):364–371Kowalik-JankowskaT,LesioM,KrupaK,KuczerM,Czar-niewskaE(2019)Copper(ii)complexeswithalloferonanaloguescontainingphenylalanineH6FandH12Fsta-bilityandbiologicalactivitylowerstabilizationofcom-plexescomparedtoanaloguescontainingtryptophan.
Metallomics11(10):1700–1715KuczerM,CzarniewskaE,MajewskaA,Ro_zanowskaM,RosinskiG,LisowskiM(2016)Novelanalogsofalloferon:synthesis,conformationalstudies,pro-apoptoticandantiviralactivity.
BioorgChem66:12–20LecadetMM,DedonderR(1971)BiogenesisofthecrystallineinclusionofBacillusthuringiensisduringsporulation.
EurJBiochem23(2):282–294McGuireMR,Galan-WongLJ,Tamez-GuerraP(1997)BioassayofBacillusthuringiensisagainstlepidopteranlarvae.
In:LaceyLA(ed)Manualoftechniquesininsectpathology.
AcademicPress,SanDiego,pp91–99MeloCR,PicancoMC,SantosAA,SantosIB,PimentelMF,SantosACC,BlankAF,AraujoAPA,CristaldoPF,BacciL(2018)ToxicityofessentialoilsofLippiagracilischemotypesandtheirmajorcompoundsonDiaphaniahyalinataandnon-targetspecies.
CropProt104:47–51MeloALA,SoccolVT,SoccolCR(2016)Bacillusthuringiensis:mechanismofaction,resistance,andnewapplications:areview.
CritRevBiotechnol36(2):317–326MossaATH(2016)Greenpesticides:essentialoilsasbiopes-ticidesininsect-pestmanagement.
JEnvironSciTechnol9(5):354–378123458E.
Koneckaetal.
Nouri-GanbalaniG,BorzouiE,AbdolmalekiA,AbediZ,KamitaSG(2016)IndividualandcombinedeffectsofBacillusthuringiensisandazadirachtinonPlodiainter-punctellaH}ubner(Lepidoptera:Pyralidae).
JInsectSci16(1):95PajacˇI,PejicI,BaricB(2011)Codlingmoth,Cydiapomonella(Lepidoptera:Tortricidae):majorpestinappleproduction:anoverviewofitsbiology,resistance,geneticstructureandcontrolstrategies.
AgricConspecSci76(2):87–92ParkChG,JangM,YoonKA,KimJ(2016)InsecticidalandacetylcholinesteraseinhibitoryactivitiesofLamiaceaeplantessentialoilsandtheirmajorcomponentsagainstDrosophilasuzukii(Diptera:Drosophilidae).
IndCropProd89:507–513ParkJH,JeonYJ,LeeCH,ChungN,LeeHS(2017)InsecticidaltoxicitiesofcarvacrolandthymolderivedfromThymusvulgarisLinagainstPochaziashantungensisChou&Lu.
,newlyrecordedpest.
SciRep7:40902PeraltaC,PalmaL(2017)IstheinsectworldovercomingtheefcacyofBacillusthuringiensisToxins9(1):39RajguruM,SharmaAN(2012)ComparativeefcacyofplantextractsaloneandincombinationwithBacillusthurin-siensissubsp.
kurstakiagainstSpodopteralituraFab.
lar-vae.
JBiopest5(1):81–86RizviSAH,LingS,TianF,XieF,ZengX(2018)ToxicityandenzymeinhibitionactivitiesoftheessentialoilanddominantconstituentsderivedfromArtemisiaabsinthiumL.
againstadultAsiancitruspsyllidDiaphorinacitriKuwayama(Hemiptera:Psyllidae).
IndCropProd121:468–475SaiyadSA(2017)ApplicationofBacillusthuringiensisasaneffectivetoolforinsectpestcontrol.
IOSR-JAVS10(7):27–29SharifzadehMS,AbdollahzadehG,DamalasChA,RezaeiR(2018)Farmers'criteriaforpesticideselectionanduseinthepestcontrolprocess.
Agriculture8:24SmirnoffWA(1962)Astainingmethodfordifferentiatingspores,crystals,andcellsofBacillusthuringiensis(Ber-liner).
JInsectPathol4(3):384–386SudoM,TakahashiD,AndowDA,SuzukiY,YamanakaT(2017)Optimalmanagementstrategyofinsecticideresis-tanceundervariousinsectlifehistories:heterogeneoustimingofselectionandinterpatchdispersal.
EvolAppl11(2):271–283SzczepanikM,WalczakM,ZawitowskaB,Michalska-Sion-kowskaM,SzumnyA,WawrzenczykCZ,SwiontekBrzezinskaM(2018)Chemicalcomposition,antimi-cromicrobialactivityandinsecticidalactivityagainstthelessermealwormAlphitobiusdiaperinus(Panzer)(Coleoptera:Tenebrionidae)ofOriganumvulgareL.
ssp.
hirtum(Link)andArtemisiadracunculusL.
essentialoils.
JSciFoodAgric98(2):767–774TabashnikBE,FabrickJA,UnnithanGC,YelichAJ,MassonL,ZhangJ,BravoA,SoberonM(2013)Efcacyofgeneti-callymodiedBttoxinsaloneandincombinationsagainstpinkbollwormresistanttoCry1AcandCry2Ab.
PLoSONE8(11):e80496TangX,ChenS,WangL(2011)PuricationandidenticationofcarvacrolfromtherootofStellerachamaejasmeandresearchonitsinsecticidalactivity.
NatProdRes25(3):320–325ThalerR,Brandsta¨tterA,MeranerA,ChabicovskiM,ParsonW,ZelgerR,DallingerR(2008)Molecularphylogenyandpopulationstructureofthecodlingmoth(Cydiapomo-nella)inCentralEurope:II.
AFLPanalysisreectshuman-aidedlocaladaptationofaglobalpestspecies.
MolPhy-logenetEvol48(3):838–849TranSL,GuillemetE,LereclusD,RamaraoN(2013)IronregulatesBacillusthuringiensishaemolysinhlyIIgeneexpressionduringinsectinfection.
JInvertebrPathol113(3):205–208VachonV,LapradeR,SchwartzJL(2012)CurrentmodelsofthemodeofactionofBacillusthuringiensisinsecticidalcrystalproteins:acriticalreview.
JInvertebrPathol111(1):1–12VreysenMJB,CarpenterJE,MarecF(2010)ImprovementofthesterileinsecttechniqueforcodlingmothCydiapomo-nella(Linnaeus)(LepidopteraTortricidae)tofacilitateexpansionofeldapplication.
JApplEntomol134(3):165–181WraightSP,RamosME(2005)SynergisticinteractionbetweenBeauveriabassiana-andBacillusthuringiensistenebri-onis-basedbiopesticidesappliedagainsteldpopulationsofColoradopotatobeetlelarvae.
JInvertebrPathol90(3):139–150ZekriN,HandaqN,ElCaidiA,ZairT,ElBelghitiMA(2016)InsecticidaleffectofMenthapulegiumL.
andMenthasuaveolensEhrh.
hydrosolsagainstapestofcitrus,Tox-opteraaurantii(Aphididae).
ResChemIntermed42:1639–1649ZhuF,LavineL,O'NealS,LavineM,FossC,WalshD(2016)Insecticideresistanceandmanagementstrategiesinurbanecosystems.
Insects7(1):2EdytaKoneckaisanassociateprofessor,full-timeworkingatDepartmentofMicrobiology,FacultyofBiology,AdamMickiewiczUniversityinPoznan,Poland,oninsecticidalactivityofBacillusthuringiensiscrystallinetoxins,theuseful-nessofbacteriainplantprotection,andmaternallyinheritedmicrobialendosymbiontsinArthropoda.
AdamKaznowskiisaprofessorinMicrobiology,theHeadofDepartmentofMicrobiologyandtheHeadofInstituteofExperimentalBiologyatAdamMickiewiczUniversityinPoznan,Poland.
Hisworkfocusesonthemechanismsofbacterialpathogenicity,antibioticsresistance,andtheuseofbiologicalcontrolagentsasinsecticides.
WeronikaGrzesiekisagraduatestudentofbiologyattheFacultyofBiology,AdamMickiewiczUniversityinPoznan,Poland.
Hermaster'sthesisweredevotedtotheanalysisoftheCry-carvacrolmixturesactivityagainstSpodopteraexigua.
PatrykNowickiisaPhDstudentattheDepartmentofAnimalPhysiologyandDevelopment,AdamMickiewiczUniversityinPoznan.
Heisworkingonthedetectionofnewactivitiesofinsectpeptidesandtheiranaloguesininsects.
El_zbietaCzarniewskaisanassociateprofessorattheDepartmentofAnimalPhysiologyandDevelopment,Adam123SynergisticinteractionbetweencarvacrolandBacillusthuringiensiscrystallineproteinsagainst…459MickiewiczUniversityinPoznan.
Herscienticactivityisfocusedonidentifyingmolecules,e.
g.
insectpeptides,withastrongeffectonreducingtheviabilityandreproductionofharmfulinsectsinordertodesignbioinsecticides.
JakubBaranekreceivedhisPhDdegreeinbiologicalsciences,biotechnologydiscipline.
HewasaresearchfellowatCharlesSturtUniversity,Australia.
CurrentlyheisanassistantprofessorattheDepartmentofMicrobiology,AdamMickiewiczUniversityinPoznan,Poland.
Hisresearchworkisfocusedonbiologicalcontrolofinsectpestsandchitinolyticactivityofmicroorganisms.
Publisher'sNoteSpringerNatureremainsneutralwithregardtojurisdictionalclaimsinpublishedmapsandinstitutionalafliations.
123460E.
Koneckaetal.

HaloCloud:日本软银vps100M/200M/500M带宽,,¥45.00元/月

halocloud怎么样?halocloud是一个于2019下半年建立的商家,主要提供日本软银VPS,广州移动VDS,株洲联通VDS,广州移动独立服务器,Halo邮局服务,Azure香港1000M带宽月抛机器等。日本软银vps,100M/200M/500M带宽,可看奈飞,香港azure1000M带宽,可以解锁奈飞等流媒体,有需要看奈飞的朋友可以入手!点击进入:halocloud官方网站地址日本vp...

CloudCone:$17.99/年KVM-1GB/50GB/1TB/洛杉矶MC机房

CloudCone在月初发了个邮件,表示上新了一个系列VPS主机,采用SSD缓存磁盘,支持下单购买额外的CPU、内存和硬盘资源,最低年付17.99美元起。CloudCone成立于2017年,提供VPS和独立服务器租用,深耕洛杉矶MC机房,最初提供按小时计费随时退回,给自己弄回一大堆中国不能访问的IP,现在已经取消了随时删除了,不过他的VPS主机价格不贵,支持购买额外IP,还支持购买高防IP。下面列...

LayerStack$10.04/月(可选中国香港、日本、新加坡和洛杉矶)高性能AMD EPYC (霄龙)云服务器,

LayerStack(成立于2017年),当前正在9折促销旗下的云服务器,LayerStack的云服务器采用第 3 代 AMD EPYC™ (霄龙) 处理器,DDR4内存和企业级 PCIe Gen 4 NVMe SSD。数据中心可选中国香港、日本、新加坡和洛杉矶!其中中国香港、日本和新加坡分为国际线路和CN2线路,如果选择CN2线路,价格每月要+3.2美元,付款支持paypal,支付宝,信用卡等!...

cydia闪退为你推荐
找不到光驱找不到光驱怎么办啊中国电信互联星空互联星空是什么?是电信公司的吗?微信如何建群微信建群怎么建pw美团网电话是什么pw照片转手绘怎么把图片P成手绘免费免费建站电脑上有真正免费的网站吗??安全漏洞计算机一般存在哪些安全漏洞?小米手柄小米手柄能连几个手机微信电话本怎么用微信电话本怎么使用呀,我的电话号码是存在手机里面,用这个软件就读取不了电话,我是第一次使用网站排名靠前怎样才能做好一个网站?让网站排名靠前?新手求解
上海服务器租用 汉邦高科域名申请 如何查询域名备案号 万网免费域名 中国万网域名 singlehop pccw isatap suspended 商务主机 灵动鬼影 个人域名 谁的qq空间最好看 徐正曦 昆明蜗牛家 hkt 购买国外空间 卡巴斯基是免费的吗 lick 阿里云邮箱登陆地址 更多