posiioicn
ioicn 时间:2021-02-26 阅读:(
)
RESEARCHOpenAccessInvestigationofmagneticallycontrolledwaterintakebehaviorofIronOxideImpregnatedSuperparamagneticCaseinNanoparticles(IOICNPs)AnamikaSingh,JayaBajpaiandAnilKumarBajpai*AbstractIronoxideimpregnatedcaseinnanoparticles(IOICNPs)werepreparedbyin-situprecipitationofironoxidewithinthecaseinmatrix.
Theresultingironoxideimpregnatedcaseinnanoparticles(IOICNPs)werecharacterizedbyScanningelectronmicroscopy(SEM),Transmissionelectronmicroscopy(TEM),X-rayphotoelectronspectroscopy(XPS),Fouriertransforminfrared(FTIR),Vibratingsamplemagnetometer(VSM)andRamanspectroscopy.
TheFTIRanalysisconfirmedtheimpregnationofironoxideintothecaseinmatrixwhereasXPSanalysisindicatedforcompleteoxidationofiron(II)toiron(III)asevidentfromthepresenceoftheobservedrepresentativepeaksofironoxide.
Thenanoparticleswereallowedtoswellinphosphatebuffersaline(PBS)andtheinfluenceoffactorssuchaschemicalcompositionofnanoparticles,pHandtemperatureoftheswellingbath,andappliedmagneticfieldwasinvestigatedonthewaterintakecapacityofthenanoparticles.
Thepreparednanoparticlesshowedpotentialtofunctionasananocarrierforpossibleapplicationsinmagneticallytargeteddeliveryofanticancerdrugs.
Keywords:Casein,IOICNPs,Swellingbehaviour,pHsensitive,MagneticdrugtargetingIntroductionTheconceptofmagneticdrugtargeting(MDT)simplyentailsretainingspeciallydesignedmagneticdrugnano-carriersataspecificsiteinthebodyusinganexternallyappliedmagneticfield.
Thetwokeypropertiesforaneffectivenanocarriersare(a)efficienttargetingtospecifictissueandcells,and(b)avoidingrapidclearance(i.
e.
re-mainingincirculation)forasignificantamountoftimetoincreaseparticleuptakeintargettissue.
Circulationtime,targeting,andtheabilitytoovercomebiologicalbarriersdependontheshape(e.
g,aspectratio),chemicalcoatingandsizeofthenanoparticles[1].
Thusaprecisecontrolovertheshapeandsizeofnanoparticlesisachallengingtaskandmustbeaddressedinordertoachievehighper-formancedrugdeliverysystems.
InordertoachieveanefficientMDT,variouspoly-meric/inorganichybridmaterialshavebeensuggestedthatofferuniquepropertiesbecauseoftheirsmallsize,limitedtoxicity[2],lowproductioncost,easeofseparationanddetection[3].
Themagneticnanoparticlesoftentendtoformlargeaggregatesowingtothestrongmagneticdipole–dipoleattractionsamongparticles.
Toimprovetheirchemicalstabilityandbiocompatibility,thesurfaceofmagneticnanoparticleshavebeenmodifiedwithvarioussurfactants[4]orbiopolymercompoundshavingmultiplefunctionalgroupscapableofbindingtotheparticlesur-faces(multidentateligands).
Therationalforusingmag-neticnanoparticlestotumortargetingisbasedonthefactthatnanoparticleswillbeabletodeliveraconcentratedoseofdruginthevicinityofthetumortargetsviatheenhancedpermeabilityandretentioneffectoractivetargetingbyligandsonthesurfaceofnanoparticles[5].
Moreover,theextentofdrugloadingontothenanopar-ticlesgreatlydependsonthehydrophilicnatureofthebiopolymeralsoand,therefore,proteinscouldbeanexcel-lentoptiontodesignsuchmagneticnanocarriers.
Useofmilkproteins,likecaseins,indrugdeliveryapplicationsisrelativelyanewtrendandthisismainly*Correspondence:akbmrl@yahoo.
co.
inBMRL,DepartmentofChemistry,GovernmentModelScienceCollege,Jabalpur,India2014Singhetal.
;licenseeBioMedCentralLtd.
ThisisanOpenAccessarticledistributedunderthetermsoftheCreativeCommonsAttributionLicense(http://creativecommons.
org/licenses/by/4.
0),whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedtheoriginalworkisproperlycredited.
TheCreativeCommonsPublicDomainDedicationwaiver(http://creativecommons.
org/publicdomain/zero/1.
0/)appliestothedatamadeavailableinthisarticle,unlessotherwisestated.
Singhetal.
JournalofNanobiotechnology2014,12:38http://www.
jnanobiotechnology.
com/content/12/1/38duetoitsamphiphilicnaturethatallowsthemtointeractwithboththedrugandsolvent.
Infact,caseinsmayberegardedasblockcopolymerswithhighlevelofhydro-philicandhydrophobicaminoacidresiduesandthustheyexhibitastrongtendencytoselfassembleintosphericalmicelles.
Moreover,thierbiodegradability,not-toxicity,metabolizablityandfeasibilitytosurfacemodificationenablethemtointeractwiththetargetingligand.
Inanstudy,thecomplexationofcurcuminwithβ-caseinmi-cellesincreasedthesolubilityofcurcuminatleast2500-foldwithenhancedcurcumincytotoxicitytoahumanleukemiacellline[6].
Shapiraetal.
[7]showedthatβ-CASmicellescouldentrapanddeliverhydrophobicchemotherapeuticssuchasmitoxantroneandpaclitaxel,allowingthemtobethermodynamicallystableinaqueoussolutionsfororaldeliveryapplications.
Thus,thehydro-phobicandhydrophilicdomainsofcaseinareresponsiblenotonlyfortheirwatersorptioncapacity,butalsoforthenatureandtypeofdrugtobeencapsultedinthecaseinnanoparticles.
Thus,motivatedbythepharmaceuticalspecialitiesofthecaseinproteintheauthorswerepusedtoundertakeasystemicinvestigationofsynthesisandcharacteriztionofmagneticcaseinnanoparticlesandtheirwatersorptionbehaviortojudgetheirsuitabilityindesigningswellingcontrolledandmagneticmediateddrugdeliverysystem.
Thepresentstudyaimsatdesigningcontrollablesizeironoxideimpregnatedcaseinnanoparticles(IOICNPs)byco-precipitationofironsaltswithinthecaseinnanoparticlesmatrix.
AstheItisalsoproposedtocharacterizedthesopreparedIOICNPsbyvariousanalyticaltechniquesandinvestigatetheirwatersorptionpotentialinthepresenceofappliedmagneticfield.
ExperimentalMaterialsCaseinwaspurchasedfromMerck,Mumbai,Indiaandusedwithoutanypretreatment.
FeCl2.
H2O,FeCl3.
6H2O,glutaraldehyde(usedasacrosslinker)wereobtainedfromLobaChemie,Mumbai,India.
ToluenewasobtainedfromSigmaAldrichCo.
,USA,andusedforpreparingoilphase.
Otherchemicalslikeacetone,NaOHetc.
wereofanalyticalreagent(AR)gradeanddoubledistilledwaterwasusedthroughouttheexperiments.
PreparationofIronoxideimpregnatedcaseinnanoparticles(IOICNPs)Preparationofmagneticcaseinnanoparticlesconsistsofatwostepsprocess.
Inthefirststepthecaseinnanopar-ticlesarepreparedbyemulsioncrosslinkingmethodwhileinthesecondoneironoxidenanoparticlesareimpregnatedwithincaseinnanoparticlesmatrixbyinsituprecipitation.
Preparationofcaseinnanoparticles(CNPs)InordertoprepareCNPsthemicroemulsioncrosslinkingmethodwasadoptedasdescribedinliterature[8].
Inbrief,anaqueousphasewaspreparedbydissolvingknownamountofcaseinin1%NaOHwhereastoluenewasusedtopreparetheoilphase.
Theabovetwosolutionsweremixedwithvigorousshaking(shakingspeed1000RPM,5Lcapacity,Remi,India)for30minandtothisemulsion1mLglutaraldehydewasaddedascrosslinkerwithcon-stantstirring.
Thecrosslinkingreactionwasallowedtotakeplacefor30minatroomtemperature(30°C)andH2SO4wasaddedtothesolutionforthesolidificationofparticles.
Thenanoparticleswerecleanedbywashingthemthricewithacetoneandstoredinair-tightpolyethyl-enebags.
ImpregnationofIronoxideintothecaseinnanoparticlesThedriedCNPswereplacedinanaqueousmixtureofFe2+andFe3+chloridesaltsat1:2molarratioandallowedtoswellfor24hsothatbothFe2+andFe3+ionswereen-trappedintothebiopolymermatrix.
Priortoputtingtheminsaltsolution,adrystreamofN2wasflushedforatleast15mintocontrolthereactionkinetics,whichisstronglyrelatedtotheoxidationspeedofironspecies.
Bubblingnitrogengasthroughthesolutionnotonlyprotectscriticaloxidationofthemagnetitebutalsoreducestheparticlesize[9].
Theferrousandferricionsloadedcaseinnano-particleswereaddedtoNaOHsolutionforadefinitetimeperiodsothatmagnetiteisprecipitatedwithinthebio-polymermatrixaccordingtothefollowingchemicalreac-tions[10].
Fe22OH‐→FeOH2Fe33OH‐→FeOH3FeOH22FeOH3NaOH→Fe3O44H2O1Furthermore,forsynthesisofnanoparticleswitheithertheferrousorferricionalone,thechemicalreactionspassthroughdifferentmechanismsasshowninEquations(2)and(3),respectively.
Fe22OH‐→FeOH23FeOH20:5O2→FeOH22FeOOHH2OFeOH22FeOOH→Fe3O42H2O2Fe33OH‐→FeOH3FeOH3→FeOOHH2O12FeOOH→4Fe3O46H2O3Thesetwomechanismsprovidealargerparticlesizeascomparedtothecaseofthemixtureofferrousandferricionsbecausetheparticlesizeofmagnetitealsodependsonthenatureoftheintermediateform.
SincethemethodsadoptedrequirelongerreactiontimesSinghetal.
JournalofNanobiotechnology2014,12:38Page2of13http://www.
jnanobiotechnology.
com/content/12/1/38forthetransformationsofferricionsandferrousionssothattheintermediatescancontinuouslygrow.
However,caremustbetakenwhileaddingNaOHbecauseaccordingtothethermodynamicsofthisreaction,acompletepre-cipitationofFe3O4occursintherangeof9to14pHandinmolarratioof1:2forFe2+:Fe3+underanonoxidizingoxygenfreeenvironment.
Otherwise,Fe3O4mightgetoxidizedas,Fe3O40:25O24:5H2O→3FeOH34Thechangeincolorofthecaseinnanoparticlesfromorangetodarkbrownalsoconfirmstheformationofoxidesofiron.
Thepreparednanoparticleswerewashed,driedatroomtemperatureandstoredinairtightpoly-ethylenebags.
ThechemicalreactionisshowninFigure1.
Thepercentageimpregnationofironoxidewascalculatedusingfollowingequation.
Impregnation%Wimpregnated‐WdryWdry1005Infact,theprocessofformationofironoxideinvolvesthediffusionofferrous/ferricionsintothepolymermatrixandtheirsubsequentinsituprecipitationinanalkalinemedium.
Itisthereforeexpectedthatthehigheristhewateruptakegreaterwillbe,theironoxideforma-tion[11].
CharacterizationFTIRSpectralanalysisTheFTIRspectraofcaseinandIOICNPswererecordedonaFTIR-8400,ShimadzuSpectrophotometer.
Samplesforthespectralanalysiswerepreparedbymixingnano-particlesandKBrin1:10proportionandthespectrawereobtainedintherangeof4000to400cm1witharesolutionof2cm1.
SEManalysisMorphologicalstudiesofcross-linkedCNPsandIOICNPswereperformedusingSEM,Philips515,finecoater(Philips,Eindhoven,TheNetherlands).
Dropsofthepoly-mericnanoparticlessuspensionwereplacedonagraphitesurfaceandfreeze-dried.
Thesamplewasthencoatedwithgoldbyionsputterat20mAfor4minutes,andobserva-tionsweremadeat10kV.
TEManalysisThesizeandmorphologyofthenanoparticlesweredeter-minedbyconductingTEManalysisofcaseinandIOICNPsonMorgagni268-DTransmissionElectronMicroscopewithanacceleratingvoltageof80.
0kV.
ThesamplesforTEMmeasurementswerepreparedbydispersingadropofthesamplesolutiononFormvar-coatedCgrids.
RamanspectralanalysisInordertoinvestigatetheimpregnationofironoxidenanoparticlesintothematrixofcaseinnanoparticles,Figure1SchematicformationofIOICNPs(Step-I)Formationofcaseinnanoparticlesbycrosslinkingofcaseinmacromoleculesbyreactionwithglutaraldehyde.
(Step-II)Impregnationofironionswithinthecaseinnanoparticlsnetworkbyswellinginironsaltssolution.
(Step-III)InsituprecipitationofironoxidewithinthecaseinnanoparticlesmatrixtoyieldIOICNPs.
Singhetal.
JournalofNanobiotechnology2014,12:38Page3of13http://www.
jnanobiotechnology.
com/content/12/1/38Ramanspectroscopywasusedandthespectrawereob-tainedintherangeof200–1800cm1.
Thecharacteristicpeakpositionofmagnetite(Fe3O4)anditspossibleoxidationproductmaghemite(У-Fe2O3)andhematite(α-Fe2O3)weredeterminedintheRamanregionof100–1200cm1.
Forcorrectassignmentofthebandposi-tionsandphaseidentificationpresentinthesamples,combinedRamandatawereusedforkeyironoxidesbands.
TheRamanspectraofcaseinandIOICNPswererecordedonaMicroRamanSpectrometer,JobinYvonHoribraLABRAM-HR.
VSManalysisThemagnetizationversusmagneticfieldmeasurements(M–Hfirstmagnetizationcurveandhysteresisloop)at300K,fortheIOICNPs(powdersample)weredoneon14TPPMS-vibratingsamplemagnetometer.
XPSanalysisThesampleswerealsoanalyzedbyX-rayphotoelectronspectroscopy(XPS)onamodifiedlaserablationsystem,RiberLDM-32,usingaCamecaMac3analyzer.
Photo-electronspectrawerecollectedbyacquiringdataforevery1.
0eVwithanenergyresolutionof3eV.
Narrow-scanphotoelectronspectrawererecordedforC1s,N1s,O1s,andFe2pbyacquiringdataforevery0.
2eVandtheenergyresolutionwas0.
8eV.
InvitrocytotoxicitytestInordertodetermineinvitrocytotoxicityofthepreparedmaterialstestonextractmethod(ISO10993-5,2009)wasapplied.
Inbrief,atestsampleofthenanoparticles,nega-tivecontrolandpositivecontrolintriplicatewereplacedwithsubconfluentmonolayerofL-929mousefibroblastcells.
Afterincubationofcellswithtestsamplesat37±1°C,for24h,cellculturewasexaminedmicroscopicallyforcellularresponsearoundandunderthetestsamples.
WatersorptioncapacityTheextentofswellingofCNPsandIOICNPsinbothpresenceandabsenceofmagneticfieldweredeterminedbyaconventionalgravimetricprocedureasreportedintheliterature[12].
Theswellingratiowasdeterminedbythefollowingequation:SwellingRatioWeightofswollennanoparticlesWsWeightofdrynanoparticlesWd6Theamountofwaterimbibedbythesampleprovidesinformationaboutthehydrophilicnatureofthematerial,whichisoneofthecriterionsforbiocompatibility.
EffectofpHTheeffectofpHonswellingofthenanoparticleswasstudiedbypreparingsolutionsoverthepHrange1.
8to9.
0,andthedesiredpHwasadjustedwiththehelpof0.
1MHCland0.
1MNaOHsolutions.
ThepHwasdeterminedonadigitalpHmeter(Systronics,No.
362,Ahmadabad,India).
EffectoftemperatureTheeffectoftemperatureonswellingofthenanoparti-cleswasstudiedbyvaryingtemperatureoftheswellingmediumintherangeof10°to40°C.
SwellingstudiesinphysiologicalfluidInordertostudytheswellingofnanoparticlesinsim-ulatedbiologicalmedia,thefollowingaqueousfluids(100mL)wereprepared:Salinewater(0.
9gNaCI),syn-theticurine(0.
8gNaCl,0.
10gMgSO4,2.
0gurea,0.
6gCaCl2),urea5.
0g,andD-glucose5.
0g.
StatisticalanalysisAllexperimentsweredoneatleastthriceandFiguresanddatahavebeenexpressedalongwiththeirrespectiveerrorbarsandstandarddeviations,respectively.
ResultsanddiscussionEffectofcompositiononimpregnationImpregnationofironoxideintothepolymermatrixisaresultofinclusionofferrous/ferricionsintothepoly-mermatrixandtheirsubsequentinsituprecipitationinalkalinemedium.
Theimpregnationprocessbasicallydependsontheswellingcapacityofthebiopolymericnetworkwhich,inturn,variesasafunctionofchemicalcompositionoftheCNPs.
AmongvariousstructuralfactorsinfluencingwatersorptioncapacityofaCNPs,theratioofhydrophilicitytohydrophobicityplaysakeyroleindeterminingswellingcharacteristicofthematrix.
Inthepresentstudy,thepreparedmatrixiscomposedofcaseinandglutaraldehydewhicharehydrophilicbiopolymerandcrosslinker,respectivelyandtheirrelativeamountsintheCNPSareexpectedtoaffectextentofswellingand,consequently,theimpregnationofironoxidealso.
FTIRspectralanalysisTheFT-IRspectraofnativecasein,CNPsandIOICNPsareshownin(Figure2a,bandc),respectively.
Figure2ashowsabsorptionbandsat3455,3100,1661,1530and1235cm1whichcanbeexplainedasfollows:Inthecaseofnativecasein,theamideAbandat3455cm1andamideBat3100cm1areobserved,whichoriginateasaresultofFermiresonancebetweenthefirstovertoneofamideIIandtheN-Hstretchingvibration.
AmideIandamideIIbandsaretwomajorbandsoftheinfraredSinghetal.
JournalofNanobiotechnology2014,12:38Page4of13http://www.
jnanobiotechnology.
com/content/12/1/38spectrumofcasein.
TheobservedintensebandforamideIappearsat1661cm1andismainlyassociatedwiththeC=Ostretchingvibrationanddependsonthebackboneconformationandhydrogenbonding.
TheamideIIbandsobtainedinthe1510and1580cm1regionresultfromtheN-HbendingandtheC-Nstretchingvi-brations.
Theobtainedbandsat1661cm1and1531cm1fortheamideIandamideII,respectivelyalsoconfirmthealphahelicalstructureofthecaseinprotein.
Caseinalsoexhibitsanothercharacteristicbandat1415cm1whichmaybeattributedtothecarboxylategroup(O-C-O).
Asshownin(Figure2b),abandappearsat1683cm1andmaybeassignedtoC=Nstretchingwhichconfirmsthepresenceofcrosslinkingbetweencaseinandglutaraldehyde.
In(Figure2c)theappearanceofpeaksaround450and480cm1maybeassignedtoFe–Obondsofmagnetite,whicharecharacteristicpeaksofironoxide(e.
g.
,polyhedralFe3+–O2)stretchingvibrationsofironoxide,andthusconfirmtheimpreg-nationofironoxideintothematrixofcaseinnano-particles[13,14].
AccordingtoDeaconandPhillips[15],thecarboxylateionmaybecoordinatedtoametalatominoneofthefollowingstructures:structureI:unidendatecomplexwhereonemetalionbindswithonecarboxylicoxygenatomstructureII:bidendatecomplexwhereonemetalionbindswithtwocarboxylateoxygensstructureIII:bridgingcomplexwheretwometalionsbindwithtwocarboxylateoxygen's.
TheFTIRspectraindicatedthepresenceoftwobands,1415cm1(Vs:COO)and1538cm1(Vas:COO),whichmaybeattributedtothecarboxylateionofcaseinimmobilizedonthemagnetitesurface.
SEManalysisSEMimagesofCNPsandIOICNPsareshownin(Figure3aandb),respectivelywhichillustratenon-smoothmorphologyofCNPsandformationofironoxideinthecaseinnetworks.
Thecoatingofironoxidenano-particlesbythecaseinproduceslargersizeparticlesduetotheformationofthecaseinlayersonthesurfacesofironoxide.
Duringin-situprecipitationitmaybeinferredthatironoxidesareassembledorattachedinsidethebiopolymericnetworksandonthecaseinsurfaceaswell.
Loadingofironoxideinsidethenetworkaffectsitsmorphologyandstructuralintegrity.
Itislikelythatthepresenceofintermolecularforcesbetweencaseinmacro-molecularunitsfacilitatesformationofanextensivephys-icalnetworkofhydrogenbondsandothervanderwaalforces,whichprovide'nano'domainsforgrowthoftheironoxidenanoparticlesaswellasensuretheirprotectionwithinthecaseinnetwork.
Thesebiopolymericnetworksmaybeconsideredasnanoreactorstoconstructoras-sembleironoxide.
TheresultsmaybeattributabletocontributionsofaFe-Ocoordinationbondonthesur-face,stericeffectandacompartmenteffectofthenetworkstructuresofcasein,whichlimitthegrowthofironoxide,andthusplayanimportantroleintheprocessofthefor-mationofironoxideaggregates[16].
TEManalysisInordertoascertainmoreprecisemorphologyandsizeoftheironoxideparticlesatthenanoscalelevels,TEMstud-ieswereperformed.
Thesizedistributionofmagneticnanoparticlesisanimportantparameterrelatedtotheirbiologicalapplicationsandperformance.
DifferentshapedIOICNPsmaybepreparedbythefacileco-precipitationmethodbyadjustingtheamountsofpolymer,crosslinkerandFe2+/Fe3+ratio,pHsoastoinvestigatetheinfluenceontheshapeandparticlesizeofIOICNPs.
ItwasobservedthatthesynthesizedIOICNPsdisplayedarelativelyspher-icaldistribution,gooddispersionandauniformmorph-ologywithdistinctcrystallinestructure.
FromtheTEMimageofIOICNPs,itcanbeclearlydemonstratedthatmagneticnanoparticlescompriseofcoreshellstructurewithhomogenousincorporationofmagnetiteasacoreofIOICNPs.
Themagneticnanoparticlesarehomogeneouslycoveredbythecaseinshells[17].
TheparticlesizeofIOICNPsmaybecontrolledbytheamountsofcaseinandglutaraldehyde.
TheTEMimagesofIOICNPswithdiffer-entamountsofcaseinandglutaraldehydeareshowninFigure2FTIRspectraofa)nativecasein,b)CNPs,andc)IOICNPs.
Singhetal.
JournalofNanobiotechnology2014,12:38Page5of13http://www.
jnanobiotechnology.
com/content/12/1/38Figure4AandB,respectively,whichindicatethatanaver-agesizeofIOICNPsfallsintherangeof80–90nm.
Astheamountofcaseinincreasesfrom0.
5to2.
5g,thesizeoftheas-preparedIOICNPsincreasesfrom15nmto50nmasshownin(Figure4A).
Theresultsalsoshowthatincreasingamountofcaseintendstoproduceslargererparticlesizebecauseitcanproduceabiggermicelle[10,17].
Thus,onincreasingtheamountofcasein,thesizeofIOICNPsalsoincreases.
Theaverageparticlesizeofthenanoparticles,asafunctionoftheoil/waterratiointheemulsions,decreasesfrom20to8nmwithincreasingoil/waterratiofrom1.
3to7.
0.
Whentheoil/waterratioishigh,themolarratioofcaseintowaterisalsoincreased,resultinginahighsurfacetensionattheoil/waterinter-face.
Thisproducessmallwaterdropletsanddeterminesthesizeofironnanoparticle[18].
Theeffectofglutaralde-hydeconcentrationonthesizeofIOICNPsisshownin(Figure4B),whichrevealthatastheconcentrationofcrosslinkerincreases,thenumberofmorecrosslinkpointsincreasesthusresultinginanincreasethecrosslinkingdensity.
Asaresult,thenetworkvoidsareminimizedandtheparticlesizedecreases.
TheFiguresalsoshowthatthenanoparticlesformedarepresentasaggregatesduetothereasonthattheyhaveanaturaltendencytoundergoclusteringduetovarietyofchargesandfunctionalgroupspresentontheirsurfaces.
RamanspectralanalysisRamanspectraofIOICNPsareshownin(Figure5a),whichshowcharacteristicRamanbandsforcaseinduetoamideI(CONH)at~1666cm1andamideIIIbandat~1245cm1.
BetweentheseRamanbandsanintensepeakisobservedat1450cm1,whichisattributedtoFigure3SEMimagesofa)CNPsandb)IOICNPs.
Figure4TEMimagesofIOICNPscontainingvaryingamountofcasein0.
5g,1.
0g,1.
5g,2.
0g,andglutaraldehyde5mM,10mM,15mMand20mM.
(A)TEMimagesofIOICNPscontainingvaryingamountsofcaseina)0.
5g,b)1.
0g,c)1.
5g,d)2.
0g.
(B)TEMimagesofIOICNPscontainingvaryingamountsofglutaralehydea)5mM,b)10mM,c)15mM,d)20mM.
Singhetal.
JournalofNanobiotechnology2014,12:38Page6of13http://www.
jnanobiotechnology.
com/content/12/1/38theCH2scissoringmode.
IntheRamanspectraweakerpeaksobservedat193cm1,306cm1and538cm1confirmthepresenceofironoxideintheformofmagnet-ite.
Moreover,anadditionalstrongpeakisalsoobservedat668cm1.
ForcorrectassignmentofsamplecombinedRamandatakeycanbeusedasfollows[19,20].
(i)Fe3O4:193(weak),306(weak),538(weak),668(strong),(ii)gFe2O3:350(strong),500(strong),700(strong);and(iii)aFe2O3:225(strong),247(weak),299(strong),412(strong),497(weak),613(medium).
VSManalysisThemagnetizationversusmagneticfieldplot(M-Hmagnetizationcurveandhysteresisloop)at300K,fortheimpregnatedcaseinnanoparticleswasmeasuredovertherangeofappliedfieldbetween6000to+6000Oewithasensitivityof0.
1emu/g,usingvibratingsamplemagnetometer.
Theresultsareshownin(Figure5b)whichshowthatthesaturationmagnetizationvalueisaround64emug1,andthehysteresisisveryweak.
Thevalueobtainedislowerthanthereportedvalueof92–100emug1formagnetitenanoparticlesandmaybeat-tributedtothefactthatbelowacriticalsize,nanocrystallinemagneticparticlesmaybeofsingledomainandshowuniquephenomenonofsuperparamagnetism[21,22].
ThereductioninsaturationmagnetizationofFe3O4particlesmaybeattributedtothepresenceofnon-magneticlayeronthesurfaceoftheparticles,chargedistribution,super-paramagneticrelaxationandspineffectbecauseofultra-finenatureoftheparticles.
XPSanalysisInthepresentstudyXPSanalysesweredonetomonitortheironoxidedepositioninthecross-linkedIOICNPs.
TheXPSspectraofthecross-likedIOICNPsisshowninthe(Figure6)WhichrevealthepresenceoftheC1s,O1s,andN1score-levelpeak.
However,afterimpreg-nationofironoxide,thespectrumexhibitstwomorepeaksassociatedwithFe2+andFe3+,duetotheironoxidedeposition.
Itisworthtomentionthatthepeakassignmentisbasedoncharacteristicbindingenergiesreportedintheliterature[23,24].
Furthermore,theO1score-levelspectraofthecross-linkedIOICNPswerefittedusingtwopeaksat532.
3eVand534eV.
Thefirstoneisassociatedwiththebindingenergyofthe[C=O]intheimidegroupandcarboxylicacidgroupwhilethesecondoneatthebindingenergyoftheOHinthecar-boxylicacidgroup.
Theabsenceofthepeakat287.
2eV,associatedwiththebindingenergyofcarboxylicacidgroups,isaccompaniedbyanincreaseintheintensityofthepeakat285.
9eV,duetothecontributionofthecarboxylatespeciesinthecrosslinkedbiopolymer[25].
ThesegroupswerealsoobservedintheFTIRanalysis.
TheO1score-levelspectrumfromtheresultingcom-positewasfittedtopeaksat530.
2eV(g-Fe2O3),531.
4eV(a-FeOOH).
Furthermore,thespectrumdisplaystwopeaksassociatedwiththeironoxideinthecompositewhichareingoodagreementwiththemagnetite,at715.
3eVand725.
4eVforFe2+andFe3+ions.
Figure5RamanspectraandVSM(M-H)curveofIOICNPsat300K.
a)Ramanspectraandb)VSM(M-H)curveofIOICNPsat300K.
Figure6XPSofIOICNPs.
Singhetal.
JournalofNanobiotechnology2014,12:38Page7of13http://www.
jnanobiotechnology.
com/content/12/1/38TheXPSwasappliedtoprovideelementalinformationofsurfacecompositionofIOICNPsafterFe3O4loading.
TherewereC,N,OandFeelementsinthemagneticIOICNPs,whichfurtherprovedthatFe3O4nanoparticleswereinsitusynthesizedintheIOICNPs[26].
ThedifferentoxidationstatesoftheironinthesenanoparticlescanalsobedetectedanddistinguishedfromeachotherbyXPS.
InvitrocytotoxicitytestInordertodetermineinvitrocytotoxicityofthepre-paredmaterialsTestonextractmethodwasperformed(ISO10993-5,2009).
Inthismethodpowdered(0.
2g)materialwassoakedinculturemedium(1mL)withserumandthentheextractwaspreparedbyincubatingthepresoakedtestmaterialwithserumfor24h.
Afterincubation,theextractwasfilteredusing0.
22μmmillexgpfilter.
100%extractweredilutedwithculturemediumtoget50%and25%concentrations.
Differentdilutionsoftestsampleextracts,positivecontroland100%ex-tractsofnegativecontrolintriplicatewereplacedonsubconfluentmonolayerofL-929cells.
Afterincubationofcellswithextractsofthetestsampleandcontrolsat37±1°Cfor24to26h,culturewasexaminedmicro-scopicallyforcellularresponse.
Fornegativecontrolthesamplewaspreparedbyincubating1.
25cm2polyethylenediscwith1mLculturemediumwithserumat37±1°Candpositivecontrolwaspreparedbydilutingphenolstocksolution(13mg/mL)withculturemediumwithserum.
Thecytotoxicityreactivityweregradedbasedonzoneoflysis,vacuolization,detachmentandmembranedisinte-grationas0,1,2,3and4representingnone,slightmild,moderateandsevere,respectively.
ThequantitativeevaluationofreactivityfornegativeandpositivecontrolsandtestsamplearesummarizedinTable1,whilemicro-scopicobservationaredepictedin(Figure7a,bandc),respectively.
Itwasfoundthatthetestsampleshowednonereactivitytofibroblastcellsafter24hofcontact.
Theachievementofnumericalgrademorethan2isconsideredascytotoxiceffect.
Sincethepolymernetworkmaterialinthepresentworkachievedareactivitygradelessthan2,thematerialisconsideredasnotcytotoxic.
EffectofMagneticField(MF)ontheswellingInmagneticdrugtargetingswelling-controlledsystemmusthavesatisfactoryswellingpropertiesandhighcapacityofdrugloading.
Thedegreeandtimeofswellingareimportantcharacteristicsandhavesignificanteffectonthereleasekineticofloadeddrugsfromswelling-controlledsystems.
ToevaluatetheeffectofMFtheontheswellingofIOICNPs,theMFwasvariedintherangeof1000to3000G.
Theresultsaredepictedin(Figure8a)whichrevealthattheswellingratioincreaseswithincreas-ingstrengthofmagneticfield.
TheobservedresultsmaybeattributedtothefactthatthemagneticmomentofamaterialMisproportionaltotheappliedfieldH.
MχmH;7whereχmismagneticsusceptibilityofthematerial.
Thepossiblereasonfortheobservedincreasedswellinguponapplicationofexternalmagneticfieldmaybethatundertheappliedfieldthemagneticnanoparticlesgetalignedwiththeappliedfield.
Sincetheparticlesareinconstantmotion,theywillexperiencefluctuatingmagneticfieldwhichmaycauseagitationofthenanoparticles.
Thiswillproduceamotioninthenanoparticlesmatrixandre-sultinrelaxationofpolymerchainsofthenanocomposite,thus,leadingtoagreaterswellingofIOICNPs.
Thismayalsoenlargethenanostructureofthepolymericmatrixtoproduceporouschannelsthatcauseenhanceddiffusionprocessenablingeasyswelling.
Themechanicaldeform-ationgeneratescompressiveandtensilestresses,enhan-cingthepenetrationofwatermolecules.
Similartypeofresulthasalsobeenreportedelsewhere[27].
EffectofchemicalcompositioninCNPsandIOICNPsInthepresentwork,theinfluenceofchemicalcompos-itionofcaseinnanoparticlesontheirswellingratiohasbeeninvestigatedbyvaryingtheamountsofcaseinandcrosslinker(glutaraldehyde),inthefeedmixture,respect-ively.
Theobservedresultsmaybediscussedasbelow:VariationofcaseininCNPsandIOICNPsTheeffectofincreasingbiopolymercontentontheswellingcharacteristicsofCNPsandIOICNPshasbeeninvestigatedbyvaryingtheamountofcaseinintherange0·5–2.
5gwhilekeepingtheconcentrationofglutaralde-hydeasconstant.
Theresultsareshownin(Figure8b),whichclearlyindicatethattheswellingofIOICNPsishigherthanCNPsandinitiallyincreasesupto0.
5gofca-seincontentandthereafterdecreaseswithfurtherincreaseintheamountofcasein.
Theresultsmaybeattributedtothefactthattill1.
5gofcasein,highlycompactnanoparti-clesareformedwhichrestrictstheinwardmovementofwatermoleculesthusresultinginadecreaseinswellingratio.
However,beyond1.
5gofcasein,swellingratioisfoundtoincreasewithincreaseintheamountofcaseinupto2.
5g.
TheobservedresultsareduetothefactthatcaseinisahydrophilicbiopolymeranditsincreasingTable1QuantitativeevaluationofinvitrocytotoxicreactivityofvarioussamplesS.
no.
SampleGradeReactivity1.
Negativecontrol0None2.
Positivecontrol4Severe3.
IOICNPs0NoneSinghetal.
JournalofNanobiotechnology2014,12:38Page8of13http://www.
jnanobiotechnology.
com/content/12/1/38amountintheparticleswillobviouslyenhancethehydro-philicityofthenanoparticlesand,thus,anincreaseintheswellingratioisobtained.
InIOICNPs,thedecreaseinthetotalwatercontent,mightbeattributedtoeffectiveinteractionsbetweentheironoxideandthepolymermatrix.
Theseinteractionsmayarisefromthecarboxylicgroupsofcaseinthatactasiron-bindingsites[28,29].
Takingintoaccountthatthenumberofcarboxylicgroupsincreasesonincreasingtheamountofcasein,andtheinteractionsbetweenironoxideandpolymermatrixadecreaseintheswellingbehaviorofIOICNPsmaybejustified.
Theresultsalsoindicatethatswellingofnanoparticlesinmagneticfieldishigherthanthatintheabsenceofmagneticfield.
Theresultscanbeexplainedbythefactthatduetotheappliedmagneticfield,themagneticmomentsofimpregnatedironoxidenanoparticlestendtogetalignedwiththeexternalmagneticfieldandwhiledoingso,theyproduceamotionofmacromolecularchainsinthecaseinmatrix.
Thusduetothemobilityofironoxidenanoparticles,themacromoleculechainsofcaseingetrelaxedandfacilitategreaterinclusionofwatermoleculesintothebiopolymermatrix[30].
Thisclearlyresultsinanenhancedswellingofnanoparticles.
Figure7MIcroscopicimagesshowingL-929cells.
a)negativecontrol,b)positivecontrol,andc)IOICNPs,respectively.
Figure8Effectofmagneticfield,casein,glutaraldehyde,andH2SO4onswellingofCNPsandIOICNPs.
a)magneticfield,b)casein,c)glutaraldehyde,andd)H2SO4onswellingofCNPsandIOICNPs.
Singhetal.
JournalofNanobiotechnology2014,12:38Page9of13http://www.
jnanobiotechnology.
com/content/12/1/38VariationofglutaraldehydeinCNPsandIOICNPsTheeffectofcrosslinkerontheswellingprofilesofCNPsandIOICNPshavebeeninvestigatedbyvaryingtheconcentrationofglutaraldehydeintherange0.
02to20mM.
Theresultsareshownin(Figure8c),whichclearlyrevealthatthewatersorptionbynanoparticlesconstantlyincreaseswhilebeyond10mMconcentrationadropinswellingratioisobserved.
Theobservedincreasemaybeattributedtothefactthatglutaraldehydeisalowmolecularweightcrosslinkingagent,anditcrosslinksbyreactingwiththeNH2groupsofcaseinatitstwoterminals.
Thus,acrosslinkednetworkisdevelopedasaresultofcrosslinkingreactionbetweencaseinandglutaraldehydethuscreatingawidespaceinitsstructureand,therefore,possessinghighcapacityofac-commodatingwatermoleculesintothenetwork[31].
Inthisway,thecapacityofnanoparticlestoaccommodatelargenumberofwatermoleculesresultsinanincreasedswellingratio.
Thedecreaseobservedbeyond10mMofglutaraldehydemaybeexplainedbythereasonthatmuchhighercrosslinkercontentinthenanoparticlesmatrixreducesthefreespaceinthenanoparticlesnetworkaccessibletothepenetratingwatermoleculesandconse-quentlyresultsinafallintheswellingcapacity.
Someauthorshavealsoreportedthatintroductionofcrosslinkerintothepolymermatrixenhancesitsglasstransition(Tg),whichbecauseofglassybehaviorofpoly-mersrestrainsthemobilityofnetworkchainsand,thusdecreasestheswelling[32].
Theswellingresultsalsoin-dicatethattheappliedmagneticfieldalsoenhancestheswellingofnanoparticleswhichhasalreadybeenex-plainedearlier.
VariationofSulphuricacidIonicallycrosslinkedCNPsweresuccessfullypreparedbyatwo-stepprocess.
Thefirststepinvolvedtheforma-tionofoildroplets(emulsion)byanoil-in-wateremulsionformation.
Thesecondstepwasthesolidificationbyusingsulphuricacidoftheformeddropletsbyioniccrosslinkingofcasein(pH2)envelopingtheoildropletswithglutaral-dehyde.
BydecreasingthepHofcaseinsolutionbelowitsisoelectricpoint(4.
6–4.
8),theaminogroupsofcaseinbe-comepositivelychargedbyprotonationandcanstronglyattractthenegativelychargedaldehydicgroupsofglutaral-dehyde,leadingtotheformationofionicallycrosslinkednanoparticles[33].
Theeffectofsolidifyingagent(sulphuricacid)ontheswellingprofileofCNPsandIOICNPshasbeeninves-tigatedbyvaryingtheconcentrationofH2SO4intherange20–200mM.
Theresultsareshownin(Figure8d),whichclearlyrevealthattheswellingofnanoparticlesconstantlyincreaseswhilebeyond80mMconcentrationadropinswellingbehaviorisobserved.
Theobservedde-creasecouldbeattributedtothefactthatastheamountofH2SO4increasesinthefeedmixture,thenumberofpositivelychargedaminogroupsincreaseswhichenhancestheinteractionbetweenaldehydicgroup(O-+C-H)in-creasesthusresultinghighcrosslinkingdensitybetweencaseinandglutaraldehyde.
VariationofFe2+/Fe3+TheCNPstreatedwithFe2+/Fe3+solutioncontainironionsdispersedthroughoutthecaseinnetwork.
Theelec-trostaticforcesbetweentheironionsandamidegroupsofcaseinareresponsiblefortheincreaseintheswellingofIOICNPs,ascomparedtoCNPswithoutions.
Whentheironions(Fe2+0.
5/Fe3+1M)loadedparticlesaretreatedwithalkali,magnetitenanoparticlesareformedinsidetheCNPs.
Thisresultsinanincreasedswellingcapacityduetoincreasedelectrostaticforcesbetweentheamidegroupsandironoxide.
Theresultsareshownin(Figure9a).
TheswellingcapacityfollowstheorderCNPsIOICNPswhichhassametrendasobservedinPAMhydrogel–silvernanocomposites[34].
Whentheironionsloadednanopar-ticlesaretreatedwithNaOH,magnetitenanoparticlesareproducedinsidethematrix.
Theparticlestreatedwithironsaltshadironionsdispersedthroughoutthepolymericnetwork.
Theelectrostaticforcesbetweentheironionsandamidegroupsofcaseinmatrixareresponsiblefortheincreaseintheswellingofironionloadednanoparticles,ascomparedtonativecaseinnanoparticleswithoutions.
Fe3O4magneticnanoparticleswerepreparedwithdifferentconcentrationsofFe2+,Fe3+inaqueousphase,whileotherpreparationconditionswerekeptsame.
TheaveragesizeofFe3O4magneticnanoparticlesincreasesasconcentrationofironsaltsolutionincreases.
Theparticlesizewasfoundtoincreasewiththeincreaseinconcentra-tionofironsalts[35].
EffectofpHpHsensitivemacromoleculardeviceshavebeenmostfrequentlyusedtodesignswellingcontrolledreleasedrugformulationsfororaladministrationwhichisthemostclinicallyacceptablewayofdrugdelivery.
Inthepresentstudy,theeffectofpHontheswellingratioofCNPsandIOICNPshasbeenstudiedbyadjustingpHofswellingmediumintherangeof1·0to9.
0.
Theresultsaredepictedin(Figure9b),whichclearlyindicatethattheswellingratioofparticlesconstantlyincreaseswithincreasepH.
TheincreaseobservedintheswellingratiooftheparticleswithincreasingpHmaybeexplainedasfollows.
ItisknownthatcaseiniscationicinnatureandthereforeachangeinpHoftheswellingmediumalsoaffectsthechargeprofilesofcaseinaswellasIOICNPs.
TheswellingresultsindicateasignificantdependenceofswellingbehaviorofthenanoparticlesondifferentpHvalues.
InboththecasesofCNPsandIOICNPs,theSinghetal.
JournalofNanobiotechnology2014,12:38Page10of13http://www.
jnanobiotechnology.
com/content/12/1/38resultsrevealthatatpH1.
8,alowerswellingratiowasobserved,becausePKaofcaseinisabout4.
2andmostofthecarboxylgroupsinthecaseinexistintheformofCOOHatlowpHmedium(pH1.
7).
Inthemacromol-ecularnanoparticlenetworkofthehydrogenbondingproducedby–COOHgroupsofcaseinledtothestron-gerinteractionbetweenpolymerchains.
Accordingly,theswellingratioinpH1.
7isrelativelylower.
AthigherpH,thecarboxylicgroupsgetionizedandacquire–COOform.
Thus,weakhydrogenbondingbetweenbiopolymerchainsandelectrostaticrepulsionbetween–COOgroupsresultinthehigherswellingratio[36].
SincepKaofcaseinis4.
2,thespeciesinvolvedintheinteractionsareNH3+andCOOHatpH1–3,NH2andCOOatpH7–13.
Inacidicconditions,theswellingiscontrolledmainlybytheaminogroup(NH2)whichisaweakbasewithanintrinsicpKavalueofabout6.
2.
So,itgetsprotonatedandtheincreasedchargedensityonthebiopolymerenhancestheosmoticpressureinsidethenetworkparticlesbecauseoftheNH3+-NH3+electrostaticrepulsion.
Thisosmoticpressuredifferencebetweentheinternalandexternalsolutionsofthenetworkisbalancedbytheswellingofthenetwork.
However,underveryhighlyacidicconditions(pH8.
5[37].
TheswellingofIOICNPsisgovernedbynegativechargepossessedbyironoxidenanoparticles.
WhenpHoftheswellingmediumis9.
0,thenumberofnegativelychargedgroups(Fe-O)islarge,sotheswellingismax-imumbecauseofthestrongelectrostaticrepulsionbe-tweennegativelychargedgroups.
WhenpHoftheswellingmediumis7.
0,theprotonsfromtheswellingmediumneutralizemostofthenegatively-chargedgroupsand,therefore,theswellingratiodecreasesduetothereducedelectrostaticrepulsion.
At1.
2pH,allnegatively-chargedgroupsareneutralized;instead,therewouldbesomeposi-tivelychargedaminegroupsandironspecies(Fe-OH2+),becausetheaminegroupsintheIOICNPsarefewerthanthecarboxylgroupsandthenetchargeisquitelow,thusthattheswellingisalsoverylow[38].
WhenpHislessthanisoelectricpoint(pI)ofcasein,theextentofincreaseinswellingratioatacidicmediumissmall,becausethereareveryfewaminegroupsexistingalongproteinchainssothatthepositivechargesareveryFigure9Effectofironsalts,pH,temperatureandsimulatedbiofluidsonswellingofCNPsandIOICNPs.
a)ironsalts,b)pH,c)temperature,andd)simulatedbiofluidsonswellingofCNPsandIOICNPs.
Singhetal.
JournalofNanobiotechnology2014,12:38Page11of13http://www.
jnanobiotechnology.
com/content/12/1/38limited.
TheswellingbecomesminimumwhenpHofthemediumisclosetothepIofthecasein(4.
6-4.
8).
ThisisbecausethenetchargeoncaseinmoleculesisclosetozeroatpI,whichmeansalmostnoelectrostaticrepulsionexistbetweenthecaseinchains.
Ontheotherhand,whenpH>pI,therearelotsofnegatively-chargedgroupsonthecaseinmolecule,whichresultsinanincreasedswellingratio.
ThehigherthepH,greateristhesurfacechargeandconsequentlythehigherelectrostaticrepulsiveforcesresultinhigherswellingratio[39].
EffectoftemperatureInthepresentstudy,theeffectoftemperatureonswellingwasstudiedbyvaryingthetemperatureintherange12.
5–37.
5°C.
Theresultsareshownin(Figure9c),whichindicatethatwithincreaseintemperature,theswellingofnanoparticlesincreasesfrom2.
5to4.
5inthewholestudiedrangeoftemperature.
TheobservedincreaseintheswellingofIOICNPsmaybeexplainedbythefactthatariseintemperatureenhancestherateofdiffusionofwatermoleculesandsegmentalmobilityofbiopoly-merchainswhichresultsinagreaterdegreeofswelling[40].
However,beyond30°Ctheswellingratiodecreases,whichmaybeduetothereasonthatathighertempe-raturethehydrogenbondsholdingwatermoleculesandthepolymerchainsgetbrokenand,therefore,theswellingratiodecreases.
EffectofphysiologicalfluidsTheeffectofnatureofphysiologicalfluidsontheswellingofCNPsandIOICNPsinabsenceandpresenceofmag-neticfieldhasbeeninvestigatedbyperformingswellingexperimentsinvarioussimulatedphysiologicalfluidslikeurea,D-glucose,PBS,salinewater,distilledwaterandsyntheticurine.
Theresultsarepresentedin(Figure9d),whichindicatethatswellingratioisquitehighinureaincomparisontootherfluidsandlowerdegreeofwatersorptionisnoticed.
Thepossiblereasonforthehigherswellingratioinureamaybethatthepresenceofureaworksashydrogenbondbreakerincaseinmacromoleculeandthistendstoresultingreaterrelaxationofbiopolymerchainswhicheventuallyleadstohigherswelling.
Inthecaseofotherfluidsthesaltionsinthemediumlowerstheosmoticpressuredifferencebetweenthecaseinmatrixandsolventmediumwhichcausesadecreaseinswellingrationofnanoparticles.
Thechangeinswellingduetothepresenceofelectro-lyteconcentrationhasalsobeenpredictedtheoretically.
Fernández-Nievesetal.
[41]demonstratedthatthead-ditionofsaltsmodifiestheionicdistributioninsidethecaseinmatrix,alteringthenumberofdissociatedgroupsinthenetwork,andchangingthenetcharge.
Thechangeinthenetworkchargestatemakesparticlesswellorshrink,dependingonwhethertheelectricalrepulsionsincreaseordecrease,respectively.
ConclusionsThecontrolledsizemagnetitenanoparticleshavebeensuccessfullypreparedviaaconvenientco-precipitationmethodandcharacterizedbyvariousanalyticaltech-niques,suchasFTIRspectroscopy,TEM,SEM,XPS,VSMandRamananalyseswhichconfirmtheinsituimpregnationofnanosizedironoxidewithinthematrixofcaseinnanoparticles.
ThebiopolymericnanoparticlesclearlyshowthepresenceofcharacteristicfunctionalgroupsofcaseinandironoxideasconfirmedbytheirFTIRspectra.
SEMandTEMofthenanoparticlespro-videinformationabouttheirsizeandmorphology.
TheIOICNPsshowanoptimumswellingwhenthecaseincontentis0.
5gwhileonincreasingcaseincontentfurtherthedegreeofswellingdecreases.
Likewise,whentheconcentrationofcrosslinkerincreasesfrom0.
02-20mM,thequantityofwaterimbibedbythenanoparticlesin-creaseswhilebeyond10mMofcrosslinkerconcentration,theextentofswellingdecreases.
ItisalsofoundthatinalkalinepHthenanoparticlesshowanenhancedswellingwhichthereafterdecreaseswithfurtherincreaseinpH.
Inthecaseofrisingtemperaturetheswellingratioconstantlyincreases.
ThepreparedIOICNPsexhibitpropertyofsuperparamagnetismwhichisasignificantforbiomedicalapplications.
Itisalsoobservedthattheswellingofnanoparticlesisenhancedbytheapplicationofexternalmagneticfield.
Thusthepresentswellingsystemmaybehelpfulindesigningtargeteddrugdeliverycarriersusingexternalmagneticfield.
CompetinginterestsTheauthorsdeclarethattheyhavenocompetinginterests.
Authors'contributionsAKBsupervisedthestudy,andcontributedtothedraftingofthisarticle,selectionofmethodology,analysis,discussionoftheresultsandfinalizedthemanuscript.
JBconceivedthestudy,participatedinitsdesignandcoordination.
AScarriedoutalltheexperimentalstudies,contributedinthedesignofthestudy,analyzeddata,anddraftedthemanuscript.
Allauthorsreadandapprovedthefinalmanuscript.
Received:22May2014Accepted:12September2014References1.
IndiraTK,LakhshmiPK:Magneticnanoparticles.
IntJPharmaNanotechnol2010,3:1035–1042.
2.
FiguerolaA,CoratoRD,MannaL,PellegrinoT:Fromironoxidenanoparticlestowardsadvancediron-basedinorganicmaterialsdesignedforbiomedicalapplications.
PharmaRes2010,62:126–143.
3.
MonsonTC,VenturiniEL,PetkovV,RenY,LavinJM,HuberDL:Largeenhancementsofmagneticanisotropyinoxide-freeironnanoparticles.
JMagnMagnMat2013,331:156–161.
4.
JiangF,FuY,ZhuY,TangZ,ShengP:Fabricationofironoxide/silicacore–shellnanoparticlesandtheirmagneticcharacteristics.
JAlloysCompd2010,543:43–48.
5.
MohanrajVJ,ChenY:Nanoparticles-areview.
JPharmRes2006,5:561–573.
Singhetal.
JournalofNanobiotechnology2014,12:38Page12of13http://www.
jnanobiotechnology.
com/content/12/1/386.
EsmailiM,GhaffariSM,Moosavi-MovahediZ:Betacasein–micelleasananovehicleforsolubilityenhancementofcurcumin;foodindustryapplication.
LWTFoodSciTechnol2011,44:2166–2172.
7.
ShapiraA,AssarafYG,EpsteinD,LivneyYD:Beta-caseinnanoparticlesasanoraldeliverysystemforchemotherapeuticdrugs:impactofdrugstructureandpropertiesonco-assembly.
PharmRes2010,27(10):2175–2186.
8.
BouchemalK,BrianonS,PerrierE,FessiH:Nano-emulsionformulationusingspontaneousemulsification:solvent,oilandsurfactantoptimisation.
IntJPharm2004,280:241–251.
9.
LuAH,SalabasEL,SchüthF:Magneticnanoparticles:synthesis,protection,functionalization,andapplication.
AngewChemIntEdEngl2007,46:1222–1244.
10.
PetcharoenaK,SirivatA:Synthesisandcharacterizationofmagnetitenanoparticlesviathechemicalco-precipitationmethod.
MaterSciEngB2012,177:421–427.
11.
JiangW,YangHC,YangSY:Preparationandpropertiesofsuperparamagneticnanoparticleswithnarrowsizedistributionandbiocompatible.
JMagnMagnMat2004,283:210–214.
12.
ChoubeyJ,BajpaiAK:Investigationonmagneticallycontrolleddeliveryofdoxorubicinfromsuperparamagneticnanocarriersofgelatincrosslinkedwithgenipin.
JMaterSci-MaterMed2010,21:1573–1586.
13.
LienYH,WuTM:Preparationandcharacterizationofthermosensitivepolymersgraftedontosilica-coated,ironoxidenanoparticles.
JColloidInterfaceSci2008,326:517–521.
14.
Sepulveda-guzmanS,LaraL,Perez-CamachoO,Rodriguez-FernandezO,OlivasA,EscuderoR:Synthesisandcharacterizationofanironoxixepoly(styrene-co-carboxybutylmaliemide)ferromagneticcomposites.
Polymer2007,48:720–727.
15.
DeaconGB,PhillipsRJ:Relationshipbetweenthecarbon–oxygenstretchingfrequenciesofcarboxylatocomplexesandthetypeofcarboxylatecoordination.
CoordChemRev1980,33:227–250.
16.
MurthyPSK,MohanYM,VaraprasadK,SreedharB,RajuKM:Firstsuccessfuldesignofsemi-IPNhydrogel-silvernanocomposites:afacileapproachforantibacterialapplication.
JColloidInterfaceSci2008,318:217–224.
17.
WeiS,WangQ,ZhuJ,SunL,HongfeiLineH,GuoZ:Multifunctionalcompositecore–shellnanoparticles.
Nanoscale2011,3:4474.
18.
ZhangGI,LiaoY,BakerI:Surfaceengineeringofcore/shelliron/ironoxidenanoparticlesfrommicroemulsionsforhyperthermia.
MaterSciEngC2010,30:92–97.
19.
ChourpaI,Douziech-EyrollesL,Ngaboni-OkassaL,FouquenetJF,Cohen-JonathanS,SouceM,MarchaisH,DuboisP:Molecularcompositionofironoxidenanoparticles,precursorsformagneticdrugtargeting,ascharacterizedbyconfocalramanmicrospectroscopy.
Analyst2005,130:1395–1403.
20.
DeFariaDLA,VenncioSilvaS,DeOliveiraMT:Ramanmicrospectroscopyofsomeironoxidesandoxyhydroxides.
JRamanDR2013228Spectro1997,28:873–878.
21.
OhJK,ParkJM:Ironoxide-basedsuperparamagneticpolymericnanomaterials:design,preparation,andbiomedicalapplication.
ProgPolySci2011,36:168–189.
22.
GrüttnerC,TellerJ,SchüttW,WestphalF,SchümichenC,PaulkeBR,HfeliUO,SchüttW,TellerJ,ZborowskiM:ScientificandClinicalApplicationsofMagneticCarrierseditors.
NewYork:PlenumPress;1997:53.
23.
ShenG,AnandMFG,LevickyR:X-rayphotoelectronspectroscopyandinfraredspectroscopystudyofmaleimide-activatedsupportsforimmobilizationofoligodeoxyribonucleotides.
NucleicAcidsRes2004,32:5973–5980.
24.
BeamsonG,BriggsD:HighResolutionXPSofOrganicPolymers.
NewYork,NY:JohnWiley&Sons;1992:293.
25.
AlexanderMR,BeamsonG,BlomfieldCJ,LeggettG,DucTM:Interactionofcarboxylicacidswiththeoxyhydroxidesurfaceofaluminium:poly(acrylicacid),aceticacid,andpropionicacidonpseudobo-hemite.
JElectronSpectroscRelatPhenom2001,121:19–32.
26.
XuanSH,FangQL,HaoLY,JiangWQ,GongXL,HuY,ChenZY:FabricationofspindleFe2O3@polypyrrolecore/shellparticlesbysurface-modifiedhematitetemplatingandconversiontospindlepolypyrrolecapsulesandcarboncapsules.
JColloidInterfaceSci2007,314:502–509.
27.
HuSH,LiuTY,HuangHY,LiuDM,ChenSY:Magnetic-sensitivesilicananospheresforcontrolleddrugrelease.
Langmuir2008,24:239–244.
28.
HernandezR,SacristanJ,NogalesA,FernandezM,EzquerrabTA,MijangosC:Structureandviscoelasticpropertiesofhybridferrogelswithironoxidenanoparticlessynthesizedinsitu.
SoftMatter2010,6:3910–3917.
29.
ChoubeyJ,BajpaiAK:Investigationonmagneticcontrolleddeliveryofdoxorubincinfromsuperparamagneticnanocarriersofgelatincrosslinkedwithgenipin.
JMaterSclMaterMed2010,21:1573–1586.
30.
LikhitkarS,BajpaiAK:Investigationofmagneticallyenhancedswellingbehaviorofsuperparamagneticstarchnanoparticles.
BulleMaterSci2013,36(1):15–24.
31.
ChouhanR,BajpaiAK:Aswellableinvitroreleasestudyof5-Flurouracil(5-FU)frompoly-(2-hydroxyethylmethacrylate)(PHEMA)nanoparticles.
JMaterSclMaterMed2009,20:1103–1114.
32.
ChairamS,SomsookE:Starchvermicellitemplateforsynthesisofmagneticironoxidenanoclusters.
JMagnMagnMater2008,320:2039–2043.
33.
ElzoghbyAO,HelmyMW,SamyWM,ElingdyNA:Novelionicallycrosslinkedcaseinnanoparticlesforflutamidedelivery:formation,characterizationandin-vivopharmacokinetics.
IntJNanomedicine2013,8:1721–1732.
34.
VimalaK,SivuduKS,MohanYM,SreedharB,RajuKM:Controlledsilvernanoparticlessynthesisinsemi-hydrogelnetworksofpoly(acrylamide)andcarbohydrates:rationalmethodologyforantibacterialapplication.
CarbohydrPolym2009,75:463–471.
35.
SivuduKS,RheeKY:PreparationandcharacterizationofpH-responsivehydrogelmagnetitenanocomposite.
ColloidsandSurfacesA:PhysicochemEngAspects2009,349:29–34.
36.
ZhaoY,QiuZ,HuangJ:PreparationandanalysisofFe3O4magneticnanoparticlesusedastargeted-drugcarriers.
ChineseJChemEng2008,16:451–455.
37.
ChoiCY,ChaeSY,NahJW:Theromosensititvepoly(N-isopropylacrylamide)-b-poly(E-caprolactone)nanoparticlesforefficientdrugdeliverysystem.
JPolymer2006,47:4571.
38.
PourjavadiA,MahdaviniaGR:Superabsorbency,pH-Sensitivityandswellingkineticsofpartiallyhydrolyzedchitosan-g-poly(Acrylamide)Hydrogels.
JTurkChem2006,30:595.
39.
GunasekaranS,KoS,XiaoL:Useofwheyproteinsforencapsulationandcontrolleddeliveryapplications.
JFoodEng2007,83:31–40.
40.
LikhitkarS,BajpaiAK:Magneticallycontrolledreleaseofcisplatinfromsuperparamagneticstarchnanoparticles.
CarbohydrPolym2012,87:300–308.
41.
Fernandez-NievesA,Fernandez-BarberoA,NievesFJDl,VincentB:Motionofmicrogelparticlesunderanexternalelectricfield.
JPhysCondensMatter2000,12:3605–3614.
doi:10.
1186/s12951-014-0038-4Citethisarticleas:Singhetal.
:InvestigationofmagneticallycontrolledwaterintakebehaviorofIronOxideImpregnatedSuperparamagneticCaseinNanoparticles(IOICNPs).
JournalofNanobiotechnology201412:38.
SubmityournextmanuscripttoBioMedCentralandtakefulladvantageof:ConvenientonlinesubmissionThoroughpeerreviewNospaceconstraintsorcolorgurechargesImmediatepublicationonacceptanceInclusioninPubMed,CAS,ScopusandGoogleScholarResearchwhichisfreelyavailableforredistributionSubmityourmanuscriptatwww.
biomedcentral.
com/submitSinghetal.
JournalofNanobiotechnology2014,12:38Page13of13http://www.
jnanobiotechnology.
com/content/12/1/38
捷锐数据官网商家介绍捷锐数据怎么样?捷锐数据好不好?捷锐数据是成立于2018年一家国人IDC商家,早期其主营虚拟主机CDN,现在主要有香港云服、国内物理机、腾讯轻量云代理、阿里轻量云代理,自营香港为CN2+BGP线路,采用KVM虚拟化而且单IP提供10G流量清洗并且免费配备天机盾可达到屏蔽UDP以及无视CC效果。这次捷锐数据给大家带来的活动是香港云促销,总共放量40台点击进入捷锐数据官网优惠活动内...
活动方案:美国洛杉矶 E5 2696V2 2核4G20M带宽100G流量20元/月美国洛杉矶E5 2696V2 2核4G100M带宽1000G流量99元/季香港CN2 E5 2660V2 2核2G30M CN2500G流量119元/季日本CN2E5 2660 2核2G30M CN2 500G流量119元/季美国300G高防 真实防御E5 2696V2 2核2G30M...
georgedatacenter怎么样?georgedatacenter这次其实是两个促销,一是促销一款特价洛杉矶E3-1220 V5独服,性价比其实最高;另外还促销三款特价vps,大家可以根据自己的需要入手。georgedatacenter是一家成立于2019年的美国vps商家,主营美国洛杉矶、芝加哥、达拉斯、新泽西、西雅图机房的VPS、邮件服务器和托管独立服务器业务。georgedatacen...
ioicn为你推荐
博客外链求博客外链方法吴晓波频道买粉罗辑思维,晓松奇谈,鸿观,吴晓波频道,财经郎眼哪个更有深度pw美团网电话是什么pw显卡温度多少正常显卡温度多少正常9flash怎么使用ePSXe啊?godaddy美国GODADDY 域名支持域名别名解析吗?开机滚动条如何关闭开机滚动条?创维云电视功能谁能具体介绍一下创维云电视的主要功能,以及基本的使用方式,如果能分型号介绍就更好了,O(∩_∩)O谢谢iphone6上市时间苹果6什么时候出?多少钱bluestack安卓模拟器bluestacks怎么用?
美国vps服务器 域名停靠一青草视频 lnmp adman 外贸主机 isatap 免费ftp空间 12306抢票攻略 dd444 河南移动邮件系统 softbank邮箱 工信部icp备案号 搜索引擎提交入口 台湾谷歌 河南移动梦网 服务器论坛 腾讯网盘 hdchina winds magento主机 更多