卷积1_王威_基于多尺度卷积神经网络的故障诊断方法研究

卷积神经网络  时间:2021-02-13  阅读:()

摘 要

在现代工业生产设备不断朝着结构化、 自动化和智能化方向发展的过程中电机仍是主要的动力输出设备。若电机在运行过程中出现故障会导致其运行效率降低系统能耗上升等问题严重时甚至造成电机损坏使整体系统设备长时间停机维修造成严重的经济损失。因此研究电机智能故障诊断技术对保障生产设备高效运行的稳定性、可靠性具有重要意义。随着科技的不断创新和发展信号处理、人工智能等技术不断取得突破故障诊断技术也更加精确化、智能化。本文结合实际生产过程中常见的电机变工况和强噪声环境下的故障诊断问题在分析故障产生机理的基础上对电机智能故障诊断方法展开深入研究。

(1)首先利用试验台采集的振动信号对电机不同故障的产生机理进行分析探究其处于故障状态时的振动频率特性。在此基础上研究基于信号处理和机器学习算法的故障诊断方法 分析经验模态分解(Empirical ModeDecomposition,EMD)存在的优势和不足利用其改进算法集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)对信号进行分解得到反映原始信号不同频率成分的本征模态函数(Intrinsic Mode Function.IMF)分量通过相关性与原始信号相关系数较高前4阶IMF分量最后对其进行谱分析得到多个序列作为样本信号用于特征提取。

(2)对多序列样本信号中9种不同的时、频域统计特征进行计算得到原始特征集并在对其采用聚类算法分析的基础上提出一种基于调整互信息和标准差的敏感特征选择方法从原始特征集筛选特征构建敏感特征集用于电机故障诊断。并且针对特征集中存在的特征干扰、冗余等问题提出利用特征降维方法实现对特征的维数约简。最后分别利用支持向量机(Support Vector Machines,SVM)和极限学习机(Extreme Learning Machine,ELM)两种较为流行的机器学习算法实现电机故障诊断并通过对比实验进行验证。

(3)针对基于信号处理的传统智能故障诊断方法中存在的流程复杂、人为干预过多的问题研究端到端式的卷积神经网络算法用于电机故障诊断。针对一维时序信号的特点分析一维卷积神经网络(One-Dimensional Convolutional NeuralNetwork,1 D-CNN)在以原始一维振动信号为基础进行故障诊断的优势。为了提取

I

信号中不同尺度的互补特征提出利用不同尺度核的卷积层提出一种多尺度融合框架构建了基于多尺度一维卷积神经网络的电机故障诊断方法。最后通过实验验证了所提方法在变工况和噪声干扰情况下的优越性。

(4)为了提升MS-1 DCNN在电机变工况和强噪声干扰环境下故障诊断方法的识别效率和准确率在残差网络结构的基础上构建多尺度特征融合框架。分别研究挤压与激励(Squeeze and Excitation,SE)模块和卷积注意力模块(ConvolutionalBlock Attention Module,CBAM)两种注意力机制算法的实现原理设计适用于一维残差网络的注意力模块并将其嵌入到残差模块中构建出多尺度注意力残差网络(Multi-scale attention residual network,MSA-ResNet)模型最后利用实验台数据验证所提模型的有效性和优越性。

该论文有图44幅表18个参考文献92篇。

关键词 电机故障诊断 多尺度特征卷积神经网络注意力机制

II

Abstract

In the process of modern industrial production equipment continuously movingtowards the direction of structure, automation and intelligence,motors are still themain power output equipment. Failure of the motor during operation will causeproblems such as reduced operating efficiency and increased system energyconsumption. In severe cases, the motor will be damaged, causing the overall systemequipment to be stopped for maintenance for a long time, causing serious economiclosses.Therefore, the research of motor intelligent fault diagnosis technology is ofgreat significance for ensuring the stability and reliability of efficient operation ofproduction equipment.With the continuous innovation and development of scienceand technology, breakthroughs have been made in signal processing, artificialintelligence and other technologies,and fault diagnosis technology has become moreprecise and intelligent.The thesis combines the common fault diagnosis problems ofthe motor in the actual production process and the fault diagnosis in the strong noiseenvironment.Based on the analysis of the failure mechanism, the intelligent faultdiagnosis method of the motor is studied in depth.

(1)Firstly, the intelligent fault diagnosis method based on signal processing isstudied, the mechanism of motor fault generation based on vibration signals isexplored.Based on the analysis of the motor fault characteristics under differentoperating states, the signal analysis method based on empirical mode decompositionis studied, and aimed at it Existing modal aliasing is proposed to use set empiricalmodal decomposition to analyze the motor vibration signals, select the first 4 ordersof IMF components through correlation analysis and calculate the correspondingenvelope spectrum and marginal spectrum as the feature extracted signal sequence.

(2)Calculate 9 different time and frequency domain statistical features in themulti-sequence sample signal to obtain the original feature set.Based on the analysisof the clustering algorithm, a sensitive feature based on adjusting mutual informationand standard deviation is proposed. Select a method to filter features from the original

III

feature set to construct a sensitive feature set for motor fault diagnosis. In addition, inview of the problems of feature interference and redundancy in the feature set, afeature dimension reduction method is proposed to reduce the feature dimension.Finally, two more popular machine learning algorithms,Support Vector Machines andExtreme Learning Machine,are used to implement motor fault diagnosis and verifiedby comparison experiments.

(3)Aiming at the problems of complicated processes and excessive humanintervention in traditional intelligent fault diagnosis methods based on signalprocessing, the advantages of one-dimensional convolutional neural networks onone-dimensional time series are analyzed, and faults based on end-to-end 1 DCNNnetworks are studied.A diagnostic method and a multi-scale feature fusion frameworkusing convolutional layers with different scale kernels are proposed.A multi-scaleone-dimensional convolutional neural network based motor fault diagnosis method isconstructed.Finally, the superiority of the proposed method under variable operatingconditions and noise interference is verified through experiments.

(4) In order to improve the recognition efficiency and accuracy of the faultdiagnosis method under variable operating conditions and strong noise interferenceenvironment, a multi-scale feature fusion framework is built on the basis of theresidual network structure. Study the algorithm implementation principle of attentionmechanism, design the attention module suitable for one-dimensional residualnetwork,and embed it in the residual module to build a multi-scale attention residualnetwork model. Finally, the validity and superiority of the proposed model areverified using experimental bench data.

The article has 40 figures, 18 tables and 92 references.

Keywo rds:motor; fault diagnosis;multi-scale features; convo lutional neural network;attention mechanism

IV

V

目 录

摘 要.............................................................................................................................I

目 录..........................................................................................................................VI

图清单...........................................................................................................................X

表清单.......................................................................................................................XIII

变量注释表...............................................................................................................XIV

1绪论............................................................................................................................1

1.1研究背景和意义. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

1.2研究现状. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2

1.3主要研究内容和章节安排. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6

2电机故障诊断原理与信号分析...............................................................................9

2.1电机故障机理分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9

2.2振动信号分析方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12

2.3本章小结. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16

3基于改进调整互信息的特征选择和故障诊断方法.............................................17

3.1引言. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17

3.2改进的特征选择方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17

3.3降维和模式识别算法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20

3.4实验分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27

3.5本章小结. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37

4基于多尺度一维卷积神经网络的电机故障诊断方法.........................................38

4.1引言. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38

4.2卷积神经网络结构. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38

4.3反向传播算法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41

4.4批归一化层. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42

4.5一维卷积神经网络结构. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43

4.6多尺度特征融合. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44

4.7多尺度一维卷积神经网络. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44

4.8实验分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46

4.9本章小结. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50

5基于多尺度残差网络和注意力机制的故障诊断方法.........................................51

5.1引言. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51

VI

5.2残差网络. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51

5.3注意力机制. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52

5.4多尺度注意力残差网络. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56

5.5实验分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58

5.6本章小结. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62

6总结与展望..............................................................................................................63

6.1总结. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63

6.2展望. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64

参考文献......................................................................................................................65

作者简历......................................................................................错误未定义书签。

学位论文原创性声明.................................................................错误未定义书签。

学位论文数据集..........................................................................错误未定义书签。

VII

Contents

Abstract......................................................................................................................III

C o n te n ts.................................................................................................................VIII

List of Figure s..............................................................................................................X

Lis t of Ta ble s............................................................................................................XIII

List of Variables.......................................................................................................XIV

1 Introduction...............................................................................................................1

1.1 Background and Significance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

1.2 Research Status. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2

1.3 Main Research Content and Chapter Arrangement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6

2 Principle and Signal Analysis of Motor Fault Diagnosis.......................................9

2.1 Motor Failure Mechanism Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9

2.2 Vibration Signal Analysis Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12

2.3 Chapter S ummary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16

3 Feature Selection and Fault Diagnosis Method Based on Improved Adjustmentof Mutual Information...............................................................................................17

3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17

3.2 Improved Feature Selection Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17

3.3 Dimension Reduction and Pattern RecognitionAlgorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20

3.4 Experiment Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27

3.5 Chapter S ummary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37

4 Motor Fault Diagnosis Method Based on Multi-scale One-DimensionalConvolutional Neural Network.................................................................................38

4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38

4.2 Convolutional Neural Network Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38

4.3 Back Propagation Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41

4.4 Batch Normalization Layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42

4.5 One-Dimensional ConvolutionalNeuralNetwork Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43

4.6 Multi-scale Feature Fusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44

4.7 Multi-scale One-Dimensional Convolutional Neural Network. . . . . . . . . . . . . . . . . . . . . . . . . . . . .44

4.8 Experiment Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46

VIII

4.9 Chapte r S ummary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50

5 Fault Diagnosis Method Based on Multi-scale Residual Network and AttentionMechanism..................................................................................................................51

5.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51

5.2 Residual Network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51

5.3 Attention Mechanism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52

5.4 Multi-scale Attention Residual Network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56

5.5 Experiment Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58

5.6 Chapte r S ummary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62

6 Conclusions and Prospects.....................................................................................63

6.1 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63

6.2 Prospects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64

References...................................................................................................................65

Author’s Resume........................................................................错误未定义书签。

D iss e rtatio n O rigina lity.............................................................错误未定义书签。

The s is D ata Colle ctio n...............................................................错误未定义书签。

IX

美国200G美国高防服务器16G,800元

美国高防服务器提速啦专业提供美国高防服务器,美国高防服务器租用,美国抗攻击服务器,高防御美国服务器租用等。我们的海外高防服务器带给您坚不可摧的DDoS防护,保障您的业务不受攻击影响。HostEase美国高防服务器位于加州和洛杉矶数据中心,均为国内访问速度最快最稳定的美国抗攻击机房,带给您快速的访问体验。我们的高防服务器配有最高层级的DDoS防护系统,每款抗攻击服务器均拥有免费DDoS防护额度,让您...

10gbiz七月活动首月半价$2.36/月: 香港/洛杉矶CN2 GIA VPS

10gbiz怎么样?10gbiz 美国万兆带宽供应商,主打美国直连大带宽,真实硬防。除美国外还提供线路非常优质的香港、日本等数据中心可供选择,全部机房均支持增加独立硬防。洛杉矶特色线路去程三网直连(电信、联通、移动)回程CN2 GIA优化,全天低延迟。中国大陆访问质量优秀,最多可增加至600G硬防。香港七星级网络,去程回程均为电信CN2 GIA+联通+移动,大陆访问相较其他香港GIA线路平均速度更...

RAKsmart 2021新年新增韩国服务器及香港美国日本VPS半价

RAKsmart 商家我们肯定不算陌生,目前主要的营销客户群肯定是我们。于是在去年的时候有新增很多很多的机房,比如也有测试过的日本、香港、美国机房,这不今年有新增韩国机房(记得去年是不是也有增加过)。且如果没有记错的话,之前VPS主机也有一次磁盘故障的问题。 这不今天有看到商家新增韩国服务器产品,当然目前我还不清楚商家韩国服务器的线路和速度情况,后面我搞一台测试机进行...

卷积神经网络为你推荐
迅雷不能登录为什么迅雷5不能登录了?郭吉军郭吉军和管鹏这两个站长怎么样?群里有人骂在线代理网站最好的免费在线代理网站有哪些~急!淘宝网页显示不正常淘宝网显示不正常什么是云平台什么是云系统?Qzongqzong皮肤上怎样写字中国杀毒软件排行榜杀毒软件的最新排名?中国的排名?主板温度多少正常电脑主板温度多少正常关闭qq相册图标如何关闭QQ相册图标之后保留空间相片田中丽奈日本是不是有两个田中丽奈?
看国外视频直播vps 域名服务器是什么 adman 香港主机 kddi koss 42u机柜尺寸 godaddy域名转出 win8.1企业版升级win10 搜狗12306抢票助手 国外免费空间 个人空间申请 权嘉云 789电视 百度云1t 河南移动m值兑换 万网主机管理 vul cdn网站加速 阿里云手机官网 更多